slub_def.h 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. #include <linux/kmemtrace.h>
  13. #include <linux/kmemleak.h>
  14. enum stat_item {
  15. ALLOC_FASTPATH, /* Allocation from cpu slab */
  16. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  17. FREE_FASTPATH, /* Free to cpu slub */
  18. FREE_SLOWPATH, /* Freeing not to cpu slab */
  19. FREE_FROZEN, /* Freeing to frozen slab */
  20. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  21. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  22. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  23. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  24. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  25. FREE_SLAB, /* Slab freed to the page allocator */
  26. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  27. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  28. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  29. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  30. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  31. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  32. ORDER_FALLBACK, /* Number of times fallback was necessary */
  33. NR_SLUB_STAT_ITEMS };
  34. struct kmem_cache_cpu {
  35. void **freelist; /* Pointer to first free per cpu object */
  36. struct page *page; /* The slab from which we are allocating */
  37. int node; /* The node of the page (or -1 for debug) */
  38. #ifdef CONFIG_SLUB_STATS
  39. unsigned stat[NR_SLUB_STAT_ITEMS];
  40. #endif
  41. };
  42. struct kmem_cache_node {
  43. spinlock_t list_lock; /* Protect partial list and nr_partial */
  44. unsigned long nr_partial;
  45. struct list_head partial;
  46. #ifdef CONFIG_SLUB_DEBUG
  47. atomic_long_t nr_slabs;
  48. atomic_long_t total_objects;
  49. struct list_head full;
  50. #endif
  51. };
  52. /*
  53. * Word size structure that can be atomically updated or read and that
  54. * contains both the order and the number of objects that a slab of the
  55. * given order would contain.
  56. */
  57. struct kmem_cache_order_objects {
  58. unsigned long x;
  59. };
  60. /*
  61. * Slab cache management.
  62. */
  63. struct kmem_cache {
  64. struct kmem_cache_cpu *cpu_slab;
  65. /* Used for retriving partial slabs etc */
  66. unsigned long flags;
  67. int size; /* The size of an object including meta data */
  68. int objsize; /* The size of an object without meta data */
  69. int offset; /* Free pointer offset. */
  70. struct kmem_cache_order_objects oo;
  71. /*
  72. * Avoid an extra cache line for UP, SMP and for the node local to
  73. * struct kmem_cache.
  74. */
  75. struct kmem_cache_node local_node;
  76. /* Allocation and freeing of slabs */
  77. struct kmem_cache_order_objects max;
  78. struct kmem_cache_order_objects min;
  79. gfp_t allocflags; /* gfp flags to use on each alloc */
  80. int refcount; /* Refcount for slab cache destroy */
  81. void (*ctor)(void *);
  82. int inuse; /* Offset to metadata */
  83. int align; /* Alignment */
  84. unsigned long min_partial;
  85. const char *name; /* Name (only for display!) */
  86. struct list_head list; /* List of slab caches */
  87. #ifdef CONFIG_SLUB_DEBUG
  88. struct kobject kobj; /* For sysfs */
  89. #endif
  90. #ifdef CONFIG_NUMA
  91. /*
  92. * Defragmentation by allocating from a remote node.
  93. */
  94. int remote_node_defrag_ratio;
  95. struct kmem_cache_node *node[MAX_NUMNODES];
  96. #endif
  97. };
  98. /*
  99. * Kmalloc subsystem.
  100. */
  101. #if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
  102. #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
  103. #else
  104. #define KMALLOC_MIN_SIZE 8
  105. #endif
  106. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  107. #ifndef ARCH_KMALLOC_MINALIGN
  108. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  109. #endif
  110. #ifndef ARCH_SLAB_MINALIGN
  111. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  112. #endif
  113. /*
  114. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  115. * are passed through to the page allocator. The page allocator "fastpath"
  116. * is relatively slow so we need this value sufficiently high so that
  117. * performance critical objects are allocated through the SLUB fastpath.
  118. *
  119. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  120. * "fastpath" becomes competitive with the slab allocator fastpaths.
  121. */
  122. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  123. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  124. #ifdef CONFIG_ZONE_DMA
  125. #define SLUB_DMA __GFP_DMA
  126. /* Reserve extra caches for potential DMA use */
  127. #define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT - 6)
  128. #else
  129. /* Disable DMA functionality */
  130. #define SLUB_DMA (__force gfp_t)0
  131. #define KMALLOC_CACHES SLUB_PAGE_SHIFT
  132. #endif
  133. /*
  134. * We keep the general caches in an array of slab caches that are used for
  135. * 2^x bytes of allocations.
  136. */
  137. extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
  138. /*
  139. * Sorry that the following has to be that ugly but some versions of GCC
  140. * have trouble with constant propagation and loops.
  141. */
  142. static __always_inline int kmalloc_index(size_t size)
  143. {
  144. if (!size)
  145. return 0;
  146. if (size <= KMALLOC_MIN_SIZE)
  147. return KMALLOC_SHIFT_LOW;
  148. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  149. return 1;
  150. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  151. return 2;
  152. if (size <= 8) return 3;
  153. if (size <= 16) return 4;
  154. if (size <= 32) return 5;
  155. if (size <= 64) return 6;
  156. if (size <= 128) return 7;
  157. if (size <= 256) return 8;
  158. if (size <= 512) return 9;
  159. if (size <= 1024) return 10;
  160. if (size <= 2 * 1024) return 11;
  161. if (size <= 4 * 1024) return 12;
  162. /*
  163. * The following is only needed to support architectures with a larger page
  164. * size than 4k.
  165. */
  166. if (size <= 8 * 1024) return 13;
  167. if (size <= 16 * 1024) return 14;
  168. if (size <= 32 * 1024) return 15;
  169. if (size <= 64 * 1024) return 16;
  170. if (size <= 128 * 1024) return 17;
  171. if (size <= 256 * 1024) return 18;
  172. if (size <= 512 * 1024) return 19;
  173. if (size <= 1024 * 1024) return 20;
  174. if (size <= 2 * 1024 * 1024) return 21;
  175. return -1;
  176. /*
  177. * What we really wanted to do and cannot do because of compiler issues is:
  178. * int i;
  179. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  180. * if (size <= (1 << i))
  181. * return i;
  182. */
  183. }
  184. /*
  185. * Find the slab cache for a given combination of allocation flags and size.
  186. *
  187. * This ought to end up with a global pointer to the right cache
  188. * in kmalloc_caches.
  189. */
  190. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  191. {
  192. int index = kmalloc_index(size);
  193. if (index == 0)
  194. return NULL;
  195. return &kmalloc_caches[index];
  196. }
  197. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  198. void *__kmalloc(size_t size, gfp_t flags);
  199. #ifdef CONFIG_TRACING
  200. extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
  201. #else
  202. static __always_inline void *
  203. kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  204. {
  205. return kmem_cache_alloc(s, gfpflags);
  206. }
  207. #endif
  208. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  209. {
  210. unsigned int order = get_order(size);
  211. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  212. kmemleak_alloc(ret, size, 1, flags);
  213. trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
  214. return ret;
  215. }
  216. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  217. {
  218. void *ret;
  219. if (__builtin_constant_p(size)) {
  220. if (size > SLUB_MAX_SIZE)
  221. return kmalloc_large(size, flags);
  222. if (!(flags & SLUB_DMA)) {
  223. struct kmem_cache *s = kmalloc_slab(size);
  224. if (!s)
  225. return ZERO_SIZE_PTR;
  226. ret = kmem_cache_alloc_notrace(s, flags);
  227. trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
  228. return ret;
  229. }
  230. }
  231. return __kmalloc(size, flags);
  232. }
  233. #ifdef CONFIG_NUMA
  234. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  235. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  236. #ifdef CONFIG_TRACING
  237. extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  238. gfp_t gfpflags,
  239. int node);
  240. #else
  241. static __always_inline void *
  242. kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  243. gfp_t gfpflags,
  244. int node)
  245. {
  246. return kmem_cache_alloc_node(s, gfpflags, node);
  247. }
  248. #endif
  249. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  250. {
  251. void *ret;
  252. if (__builtin_constant_p(size) &&
  253. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  254. struct kmem_cache *s = kmalloc_slab(size);
  255. if (!s)
  256. return ZERO_SIZE_PTR;
  257. ret = kmem_cache_alloc_node_notrace(s, flags, node);
  258. trace_kmalloc_node(_THIS_IP_, ret,
  259. size, s->size, flags, node);
  260. return ret;
  261. }
  262. return __kmalloc_node(size, flags, node);
  263. }
  264. #endif
  265. #endif /* _LINUX_SLUB_DEF_H */