rtc_from4.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660
  1. /*
  2. * drivers/mtd/nand/rtc_from4.c
  3. *
  4. * Copyright (C) 2004 Red Hat, Inc.
  5. *
  6. * Derived from drivers/mtd/nand/spia.c
  7. * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  8. *
  9. * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License version 2 as
  13. * published by the Free Software Foundation.
  14. *
  15. * Overview:
  16. * This is a device driver for the AG-AND flash device found on the
  17. * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
  18. * which utilizes the Renesas HN29V1G91T-30 part.
  19. * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
  20. */
  21. #include <linux/delay.h>
  22. #include <linux/kernel.h>
  23. #include <linux/init.h>
  24. #include <linux/slab.h>
  25. #include <linux/rslib.h>
  26. #include <linux/module.h>
  27. #include <linux/mtd/compatmac.h>
  28. #include <linux/mtd/mtd.h>
  29. #include <linux/mtd/nand.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <asm/io.h>
  32. /*
  33. * MTD structure for Renesas board
  34. */
  35. static struct mtd_info *rtc_from4_mtd = NULL;
  36. #define RTC_FROM4_MAX_CHIPS 2
  37. /* HS77x9 processor register defines */
  38. #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
  39. #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
  40. #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
  41. #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
  42. #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
  43. #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
  44. #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
  45. /*
  46. * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
  47. */
  48. /* Address where flash is mapped */
  49. #define RTC_FROM4_FIO_BASE 0x14000000
  50. /* CLE and ALE are tied to address lines 5 & 4, respectively */
  51. #define RTC_FROM4_CLE (1 << 5)
  52. #define RTC_FROM4_ALE (1 << 4)
  53. /* address lines A24-A22 used for chip selection */
  54. #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
  55. #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
  56. #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
  57. /* mask address lines A24-A22 used for chip selection */
  58. #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
  59. /* FPGA status register for checking device ready (bit zero) */
  60. #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
  61. #define RTC_FROM4_DEVICE_READY 0x0001
  62. /* FPGA Reed-Solomon ECC Control register */
  63. #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
  64. #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
  65. #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
  66. #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
  67. /* FPGA Reed-Solomon ECC code base */
  68. #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
  69. #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
  70. /* FPGA Reed-Solomon ECC check register */
  71. #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
  72. #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
  73. #define ERR_STAT_ECC_AVAILABLE 0x20
  74. /* Undefine for software ECC */
  75. #define RTC_FROM4_HWECC 1
  76. /* Define as 1 for no virtual erase blocks (in JFFS2) */
  77. #define RTC_FROM4_NO_VIRTBLOCKS 0
  78. /*
  79. * Module stuff
  80. */
  81. static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
  82. static const struct mtd_partition partition_info[] = {
  83. {
  84. .name = "Renesas flash partition 1",
  85. .offset = 0,
  86. .size = MTDPART_SIZ_FULL},
  87. };
  88. #define NUM_PARTITIONS 1
  89. /*
  90. * hardware specific flash bbt decriptors
  91. * Note: this is to allow debugging by disabling
  92. * NAND_BBT_CREATE and/or NAND_BBT_WRITE
  93. *
  94. */
  95. static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
  96. static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
  97. static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
  98. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  99. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  100. .offs = 40,
  101. .len = 4,
  102. .veroffs = 44,
  103. .maxblocks = 4,
  104. .pattern = bbt_pattern
  105. };
  106. static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
  107. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  108. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  109. .offs = 40,
  110. .len = 4,
  111. .veroffs = 44,
  112. .maxblocks = 4,
  113. .pattern = mirror_pattern
  114. };
  115. #ifdef RTC_FROM4_HWECC
  116. /* the Reed Solomon control structure */
  117. static struct rs_control *rs_decoder;
  118. /*
  119. * hardware specific Out Of Band information
  120. */
  121. static struct nand_oobinfo rtc_from4_nand_oobinfo = {
  122. .useecc = MTD_NANDECC_AUTOPLACE,
  123. .eccbytes = 32,
  124. .eccpos = {
  125. 0, 1, 2, 3, 4, 5, 6, 7,
  126. 8, 9, 10, 11, 12, 13, 14, 15,
  127. 16, 17, 18, 19, 20, 21, 22, 23,
  128. 24, 25, 26, 27, 28, 29, 30, 31},
  129. .oobfree = {{32, 32}}
  130. };
  131. /* Aargh. I missed the reversed bit order, when I
  132. * was talking to Renesas about the FPGA.
  133. *
  134. * The table is used for bit reordering and inversion
  135. * of the ecc byte which we get from the FPGA
  136. */
  137. static uint8_t revbits[256] = {
  138. 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
  139. 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
  140. 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
  141. 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
  142. 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
  143. 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
  144. 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
  145. 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
  146. 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
  147. 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
  148. 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
  149. 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
  150. 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
  151. 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
  152. 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
  153. 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
  154. 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
  155. 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
  156. 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
  157. 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
  158. 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
  159. 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
  160. 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
  161. 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
  162. 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
  163. 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
  164. 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
  165. 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
  166. 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
  167. 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
  168. 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
  169. 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
  170. };
  171. #endif
  172. /*
  173. * rtc_from4_hwcontrol - hardware specific access to control-lines
  174. * @mtd: MTD device structure
  175. * @cmd: hardware control command
  176. *
  177. * Address lines (A5 and A4) are used to control Command and Address Latch
  178. * Enable on this board, so set the read/write address appropriately.
  179. *
  180. * Chip Enable is also controlled by the Chip Select (CS5) and
  181. * Address lines (A24-A22), so no action is required here.
  182. *
  183. */
  184. static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
  185. {
  186. struct nand_chip *this = (struct nand_chip *)(mtd->priv);
  187. switch (cmd) {
  188. case NAND_CTL_SETCLE:
  189. this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE);
  190. break;
  191. case NAND_CTL_CLRCLE:
  192. this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE);
  193. break;
  194. case NAND_CTL_SETALE:
  195. this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE);
  196. break;
  197. case NAND_CTL_CLRALE:
  198. this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE);
  199. break;
  200. case NAND_CTL_SETNCE:
  201. break;
  202. case NAND_CTL_CLRNCE:
  203. break;
  204. }
  205. }
  206. /*
  207. * rtc_from4_nand_select_chip - hardware specific chip select
  208. * @mtd: MTD device structure
  209. * @chip: Chip to select (0 == slot 3, 1 == slot 4)
  210. *
  211. * The chip select is based on address lines A24-A22.
  212. * This driver uses flash slots 3 and 4 (A23-A22).
  213. *
  214. */
  215. static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
  216. {
  217. struct nand_chip *this = mtd->priv;
  218. this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
  219. this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
  220. switch (chip) {
  221. case 0: /* select slot 3 chip */
  222. this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
  223. this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
  224. break;
  225. case 1: /* select slot 4 chip */
  226. this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
  227. this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
  228. break;
  229. }
  230. }
  231. /*
  232. * rtc_from4_nand_device_ready - hardware specific ready/busy check
  233. * @mtd: MTD device structure
  234. *
  235. * This board provides the Ready/Busy state in the status register
  236. * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
  237. *
  238. */
  239. static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
  240. {
  241. unsigned short status;
  242. status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
  243. return (status & RTC_FROM4_DEVICE_READY);
  244. }
  245. /*
  246. * deplete - code to perform device recovery in case there was a power loss
  247. * @mtd: MTD device structure
  248. * @chip: Chip to select (0 == slot 3, 1 == slot 4)
  249. *
  250. * If there was a sudden loss of power during an erase operation, a
  251. * "device recovery" operation must be performed when power is restored
  252. * to ensure correct operation. This routine performs the required steps
  253. * for the requested chip.
  254. *
  255. * See page 86 of the data sheet for details.
  256. *
  257. */
  258. static void deplete(struct mtd_info *mtd, int chip)
  259. {
  260. struct nand_chip *this = mtd->priv;
  261. /* wait until device is ready */
  262. while (!this->dev_ready(mtd)) ;
  263. this->select_chip(mtd, chip);
  264. /* Send the commands for device recovery, phase 1 */
  265. this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
  266. this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
  267. /* Send the commands for device recovery, phase 2 */
  268. this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
  269. this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
  270. }
  271. #ifdef RTC_FROM4_HWECC
  272. /*
  273. * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
  274. * @mtd: MTD device structure
  275. * @mode: I/O mode; read or write
  276. *
  277. * enable hardware ECC for data read or write
  278. *
  279. */
  280. static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
  281. {
  282. volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
  283. unsigned short status;
  284. switch (mode) {
  285. case NAND_ECC_READ:
  286. status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
  287. *rs_ecc_ctl = status;
  288. break;
  289. case NAND_ECC_READSYN:
  290. status = 0x00;
  291. *rs_ecc_ctl = status;
  292. break;
  293. case NAND_ECC_WRITE:
  294. status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
  295. *rs_ecc_ctl = status;
  296. break;
  297. default:
  298. BUG();
  299. break;
  300. }
  301. }
  302. /*
  303. * rtc_from4_calculate_ecc - hardware specific code to read ECC code
  304. * @mtd: MTD device structure
  305. * @dat: buffer containing the data to generate ECC codes
  306. * @ecc_code ECC codes calculated
  307. *
  308. * The ECC code is calculated by the FPGA. All we have to do is read the values
  309. * from the FPGA registers.
  310. *
  311. * Note: We read from the inverted registers, since data is inverted before
  312. * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
  313. *
  314. */
  315. static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
  316. {
  317. volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
  318. unsigned short value;
  319. int i;
  320. for (i = 0; i < 8; i++) {
  321. value = *rs_eccn;
  322. ecc_code[i] = (unsigned char)value;
  323. rs_eccn++;
  324. }
  325. ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
  326. }
  327. /*
  328. * rtc_from4_correct_data - hardware specific code to correct data using ECC code
  329. * @mtd: MTD device structure
  330. * @buf: buffer containing the data to generate ECC codes
  331. * @ecc1 ECC codes read
  332. * @ecc2 ECC codes calculated
  333. *
  334. * The FPGA tells us fast, if there's an error or not. If no, we go back happy
  335. * else we read the ecc results from the fpga and call the rs library to decode
  336. * and hopefully correct the error.
  337. *
  338. */
  339. static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
  340. {
  341. int i, j, res;
  342. unsigned short status;
  343. uint16_t par[6], syn[6];
  344. uint8_t ecc[8];
  345. volatile unsigned short *rs_ecc;
  346. status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
  347. if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
  348. return 0;
  349. }
  350. /* Read the syndrom pattern from the FPGA and correct the bitorder */
  351. rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
  352. for (i = 0; i < 8; i++) {
  353. ecc[i] = revbits[(*rs_ecc) & 0xFF];
  354. rs_ecc++;
  355. }
  356. /* convert into 6 10bit syndrome fields */
  357. par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
  358. par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
  359. par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
  360. par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
  361. par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
  362. par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
  363. /* Convert to computable syndrome */
  364. for (i = 0; i < 6; i++) {
  365. syn[i] = par[0];
  366. for (j = 1; j < 6; j++)
  367. if (par[j] != rs_decoder->nn)
  368. syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
  369. /* Convert to index form */
  370. syn[i] = rs_decoder->index_of[syn[i]];
  371. }
  372. /* Let the library code do its magic. */
  373. res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
  374. if (res > 0) {
  375. DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
  376. }
  377. return res;
  378. }
  379. /**
  380. * rtc_from4_errstat - perform additional error status checks
  381. * @mtd: MTD device structure
  382. * @this: NAND chip structure
  383. * @state: state or the operation
  384. * @status: status code returned from read status
  385. * @page: startpage inside the chip, must be called with (page & this->pagemask)
  386. *
  387. * Perform additional error status checks on erase and write failures
  388. * to determine if errors are correctable. For this device, correctable
  389. * 1-bit errors on erase and write are considered acceptable.
  390. *
  391. * note: see pages 34..37 of data sheet for details.
  392. *
  393. */
  394. static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page)
  395. {
  396. int er_stat = 0;
  397. int rtn, retlen;
  398. size_t len;
  399. uint8_t *buf;
  400. int i;
  401. this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
  402. if (state == FL_ERASING) {
  403. for (i = 0; i < 4; i++) {
  404. if (status & 1 << (i + 1)) {
  405. this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1);
  406. rtn = this->read_byte(mtd);
  407. this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
  408. if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
  409. er_stat |= 1 << (i + 1); /* err_ecc_not_avail */
  410. }
  411. }
  412. }
  413. } else if (state == FL_WRITING) {
  414. /* single bank write logic */
  415. this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
  416. rtn = this->read_byte(mtd);
  417. this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
  418. if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
  419. er_stat |= 1 << 1; /* err_ecc_not_avail */
  420. } else {
  421. len = mtd->oobblock;
  422. buf = kmalloc(len, GFP_KERNEL);
  423. if (!buf) {
  424. printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
  425. er_stat = 1; /* if we can't check, assume failed */
  426. } else {
  427. /* recovery read */
  428. /* page read */
  429. rtn = nand_do_read_ecc(mtd, page, len, &retlen, buf, NULL, this->autooob, 1);
  430. if (rtn) { /* if read failed or > 1-bit error corrected */
  431. er_stat |= 1 << 1; /* ECC read failed */
  432. }
  433. kfree(buf);
  434. }
  435. }
  436. }
  437. rtn = status;
  438. if (er_stat == 0) { /* if ECC is available */
  439. rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
  440. }
  441. return rtn;
  442. }
  443. #endif
  444. /*
  445. * Main initialization routine
  446. */
  447. static int __init rtc_from4_init(void)
  448. {
  449. struct nand_chip *this;
  450. unsigned short bcr1, bcr2, wcr2;
  451. int i;
  452. /* Allocate memory for MTD device structure and private data */
  453. rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
  454. if (!rtc_from4_mtd) {
  455. printk("Unable to allocate Renesas NAND MTD device structure.\n");
  456. return -ENOMEM;
  457. }
  458. /* Get pointer to private data */
  459. this = (struct nand_chip *)(&rtc_from4_mtd[1]);
  460. /* Initialize structures */
  461. memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
  462. memset(this, 0, sizeof(struct nand_chip));
  463. /* Link the private data with the MTD structure */
  464. rtc_from4_mtd->priv = this;
  465. rtc_from4_mtd->owner = THIS_MODULE;
  466. /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
  467. bcr1 = *SH77X9_BCR1 & ~0x0002;
  468. bcr1 |= 0x0002;
  469. *SH77X9_BCR1 = bcr1;
  470. /* set */
  471. bcr2 = *SH77X9_BCR2 & ~0x0c00;
  472. bcr2 |= 0x0800;
  473. *SH77X9_BCR2 = bcr2;
  474. /* set area 5 wait states */
  475. wcr2 = *SH77X9_WCR2 & ~0x1c00;
  476. wcr2 |= 0x1c00;
  477. *SH77X9_WCR2 = wcr2;
  478. /* Set address of NAND IO lines */
  479. this->IO_ADDR_R = rtc_from4_fio_base;
  480. this->IO_ADDR_W = rtc_from4_fio_base;
  481. /* Set address of hardware control function */
  482. this->hwcontrol = rtc_from4_hwcontrol;
  483. /* Set address of chip select function */
  484. this->select_chip = rtc_from4_nand_select_chip;
  485. /* command delay time (in us) */
  486. this->chip_delay = 100;
  487. /* return the status of the Ready/Busy line */
  488. this->dev_ready = rtc_from4_nand_device_ready;
  489. #ifdef RTC_FROM4_HWECC
  490. printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
  491. this->eccmode = NAND_ECC_HW8_512;
  492. this->options |= NAND_HWECC_SYNDROME;
  493. /* return the status of extra status and ECC checks */
  494. this->errstat = rtc_from4_errstat;
  495. /* set the nand_oobinfo to support FPGA H/W error detection */
  496. this->autooob = &rtc_from4_nand_oobinfo;
  497. this->enable_hwecc = rtc_from4_enable_hwecc;
  498. this->calculate_ecc = rtc_from4_calculate_ecc;
  499. this->correct_data = rtc_from4_correct_data;
  500. #else
  501. printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
  502. this->eccmode = NAND_ECC_SOFT;
  503. #endif
  504. /* set the bad block tables to support debugging */
  505. this->bbt_td = &rtc_from4_bbt_main_descr;
  506. this->bbt_md = &rtc_from4_bbt_mirror_descr;
  507. /* Scan to find existence of the device */
  508. if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
  509. kfree(rtc_from4_mtd);
  510. return -ENXIO;
  511. }
  512. /* Perform 'device recovery' for each chip in case there was a power loss. */
  513. for (i = 0; i < this->numchips; i++) {
  514. deplete(rtc_from4_mtd, i);
  515. }
  516. #if RTC_FROM4_NO_VIRTBLOCKS
  517. /* use a smaller erase block to minimize wasted space when a block is bad */
  518. /* note: this uses eight times as much RAM as using the default and makes */
  519. /* mounts take four times as long. */
  520. rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
  521. #endif
  522. /* Register the partitions */
  523. add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
  524. #ifdef RTC_FROM4_HWECC
  525. /* We could create the decoder on demand, if memory is a concern.
  526. * This way we have it handy, if an error happens
  527. *
  528. * Symbolsize is 10 (bits)
  529. * Primitve polynomial is x^10+x^3+1
  530. * first consecutive root is 0
  531. * primitve element to generate roots = 1
  532. * generator polinomial degree = 6
  533. */
  534. rs_decoder = init_rs(10, 0x409, 0, 1, 6);
  535. if (!rs_decoder) {
  536. printk(KERN_ERR "Could not create a RS decoder\n");
  537. nand_release(rtc_from4_mtd);
  538. kfree(rtc_from4_mtd);
  539. return -ENOMEM;
  540. }
  541. #endif
  542. /* Return happy */
  543. return 0;
  544. }
  545. module_init(rtc_from4_init);
  546. /*
  547. * Clean up routine
  548. */
  549. static void __exit rtc_from4_cleanup(void)
  550. {
  551. /* Release resource, unregister partitions */
  552. nand_release(rtc_from4_mtd);
  553. /* Free the MTD device structure */
  554. kfree(rtc_from4_mtd);
  555. #ifdef RTC_FROM4_HWECC
  556. /* Free the reed solomon resources */
  557. if (rs_decoder) {
  558. free_rs(rs_decoder);
  559. }
  560. #endif
  561. }
  562. module_exit(rtc_from4_cleanup);
  563. MODULE_LICENSE("GPL");
  564. MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
  565. MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");