korina.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. (rischelp@idt.com)
  5. * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
  6. * Copyright 2008 Florian Fainelli <florian@openwrt.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * Writing to a DMA status register:
  29. *
  30. * When writing to the status register, you should mask the bit you have
  31. * been testing the status register with. Both Tx and Rx DMA registers
  32. * should stick to this procedure.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/moduleparam.h>
  37. #include <linux/sched.h>
  38. #include <linux/ctype.h>
  39. #include <linux/types.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/init.h>
  42. #include <linux/ioport.h>
  43. #include <linux/in.h>
  44. #include <linux/slab.h>
  45. #include <linux/string.h>
  46. #include <linux/delay.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/errno.h>
  51. #include <linux/platform_device.h>
  52. #include <linux/mii.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/crc32.h>
  55. #include <asm/bootinfo.h>
  56. #include <asm/system.h>
  57. #include <asm/bitops.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/segment.h>
  60. #include <asm/io.h>
  61. #include <asm/dma.h>
  62. #include <asm/mach-rc32434/rb.h>
  63. #include <asm/mach-rc32434/rc32434.h>
  64. #include <asm/mach-rc32434/eth.h>
  65. #include <asm/mach-rc32434/dma_v.h>
  66. #define DRV_NAME "korina"
  67. #define DRV_VERSION "0.10"
  68. #define DRV_RELDATE "04Mar2008"
  69. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  70. ((dev)->dev_addr[1]))
  71. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  72. ((dev)->dev_addr[3] << 16) | \
  73. ((dev)->dev_addr[4] << 8) | \
  74. ((dev)->dev_addr[5]))
  75. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  76. /* the following must be powers of two */
  77. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  78. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  79. /* KORINA_RBSIZE is the hardware's default maximum receive
  80. * frame size in bytes. Having this hardcoded means that there
  81. * is no support for MTU sizes greater than 1500. */
  82. #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
  83. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  84. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  85. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  86. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  87. #define TX_TIMEOUT (6000 * HZ / 1000)
  88. enum chain_status { desc_filled, desc_empty };
  89. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  90. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  91. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  92. /* Information that need to be kept for each board. */
  93. struct korina_private {
  94. struct eth_regs *eth_regs;
  95. struct dma_reg *rx_dma_regs;
  96. struct dma_reg *tx_dma_regs;
  97. struct dma_desc *td_ring; /* transmit descriptor ring */
  98. struct dma_desc *rd_ring; /* receive descriptor ring */
  99. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  100. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  101. int rx_next_done;
  102. int rx_chain_head;
  103. int rx_chain_tail;
  104. enum chain_status rx_chain_status;
  105. int tx_next_done;
  106. int tx_chain_head;
  107. int tx_chain_tail;
  108. enum chain_status tx_chain_status;
  109. int tx_count;
  110. int tx_full;
  111. int rx_irq;
  112. int tx_irq;
  113. int ovr_irq;
  114. int und_irq;
  115. spinlock_t lock; /* NIC xmit lock */
  116. int dma_halt_cnt;
  117. int dma_run_cnt;
  118. struct napi_struct napi;
  119. struct timer_list media_check_timer;
  120. struct mii_if_info mii_if;
  121. struct work_struct restart_task;
  122. struct net_device *dev;
  123. int phy_addr;
  124. };
  125. extern unsigned int idt_cpu_freq;
  126. static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
  127. {
  128. writel(0, &ch->dmandptr);
  129. writel(dma_addr, &ch->dmadptr);
  130. }
  131. static inline void korina_abort_dma(struct net_device *dev,
  132. struct dma_reg *ch)
  133. {
  134. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  135. writel(0x10, &ch->dmac);
  136. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  137. dev->trans_start = jiffies;
  138. writel(0, &ch->dmas);
  139. }
  140. writel(0, &ch->dmadptr);
  141. writel(0, &ch->dmandptr);
  142. }
  143. static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
  144. {
  145. writel(dma_addr, &ch->dmandptr);
  146. }
  147. static void korina_abort_tx(struct net_device *dev)
  148. {
  149. struct korina_private *lp = netdev_priv(dev);
  150. korina_abort_dma(dev, lp->tx_dma_regs);
  151. }
  152. static void korina_abort_rx(struct net_device *dev)
  153. {
  154. struct korina_private *lp = netdev_priv(dev);
  155. korina_abort_dma(dev, lp->rx_dma_regs);
  156. }
  157. static void korina_start_rx(struct korina_private *lp,
  158. struct dma_desc *rd)
  159. {
  160. korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  161. }
  162. static void korina_chain_rx(struct korina_private *lp,
  163. struct dma_desc *rd)
  164. {
  165. korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  166. }
  167. /* transmit packet */
  168. static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
  169. {
  170. struct korina_private *lp = netdev_priv(dev);
  171. unsigned long flags;
  172. u32 length;
  173. u32 chain_prev, chain_next;
  174. struct dma_desc *td;
  175. spin_lock_irqsave(&lp->lock, flags);
  176. td = &lp->td_ring[lp->tx_chain_tail];
  177. /* stop queue when full, drop pkts if queue already full */
  178. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  179. lp->tx_full = 1;
  180. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  181. netif_stop_queue(dev);
  182. else {
  183. dev->stats.tx_dropped++;
  184. dev_kfree_skb_any(skb);
  185. spin_unlock_irqrestore(&lp->lock, flags);
  186. return NETDEV_TX_BUSY;
  187. }
  188. }
  189. lp->tx_count++;
  190. lp->tx_skb[lp->tx_chain_tail] = skb;
  191. length = skb->len;
  192. dma_cache_wback((u32)skb->data, skb->len);
  193. /* Setup the transmit descriptor. */
  194. dma_cache_inv((u32) td, sizeof(*td));
  195. td->ca = CPHYSADDR(skb->data);
  196. chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
  197. chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
  198. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  199. if (lp->tx_chain_status == desc_empty) {
  200. /* Update tail */
  201. td->control = DMA_COUNT(length) |
  202. DMA_DESC_COF | DMA_DESC_IOF;
  203. /* Move tail */
  204. lp->tx_chain_tail = chain_next;
  205. /* Write to NDPTR */
  206. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  207. &lp->tx_dma_regs->dmandptr);
  208. /* Move head to tail */
  209. lp->tx_chain_head = lp->tx_chain_tail;
  210. } else {
  211. /* Update tail */
  212. td->control = DMA_COUNT(length) |
  213. DMA_DESC_COF | DMA_DESC_IOF;
  214. /* Link to prev */
  215. lp->td_ring[chain_prev].control &=
  216. ~DMA_DESC_COF;
  217. /* Link to prev */
  218. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  219. /* Move tail */
  220. lp->tx_chain_tail = chain_next;
  221. /* Write to NDPTR */
  222. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  223. &(lp->tx_dma_regs->dmandptr));
  224. /* Move head to tail */
  225. lp->tx_chain_head = lp->tx_chain_tail;
  226. lp->tx_chain_status = desc_empty;
  227. }
  228. } else {
  229. if (lp->tx_chain_status == desc_empty) {
  230. /* Update tail */
  231. td->control = DMA_COUNT(length) |
  232. DMA_DESC_COF | DMA_DESC_IOF;
  233. /* Move tail */
  234. lp->tx_chain_tail = chain_next;
  235. lp->tx_chain_status = desc_filled;
  236. } else {
  237. /* Update tail */
  238. td->control = DMA_COUNT(length) |
  239. DMA_DESC_COF | DMA_DESC_IOF;
  240. lp->td_ring[chain_prev].control &=
  241. ~DMA_DESC_COF;
  242. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  243. lp->tx_chain_tail = chain_next;
  244. }
  245. }
  246. dma_cache_wback((u32) td, sizeof(*td));
  247. dev->trans_start = jiffies;
  248. spin_unlock_irqrestore(&lp->lock, flags);
  249. return NETDEV_TX_OK;
  250. }
  251. static int mdio_read(struct net_device *dev, int mii_id, int reg)
  252. {
  253. struct korina_private *lp = netdev_priv(dev);
  254. int ret;
  255. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  256. writel(0, &lp->eth_regs->miimcfg);
  257. writel(0, &lp->eth_regs->miimcmd);
  258. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  259. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  260. ret = (int)(readl(&lp->eth_regs->miimrdd));
  261. return ret;
  262. }
  263. static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
  264. {
  265. struct korina_private *lp = netdev_priv(dev);
  266. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  267. writel(0, &lp->eth_regs->miimcfg);
  268. writel(1, &lp->eth_regs->miimcmd);
  269. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  270. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  271. writel(val, &lp->eth_regs->miimwtd);
  272. }
  273. /* Ethernet Rx DMA interrupt */
  274. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  275. {
  276. struct net_device *dev = dev_id;
  277. struct korina_private *lp = netdev_priv(dev);
  278. u32 dmas, dmasm;
  279. irqreturn_t retval;
  280. dmas = readl(&lp->rx_dma_regs->dmas);
  281. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  282. dmasm = readl(&lp->rx_dma_regs->dmasm);
  283. writel(dmasm | (DMA_STAT_DONE |
  284. DMA_STAT_HALT | DMA_STAT_ERR),
  285. &lp->rx_dma_regs->dmasm);
  286. napi_schedule(&lp->napi);
  287. if (dmas & DMA_STAT_ERR)
  288. printk(KERN_ERR "%s: DMA error\n", dev->name);
  289. retval = IRQ_HANDLED;
  290. } else
  291. retval = IRQ_NONE;
  292. return retval;
  293. }
  294. static int korina_rx(struct net_device *dev, int limit)
  295. {
  296. struct korina_private *lp = netdev_priv(dev);
  297. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  298. struct sk_buff *skb, *skb_new;
  299. u8 *pkt_buf;
  300. u32 devcs, pkt_len, dmas;
  301. int count;
  302. dma_cache_inv((u32)rd, sizeof(*rd));
  303. for (count = 0; count < limit; count++) {
  304. skb = lp->rx_skb[lp->rx_next_done];
  305. skb_new = NULL;
  306. devcs = rd->devcs;
  307. if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
  308. break;
  309. /* Update statistics counters */
  310. if (devcs & ETH_RX_CRC)
  311. dev->stats.rx_crc_errors++;
  312. if (devcs & ETH_RX_LOR)
  313. dev->stats.rx_length_errors++;
  314. if (devcs & ETH_RX_LE)
  315. dev->stats.rx_length_errors++;
  316. if (devcs & ETH_RX_OVR)
  317. dev->stats.rx_over_errors++;
  318. if (devcs & ETH_RX_CV)
  319. dev->stats.rx_frame_errors++;
  320. if (devcs & ETH_RX_CES)
  321. dev->stats.rx_length_errors++;
  322. if (devcs & ETH_RX_MP)
  323. dev->stats.multicast++;
  324. if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
  325. /* check that this is a whole packet
  326. * WARNING: DMA_FD bit incorrectly set
  327. * in Rc32434 (errata ref #077) */
  328. dev->stats.rx_errors++;
  329. dev->stats.rx_dropped++;
  330. } else if ((devcs & ETH_RX_ROK)) {
  331. pkt_len = RCVPKT_LENGTH(devcs);
  332. /* must be the (first and) last
  333. * descriptor then */
  334. pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
  335. /* invalidate the cache */
  336. dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
  337. /* Malloc up new buffer. */
  338. skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  339. if (!skb_new)
  340. break;
  341. /* Do not count the CRC */
  342. skb_put(skb, pkt_len - 4);
  343. skb->protocol = eth_type_trans(skb, dev);
  344. /* Pass the packet to upper layers */
  345. netif_receive_skb(skb);
  346. dev->stats.rx_packets++;
  347. dev->stats.rx_bytes += pkt_len;
  348. /* Update the mcast stats */
  349. if (devcs & ETH_RX_MP)
  350. dev->stats.multicast++;
  351. lp->rx_skb[lp->rx_next_done] = skb_new;
  352. }
  353. rd->devcs = 0;
  354. /* Restore descriptor's curr_addr */
  355. if (skb_new)
  356. rd->ca = CPHYSADDR(skb_new->data);
  357. else
  358. rd->ca = CPHYSADDR(skb->data);
  359. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  360. DMA_DESC_COD | DMA_DESC_IOD;
  361. lp->rd_ring[(lp->rx_next_done - 1) &
  362. KORINA_RDS_MASK].control &=
  363. ~DMA_DESC_COD;
  364. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  365. dma_cache_wback((u32)rd, sizeof(*rd));
  366. rd = &lp->rd_ring[lp->rx_next_done];
  367. writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  368. }
  369. dmas = readl(&lp->rx_dma_regs->dmas);
  370. if (dmas & DMA_STAT_HALT) {
  371. writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
  372. &lp->rx_dma_regs->dmas);
  373. lp->dma_halt_cnt++;
  374. rd->devcs = 0;
  375. skb = lp->rx_skb[lp->rx_next_done];
  376. rd->ca = CPHYSADDR(skb->data);
  377. dma_cache_wback((u32)rd, sizeof(*rd));
  378. korina_chain_rx(lp, rd);
  379. }
  380. return count;
  381. }
  382. static int korina_poll(struct napi_struct *napi, int budget)
  383. {
  384. struct korina_private *lp =
  385. container_of(napi, struct korina_private, napi);
  386. struct net_device *dev = lp->dev;
  387. int work_done;
  388. work_done = korina_rx(dev, budget);
  389. if (work_done < budget) {
  390. napi_complete(napi);
  391. writel(readl(&lp->rx_dma_regs->dmasm) &
  392. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  393. &lp->rx_dma_regs->dmasm);
  394. }
  395. return work_done;
  396. }
  397. /*
  398. * Set or clear the multicast filter for this adaptor.
  399. */
  400. static void korina_multicast_list(struct net_device *dev)
  401. {
  402. struct korina_private *lp = netdev_priv(dev);
  403. unsigned long flags;
  404. struct netdev_hw_addr *ha;
  405. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  406. int i;
  407. /* Set promiscuous mode */
  408. if (dev->flags & IFF_PROMISC)
  409. recognise |= ETH_ARC_PRO;
  410. else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
  411. /* All multicast and broadcast */
  412. recognise |= ETH_ARC_AM;
  413. /* Build the hash table */
  414. if (netdev_mc_count(dev) > 4) {
  415. u16 hash_table[4];
  416. u32 crc;
  417. for (i = 0; i < 4; i++)
  418. hash_table[i] = 0;
  419. netdev_for_each_mc_addr(ha, dev) {
  420. char *addrs = ha->addr;
  421. if (!(*addrs & 1))
  422. continue;
  423. crc = ether_crc_le(6, addrs);
  424. crc >>= 26;
  425. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  426. }
  427. /* Accept filtered multicast */
  428. recognise |= ETH_ARC_AFM;
  429. /* Fill the MAC hash tables with their values */
  430. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  431. &lp->eth_regs->ethhash0);
  432. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  433. &lp->eth_regs->ethhash1);
  434. }
  435. spin_lock_irqsave(&lp->lock, flags);
  436. writel(recognise, &lp->eth_regs->etharc);
  437. spin_unlock_irqrestore(&lp->lock, flags);
  438. }
  439. static void korina_tx(struct net_device *dev)
  440. {
  441. struct korina_private *lp = netdev_priv(dev);
  442. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  443. u32 devcs;
  444. u32 dmas;
  445. spin_lock(&lp->lock);
  446. /* Process all desc that are done */
  447. while (IS_DMA_FINISHED(td->control)) {
  448. if (lp->tx_full == 1) {
  449. netif_wake_queue(dev);
  450. lp->tx_full = 0;
  451. }
  452. devcs = lp->td_ring[lp->tx_next_done].devcs;
  453. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  454. (ETH_TX_FD | ETH_TX_LD)) {
  455. dev->stats.tx_errors++;
  456. dev->stats.tx_dropped++;
  457. /* Should never happen */
  458. printk(KERN_ERR "%s: split tx ignored\n",
  459. dev->name);
  460. } else if (devcs & ETH_TX_TOK) {
  461. dev->stats.tx_packets++;
  462. dev->stats.tx_bytes +=
  463. lp->tx_skb[lp->tx_next_done]->len;
  464. } else {
  465. dev->stats.tx_errors++;
  466. dev->stats.tx_dropped++;
  467. /* Underflow */
  468. if (devcs & ETH_TX_UND)
  469. dev->stats.tx_fifo_errors++;
  470. /* Oversized frame */
  471. if (devcs & ETH_TX_OF)
  472. dev->stats.tx_aborted_errors++;
  473. /* Excessive deferrals */
  474. if (devcs & ETH_TX_ED)
  475. dev->stats.tx_carrier_errors++;
  476. /* Collisions: medium busy */
  477. if (devcs & ETH_TX_EC)
  478. dev->stats.collisions++;
  479. /* Late collision */
  480. if (devcs & ETH_TX_LC)
  481. dev->stats.tx_window_errors++;
  482. }
  483. /* We must always free the original skb */
  484. if (lp->tx_skb[lp->tx_next_done]) {
  485. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  486. lp->tx_skb[lp->tx_next_done] = NULL;
  487. }
  488. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  489. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  490. lp->td_ring[lp->tx_next_done].link = 0;
  491. lp->td_ring[lp->tx_next_done].ca = 0;
  492. lp->tx_count--;
  493. /* Go on to next transmission */
  494. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  495. td = &lp->td_ring[lp->tx_next_done];
  496. }
  497. /* Clear the DMA status register */
  498. dmas = readl(&lp->tx_dma_regs->dmas);
  499. writel(~dmas, &lp->tx_dma_regs->dmas);
  500. writel(readl(&lp->tx_dma_regs->dmasm) &
  501. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  502. &lp->tx_dma_regs->dmasm);
  503. spin_unlock(&lp->lock);
  504. }
  505. static irqreturn_t
  506. korina_tx_dma_interrupt(int irq, void *dev_id)
  507. {
  508. struct net_device *dev = dev_id;
  509. struct korina_private *lp = netdev_priv(dev);
  510. u32 dmas, dmasm;
  511. irqreturn_t retval;
  512. dmas = readl(&lp->tx_dma_regs->dmas);
  513. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  514. dmasm = readl(&lp->tx_dma_regs->dmasm);
  515. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  516. &lp->tx_dma_regs->dmasm);
  517. korina_tx(dev);
  518. if (lp->tx_chain_status == desc_filled &&
  519. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  520. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  521. &(lp->tx_dma_regs->dmandptr));
  522. lp->tx_chain_status = desc_empty;
  523. lp->tx_chain_head = lp->tx_chain_tail;
  524. dev->trans_start = jiffies;
  525. }
  526. if (dmas & DMA_STAT_ERR)
  527. printk(KERN_ERR "%s: DMA error\n", dev->name);
  528. retval = IRQ_HANDLED;
  529. } else
  530. retval = IRQ_NONE;
  531. return retval;
  532. }
  533. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  534. {
  535. struct korina_private *lp = netdev_priv(dev);
  536. mii_check_media(&lp->mii_if, 0, init_media);
  537. if (lp->mii_if.full_duplex)
  538. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  539. &lp->eth_regs->ethmac2);
  540. else
  541. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  542. &lp->eth_regs->ethmac2);
  543. }
  544. static void korina_poll_media(unsigned long data)
  545. {
  546. struct net_device *dev = (struct net_device *) data;
  547. struct korina_private *lp = netdev_priv(dev);
  548. korina_check_media(dev, 0);
  549. mod_timer(&lp->media_check_timer, jiffies + HZ);
  550. }
  551. static void korina_set_carrier(struct mii_if_info *mii)
  552. {
  553. if (mii->force_media) {
  554. /* autoneg is off: Link is always assumed to be up */
  555. if (!netif_carrier_ok(mii->dev))
  556. netif_carrier_on(mii->dev);
  557. } else /* Let MMI library update carrier status */
  558. korina_check_media(mii->dev, 0);
  559. }
  560. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  561. {
  562. struct korina_private *lp = netdev_priv(dev);
  563. struct mii_ioctl_data *data = if_mii(rq);
  564. int rc;
  565. if (!netif_running(dev))
  566. return -EINVAL;
  567. spin_lock_irq(&lp->lock);
  568. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  569. spin_unlock_irq(&lp->lock);
  570. korina_set_carrier(&lp->mii_if);
  571. return rc;
  572. }
  573. /* ethtool helpers */
  574. static void netdev_get_drvinfo(struct net_device *dev,
  575. struct ethtool_drvinfo *info)
  576. {
  577. struct korina_private *lp = netdev_priv(dev);
  578. strcpy(info->driver, DRV_NAME);
  579. strcpy(info->version, DRV_VERSION);
  580. strcpy(info->bus_info, lp->dev->name);
  581. }
  582. static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  583. {
  584. struct korina_private *lp = netdev_priv(dev);
  585. int rc;
  586. spin_lock_irq(&lp->lock);
  587. rc = mii_ethtool_gset(&lp->mii_if, cmd);
  588. spin_unlock_irq(&lp->lock);
  589. return rc;
  590. }
  591. static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  592. {
  593. struct korina_private *lp = netdev_priv(dev);
  594. int rc;
  595. spin_lock_irq(&lp->lock);
  596. rc = mii_ethtool_sset(&lp->mii_if, cmd);
  597. spin_unlock_irq(&lp->lock);
  598. korina_set_carrier(&lp->mii_if);
  599. return rc;
  600. }
  601. static u32 netdev_get_link(struct net_device *dev)
  602. {
  603. struct korina_private *lp = netdev_priv(dev);
  604. return mii_link_ok(&lp->mii_if);
  605. }
  606. static const struct ethtool_ops netdev_ethtool_ops = {
  607. .get_drvinfo = netdev_get_drvinfo,
  608. .get_settings = netdev_get_settings,
  609. .set_settings = netdev_set_settings,
  610. .get_link = netdev_get_link,
  611. };
  612. static int korina_alloc_ring(struct net_device *dev)
  613. {
  614. struct korina_private *lp = netdev_priv(dev);
  615. struct sk_buff *skb;
  616. int i;
  617. /* Initialize the transmit descriptors */
  618. for (i = 0; i < KORINA_NUM_TDS; i++) {
  619. lp->td_ring[i].control = DMA_DESC_IOF;
  620. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  621. lp->td_ring[i].ca = 0;
  622. lp->td_ring[i].link = 0;
  623. }
  624. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  625. lp->tx_full = lp->tx_count = 0;
  626. lp->tx_chain_status = desc_empty;
  627. /* Initialize the receive descriptors */
  628. for (i = 0; i < KORINA_NUM_RDS; i++) {
  629. skb = dev_alloc_skb(KORINA_RBSIZE + 2);
  630. if (!skb)
  631. return -ENOMEM;
  632. skb_reserve(skb, 2);
  633. lp->rx_skb[i] = skb;
  634. lp->rd_ring[i].control = DMA_DESC_IOD |
  635. DMA_COUNT(KORINA_RBSIZE);
  636. lp->rd_ring[i].devcs = 0;
  637. lp->rd_ring[i].ca = CPHYSADDR(skb->data);
  638. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
  639. }
  640. /* loop back receive descriptors, so the last
  641. * descriptor points to the first one */
  642. lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
  643. lp->rd_ring[i - 1].control |= DMA_DESC_COD;
  644. lp->rx_next_done = 0;
  645. lp->rx_chain_head = 0;
  646. lp->rx_chain_tail = 0;
  647. lp->rx_chain_status = desc_empty;
  648. return 0;
  649. }
  650. static void korina_free_ring(struct net_device *dev)
  651. {
  652. struct korina_private *lp = netdev_priv(dev);
  653. int i;
  654. for (i = 0; i < KORINA_NUM_RDS; i++) {
  655. lp->rd_ring[i].control = 0;
  656. if (lp->rx_skb[i])
  657. dev_kfree_skb_any(lp->rx_skb[i]);
  658. lp->rx_skb[i] = NULL;
  659. }
  660. for (i = 0; i < KORINA_NUM_TDS; i++) {
  661. lp->td_ring[i].control = 0;
  662. if (lp->tx_skb[i])
  663. dev_kfree_skb_any(lp->tx_skb[i]);
  664. lp->tx_skb[i] = NULL;
  665. }
  666. }
  667. /*
  668. * Initialize the RC32434 ethernet controller.
  669. */
  670. static int korina_init(struct net_device *dev)
  671. {
  672. struct korina_private *lp = netdev_priv(dev);
  673. /* Disable DMA */
  674. korina_abort_tx(dev);
  675. korina_abort_rx(dev);
  676. /* reset ethernet logic */
  677. writel(0, &lp->eth_regs->ethintfc);
  678. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  679. dev->trans_start = jiffies;
  680. /* Enable Ethernet Interface */
  681. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  682. /* Allocate rings */
  683. if (korina_alloc_ring(dev)) {
  684. printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
  685. korina_free_ring(dev);
  686. return -ENOMEM;
  687. }
  688. writel(0, &lp->rx_dma_regs->dmas);
  689. /* Start Rx DMA */
  690. korina_start_rx(lp, &lp->rd_ring[0]);
  691. writel(readl(&lp->tx_dma_regs->dmasm) &
  692. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  693. &lp->tx_dma_regs->dmasm);
  694. writel(readl(&lp->rx_dma_regs->dmasm) &
  695. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  696. &lp->rx_dma_regs->dmasm);
  697. /* Accept only packets destined for this Ethernet device address */
  698. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  699. /* Set all Ether station address registers to their initial values */
  700. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  701. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  702. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  703. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  704. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  705. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  706. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  707. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  708. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  709. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  710. &lp->eth_regs->ethmac2);
  711. /* Back to back inter-packet-gap */
  712. writel(0x15, &lp->eth_regs->ethipgt);
  713. /* Non - Back to back inter-packet-gap */
  714. writel(0x12, &lp->eth_regs->ethipgr);
  715. /* Management Clock Prescaler Divisor
  716. * Clock independent setting */
  717. writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
  718. &lp->eth_regs->ethmcp);
  719. /* don't transmit until fifo contains 48b */
  720. writel(48, &lp->eth_regs->ethfifott);
  721. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  722. napi_enable(&lp->napi);
  723. netif_start_queue(dev);
  724. return 0;
  725. }
  726. /*
  727. * Restart the RC32434 ethernet controller.
  728. */
  729. static void korina_restart_task(struct work_struct *work)
  730. {
  731. struct korina_private *lp = container_of(work,
  732. struct korina_private, restart_task);
  733. struct net_device *dev = lp->dev;
  734. /*
  735. * Disable interrupts
  736. */
  737. disable_irq(lp->rx_irq);
  738. disable_irq(lp->tx_irq);
  739. disable_irq(lp->ovr_irq);
  740. disable_irq(lp->und_irq);
  741. writel(readl(&lp->tx_dma_regs->dmasm) |
  742. DMA_STAT_FINI | DMA_STAT_ERR,
  743. &lp->tx_dma_regs->dmasm);
  744. writel(readl(&lp->rx_dma_regs->dmasm) |
  745. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  746. &lp->rx_dma_regs->dmasm);
  747. korina_free_ring(dev);
  748. napi_disable(&lp->napi);
  749. if (korina_init(dev) < 0) {
  750. printk(KERN_ERR "%s: cannot restart device\n", dev->name);
  751. return;
  752. }
  753. korina_multicast_list(dev);
  754. enable_irq(lp->und_irq);
  755. enable_irq(lp->ovr_irq);
  756. enable_irq(lp->tx_irq);
  757. enable_irq(lp->rx_irq);
  758. }
  759. static void korina_clear_and_restart(struct net_device *dev, u32 value)
  760. {
  761. struct korina_private *lp = netdev_priv(dev);
  762. netif_stop_queue(dev);
  763. writel(value, &lp->eth_regs->ethintfc);
  764. schedule_work(&lp->restart_task);
  765. }
  766. /* Ethernet Tx Underflow interrupt */
  767. static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
  768. {
  769. struct net_device *dev = dev_id;
  770. struct korina_private *lp = netdev_priv(dev);
  771. unsigned int und;
  772. spin_lock(&lp->lock);
  773. und = readl(&lp->eth_regs->ethintfc);
  774. if (und & ETH_INT_FC_UND)
  775. korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
  776. spin_unlock(&lp->lock);
  777. return IRQ_HANDLED;
  778. }
  779. static void korina_tx_timeout(struct net_device *dev)
  780. {
  781. struct korina_private *lp = netdev_priv(dev);
  782. schedule_work(&lp->restart_task);
  783. }
  784. /* Ethernet Rx Overflow interrupt */
  785. static irqreturn_t
  786. korina_ovr_interrupt(int irq, void *dev_id)
  787. {
  788. struct net_device *dev = dev_id;
  789. struct korina_private *lp = netdev_priv(dev);
  790. unsigned int ovr;
  791. spin_lock(&lp->lock);
  792. ovr = readl(&lp->eth_regs->ethintfc);
  793. if (ovr & ETH_INT_FC_OVR)
  794. korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
  795. spin_unlock(&lp->lock);
  796. return IRQ_HANDLED;
  797. }
  798. #ifdef CONFIG_NET_POLL_CONTROLLER
  799. static void korina_poll_controller(struct net_device *dev)
  800. {
  801. disable_irq(dev->irq);
  802. korina_tx_dma_interrupt(dev->irq, dev);
  803. enable_irq(dev->irq);
  804. }
  805. #endif
  806. static int korina_open(struct net_device *dev)
  807. {
  808. struct korina_private *lp = netdev_priv(dev);
  809. int ret;
  810. /* Initialize */
  811. ret = korina_init(dev);
  812. if (ret < 0) {
  813. printk(KERN_ERR "%s: cannot open device\n", dev->name);
  814. goto out;
  815. }
  816. /* Install the interrupt handler
  817. * that handles the Done Finished
  818. * Ovr and Und Events */
  819. ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
  820. IRQF_DISABLED, "Korina ethernet Rx", dev);
  821. if (ret < 0) {
  822. printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
  823. dev->name, lp->rx_irq);
  824. goto err_release;
  825. }
  826. ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
  827. IRQF_DISABLED, "Korina ethernet Tx", dev);
  828. if (ret < 0) {
  829. printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
  830. dev->name, lp->tx_irq);
  831. goto err_free_rx_irq;
  832. }
  833. /* Install handler for overrun error. */
  834. ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
  835. IRQF_DISABLED, "Ethernet Overflow", dev);
  836. if (ret < 0) {
  837. printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
  838. dev->name, lp->ovr_irq);
  839. goto err_free_tx_irq;
  840. }
  841. /* Install handler for underflow error. */
  842. ret = request_irq(lp->und_irq, korina_und_interrupt,
  843. IRQF_DISABLED, "Ethernet Underflow", dev);
  844. if (ret < 0) {
  845. printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
  846. dev->name, lp->und_irq);
  847. goto err_free_ovr_irq;
  848. }
  849. mod_timer(&lp->media_check_timer, jiffies + 1);
  850. out:
  851. return ret;
  852. err_free_ovr_irq:
  853. free_irq(lp->ovr_irq, dev);
  854. err_free_tx_irq:
  855. free_irq(lp->tx_irq, dev);
  856. err_free_rx_irq:
  857. free_irq(lp->rx_irq, dev);
  858. err_release:
  859. korina_free_ring(dev);
  860. goto out;
  861. }
  862. static int korina_close(struct net_device *dev)
  863. {
  864. struct korina_private *lp = netdev_priv(dev);
  865. u32 tmp;
  866. del_timer(&lp->media_check_timer);
  867. /* Disable interrupts */
  868. disable_irq(lp->rx_irq);
  869. disable_irq(lp->tx_irq);
  870. disable_irq(lp->ovr_irq);
  871. disable_irq(lp->und_irq);
  872. korina_abort_tx(dev);
  873. tmp = readl(&lp->tx_dma_regs->dmasm);
  874. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  875. writel(tmp, &lp->tx_dma_regs->dmasm);
  876. korina_abort_rx(dev);
  877. tmp = readl(&lp->rx_dma_regs->dmasm);
  878. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  879. writel(tmp, &lp->rx_dma_regs->dmasm);
  880. korina_free_ring(dev);
  881. napi_disable(&lp->napi);
  882. cancel_work_sync(&lp->restart_task);
  883. free_irq(lp->rx_irq, dev);
  884. free_irq(lp->tx_irq, dev);
  885. free_irq(lp->ovr_irq, dev);
  886. free_irq(lp->und_irq, dev);
  887. return 0;
  888. }
  889. static const struct net_device_ops korina_netdev_ops = {
  890. .ndo_open = korina_open,
  891. .ndo_stop = korina_close,
  892. .ndo_start_xmit = korina_send_packet,
  893. .ndo_set_multicast_list = korina_multicast_list,
  894. .ndo_tx_timeout = korina_tx_timeout,
  895. .ndo_do_ioctl = korina_ioctl,
  896. .ndo_change_mtu = eth_change_mtu,
  897. .ndo_validate_addr = eth_validate_addr,
  898. .ndo_set_mac_address = eth_mac_addr,
  899. #ifdef CONFIG_NET_POLL_CONTROLLER
  900. .ndo_poll_controller = korina_poll_controller,
  901. #endif
  902. };
  903. static int korina_probe(struct platform_device *pdev)
  904. {
  905. struct korina_device *bif = platform_get_drvdata(pdev);
  906. struct korina_private *lp;
  907. struct net_device *dev;
  908. struct resource *r;
  909. int rc;
  910. dev = alloc_etherdev(sizeof(struct korina_private));
  911. if (!dev) {
  912. printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
  913. return -ENOMEM;
  914. }
  915. SET_NETDEV_DEV(dev, &pdev->dev);
  916. lp = netdev_priv(dev);
  917. bif->dev = dev;
  918. memcpy(dev->dev_addr, bif->mac, 6);
  919. lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
  920. lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
  921. lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
  922. lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
  923. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
  924. dev->base_addr = r->start;
  925. lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
  926. if (!lp->eth_regs) {
  927. printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
  928. rc = -ENXIO;
  929. goto probe_err_out;
  930. }
  931. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
  932. lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
  933. if (!lp->rx_dma_regs) {
  934. printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
  935. rc = -ENXIO;
  936. goto probe_err_dma_rx;
  937. }
  938. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
  939. lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
  940. if (!lp->tx_dma_regs) {
  941. printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
  942. rc = -ENXIO;
  943. goto probe_err_dma_tx;
  944. }
  945. lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
  946. if (!lp->td_ring) {
  947. printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
  948. rc = -ENXIO;
  949. goto probe_err_td_ring;
  950. }
  951. dma_cache_inv((unsigned long)(lp->td_ring),
  952. TD_RING_SIZE + RD_RING_SIZE);
  953. /* now convert TD_RING pointer to KSEG1 */
  954. lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
  955. lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
  956. spin_lock_init(&lp->lock);
  957. /* just use the rx dma irq */
  958. dev->irq = lp->rx_irq;
  959. lp->dev = dev;
  960. dev->netdev_ops = &korina_netdev_ops;
  961. dev->ethtool_ops = &netdev_ethtool_ops;
  962. dev->watchdog_timeo = TX_TIMEOUT;
  963. netif_napi_add(dev, &lp->napi, korina_poll, 64);
  964. lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
  965. lp->mii_if.dev = dev;
  966. lp->mii_if.mdio_read = mdio_read;
  967. lp->mii_if.mdio_write = mdio_write;
  968. lp->mii_if.phy_id = lp->phy_addr;
  969. lp->mii_if.phy_id_mask = 0x1f;
  970. lp->mii_if.reg_num_mask = 0x1f;
  971. rc = register_netdev(dev);
  972. if (rc < 0) {
  973. printk(KERN_ERR DRV_NAME
  974. ": cannot register net device: %d\n", rc);
  975. goto probe_err_register;
  976. }
  977. setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
  978. INIT_WORK(&lp->restart_task, korina_restart_task);
  979. printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
  980. dev->name);
  981. out:
  982. return rc;
  983. probe_err_register:
  984. kfree(lp->td_ring);
  985. probe_err_td_ring:
  986. iounmap(lp->tx_dma_regs);
  987. probe_err_dma_tx:
  988. iounmap(lp->rx_dma_regs);
  989. probe_err_dma_rx:
  990. iounmap(lp->eth_regs);
  991. probe_err_out:
  992. free_netdev(dev);
  993. goto out;
  994. }
  995. static int korina_remove(struct platform_device *pdev)
  996. {
  997. struct korina_device *bif = platform_get_drvdata(pdev);
  998. struct korina_private *lp = netdev_priv(bif->dev);
  999. iounmap(lp->eth_regs);
  1000. iounmap(lp->rx_dma_regs);
  1001. iounmap(lp->tx_dma_regs);
  1002. platform_set_drvdata(pdev, NULL);
  1003. unregister_netdev(bif->dev);
  1004. free_netdev(bif->dev);
  1005. return 0;
  1006. }
  1007. static struct platform_driver korina_driver = {
  1008. .driver.name = "korina",
  1009. .probe = korina_probe,
  1010. .remove = korina_remove,
  1011. };
  1012. static int __init korina_init_module(void)
  1013. {
  1014. return platform_driver_register(&korina_driver);
  1015. }
  1016. static void korina_cleanup_module(void)
  1017. {
  1018. return platform_driver_unregister(&korina_driver);
  1019. }
  1020. module_init(korina_init_module);
  1021. module_exit(korina_cleanup_module);
  1022. MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
  1023. MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
  1024. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  1025. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1026. MODULE_LICENSE("GPL");