kvm_main.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "segment_descriptor.h"
  21. #include "irq.h"
  22. #include <linux/kvm.h>
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/percpu.h>
  26. #include <linux/gfp.h>
  27. #include <linux/mm.h>
  28. #include <linux/miscdevice.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/reboot.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <linux/sysdev.h>
  35. #include <linux/cpu.h>
  36. #include <linux/sched.h>
  37. #include <linux/cpumask.h>
  38. #include <linux/smp.h>
  39. #include <linux/anon_inodes.h>
  40. #include <linux/profile.h>
  41. #include <linux/kvm_para.h>
  42. #include <linux/pagemap.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. #define CR0_RESERVED_BITS \
  82. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  83. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  84. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  85. #define CR4_RESERVED_BITS \
  86. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  87. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  88. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  89. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  90. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  91. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  92. #ifdef CONFIG_X86_64
  93. /* LDT or TSS descriptor in the GDT. 16 bytes. */
  94. struct segment_descriptor_64 {
  95. struct segment_descriptor s;
  96. u32 base_higher;
  97. u32 pad_zero;
  98. };
  99. #endif
  100. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  101. unsigned long arg);
  102. unsigned long segment_base(u16 selector)
  103. {
  104. struct descriptor_table gdt;
  105. struct segment_descriptor *d;
  106. unsigned long table_base;
  107. unsigned long v;
  108. if (selector == 0)
  109. return 0;
  110. asm("sgdt %0" : "=m"(gdt));
  111. table_base = gdt.base;
  112. if (selector & 4) { /* from ldt */
  113. u16 ldt_selector;
  114. asm("sldt %0" : "=g"(ldt_selector));
  115. table_base = segment_base(ldt_selector);
  116. }
  117. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  118. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  119. ((unsigned long)d->base_high << 24);
  120. #ifdef CONFIG_X86_64
  121. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  122. v |= ((unsigned long) \
  123. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  124. #endif
  125. return v;
  126. }
  127. EXPORT_SYMBOL_GPL(segment_base);
  128. static inline int valid_vcpu(int n)
  129. {
  130. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  131. }
  132. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  133. {
  134. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  135. return;
  136. vcpu->guest_fpu_loaded = 1;
  137. fx_save(&vcpu->host_fx_image);
  138. fx_restore(&vcpu->guest_fx_image);
  139. }
  140. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  141. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  142. {
  143. if (!vcpu->guest_fpu_loaded)
  144. return;
  145. vcpu->guest_fpu_loaded = 0;
  146. fx_save(&vcpu->guest_fx_image);
  147. fx_restore(&vcpu->host_fx_image);
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  150. /*
  151. * Switches to specified vcpu, until a matching vcpu_put()
  152. */
  153. void vcpu_load(struct kvm_vcpu *vcpu)
  154. {
  155. int cpu;
  156. mutex_lock(&vcpu->mutex);
  157. cpu = get_cpu();
  158. preempt_notifier_register(&vcpu->preempt_notifier);
  159. kvm_arch_vcpu_load(vcpu, cpu);
  160. put_cpu();
  161. }
  162. void vcpu_put(struct kvm_vcpu *vcpu)
  163. {
  164. preempt_disable();
  165. kvm_arch_vcpu_put(vcpu);
  166. preempt_notifier_unregister(&vcpu->preempt_notifier);
  167. preempt_enable();
  168. mutex_unlock(&vcpu->mutex);
  169. }
  170. static void ack_flush(void *_completed)
  171. {
  172. }
  173. void kvm_flush_remote_tlbs(struct kvm *kvm)
  174. {
  175. int i, cpu;
  176. cpumask_t cpus;
  177. struct kvm_vcpu *vcpu;
  178. cpus_clear(cpus);
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  180. vcpu = kvm->vcpus[i];
  181. if (!vcpu)
  182. continue;
  183. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  184. continue;
  185. cpu = vcpu->cpu;
  186. if (cpu != -1 && cpu != raw_smp_processor_id())
  187. cpu_set(cpu, cpus);
  188. }
  189. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  190. }
  191. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  192. {
  193. struct page *page;
  194. int r;
  195. mutex_init(&vcpu->mutex);
  196. vcpu->cpu = -1;
  197. vcpu->mmu.root_hpa = INVALID_PAGE;
  198. vcpu->kvm = kvm;
  199. vcpu->vcpu_id = id;
  200. if (!irqchip_in_kernel(kvm) || id == 0)
  201. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  202. else
  203. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  204. init_waitqueue_head(&vcpu->wq);
  205. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  206. if (!page) {
  207. r = -ENOMEM;
  208. goto fail;
  209. }
  210. vcpu->run = page_address(page);
  211. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  212. if (!page) {
  213. r = -ENOMEM;
  214. goto fail_free_run;
  215. }
  216. vcpu->pio_data = page_address(page);
  217. r = kvm_mmu_create(vcpu);
  218. if (r < 0)
  219. goto fail_free_pio_data;
  220. if (irqchip_in_kernel(kvm)) {
  221. r = kvm_create_lapic(vcpu);
  222. if (r < 0)
  223. goto fail_mmu_destroy;
  224. }
  225. return 0;
  226. fail_mmu_destroy:
  227. kvm_mmu_destroy(vcpu);
  228. fail_free_pio_data:
  229. free_page((unsigned long)vcpu->pio_data);
  230. fail_free_run:
  231. free_page((unsigned long)vcpu->run);
  232. fail:
  233. return r;
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  236. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  237. {
  238. kvm_free_lapic(vcpu);
  239. kvm_mmu_destroy(vcpu);
  240. free_page((unsigned long)vcpu->pio_data);
  241. free_page((unsigned long)vcpu->run);
  242. }
  243. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  244. static struct kvm *kvm_create_vm(void)
  245. {
  246. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  247. if (!kvm)
  248. return ERR_PTR(-ENOMEM);
  249. kvm_io_bus_init(&kvm->pio_bus);
  250. mutex_init(&kvm->lock);
  251. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  252. kvm_io_bus_init(&kvm->mmio_bus);
  253. spin_lock(&kvm_lock);
  254. list_add(&kvm->vm_list, &vm_list);
  255. spin_unlock(&kvm_lock);
  256. return kvm;
  257. }
  258. static void kvm_free_userspace_physmem(struct kvm_memory_slot *free)
  259. {
  260. int i;
  261. for (i = 0; i < free->npages; ++i) {
  262. if (free->phys_mem[i]) {
  263. if (!PageReserved(free->phys_mem[i]))
  264. SetPageDirty(free->phys_mem[i]);
  265. page_cache_release(free->phys_mem[i]);
  266. }
  267. }
  268. }
  269. static void kvm_free_kernel_physmem(struct kvm_memory_slot *free)
  270. {
  271. int i;
  272. for (i = 0; i < free->npages; ++i)
  273. if (free->phys_mem[i])
  274. __free_page(free->phys_mem[i]);
  275. }
  276. /*
  277. * Free any memory in @free but not in @dont.
  278. */
  279. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  280. struct kvm_memory_slot *dont)
  281. {
  282. if (!dont || free->phys_mem != dont->phys_mem)
  283. if (free->phys_mem) {
  284. if (free->user_alloc)
  285. kvm_free_userspace_physmem(free);
  286. else
  287. kvm_free_kernel_physmem(free);
  288. vfree(free->phys_mem);
  289. }
  290. if (!dont || free->rmap != dont->rmap)
  291. vfree(free->rmap);
  292. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  293. vfree(free->dirty_bitmap);
  294. free->phys_mem = NULL;
  295. free->npages = 0;
  296. free->dirty_bitmap = NULL;
  297. }
  298. static void kvm_free_physmem(struct kvm *kvm)
  299. {
  300. int i;
  301. for (i = 0; i < kvm->nmemslots; ++i)
  302. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  303. }
  304. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  305. {
  306. int i;
  307. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  308. if (vcpu->pio.guest_pages[i]) {
  309. __free_page(vcpu->pio.guest_pages[i]);
  310. vcpu->pio.guest_pages[i] = NULL;
  311. }
  312. }
  313. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  314. {
  315. vcpu_load(vcpu);
  316. kvm_mmu_unload(vcpu);
  317. vcpu_put(vcpu);
  318. }
  319. static void kvm_free_vcpus(struct kvm *kvm)
  320. {
  321. unsigned int i;
  322. /*
  323. * Unpin any mmu pages first.
  324. */
  325. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  326. if (kvm->vcpus[i])
  327. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  328. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  329. if (kvm->vcpus[i]) {
  330. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  331. kvm->vcpus[i] = NULL;
  332. }
  333. }
  334. }
  335. static void kvm_destroy_vm(struct kvm *kvm)
  336. {
  337. spin_lock(&kvm_lock);
  338. list_del(&kvm->vm_list);
  339. spin_unlock(&kvm_lock);
  340. kvm_io_bus_destroy(&kvm->pio_bus);
  341. kvm_io_bus_destroy(&kvm->mmio_bus);
  342. kfree(kvm->vpic);
  343. kfree(kvm->vioapic);
  344. kvm_free_vcpus(kvm);
  345. kvm_free_physmem(kvm);
  346. kfree(kvm);
  347. }
  348. static int kvm_vm_release(struct inode *inode, struct file *filp)
  349. {
  350. struct kvm *kvm = filp->private_data;
  351. kvm_destroy_vm(kvm);
  352. return 0;
  353. }
  354. static void inject_gp(struct kvm_vcpu *vcpu)
  355. {
  356. kvm_x86_ops->inject_gp(vcpu, 0);
  357. }
  358. /*
  359. * Load the pae pdptrs. Return true is they are all valid.
  360. */
  361. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  362. {
  363. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  364. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  365. int i;
  366. int ret;
  367. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  368. mutex_lock(&vcpu->kvm->lock);
  369. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  370. offset * sizeof(u64), sizeof(pdpte));
  371. if (ret < 0) {
  372. ret = 0;
  373. goto out;
  374. }
  375. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  376. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  377. ret = 0;
  378. goto out;
  379. }
  380. }
  381. ret = 1;
  382. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  383. out:
  384. mutex_unlock(&vcpu->kvm->lock);
  385. return ret;
  386. }
  387. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  388. {
  389. if (cr0 & CR0_RESERVED_BITS) {
  390. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  391. cr0, vcpu->cr0);
  392. inject_gp(vcpu);
  393. return;
  394. }
  395. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  396. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  397. inject_gp(vcpu);
  398. return;
  399. }
  400. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  402. "and a clear PE flag\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  407. #ifdef CONFIG_X86_64
  408. if ((vcpu->shadow_efer & EFER_LME)) {
  409. int cs_db, cs_l;
  410. if (!is_pae(vcpu)) {
  411. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  412. "in long mode while PAE is disabled\n");
  413. inject_gp(vcpu);
  414. return;
  415. }
  416. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  417. if (cs_l) {
  418. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  419. "in long mode while CS.L == 1\n");
  420. inject_gp(vcpu);
  421. return;
  422. }
  423. } else
  424. #endif
  425. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  426. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  427. "reserved bits\n");
  428. inject_gp(vcpu);
  429. return;
  430. }
  431. }
  432. kvm_x86_ops->set_cr0(vcpu, cr0);
  433. vcpu->cr0 = cr0;
  434. mutex_lock(&vcpu->kvm->lock);
  435. kvm_mmu_reset_context(vcpu);
  436. mutex_unlock(&vcpu->kvm->lock);
  437. return;
  438. }
  439. EXPORT_SYMBOL_GPL(set_cr0);
  440. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  441. {
  442. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  443. }
  444. EXPORT_SYMBOL_GPL(lmsw);
  445. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  446. {
  447. if (cr4 & CR4_RESERVED_BITS) {
  448. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  449. inject_gp(vcpu);
  450. return;
  451. }
  452. if (is_long_mode(vcpu)) {
  453. if (!(cr4 & X86_CR4_PAE)) {
  454. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  455. "in long mode\n");
  456. inject_gp(vcpu);
  457. return;
  458. }
  459. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  460. && !load_pdptrs(vcpu, vcpu->cr3)) {
  461. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  462. inject_gp(vcpu);
  463. return;
  464. }
  465. if (cr4 & X86_CR4_VMXE) {
  466. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  467. inject_gp(vcpu);
  468. return;
  469. }
  470. kvm_x86_ops->set_cr4(vcpu, cr4);
  471. vcpu->cr4 = cr4;
  472. mutex_lock(&vcpu->kvm->lock);
  473. kvm_mmu_reset_context(vcpu);
  474. mutex_unlock(&vcpu->kvm->lock);
  475. }
  476. EXPORT_SYMBOL_GPL(set_cr4);
  477. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  478. {
  479. if (is_long_mode(vcpu)) {
  480. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  481. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  482. inject_gp(vcpu);
  483. return;
  484. }
  485. } else {
  486. if (is_pae(vcpu)) {
  487. if (cr3 & CR3_PAE_RESERVED_BITS) {
  488. printk(KERN_DEBUG
  489. "set_cr3: #GP, reserved bits\n");
  490. inject_gp(vcpu);
  491. return;
  492. }
  493. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  494. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  495. "reserved bits\n");
  496. inject_gp(vcpu);
  497. return;
  498. }
  499. }
  500. /*
  501. * We don't check reserved bits in nonpae mode, because
  502. * this isn't enforced, and VMware depends on this.
  503. */
  504. }
  505. mutex_lock(&vcpu->kvm->lock);
  506. /*
  507. * Does the new cr3 value map to physical memory? (Note, we
  508. * catch an invalid cr3 even in real-mode, because it would
  509. * cause trouble later on when we turn on paging anyway.)
  510. *
  511. * A real CPU would silently accept an invalid cr3 and would
  512. * attempt to use it - with largely undefined (and often hard
  513. * to debug) behavior on the guest side.
  514. */
  515. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  516. inject_gp(vcpu);
  517. else {
  518. vcpu->cr3 = cr3;
  519. vcpu->mmu.new_cr3(vcpu);
  520. }
  521. mutex_unlock(&vcpu->kvm->lock);
  522. }
  523. EXPORT_SYMBOL_GPL(set_cr3);
  524. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  525. {
  526. if (cr8 & CR8_RESERVED_BITS) {
  527. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  528. inject_gp(vcpu);
  529. return;
  530. }
  531. if (irqchip_in_kernel(vcpu->kvm))
  532. kvm_lapic_set_tpr(vcpu, cr8);
  533. else
  534. vcpu->cr8 = cr8;
  535. }
  536. EXPORT_SYMBOL_GPL(set_cr8);
  537. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  538. {
  539. if (irqchip_in_kernel(vcpu->kvm))
  540. return kvm_lapic_get_cr8(vcpu);
  541. else
  542. return vcpu->cr8;
  543. }
  544. EXPORT_SYMBOL_GPL(get_cr8);
  545. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  546. {
  547. if (irqchip_in_kernel(vcpu->kvm))
  548. return vcpu->apic_base;
  549. else
  550. return vcpu->apic_base;
  551. }
  552. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  553. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  554. {
  555. /* TODO: reserve bits check */
  556. if (irqchip_in_kernel(vcpu->kvm))
  557. kvm_lapic_set_base(vcpu, data);
  558. else
  559. vcpu->apic_base = data;
  560. }
  561. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  562. void fx_init(struct kvm_vcpu *vcpu)
  563. {
  564. unsigned after_mxcsr_mask;
  565. /* Initialize guest FPU by resetting ours and saving into guest's */
  566. preempt_disable();
  567. fx_save(&vcpu->host_fx_image);
  568. fpu_init();
  569. fx_save(&vcpu->guest_fx_image);
  570. fx_restore(&vcpu->host_fx_image);
  571. preempt_enable();
  572. vcpu->cr0 |= X86_CR0_ET;
  573. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  574. vcpu->guest_fx_image.mxcsr = 0x1f80;
  575. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  576. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  577. }
  578. EXPORT_SYMBOL_GPL(fx_init);
  579. /*
  580. * Allocate some memory and give it an address in the guest physical address
  581. * space.
  582. *
  583. * Discontiguous memory is allowed, mostly for framebuffers.
  584. */
  585. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  586. struct
  587. kvm_userspace_memory_region *mem,
  588. int user_alloc)
  589. {
  590. int r;
  591. gfn_t base_gfn;
  592. unsigned long npages;
  593. unsigned long i;
  594. struct kvm_memory_slot *memslot;
  595. struct kvm_memory_slot old, new;
  596. r = -EINVAL;
  597. /* General sanity checks */
  598. if (mem->memory_size & (PAGE_SIZE - 1))
  599. goto out;
  600. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  601. goto out;
  602. if (mem->slot >= KVM_MEMORY_SLOTS)
  603. goto out;
  604. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  605. goto out;
  606. memslot = &kvm->memslots[mem->slot];
  607. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  608. npages = mem->memory_size >> PAGE_SHIFT;
  609. if (!npages)
  610. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  611. mutex_lock(&kvm->lock);
  612. new = old = *memslot;
  613. new.base_gfn = base_gfn;
  614. new.npages = npages;
  615. new.flags = mem->flags;
  616. /* Disallow changing a memory slot's size. */
  617. r = -EINVAL;
  618. if (npages && old.npages && npages != old.npages)
  619. goto out_unlock;
  620. /* Check for overlaps */
  621. r = -EEXIST;
  622. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  623. struct kvm_memory_slot *s = &kvm->memslots[i];
  624. if (s == memslot)
  625. continue;
  626. if (!((base_gfn + npages <= s->base_gfn) ||
  627. (base_gfn >= s->base_gfn + s->npages)))
  628. goto out_unlock;
  629. }
  630. /* Deallocate if slot is being removed */
  631. if (!npages)
  632. new.phys_mem = NULL;
  633. /* Free page dirty bitmap if unneeded */
  634. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  635. new.dirty_bitmap = NULL;
  636. r = -ENOMEM;
  637. /* Allocate if a slot is being created */
  638. if (npages && !new.phys_mem) {
  639. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  640. if (!new.phys_mem)
  641. goto out_unlock;
  642. new.rmap = vmalloc(npages * sizeof(struct page *));
  643. if (!new.rmap)
  644. goto out_unlock;
  645. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  646. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  647. if (user_alloc) {
  648. unsigned long pages_num;
  649. new.user_alloc = 1;
  650. down_read(&current->mm->mmap_sem);
  651. pages_num = get_user_pages(current, current->mm,
  652. mem->userspace_addr,
  653. npages, 1, 1, new.phys_mem,
  654. NULL);
  655. up_read(&current->mm->mmap_sem);
  656. if (pages_num != npages)
  657. goto out_unlock;
  658. } else {
  659. for (i = 0; i < npages; ++i) {
  660. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  661. | __GFP_ZERO);
  662. if (!new.phys_mem[i])
  663. goto out_unlock;
  664. }
  665. }
  666. }
  667. /* Allocate page dirty bitmap if needed */
  668. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  669. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  670. new.dirty_bitmap = vmalloc(dirty_bytes);
  671. if (!new.dirty_bitmap)
  672. goto out_unlock;
  673. memset(new.dirty_bitmap, 0, dirty_bytes);
  674. }
  675. if (mem->slot >= kvm->nmemslots)
  676. kvm->nmemslots = mem->slot + 1;
  677. if (!kvm->n_requested_mmu_pages) {
  678. unsigned int n_pages;
  679. if (npages) {
  680. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  681. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  682. n_pages);
  683. } else {
  684. unsigned int nr_mmu_pages;
  685. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  686. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  687. nr_mmu_pages = max(nr_mmu_pages,
  688. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  689. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  690. }
  691. }
  692. *memslot = new;
  693. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  694. kvm_flush_remote_tlbs(kvm);
  695. mutex_unlock(&kvm->lock);
  696. kvm_free_physmem_slot(&old, &new);
  697. return 0;
  698. out_unlock:
  699. mutex_unlock(&kvm->lock);
  700. kvm_free_physmem_slot(&new, &old);
  701. out:
  702. return r;
  703. }
  704. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  705. u32 kvm_nr_mmu_pages)
  706. {
  707. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  708. return -EINVAL;
  709. mutex_lock(&kvm->lock);
  710. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  711. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  712. mutex_unlock(&kvm->lock);
  713. return 0;
  714. }
  715. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  716. {
  717. return kvm->n_alloc_mmu_pages;
  718. }
  719. /*
  720. * Get (and clear) the dirty memory log for a memory slot.
  721. */
  722. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  723. struct kvm_dirty_log *log)
  724. {
  725. struct kvm_memory_slot *memslot;
  726. int r, i;
  727. int n;
  728. unsigned long any = 0;
  729. mutex_lock(&kvm->lock);
  730. r = -EINVAL;
  731. if (log->slot >= KVM_MEMORY_SLOTS)
  732. goto out;
  733. memslot = &kvm->memslots[log->slot];
  734. r = -ENOENT;
  735. if (!memslot->dirty_bitmap)
  736. goto out;
  737. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  738. for (i = 0; !any && i < n/sizeof(long); ++i)
  739. any = memslot->dirty_bitmap[i];
  740. r = -EFAULT;
  741. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  742. goto out;
  743. /* If nothing is dirty, don't bother messing with page tables. */
  744. if (any) {
  745. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  746. kvm_flush_remote_tlbs(kvm);
  747. memset(memslot->dirty_bitmap, 0, n);
  748. }
  749. r = 0;
  750. out:
  751. mutex_unlock(&kvm->lock);
  752. return r;
  753. }
  754. /*
  755. * Set a new alias region. Aliases map a portion of physical memory into
  756. * another portion. This is useful for memory windows, for example the PC
  757. * VGA region.
  758. */
  759. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  760. struct kvm_memory_alias *alias)
  761. {
  762. int r, n;
  763. struct kvm_mem_alias *p;
  764. r = -EINVAL;
  765. /* General sanity checks */
  766. if (alias->memory_size & (PAGE_SIZE - 1))
  767. goto out;
  768. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  769. goto out;
  770. if (alias->slot >= KVM_ALIAS_SLOTS)
  771. goto out;
  772. if (alias->guest_phys_addr + alias->memory_size
  773. < alias->guest_phys_addr)
  774. goto out;
  775. if (alias->target_phys_addr + alias->memory_size
  776. < alias->target_phys_addr)
  777. goto out;
  778. mutex_lock(&kvm->lock);
  779. p = &kvm->aliases[alias->slot];
  780. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  781. p->npages = alias->memory_size >> PAGE_SHIFT;
  782. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  783. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  784. if (kvm->aliases[n - 1].npages)
  785. break;
  786. kvm->naliases = n;
  787. kvm_mmu_zap_all(kvm);
  788. mutex_unlock(&kvm->lock);
  789. return 0;
  790. out:
  791. return r;
  792. }
  793. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  794. {
  795. int r;
  796. r = 0;
  797. switch (chip->chip_id) {
  798. case KVM_IRQCHIP_PIC_MASTER:
  799. memcpy(&chip->chip.pic,
  800. &pic_irqchip(kvm)->pics[0],
  801. sizeof(struct kvm_pic_state));
  802. break;
  803. case KVM_IRQCHIP_PIC_SLAVE:
  804. memcpy(&chip->chip.pic,
  805. &pic_irqchip(kvm)->pics[1],
  806. sizeof(struct kvm_pic_state));
  807. break;
  808. case KVM_IRQCHIP_IOAPIC:
  809. memcpy(&chip->chip.ioapic,
  810. ioapic_irqchip(kvm),
  811. sizeof(struct kvm_ioapic_state));
  812. break;
  813. default:
  814. r = -EINVAL;
  815. break;
  816. }
  817. return r;
  818. }
  819. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  820. {
  821. int r;
  822. r = 0;
  823. switch (chip->chip_id) {
  824. case KVM_IRQCHIP_PIC_MASTER:
  825. memcpy(&pic_irqchip(kvm)->pics[0],
  826. &chip->chip.pic,
  827. sizeof(struct kvm_pic_state));
  828. break;
  829. case KVM_IRQCHIP_PIC_SLAVE:
  830. memcpy(&pic_irqchip(kvm)->pics[1],
  831. &chip->chip.pic,
  832. sizeof(struct kvm_pic_state));
  833. break;
  834. case KVM_IRQCHIP_IOAPIC:
  835. memcpy(ioapic_irqchip(kvm),
  836. &chip->chip.ioapic,
  837. sizeof(struct kvm_ioapic_state));
  838. break;
  839. default:
  840. r = -EINVAL;
  841. break;
  842. }
  843. kvm_pic_update_irq(pic_irqchip(kvm));
  844. return r;
  845. }
  846. int is_error_page(struct page *page)
  847. {
  848. return page == bad_page;
  849. }
  850. EXPORT_SYMBOL_GPL(is_error_page);
  851. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  852. {
  853. int i;
  854. struct kvm_mem_alias *alias;
  855. for (i = 0; i < kvm->naliases; ++i) {
  856. alias = &kvm->aliases[i];
  857. if (gfn >= alias->base_gfn
  858. && gfn < alias->base_gfn + alias->npages)
  859. return alias->target_gfn + gfn - alias->base_gfn;
  860. }
  861. return gfn;
  862. }
  863. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  864. {
  865. int i;
  866. for (i = 0; i < kvm->nmemslots; ++i) {
  867. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  868. if (gfn >= memslot->base_gfn
  869. && gfn < memslot->base_gfn + memslot->npages)
  870. return memslot;
  871. }
  872. return NULL;
  873. }
  874. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  875. {
  876. gfn = unalias_gfn(kvm, gfn);
  877. return __gfn_to_memslot(kvm, gfn);
  878. }
  879. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  880. {
  881. struct kvm_memory_slot *slot;
  882. gfn = unalias_gfn(kvm, gfn);
  883. slot = __gfn_to_memslot(kvm, gfn);
  884. if (!slot)
  885. return bad_page;
  886. return slot->phys_mem[gfn - slot->base_gfn];
  887. }
  888. EXPORT_SYMBOL_GPL(gfn_to_page);
  889. static int next_segment(unsigned long len, int offset)
  890. {
  891. if (len > PAGE_SIZE - offset)
  892. return PAGE_SIZE - offset;
  893. else
  894. return len;
  895. }
  896. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  897. int len)
  898. {
  899. void *page_virt;
  900. struct page *page;
  901. page = gfn_to_page(kvm, gfn);
  902. if (is_error_page(page))
  903. return -EFAULT;
  904. page_virt = kmap_atomic(page, KM_USER0);
  905. memcpy(data, page_virt + offset, len);
  906. kunmap_atomic(page_virt, KM_USER0);
  907. return 0;
  908. }
  909. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  910. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  911. {
  912. gfn_t gfn = gpa >> PAGE_SHIFT;
  913. int seg;
  914. int offset = offset_in_page(gpa);
  915. int ret;
  916. while ((seg = next_segment(len, offset)) != 0) {
  917. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  918. if (ret < 0)
  919. return ret;
  920. offset = 0;
  921. len -= seg;
  922. data += seg;
  923. ++gfn;
  924. }
  925. return 0;
  926. }
  927. EXPORT_SYMBOL_GPL(kvm_read_guest);
  928. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  929. int offset, int len)
  930. {
  931. void *page_virt;
  932. struct page *page;
  933. page = gfn_to_page(kvm, gfn);
  934. if (is_error_page(page))
  935. return -EFAULT;
  936. page_virt = kmap_atomic(page, KM_USER0);
  937. memcpy(page_virt + offset, data, len);
  938. kunmap_atomic(page_virt, KM_USER0);
  939. mark_page_dirty(kvm, gfn);
  940. return 0;
  941. }
  942. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  943. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  944. unsigned long len)
  945. {
  946. gfn_t gfn = gpa >> PAGE_SHIFT;
  947. int seg;
  948. int offset = offset_in_page(gpa);
  949. int ret;
  950. while ((seg = next_segment(len, offset)) != 0) {
  951. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  952. if (ret < 0)
  953. return ret;
  954. offset = 0;
  955. len -= seg;
  956. data += seg;
  957. ++gfn;
  958. }
  959. return 0;
  960. }
  961. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  962. {
  963. void *page_virt;
  964. struct page *page;
  965. page = gfn_to_page(kvm, gfn);
  966. if (is_error_page(page))
  967. return -EFAULT;
  968. page_virt = kmap_atomic(page, KM_USER0);
  969. memset(page_virt + offset, 0, len);
  970. kunmap_atomic(page_virt, KM_USER0);
  971. return 0;
  972. }
  973. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  974. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  975. {
  976. gfn_t gfn = gpa >> PAGE_SHIFT;
  977. int seg;
  978. int offset = offset_in_page(gpa);
  979. int ret;
  980. while ((seg = next_segment(len, offset)) != 0) {
  981. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  982. if (ret < 0)
  983. return ret;
  984. offset = 0;
  985. len -= seg;
  986. ++gfn;
  987. }
  988. return 0;
  989. }
  990. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  991. /* WARNING: Does not work on aliased pages. */
  992. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  993. {
  994. struct kvm_memory_slot *memslot;
  995. memslot = __gfn_to_memslot(kvm, gfn);
  996. if (memslot && memslot->dirty_bitmap) {
  997. unsigned long rel_gfn = gfn - memslot->base_gfn;
  998. /* avoid RMW */
  999. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1000. set_bit(rel_gfn, memslot->dirty_bitmap);
  1001. }
  1002. }
  1003. int emulator_read_std(unsigned long addr,
  1004. void *val,
  1005. unsigned int bytes,
  1006. struct kvm_vcpu *vcpu)
  1007. {
  1008. void *data = val;
  1009. while (bytes) {
  1010. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1011. unsigned offset = addr & (PAGE_SIZE-1);
  1012. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1013. int ret;
  1014. if (gpa == UNMAPPED_GVA)
  1015. return X86EMUL_PROPAGATE_FAULT;
  1016. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1017. if (ret < 0)
  1018. return X86EMUL_UNHANDLEABLE;
  1019. bytes -= tocopy;
  1020. data += tocopy;
  1021. addr += tocopy;
  1022. }
  1023. return X86EMUL_CONTINUE;
  1024. }
  1025. EXPORT_SYMBOL_GPL(emulator_read_std);
  1026. static int emulator_write_std(unsigned long addr,
  1027. const void *val,
  1028. unsigned int bytes,
  1029. struct kvm_vcpu *vcpu)
  1030. {
  1031. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  1032. return X86EMUL_UNHANDLEABLE;
  1033. }
  1034. /*
  1035. * Only apic need an MMIO device hook, so shortcut now..
  1036. */
  1037. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1038. gpa_t addr)
  1039. {
  1040. struct kvm_io_device *dev;
  1041. if (vcpu->apic) {
  1042. dev = &vcpu->apic->dev;
  1043. if (dev->in_range(dev, addr))
  1044. return dev;
  1045. }
  1046. return NULL;
  1047. }
  1048. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1049. gpa_t addr)
  1050. {
  1051. struct kvm_io_device *dev;
  1052. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1053. if (dev == NULL)
  1054. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1055. return dev;
  1056. }
  1057. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1058. gpa_t addr)
  1059. {
  1060. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1061. }
  1062. static int emulator_read_emulated(unsigned long addr,
  1063. void *val,
  1064. unsigned int bytes,
  1065. struct kvm_vcpu *vcpu)
  1066. {
  1067. struct kvm_io_device *mmio_dev;
  1068. gpa_t gpa;
  1069. if (vcpu->mmio_read_completed) {
  1070. memcpy(val, vcpu->mmio_data, bytes);
  1071. vcpu->mmio_read_completed = 0;
  1072. return X86EMUL_CONTINUE;
  1073. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1074. == X86EMUL_CONTINUE)
  1075. return X86EMUL_CONTINUE;
  1076. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1077. if (gpa == UNMAPPED_GVA)
  1078. return X86EMUL_PROPAGATE_FAULT;
  1079. /*
  1080. * Is this MMIO handled locally?
  1081. */
  1082. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1083. if (mmio_dev) {
  1084. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1085. return X86EMUL_CONTINUE;
  1086. }
  1087. vcpu->mmio_needed = 1;
  1088. vcpu->mmio_phys_addr = gpa;
  1089. vcpu->mmio_size = bytes;
  1090. vcpu->mmio_is_write = 0;
  1091. return X86EMUL_UNHANDLEABLE;
  1092. }
  1093. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1094. const void *val, int bytes)
  1095. {
  1096. int ret;
  1097. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1098. if (ret < 0)
  1099. return 0;
  1100. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1101. return 1;
  1102. }
  1103. static int emulator_write_emulated_onepage(unsigned long addr,
  1104. const void *val,
  1105. unsigned int bytes,
  1106. struct kvm_vcpu *vcpu)
  1107. {
  1108. struct kvm_io_device *mmio_dev;
  1109. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1110. if (gpa == UNMAPPED_GVA) {
  1111. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1112. return X86EMUL_PROPAGATE_FAULT;
  1113. }
  1114. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1115. return X86EMUL_CONTINUE;
  1116. /*
  1117. * Is this MMIO handled locally?
  1118. */
  1119. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1120. if (mmio_dev) {
  1121. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1122. return X86EMUL_CONTINUE;
  1123. }
  1124. vcpu->mmio_needed = 1;
  1125. vcpu->mmio_phys_addr = gpa;
  1126. vcpu->mmio_size = bytes;
  1127. vcpu->mmio_is_write = 1;
  1128. memcpy(vcpu->mmio_data, val, bytes);
  1129. return X86EMUL_CONTINUE;
  1130. }
  1131. int emulator_write_emulated(unsigned long addr,
  1132. const void *val,
  1133. unsigned int bytes,
  1134. struct kvm_vcpu *vcpu)
  1135. {
  1136. /* Crossing a page boundary? */
  1137. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1138. int rc, now;
  1139. now = -addr & ~PAGE_MASK;
  1140. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1141. if (rc != X86EMUL_CONTINUE)
  1142. return rc;
  1143. addr += now;
  1144. val += now;
  1145. bytes -= now;
  1146. }
  1147. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1148. }
  1149. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1150. static int emulator_cmpxchg_emulated(unsigned long addr,
  1151. const void *old,
  1152. const void *new,
  1153. unsigned int bytes,
  1154. struct kvm_vcpu *vcpu)
  1155. {
  1156. static int reported;
  1157. if (!reported) {
  1158. reported = 1;
  1159. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1160. }
  1161. return emulator_write_emulated(addr, new, bytes, vcpu);
  1162. }
  1163. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1164. {
  1165. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1166. }
  1167. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1168. {
  1169. return X86EMUL_CONTINUE;
  1170. }
  1171. int emulate_clts(struct kvm_vcpu *vcpu)
  1172. {
  1173. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1174. return X86EMUL_CONTINUE;
  1175. }
  1176. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1177. {
  1178. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1179. switch (dr) {
  1180. case 0 ... 3:
  1181. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1182. return X86EMUL_CONTINUE;
  1183. default:
  1184. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1185. return X86EMUL_UNHANDLEABLE;
  1186. }
  1187. }
  1188. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1189. {
  1190. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1191. int exception;
  1192. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1193. if (exception) {
  1194. /* FIXME: better handling */
  1195. return X86EMUL_UNHANDLEABLE;
  1196. }
  1197. return X86EMUL_CONTINUE;
  1198. }
  1199. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1200. {
  1201. static int reported;
  1202. u8 opcodes[4];
  1203. unsigned long rip = vcpu->rip;
  1204. unsigned long rip_linear;
  1205. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1206. if (reported)
  1207. return;
  1208. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1209. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1210. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1211. reported = 1;
  1212. }
  1213. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1214. struct x86_emulate_ops emulate_ops = {
  1215. .read_std = emulator_read_std,
  1216. .write_std = emulator_write_std,
  1217. .read_emulated = emulator_read_emulated,
  1218. .write_emulated = emulator_write_emulated,
  1219. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1220. };
  1221. int emulate_instruction(struct kvm_vcpu *vcpu,
  1222. struct kvm_run *run,
  1223. unsigned long cr2,
  1224. u16 error_code,
  1225. int no_decode)
  1226. {
  1227. int r;
  1228. vcpu->mmio_fault_cr2 = cr2;
  1229. kvm_x86_ops->cache_regs(vcpu);
  1230. vcpu->mmio_is_write = 0;
  1231. vcpu->pio.string = 0;
  1232. if (!no_decode) {
  1233. int cs_db, cs_l;
  1234. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1235. vcpu->emulate_ctxt.vcpu = vcpu;
  1236. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1237. vcpu->emulate_ctxt.cr2 = cr2;
  1238. vcpu->emulate_ctxt.mode =
  1239. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1240. ? X86EMUL_MODE_REAL : cs_l
  1241. ? X86EMUL_MODE_PROT64 : cs_db
  1242. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1243. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1244. vcpu->emulate_ctxt.cs_base = 0;
  1245. vcpu->emulate_ctxt.ds_base = 0;
  1246. vcpu->emulate_ctxt.es_base = 0;
  1247. vcpu->emulate_ctxt.ss_base = 0;
  1248. } else {
  1249. vcpu->emulate_ctxt.cs_base =
  1250. get_segment_base(vcpu, VCPU_SREG_CS);
  1251. vcpu->emulate_ctxt.ds_base =
  1252. get_segment_base(vcpu, VCPU_SREG_DS);
  1253. vcpu->emulate_ctxt.es_base =
  1254. get_segment_base(vcpu, VCPU_SREG_ES);
  1255. vcpu->emulate_ctxt.ss_base =
  1256. get_segment_base(vcpu, VCPU_SREG_SS);
  1257. }
  1258. vcpu->emulate_ctxt.gs_base =
  1259. get_segment_base(vcpu, VCPU_SREG_GS);
  1260. vcpu->emulate_ctxt.fs_base =
  1261. get_segment_base(vcpu, VCPU_SREG_FS);
  1262. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1263. if (r) {
  1264. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1265. return EMULATE_DONE;
  1266. return EMULATE_FAIL;
  1267. }
  1268. }
  1269. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1270. if (vcpu->pio.string)
  1271. return EMULATE_DO_MMIO;
  1272. if ((r || vcpu->mmio_is_write) && run) {
  1273. run->exit_reason = KVM_EXIT_MMIO;
  1274. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1275. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1276. run->mmio.len = vcpu->mmio_size;
  1277. run->mmio.is_write = vcpu->mmio_is_write;
  1278. }
  1279. if (r) {
  1280. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1281. return EMULATE_DONE;
  1282. if (!vcpu->mmio_needed) {
  1283. kvm_report_emulation_failure(vcpu, "mmio");
  1284. return EMULATE_FAIL;
  1285. }
  1286. return EMULATE_DO_MMIO;
  1287. }
  1288. kvm_x86_ops->decache_regs(vcpu);
  1289. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1290. if (vcpu->mmio_is_write) {
  1291. vcpu->mmio_needed = 0;
  1292. return EMULATE_DO_MMIO;
  1293. }
  1294. return EMULATE_DONE;
  1295. }
  1296. EXPORT_SYMBOL_GPL(emulate_instruction);
  1297. /*
  1298. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1299. */
  1300. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1301. {
  1302. DECLARE_WAITQUEUE(wait, current);
  1303. add_wait_queue(&vcpu->wq, &wait);
  1304. /*
  1305. * We will block until either an interrupt or a signal wakes us up
  1306. */
  1307. while (!kvm_cpu_has_interrupt(vcpu)
  1308. && !signal_pending(current)
  1309. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1310. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1311. set_current_state(TASK_INTERRUPTIBLE);
  1312. vcpu_put(vcpu);
  1313. schedule();
  1314. vcpu_load(vcpu);
  1315. }
  1316. __set_current_state(TASK_RUNNING);
  1317. remove_wait_queue(&vcpu->wq, &wait);
  1318. }
  1319. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1320. {
  1321. ++vcpu->stat.halt_exits;
  1322. if (irqchip_in_kernel(vcpu->kvm)) {
  1323. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1324. kvm_vcpu_block(vcpu);
  1325. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1326. return -EINTR;
  1327. return 1;
  1328. } else {
  1329. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1330. return 0;
  1331. }
  1332. }
  1333. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1334. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1335. {
  1336. unsigned long nr, a0, a1, a2, a3, ret;
  1337. kvm_x86_ops->cache_regs(vcpu);
  1338. nr = vcpu->regs[VCPU_REGS_RAX];
  1339. a0 = vcpu->regs[VCPU_REGS_RBX];
  1340. a1 = vcpu->regs[VCPU_REGS_RCX];
  1341. a2 = vcpu->regs[VCPU_REGS_RDX];
  1342. a3 = vcpu->regs[VCPU_REGS_RSI];
  1343. if (!is_long_mode(vcpu)) {
  1344. nr &= 0xFFFFFFFF;
  1345. a0 &= 0xFFFFFFFF;
  1346. a1 &= 0xFFFFFFFF;
  1347. a2 &= 0xFFFFFFFF;
  1348. a3 &= 0xFFFFFFFF;
  1349. }
  1350. switch (nr) {
  1351. default:
  1352. ret = -KVM_ENOSYS;
  1353. break;
  1354. }
  1355. vcpu->regs[VCPU_REGS_RAX] = ret;
  1356. kvm_x86_ops->decache_regs(vcpu);
  1357. return 0;
  1358. }
  1359. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1360. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1361. {
  1362. char instruction[3];
  1363. int ret = 0;
  1364. mutex_lock(&vcpu->kvm->lock);
  1365. /*
  1366. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1367. * to ensure that the updated hypercall appears atomically across all
  1368. * VCPUs.
  1369. */
  1370. kvm_mmu_zap_all(vcpu->kvm);
  1371. kvm_x86_ops->cache_regs(vcpu);
  1372. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1373. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1374. != X86EMUL_CONTINUE)
  1375. ret = -EFAULT;
  1376. mutex_unlock(&vcpu->kvm->lock);
  1377. return ret;
  1378. }
  1379. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1380. {
  1381. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1382. }
  1383. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1384. {
  1385. struct descriptor_table dt = { limit, base };
  1386. kvm_x86_ops->set_gdt(vcpu, &dt);
  1387. }
  1388. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1389. {
  1390. struct descriptor_table dt = { limit, base };
  1391. kvm_x86_ops->set_idt(vcpu, &dt);
  1392. }
  1393. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1394. unsigned long *rflags)
  1395. {
  1396. lmsw(vcpu, msw);
  1397. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1398. }
  1399. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1400. {
  1401. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1402. switch (cr) {
  1403. case 0:
  1404. return vcpu->cr0;
  1405. case 2:
  1406. return vcpu->cr2;
  1407. case 3:
  1408. return vcpu->cr3;
  1409. case 4:
  1410. return vcpu->cr4;
  1411. default:
  1412. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1413. return 0;
  1414. }
  1415. }
  1416. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1417. unsigned long *rflags)
  1418. {
  1419. switch (cr) {
  1420. case 0:
  1421. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1422. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1423. break;
  1424. case 2:
  1425. vcpu->cr2 = val;
  1426. break;
  1427. case 3:
  1428. set_cr3(vcpu, val);
  1429. break;
  1430. case 4:
  1431. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1432. break;
  1433. default:
  1434. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1435. }
  1436. }
  1437. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1438. {
  1439. u64 data;
  1440. switch (msr) {
  1441. case 0xc0010010: /* SYSCFG */
  1442. case 0xc0010015: /* HWCR */
  1443. case MSR_IA32_PLATFORM_ID:
  1444. case MSR_IA32_P5_MC_ADDR:
  1445. case MSR_IA32_P5_MC_TYPE:
  1446. case MSR_IA32_MC0_CTL:
  1447. case MSR_IA32_MCG_STATUS:
  1448. case MSR_IA32_MCG_CAP:
  1449. case MSR_IA32_MC0_MISC:
  1450. case MSR_IA32_MC0_MISC+4:
  1451. case MSR_IA32_MC0_MISC+8:
  1452. case MSR_IA32_MC0_MISC+12:
  1453. case MSR_IA32_MC0_MISC+16:
  1454. case MSR_IA32_UCODE_REV:
  1455. case MSR_IA32_PERF_STATUS:
  1456. case MSR_IA32_EBL_CR_POWERON:
  1457. /* MTRR registers */
  1458. case 0xfe:
  1459. case 0x200 ... 0x2ff:
  1460. data = 0;
  1461. break;
  1462. case 0xcd: /* fsb frequency */
  1463. data = 3;
  1464. break;
  1465. case MSR_IA32_APICBASE:
  1466. data = kvm_get_apic_base(vcpu);
  1467. break;
  1468. case MSR_IA32_MISC_ENABLE:
  1469. data = vcpu->ia32_misc_enable_msr;
  1470. break;
  1471. #ifdef CONFIG_X86_64
  1472. case MSR_EFER:
  1473. data = vcpu->shadow_efer;
  1474. break;
  1475. #endif
  1476. default:
  1477. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1478. return 1;
  1479. }
  1480. *pdata = data;
  1481. return 0;
  1482. }
  1483. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1484. /*
  1485. * Reads an msr value (of 'msr_index') into 'pdata'.
  1486. * Returns 0 on success, non-0 otherwise.
  1487. * Assumes vcpu_load() was already called.
  1488. */
  1489. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1490. {
  1491. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1492. }
  1493. #ifdef CONFIG_X86_64
  1494. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1495. {
  1496. if (efer & EFER_RESERVED_BITS) {
  1497. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1498. efer);
  1499. inject_gp(vcpu);
  1500. return;
  1501. }
  1502. if (is_paging(vcpu)
  1503. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1504. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1505. inject_gp(vcpu);
  1506. return;
  1507. }
  1508. kvm_x86_ops->set_efer(vcpu, efer);
  1509. efer &= ~EFER_LMA;
  1510. efer |= vcpu->shadow_efer & EFER_LMA;
  1511. vcpu->shadow_efer = efer;
  1512. }
  1513. #endif
  1514. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1515. {
  1516. switch (msr) {
  1517. #ifdef CONFIG_X86_64
  1518. case MSR_EFER:
  1519. set_efer(vcpu, data);
  1520. break;
  1521. #endif
  1522. case MSR_IA32_MC0_STATUS:
  1523. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1524. __FUNCTION__, data);
  1525. break;
  1526. case MSR_IA32_MCG_STATUS:
  1527. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1528. __FUNCTION__, data);
  1529. break;
  1530. case MSR_IA32_UCODE_REV:
  1531. case MSR_IA32_UCODE_WRITE:
  1532. case 0x200 ... 0x2ff: /* MTRRs */
  1533. break;
  1534. case MSR_IA32_APICBASE:
  1535. kvm_set_apic_base(vcpu, data);
  1536. break;
  1537. case MSR_IA32_MISC_ENABLE:
  1538. vcpu->ia32_misc_enable_msr = data;
  1539. break;
  1540. default:
  1541. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1542. return 1;
  1543. }
  1544. return 0;
  1545. }
  1546. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1547. /*
  1548. * Writes msr value into into the appropriate "register".
  1549. * Returns 0 on success, non-0 otherwise.
  1550. * Assumes vcpu_load() was already called.
  1551. */
  1552. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1553. {
  1554. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1555. }
  1556. void kvm_resched(struct kvm_vcpu *vcpu)
  1557. {
  1558. if (!need_resched())
  1559. return;
  1560. cond_resched();
  1561. }
  1562. EXPORT_SYMBOL_GPL(kvm_resched);
  1563. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1564. {
  1565. int i;
  1566. u32 function;
  1567. struct kvm_cpuid_entry *e, *best;
  1568. kvm_x86_ops->cache_regs(vcpu);
  1569. function = vcpu->regs[VCPU_REGS_RAX];
  1570. vcpu->regs[VCPU_REGS_RAX] = 0;
  1571. vcpu->regs[VCPU_REGS_RBX] = 0;
  1572. vcpu->regs[VCPU_REGS_RCX] = 0;
  1573. vcpu->regs[VCPU_REGS_RDX] = 0;
  1574. best = NULL;
  1575. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1576. e = &vcpu->cpuid_entries[i];
  1577. if (e->function == function) {
  1578. best = e;
  1579. break;
  1580. }
  1581. /*
  1582. * Both basic or both extended?
  1583. */
  1584. if (((e->function ^ function) & 0x80000000) == 0)
  1585. if (!best || e->function > best->function)
  1586. best = e;
  1587. }
  1588. if (best) {
  1589. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1590. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1591. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1592. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1593. }
  1594. kvm_x86_ops->decache_regs(vcpu);
  1595. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1596. }
  1597. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1598. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1599. {
  1600. void *p = vcpu->pio_data;
  1601. void *q;
  1602. unsigned bytes;
  1603. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1604. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1605. PAGE_KERNEL);
  1606. if (!q) {
  1607. free_pio_guest_pages(vcpu);
  1608. return -ENOMEM;
  1609. }
  1610. q += vcpu->pio.guest_page_offset;
  1611. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1612. if (vcpu->pio.in)
  1613. memcpy(q, p, bytes);
  1614. else
  1615. memcpy(p, q, bytes);
  1616. q -= vcpu->pio.guest_page_offset;
  1617. vunmap(q);
  1618. free_pio_guest_pages(vcpu);
  1619. return 0;
  1620. }
  1621. static int complete_pio(struct kvm_vcpu *vcpu)
  1622. {
  1623. struct kvm_pio_request *io = &vcpu->pio;
  1624. long delta;
  1625. int r;
  1626. kvm_x86_ops->cache_regs(vcpu);
  1627. if (!io->string) {
  1628. if (io->in)
  1629. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1630. io->size);
  1631. } else {
  1632. if (io->in) {
  1633. r = pio_copy_data(vcpu);
  1634. if (r) {
  1635. kvm_x86_ops->cache_regs(vcpu);
  1636. return r;
  1637. }
  1638. }
  1639. delta = 1;
  1640. if (io->rep) {
  1641. delta *= io->cur_count;
  1642. /*
  1643. * The size of the register should really depend on
  1644. * current address size.
  1645. */
  1646. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1647. }
  1648. if (io->down)
  1649. delta = -delta;
  1650. delta *= io->size;
  1651. if (io->in)
  1652. vcpu->regs[VCPU_REGS_RDI] += delta;
  1653. else
  1654. vcpu->regs[VCPU_REGS_RSI] += delta;
  1655. }
  1656. kvm_x86_ops->decache_regs(vcpu);
  1657. io->count -= io->cur_count;
  1658. io->cur_count = 0;
  1659. return 0;
  1660. }
  1661. static void kernel_pio(struct kvm_io_device *pio_dev,
  1662. struct kvm_vcpu *vcpu,
  1663. void *pd)
  1664. {
  1665. /* TODO: String I/O for in kernel device */
  1666. mutex_lock(&vcpu->kvm->lock);
  1667. if (vcpu->pio.in)
  1668. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1669. vcpu->pio.size,
  1670. pd);
  1671. else
  1672. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1673. vcpu->pio.size,
  1674. pd);
  1675. mutex_unlock(&vcpu->kvm->lock);
  1676. }
  1677. static void pio_string_write(struct kvm_io_device *pio_dev,
  1678. struct kvm_vcpu *vcpu)
  1679. {
  1680. struct kvm_pio_request *io = &vcpu->pio;
  1681. void *pd = vcpu->pio_data;
  1682. int i;
  1683. mutex_lock(&vcpu->kvm->lock);
  1684. for (i = 0; i < io->cur_count; i++) {
  1685. kvm_iodevice_write(pio_dev, io->port,
  1686. io->size,
  1687. pd);
  1688. pd += io->size;
  1689. }
  1690. mutex_unlock(&vcpu->kvm->lock);
  1691. }
  1692. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1693. int size, unsigned port)
  1694. {
  1695. struct kvm_io_device *pio_dev;
  1696. vcpu->run->exit_reason = KVM_EXIT_IO;
  1697. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1698. vcpu->run->io.size = vcpu->pio.size = size;
  1699. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1700. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1701. vcpu->run->io.port = vcpu->pio.port = port;
  1702. vcpu->pio.in = in;
  1703. vcpu->pio.string = 0;
  1704. vcpu->pio.down = 0;
  1705. vcpu->pio.guest_page_offset = 0;
  1706. vcpu->pio.rep = 0;
  1707. kvm_x86_ops->cache_regs(vcpu);
  1708. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1709. kvm_x86_ops->decache_regs(vcpu);
  1710. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1711. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1712. if (pio_dev) {
  1713. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1714. complete_pio(vcpu);
  1715. return 1;
  1716. }
  1717. return 0;
  1718. }
  1719. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1720. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1721. int size, unsigned long count, int down,
  1722. gva_t address, int rep, unsigned port)
  1723. {
  1724. unsigned now, in_page;
  1725. int i, ret = 0;
  1726. int nr_pages = 1;
  1727. struct page *page;
  1728. struct kvm_io_device *pio_dev;
  1729. vcpu->run->exit_reason = KVM_EXIT_IO;
  1730. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1731. vcpu->run->io.size = vcpu->pio.size = size;
  1732. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1733. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1734. vcpu->run->io.port = vcpu->pio.port = port;
  1735. vcpu->pio.in = in;
  1736. vcpu->pio.string = 1;
  1737. vcpu->pio.down = down;
  1738. vcpu->pio.guest_page_offset = offset_in_page(address);
  1739. vcpu->pio.rep = rep;
  1740. if (!count) {
  1741. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1742. return 1;
  1743. }
  1744. if (!down)
  1745. in_page = PAGE_SIZE - offset_in_page(address);
  1746. else
  1747. in_page = offset_in_page(address) + size;
  1748. now = min(count, (unsigned long)in_page / size);
  1749. if (!now) {
  1750. /*
  1751. * String I/O straddles page boundary. Pin two guest pages
  1752. * so that we satisfy atomicity constraints. Do just one
  1753. * transaction to avoid complexity.
  1754. */
  1755. nr_pages = 2;
  1756. now = 1;
  1757. }
  1758. if (down) {
  1759. /*
  1760. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1761. */
  1762. pr_unimpl(vcpu, "guest string pio down\n");
  1763. inject_gp(vcpu);
  1764. return 1;
  1765. }
  1766. vcpu->run->io.count = now;
  1767. vcpu->pio.cur_count = now;
  1768. if (vcpu->pio.cur_count == vcpu->pio.count)
  1769. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1770. for (i = 0; i < nr_pages; ++i) {
  1771. mutex_lock(&vcpu->kvm->lock);
  1772. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1773. if (page)
  1774. get_page(page);
  1775. vcpu->pio.guest_pages[i] = page;
  1776. mutex_unlock(&vcpu->kvm->lock);
  1777. if (!page) {
  1778. inject_gp(vcpu);
  1779. free_pio_guest_pages(vcpu);
  1780. return 1;
  1781. }
  1782. }
  1783. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1784. if (!vcpu->pio.in) {
  1785. /* string PIO write */
  1786. ret = pio_copy_data(vcpu);
  1787. if (ret >= 0 && pio_dev) {
  1788. pio_string_write(pio_dev, vcpu);
  1789. complete_pio(vcpu);
  1790. if (vcpu->pio.count == 0)
  1791. ret = 1;
  1792. }
  1793. } else if (pio_dev)
  1794. pr_unimpl(vcpu, "no string pio read support yet, "
  1795. "port %x size %d count %ld\n",
  1796. port, size, count);
  1797. return ret;
  1798. }
  1799. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1800. /*
  1801. * Check if userspace requested an interrupt window, and that the
  1802. * interrupt window is open.
  1803. *
  1804. * No need to exit to userspace if we already have an interrupt queued.
  1805. */
  1806. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1807. struct kvm_run *kvm_run)
  1808. {
  1809. return (!vcpu->irq_summary &&
  1810. kvm_run->request_interrupt_window &&
  1811. vcpu->interrupt_window_open &&
  1812. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1813. }
  1814. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1815. struct kvm_run *kvm_run)
  1816. {
  1817. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1818. kvm_run->cr8 = get_cr8(vcpu);
  1819. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1820. if (irqchip_in_kernel(vcpu->kvm))
  1821. kvm_run->ready_for_interrupt_injection = 1;
  1822. else
  1823. kvm_run->ready_for_interrupt_injection =
  1824. (vcpu->interrupt_window_open &&
  1825. vcpu->irq_summary == 0);
  1826. }
  1827. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1828. {
  1829. int r;
  1830. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1831. pr_debug("vcpu %d received sipi with vector # %x\n",
  1832. vcpu->vcpu_id, vcpu->sipi_vector);
  1833. kvm_lapic_reset(vcpu);
  1834. kvm_x86_ops->vcpu_reset(vcpu);
  1835. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1836. }
  1837. preempted:
  1838. if (vcpu->guest_debug.enabled)
  1839. kvm_x86_ops->guest_debug_pre(vcpu);
  1840. again:
  1841. r = kvm_mmu_reload(vcpu);
  1842. if (unlikely(r))
  1843. goto out;
  1844. kvm_inject_pending_timer_irqs(vcpu);
  1845. preempt_disable();
  1846. kvm_x86_ops->prepare_guest_switch(vcpu);
  1847. kvm_load_guest_fpu(vcpu);
  1848. local_irq_disable();
  1849. if (signal_pending(current)) {
  1850. local_irq_enable();
  1851. preempt_enable();
  1852. r = -EINTR;
  1853. kvm_run->exit_reason = KVM_EXIT_INTR;
  1854. ++vcpu->stat.signal_exits;
  1855. goto out;
  1856. }
  1857. if (irqchip_in_kernel(vcpu->kvm))
  1858. kvm_x86_ops->inject_pending_irq(vcpu);
  1859. else if (!vcpu->mmio_read_completed)
  1860. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1861. vcpu->guest_mode = 1;
  1862. kvm_guest_enter();
  1863. if (vcpu->requests)
  1864. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1865. kvm_x86_ops->tlb_flush(vcpu);
  1866. kvm_x86_ops->run(vcpu, kvm_run);
  1867. vcpu->guest_mode = 0;
  1868. local_irq_enable();
  1869. ++vcpu->stat.exits;
  1870. /*
  1871. * We must have an instruction between local_irq_enable() and
  1872. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1873. * the interrupt shadow. The stat.exits increment will do nicely.
  1874. * But we need to prevent reordering, hence this barrier():
  1875. */
  1876. barrier();
  1877. kvm_guest_exit();
  1878. preempt_enable();
  1879. /*
  1880. * Profile KVM exit RIPs:
  1881. */
  1882. if (unlikely(prof_on == KVM_PROFILING)) {
  1883. kvm_x86_ops->cache_regs(vcpu);
  1884. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1885. }
  1886. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1887. if (r > 0) {
  1888. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1889. r = -EINTR;
  1890. kvm_run->exit_reason = KVM_EXIT_INTR;
  1891. ++vcpu->stat.request_irq_exits;
  1892. goto out;
  1893. }
  1894. if (!need_resched()) {
  1895. ++vcpu->stat.light_exits;
  1896. goto again;
  1897. }
  1898. }
  1899. out:
  1900. if (r > 0) {
  1901. kvm_resched(vcpu);
  1902. goto preempted;
  1903. }
  1904. post_kvm_run_save(vcpu, kvm_run);
  1905. return r;
  1906. }
  1907. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1908. {
  1909. int r;
  1910. sigset_t sigsaved;
  1911. vcpu_load(vcpu);
  1912. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1913. kvm_vcpu_block(vcpu);
  1914. vcpu_put(vcpu);
  1915. return -EAGAIN;
  1916. }
  1917. if (vcpu->sigset_active)
  1918. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1919. /* re-sync apic's tpr */
  1920. if (!irqchip_in_kernel(vcpu->kvm))
  1921. set_cr8(vcpu, kvm_run->cr8);
  1922. if (vcpu->pio.cur_count) {
  1923. r = complete_pio(vcpu);
  1924. if (r)
  1925. goto out;
  1926. }
  1927. if (vcpu->mmio_needed) {
  1928. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1929. vcpu->mmio_read_completed = 1;
  1930. vcpu->mmio_needed = 0;
  1931. r = emulate_instruction(vcpu, kvm_run,
  1932. vcpu->mmio_fault_cr2, 0, 1);
  1933. if (r == EMULATE_DO_MMIO) {
  1934. /*
  1935. * Read-modify-write. Back to userspace.
  1936. */
  1937. r = 0;
  1938. goto out;
  1939. }
  1940. }
  1941. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1942. kvm_x86_ops->cache_regs(vcpu);
  1943. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1944. kvm_x86_ops->decache_regs(vcpu);
  1945. }
  1946. r = __vcpu_run(vcpu, kvm_run);
  1947. out:
  1948. if (vcpu->sigset_active)
  1949. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1950. vcpu_put(vcpu);
  1951. return r;
  1952. }
  1953. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1954. struct kvm_regs *regs)
  1955. {
  1956. vcpu_load(vcpu);
  1957. kvm_x86_ops->cache_regs(vcpu);
  1958. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1959. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1960. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1961. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1962. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1963. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1964. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1965. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1966. #ifdef CONFIG_X86_64
  1967. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1968. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1969. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1970. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1971. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1972. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1973. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1974. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1975. #endif
  1976. regs->rip = vcpu->rip;
  1977. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1978. /*
  1979. * Don't leak debug flags in case they were set for guest debugging
  1980. */
  1981. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1982. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1983. vcpu_put(vcpu);
  1984. return 0;
  1985. }
  1986. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1987. struct kvm_regs *regs)
  1988. {
  1989. vcpu_load(vcpu);
  1990. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1991. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1992. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1993. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1994. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1995. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1996. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1997. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1998. #ifdef CONFIG_X86_64
  1999. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  2000. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  2001. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  2002. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  2003. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  2004. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  2005. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  2006. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  2007. #endif
  2008. vcpu->rip = regs->rip;
  2009. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2010. kvm_x86_ops->decache_regs(vcpu);
  2011. vcpu_put(vcpu);
  2012. return 0;
  2013. }
  2014. static void get_segment(struct kvm_vcpu *vcpu,
  2015. struct kvm_segment *var, int seg)
  2016. {
  2017. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2018. }
  2019. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2020. struct kvm_sregs *sregs)
  2021. {
  2022. struct descriptor_table dt;
  2023. int pending_vec;
  2024. vcpu_load(vcpu);
  2025. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2026. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2027. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2028. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2029. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2030. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2031. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2032. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2033. kvm_x86_ops->get_idt(vcpu, &dt);
  2034. sregs->idt.limit = dt.limit;
  2035. sregs->idt.base = dt.base;
  2036. kvm_x86_ops->get_gdt(vcpu, &dt);
  2037. sregs->gdt.limit = dt.limit;
  2038. sregs->gdt.base = dt.base;
  2039. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2040. sregs->cr0 = vcpu->cr0;
  2041. sregs->cr2 = vcpu->cr2;
  2042. sregs->cr3 = vcpu->cr3;
  2043. sregs->cr4 = vcpu->cr4;
  2044. sregs->cr8 = get_cr8(vcpu);
  2045. sregs->efer = vcpu->shadow_efer;
  2046. sregs->apic_base = kvm_get_apic_base(vcpu);
  2047. if (irqchip_in_kernel(vcpu->kvm)) {
  2048. memset(sregs->interrupt_bitmap, 0,
  2049. sizeof sregs->interrupt_bitmap);
  2050. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2051. if (pending_vec >= 0)
  2052. set_bit(pending_vec,
  2053. (unsigned long *)sregs->interrupt_bitmap);
  2054. } else
  2055. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2056. sizeof sregs->interrupt_bitmap);
  2057. vcpu_put(vcpu);
  2058. return 0;
  2059. }
  2060. static void set_segment(struct kvm_vcpu *vcpu,
  2061. struct kvm_segment *var, int seg)
  2062. {
  2063. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2064. }
  2065. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2066. struct kvm_sregs *sregs)
  2067. {
  2068. int mmu_reset_needed = 0;
  2069. int i, pending_vec, max_bits;
  2070. struct descriptor_table dt;
  2071. vcpu_load(vcpu);
  2072. dt.limit = sregs->idt.limit;
  2073. dt.base = sregs->idt.base;
  2074. kvm_x86_ops->set_idt(vcpu, &dt);
  2075. dt.limit = sregs->gdt.limit;
  2076. dt.base = sregs->gdt.base;
  2077. kvm_x86_ops->set_gdt(vcpu, &dt);
  2078. vcpu->cr2 = sregs->cr2;
  2079. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2080. vcpu->cr3 = sregs->cr3;
  2081. set_cr8(vcpu, sregs->cr8);
  2082. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2083. #ifdef CONFIG_X86_64
  2084. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2085. #endif
  2086. kvm_set_apic_base(vcpu, sregs->apic_base);
  2087. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2088. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2089. vcpu->cr0 = sregs->cr0;
  2090. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2091. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2092. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2093. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2094. load_pdptrs(vcpu, vcpu->cr3);
  2095. if (mmu_reset_needed)
  2096. kvm_mmu_reset_context(vcpu);
  2097. if (!irqchip_in_kernel(vcpu->kvm)) {
  2098. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2099. sizeof vcpu->irq_pending);
  2100. vcpu->irq_summary = 0;
  2101. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2102. if (vcpu->irq_pending[i])
  2103. __set_bit(i, &vcpu->irq_summary);
  2104. } else {
  2105. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2106. pending_vec = find_first_bit(
  2107. (const unsigned long *)sregs->interrupt_bitmap,
  2108. max_bits);
  2109. /* Only pending external irq is handled here */
  2110. if (pending_vec < max_bits) {
  2111. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2112. pr_debug("Set back pending irq %d\n",
  2113. pending_vec);
  2114. }
  2115. }
  2116. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2117. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2118. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2119. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2120. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2121. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2122. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2123. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2124. vcpu_put(vcpu);
  2125. return 0;
  2126. }
  2127. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2128. {
  2129. struct kvm_segment cs;
  2130. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2131. *db = cs.db;
  2132. *l = cs.l;
  2133. }
  2134. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2135. /*
  2136. * Translate a guest virtual address to a guest physical address.
  2137. */
  2138. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2139. struct kvm_translation *tr)
  2140. {
  2141. unsigned long vaddr = tr->linear_address;
  2142. gpa_t gpa;
  2143. vcpu_load(vcpu);
  2144. mutex_lock(&vcpu->kvm->lock);
  2145. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2146. tr->physical_address = gpa;
  2147. tr->valid = gpa != UNMAPPED_GVA;
  2148. tr->writeable = 1;
  2149. tr->usermode = 0;
  2150. mutex_unlock(&vcpu->kvm->lock);
  2151. vcpu_put(vcpu);
  2152. return 0;
  2153. }
  2154. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2155. struct kvm_interrupt *irq)
  2156. {
  2157. if (irq->irq < 0 || irq->irq >= 256)
  2158. return -EINVAL;
  2159. if (irqchip_in_kernel(vcpu->kvm))
  2160. return -ENXIO;
  2161. vcpu_load(vcpu);
  2162. set_bit(irq->irq, vcpu->irq_pending);
  2163. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2164. vcpu_put(vcpu);
  2165. return 0;
  2166. }
  2167. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2168. struct kvm_debug_guest *dbg)
  2169. {
  2170. int r;
  2171. vcpu_load(vcpu);
  2172. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2173. vcpu_put(vcpu);
  2174. return r;
  2175. }
  2176. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2177. unsigned long address,
  2178. int *type)
  2179. {
  2180. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2181. unsigned long pgoff;
  2182. struct page *page;
  2183. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2184. if (pgoff == 0)
  2185. page = virt_to_page(vcpu->run);
  2186. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2187. page = virt_to_page(vcpu->pio_data);
  2188. else
  2189. return NOPAGE_SIGBUS;
  2190. get_page(page);
  2191. if (type != NULL)
  2192. *type = VM_FAULT_MINOR;
  2193. return page;
  2194. }
  2195. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2196. .nopage = kvm_vcpu_nopage,
  2197. };
  2198. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2199. {
  2200. vma->vm_ops = &kvm_vcpu_vm_ops;
  2201. return 0;
  2202. }
  2203. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2204. {
  2205. struct kvm_vcpu *vcpu = filp->private_data;
  2206. fput(vcpu->kvm->filp);
  2207. return 0;
  2208. }
  2209. static struct file_operations kvm_vcpu_fops = {
  2210. .release = kvm_vcpu_release,
  2211. .unlocked_ioctl = kvm_vcpu_ioctl,
  2212. .compat_ioctl = kvm_vcpu_ioctl,
  2213. .mmap = kvm_vcpu_mmap,
  2214. };
  2215. /*
  2216. * Allocates an inode for the vcpu.
  2217. */
  2218. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2219. {
  2220. int fd, r;
  2221. struct inode *inode;
  2222. struct file *file;
  2223. r = anon_inode_getfd(&fd, &inode, &file,
  2224. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2225. if (r)
  2226. return r;
  2227. atomic_inc(&vcpu->kvm->filp->f_count);
  2228. return fd;
  2229. }
  2230. /*
  2231. * Creates some virtual cpus. Good luck creating more than one.
  2232. */
  2233. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2234. {
  2235. int r;
  2236. struct kvm_vcpu *vcpu;
  2237. if (!valid_vcpu(n))
  2238. return -EINVAL;
  2239. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2240. if (IS_ERR(vcpu))
  2241. return PTR_ERR(vcpu);
  2242. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2243. /* We do fxsave: this must be aligned. */
  2244. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2245. vcpu_load(vcpu);
  2246. r = kvm_mmu_setup(vcpu);
  2247. vcpu_put(vcpu);
  2248. if (r < 0)
  2249. goto free_vcpu;
  2250. mutex_lock(&kvm->lock);
  2251. if (kvm->vcpus[n]) {
  2252. r = -EEXIST;
  2253. mutex_unlock(&kvm->lock);
  2254. goto mmu_unload;
  2255. }
  2256. kvm->vcpus[n] = vcpu;
  2257. mutex_unlock(&kvm->lock);
  2258. /* Now it's all set up, let userspace reach it */
  2259. r = create_vcpu_fd(vcpu);
  2260. if (r < 0)
  2261. goto unlink;
  2262. return r;
  2263. unlink:
  2264. mutex_lock(&kvm->lock);
  2265. kvm->vcpus[n] = NULL;
  2266. mutex_unlock(&kvm->lock);
  2267. mmu_unload:
  2268. vcpu_load(vcpu);
  2269. kvm_mmu_unload(vcpu);
  2270. vcpu_put(vcpu);
  2271. free_vcpu:
  2272. kvm_x86_ops->vcpu_free(vcpu);
  2273. return r;
  2274. }
  2275. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2276. {
  2277. if (sigset) {
  2278. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2279. vcpu->sigset_active = 1;
  2280. vcpu->sigset = *sigset;
  2281. } else
  2282. vcpu->sigset_active = 0;
  2283. return 0;
  2284. }
  2285. /*
  2286. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2287. * we have asm/x86/processor.h
  2288. */
  2289. struct fxsave {
  2290. u16 cwd;
  2291. u16 swd;
  2292. u16 twd;
  2293. u16 fop;
  2294. u64 rip;
  2295. u64 rdp;
  2296. u32 mxcsr;
  2297. u32 mxcsr_mask;
  2298. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2299. #ifdef CONFIG_X86_64
  2300. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2301. #else
  2302. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2303. #endif
  2304. };
  2305. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2306. {
  2307. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2308. vcpu_load(vcpu);
  2309. memcpy(fpu->fpr, fxsave->st_space, 128);
  2310. fpu->fcw = fxsave->cwd;
  2311. fpu->fsw = fxsave->swd;
  2312. fpu->ftwx = fxsave->twd;
  2313. fpu->last_opcode = fxsave->fop;
  2314. fpu->last_ip = fxsave->rip;
  2315. fpu->last_dp = fxsave->rdp;
  2316. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2317. vcpu_put(vcpu);
  2318. return 0;
  2319. }
  2320. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2321. {
  2322. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2323. vcpu_load(vcpu);
  2324. memcpy(fxsave->st_space, fpu->fpr, 128);
  2325. fxsave->cwd = fpu->fcw;
  2326. fxsave->swd = fpu->fsw;
  2327. fxsave->twd = fpu->ftwx;
  2328. fxsave->fop = fpu->last_opcode;
  2329. fxsave->rip = fpu->last_ip;
  2330. fxsave->rdp = fpu->last_dp;
  2331. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2332. vcpu_put(vcpu);
  2333. return 0;
  2334. }
  2335. static long kvm_vcpu_ioctl(struct file *filp,
  2336. unsigned int ioctl, unsigned long arg)
  2337. {
  2338. struct kvm_vcpu *vcpu = filp->private_data;
  2339. void __user *argp = (void __user *)arg;
  2340. int r;
  2341. switch (ioctl) {
  2342. case KVM_RUN:
  2343. r = -EINVAL;
  2344. if (arg)
  2345. goto out;
  2346. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2347. break;
  2348. case KVM_GET_REGS: {
  2349. struct kvm_regs kvm_regs;
  2350. memset(&kvm_regs, 0, sizeof kvm_regs);
  2351. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2352. if (r)
  2353. goto out;
  2354. r = -EFAULT;
  2355. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2356. goto out;
  2357. r = 0;
  2358. break;
  2359. }
  2360. case KVM_SET_REGS: {
  2361. struct kvm_regs kvm_regs;
  2362. r = -EFAULT;
  2363. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2364. goto out;
  2365. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2366. if (r)
  2367. goto out;
  2368. r = 0;
  2369. break;
  2370. }
  2371. case KVM_GET_SREGS: {
  2372. struct kvm_sregs kvm_sregs;
  2373. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2374. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2375. if (r)
  2376. goto out;
  2377. r = -EFAULT;
  2378. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2379. goto out;
  2380. r = 0;
  2381. break;
  2382. }
  2383. case KVM_SET_SREGS: {
  2384. struct kvm_sregs kvm_sregs;
  2385. r = -EFAULT;
  2386. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2387. goto out;
  2388. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2389. if (r)
  2390. goto out;
  2391. r = 0;
  2392. break;
  2393. }
  2394. case KVM_TRANSLATE: {
  2395. struct kvm_translation tr;
  2396. r = -EFAULT;
  2397. if (copy_from_user(&tr, argp, sizeof tr))
  2398. goto out;
  2399. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2400. if (r)
  2401. goto out;
  2402. r = -EFAULT;
  2403. if (copy_to_user(argp, &tr, sizeof tr))
  2404. goto out;
  2405. r = 0;
  2406. break;
  2407. }
  2408. case KVM_INTERRUPT: {
  2409. struct kvm_interrupt irq;
  2410. r = -EFAULT;
  2411. if (copy_from_user(&irq, argp, sizeof irq))
  2412. goto out;
  2413. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2414. if (r)
  2415. goto out;
  2416. r = 0;
  2417. break;
  2418. }
  2419. case KVM_DEBUG_GUEST: {
  2420. struct kvm_debug_guest dbg;
  2421. r = -EFAULT;
  2422. if (copy_from_user(&dbg, argp, sizeof dbg))
  2423. goto out;
  2424. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2425. if (r)
  2426. goto out;
  2427. r = 0;
  2428. break;
  2429. }
  2430. case KVM_SET_SIGNAL_MASK: {
  2431. struct kvm_signal_mask __user *sigmask_arg = argp;
  2432. struct kvm_signal_mask kvm_sigmask;
  2433. sigset_t sigset, *p;
  2434. p = NULL;
  2435. if (argp) {
  2436. r = -EFAULT;
  2437. if (copy_from_user(&kvm_sigmask, argp,
  2438. sizeof kvm_sigmask))
  2439. goto out;
  2440. r = -EINVAL;
  2441. if (kvm_sigmask.len != sizeof sigset)
  2442. goto out;
  2443. r = -EFAULT;
  2444. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2445. sizeof sigset))
  2446. goto out;
  2447. p = &sigset;
  2448. }
  2449. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2450. break;
  2451. }
  2452. case KVM_GET_FPU: {
  2453. struct kvm_fpu fpu;
  2454. memset(&fpu, 0, sizeof fpu);
  2455. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2456. if (r)
  2457. goto out;
  2458. r = -EFAULT;
  2459. if (copy_to_user(argp, &fpu, sizeof fpu))
  2460. goto out;
  2461. r = 0;
  2462. break;
  2463. }
  2464. case KVM_SET_FPU: {
  2465. struct kvm_fpu fpu;
  2466. r = -EFAULT;
  2467. if (copy_from_user(&fpu, argp, sizeof fpu))
  2468. goto out;
  2469. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2470. if (r)
  2471. goto out;
  2472. r = 0;
  2473. break;
  2474. }
  2475. default:
  2476. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2477. }
  2478. out:
  2479. return r;
  2480. }
  2481. static long kvm_vm_ioctl(struct file *filp,
  2482. unsigned int ioctl, unsigned long arg)
  2483. {
  2484. struct kvm *kvm = filp->private_data;
  2485. void __user *argp = (void __user *)arg;
  2486. int r = -EINVAL;
  2487. switch (ioctl) {
  2488. case KVM_CREATE_VCPU:
  2489. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2490. if (r < 0)
  2491. goto out;
  2492. break;
  2493. case KVM_SET_MEMORY_REGION: {
  2494. struct kvm_memory_region kvm_mem;
  2495. struct kvm_userspace_memory_region kvm_userspace_mem;
  2496. r = -EFAULT;
  2497. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2498. goto out;
  2499. kvm_userspace_mem.slot = kvm_mem.slot;
  2500. kvm_userspace_mem.flags = kvm_mem.flags;
  2501. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2502. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2503. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2504. if (r)
  2505. goto out;
  2506. break;
  2507. }
  2508. case KVM_SET_USER_MEMORY_REGION: {
  2509. struct kvm_userspace_memory_region kvm_userspace_mem;
  2510. r = -EFAULT;
  2511. if (copy_from_user(&kvm_userspace_mem, argp,
  2512. sizeof kvm_userspace_mem))
  2513. goto out;
  2514. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2515. if (r)
  2516. goto out;
  2517. break;
  2518. }
  2519. case KVM_SET_NR_MMU_PAGES:
  2520. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2521. if (r)
  2522. goto out;
  2523. break;
  2524. case KVM_GET_NR_MMU_PAGES:
  2525. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2526. break;
  2527. case KVM_GET_DIRTY_LOG: {
  2528. struct kvm_dirty_log log;
  2529. r = -EFAULT;
  2530. if (copy_from_user(&log, argp, sizeof log))
  2531. goto out;
  2532. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2533. if (r)
  2534. goto out;
  2535. break;
  2536. }
  2537. case KVM_SET_MEMORY_ALIAS: {
  2538. struct kvm_memory_alias alias;
  2539. r = -EFAULT;
  2540. if (copy_from_user(&alias, argp, sizeof alias))
  2541. goto out;
  2542. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2543. if (r)
  2544. goto out;
  2545. break;
  2546. }
  2547. case KVM_CREATE_IRQCHIP:
  2548. r = -ENOMEM;
  2549. kvm->vpic = kvm_create_pic(kvm);
  2550. if (kvm->vpic) {
  2551. r = kvm_ioapic_init(kvm);
  2552. if (r) {
  2553. kfree(kvm->vpic);
  2554. kvm->vpic = NULL;
  2555. goto out;
  2556. }
  2557. } else
  2558. goto out;
  2559. break;
  2560. case KVM_IRQ_LINE: {
  2561. struct kvm_irq_level irq_event;
  2562. r = -EFAULT;
  2563. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2564. goto out;
  2565. if (irqchip_in_kernel(kvm)) {
  2566. mutex_lock(&kvm->lock);
  2567. if (irq_event.irq < 16)
  2568. kvm_pic_set_irq(pic_irqchip(kvm),
  2569. irq_event.irq,
  2570. irq_event.level);
  2571. kvm_ioapic_set_irq(kvm->vioapic,
  2572. irq_event.irq,
  2573. irq_event.level);
  2574. mutex_unlock(&kvm->lock);
  2575. r = 0;
  2576. }
  2577. break;
  2578. }
  2579. case KVM_GET_IRQCHIP: {
  2580. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2581. struct kvm_irqchip chip;
  2582. r = -EFAULT;
  2583. if (copy_from_user(&chip, argp, sizeof chip))
  2584. goto out;
  2585. r = -ENXIO;
  2586. if (!irqchip_in_kernel(kvm))
  2587. goto out;
  2588. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2589. if (r)
  2590. goto out;
  2591. r = -EFAULT;
  2592. if (copy_to_user(argp, &chip, sizeof chip))
  2593. goto out;
  2594. r = 0;
  2595. break;
  2596. }
  2597. case KVM_SET_IRQCHIP: {
  2598. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2599. struct kvm_irqchip chip;
  2600. r = -EFAULT;
  2601. if (copy_from_user(&chip, argp, sizeof chip))
  2602. goto out;
  2603. r = -ENXIO;
  2604. if (!irqchip_in_kernel(kvm))
  2605. goto out;
  2606. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2607. if (r)
  2608. goto out;
  2609. r = 0;
  2610. break;
  2611. }
  2612. default:
  2613. ;
  2614. }
  2615. out:
  2616. return r;
  2617. }
  2618. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2619. unsigned long address,
  2620. int *type)
  2621. {
  2622. struct kvm *kvm = vma->vm_file->private_data;
  2623. unsigned long pgoff;
  2624. struct page *page;
  2625. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2626. page = gfn_to_page(kvm, pgoff);
  2627. if (is_error_page(page))
  2628. return NOPAGE_SIGBUS;
  2629. get_page(page);
  2630. if (type != NULL)
  2631. *type = VM_FAULT_MINOR;
  2632. return page;
  2633. }
  2634. static struct vm_operations_struct kvm_vm_vm_ops = {
  2635. .nopage = kvm_vm_nopage,
  2636. };
  2637. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2638. {
  2639. vma->vm_ops = &kvm_vm_vm_ops;
  2640. return 0;
  2641. }
  2642. static struct file_operations kvm_vm_fops = {
  2643. .release = kvm_vm_release,
  2644. .unlocked_ioctl = kvm_vm_ioctl,
  2645. .compat_ioctl = kvm_vm_ioctl,
  2646. .mmap = kvm_vm_mmap,
  2647. };
  2648. static int kvm_dev_ioctl_create_vm(void)
  2649. {
  2650. int fd, r;
  2651. struct inode *inode;
  2652. struct file *file;
  2653. struct kvm *kvm;
  2654. kvm = kvm_create_vm();
  2655. if (IS_ERR(kvm))
  2656. return PTR_ERR(kvm);
  2657. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2658. if (r) {
  2659. kvm_destroy_vm(kvm);
  2660. return r;
  2661. }
  2662. kvm->filp = file;
  2663. return fd;
  2664. }
  2665. static long kvm_dev_ioctl(struct file *filp,
  2666. unsigned int ioctl, unsigned long arg)
  2667. {
  2668. void __user *argp = (void __user *)arg;
  2669. long r = -EINVAL;
  2670. switch (ioctl) {
  2671. case KVM_GET_API_VERSION:
  2672. r = -EINVAL;
  2673. if (arg)
  2674. goto out;
  2675. r = KVM_API_VERSION;
  2676. break;
  2677. case KVM_CREATE_VM:
  2678. r = -EINVAL;
  2679. if (arg)
  2680. goto out;
  2681. r = kvm_dev_ioctl_create_vm();
  2682. break;
  2683. case KVM_CHECK_EXTENSION: {
  2684. int ext = (long)argp;
  2685. switch (ext) {
  2686. case KVM_CAP_IRQCHIP:
  2687. case KVM_CAP_HLT:
  2688. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2689. case KVM_CAP_USER_MEMORY:
  2690. r = 1;
  2691. break;
  2692. default:
  2693. r = 0;
  2694. break;
  2695. }
  2696. break;
  2697. }
  2698. case KVM_GET_VCPU_MMAP_SIZE:
  2699. r = -EINVAL;
  2700. if (arg)
  2701. goto out;
  2702. r = 2 * PAGE_SIZE;
  2703. break;
  2704. default:
  2705. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2706. }
  2707. out:
  2708. return r;
  2709. }
  2710. static struct file_operations kvm_chardev_ops = {
  2711. .unlocked_ioctl = kvm_dev_ioctl,
  2712. .compat_ioctl = kvm_dev_ioctl,
  2713. };
  2714. static struct miscdevice kvm_dev = {
  2715. KVM_MINOR,
  2716. "kvm",
  2717. &kvm_chardev_ops,
  2718. };
  2719. /*
  2720. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2721. * cached on it.
  2722. */
  2723. static void decache_vcpus_on_cpu(int cpu)
  2724. {
  2725. struct kvm *vm;
  2726. struct kvm_vcpu *vcpu;
  2727. int i;
  2728. spin_lock(&kvm_lock);
  2729. list_for_each_entry(vm, &vm_list, vm_list)
  2730. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2731. vcpu = vm->vcpus[i];
  2732. if (!vcpu)
  2733. continue;
  2734. /*
  2735. * If the vcpu is locked, then it is running on some
  2736. * other cpu and therefore it is not cached on the
  2737. * cpu in question.
  2738. *
  2739. * If it's not locked, check the last cpu it executed
  2740. * on.
  2741. */
  2742. if (mutex_trylock(&vcpu->mutex)) {
  2743. if (vcpu->cpu == cpu) {
  2744. kvm_x86_ops->vcpu_decache(vcpu);
  2745. vcpu->cpu = -1;
  2746. }
  2747. mutex_unlock(&vcpu->mutex);
  2748. }
  2749. }
  2750. spin_unlock(&kvm_lock);
  2751. }
  2752. static void hardware_enable(void *junk)
  2753. {
  2754. int cpu = raw_smp_processor_id();
  2755. if (cpu_isset(cpu, cpus_hardware_enabled))
  2756. return;
  2757. cpu_set(cpu, cpus_hardware_enabled);
  2758. kvm_x86_ops->hardware_enable(NULL);
  2759. }
  2760. static void hardware_disable(void *junk)
  2761. {
  2762. int cpu = raw_smp_processor_id();
  2763. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2764. return;
  2765. cpu_clear(cpu, cpus_hardware_enabled);
  2766. decache_vcpus_on_cpu(cpu);
  2767. kvm_x86_ops->hardware_disable(NULL);
  2768. }
  2769. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2770. void *v)
  2771. {
  2772. int cpu = (long)v;
  2773. switch (val) {
  2774. case CPU_DYING:
  2775. case CPU_DYING_FROZEN:
  2776. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2777. cpu);
  2778. hardware_disable(NULL);
  2779. break;
  2780. case CPU_UP_CANCELED:
  2781. case CPU_UP_CANCELED_FROZEN:
  2782. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2783. cpu);
  2784. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2785. break;
  2786. case CPU_ONLINE:
  2787. case CPU_ONLINE_FROZEN:
  2788. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2789. cpu);
  2790. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2791. break;
  2792. }
  2793. return NOTIFY_OK;
  2794. }
  2795. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2796. void *v)
  2797. {
  2798. if (val == SYS_RESTART) {
  2799. /*
  2800. * Some (well, at least mine) BIOSes hang on reboot if
  2801. * in vmx root mode.
  2802. */
  2803. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2804. on_each_cpu(hardware_disable, NULL, 0, 1);
  2805. }
  2806. return NOTIFY_OK;
  2807. }
  2808. static struct notifier_block kvm_reboot_notifier = {
  2809. .notifier_call = kvm_reboot,
  2810. .priority = 0,
  2811. };
  2812. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2813. {
  2814. memset(bus, 0, sizeof(*bus));
  2815. }
  2816. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2817. {
  2818. int i;
  2819. for (i = 0; i < bus->dev_count; i++) {
  2820. struct kvm_io_device *pos = bus->devs[i];
  2821. kvm_iodevice_destructor(pos);
  2822. }
  2823. }
  2824. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2825. {
  2826. int i;
  2827. for (i = 0; i < bus->dev_count; i++) {
  2828. struct kvm_io_device *pos = bus->devs[i];
  2829. if (pos->in_range(pos, addr))
  2830. return pos;
  2831. }
  2832. return NULL;
  2833. }
  2834. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2835. {
  2836. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2837. bus->devs[bus->dev_count++] = dev;
  2838. }
  2839. static struct notifier_block kvm_cpu_notifier = {
  2840. .notifier_call = kvm_cpu_hotplug,
  2841. .priority = 20, /* must be > scheduler priority */
  2842. };
  2843. static u64 stat_get(void *_offset)
  2844. {
  2845. unsigned offset = (long)_offset;
  2846. u64 total = 0;
  2847. struct kvm *kvm;
  2848. struct kvm_vcpu *vcpu;
  2849. int i;
  2850. spin_lock(&kvm_lock);
  2851. list_for_each_entry(kvm, &vm_list, vm_list)
  2852. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2853. vcpu = kvm->vcpus[i];
  2854. if (vcpu)
  2855. total += *(u32 *)((void *)vcpu + offset);
  2856. }
  2857. spin_unlock(&kvm_lock);
  2858. return total;
  2859. }
  2860. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2861. static __init void kvm_init_debug(void)
  2862. {
  2863. struct kvm_stats_debugfs_item *p;
  2864. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2865. for (p = debugfs_entries; p->name; ++p)
  2866. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2867. (void *)(long)p->offset,
  2868. &stat_fops);
  2869. }
  2870. static void kvm_exit_debug(void)
  2871. {
  2872. struct kvm_stats_debugfs_item *p;
  2873. for (p = debugfs_entries; p->name; ++p)
  2874. debugfs_remove(p->dentry);
  2875. debugfs_remove(debugfs_dir);
  2876. }
  2877. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2878. {
  2879. hardware_disable(NULL);
  2880. return 0;
  2881. }
  2882. static int kvm_resume(struct sys_device *dev)
  2883. {
  2884. hardware_enable(NULL);
  2885. return 0;
  2886. }
  2887. static struct sysdev_class kvm_sysdev_class = {
  2888. .name = "kvm",
  2889. .suspend = kvm_suspend,
  2890. .resume = kvm_resume,
  2891. };
  2892. static struct sys_device kvm_sysdev = {
  2893. .id = 0,
  2894. .cls = &kvm_sysdev_class,
  2895. };
  2896. struct page *bad_page;
  2897. static inline
  2898. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2899. {
  2900. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2901. }
  2902. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2903. {
  2904. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2905. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2906. }
  2907. static void kvm_sched_out(struct preempt_notifier *pn,
  2908. struct task_struct *next)
  2909. {
  2910. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2911. kvm_x86_ops->vcpu_put(vcpu);
  2912. }
  2913. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2914. struct module *module)
  2915. {
  2916. int r;
  2917. int cpu;
  2918. if (kvm_x86_ops) {
  2919. printk(KERN_ERR "kvm: already loaded the other module\n");
  2920. return -EEXIST;
  2921. }
  2922. if (!ops->cpu_has_kvm_support()) {
  2923. printk(KERN_ERR "kvm: no hardware support\n");
  2924. return -EOPNOTSUPP;
  2925. }
  2926. if (ops->disabled_by_bios()) {
  2927. printk(KERN_ERR "kvm: disabled by bios\n");
  2928. return -EOPNOTSUPP;
  2929. }
  2930. kvm_x86_ops = ops;
  2931. r = kvm_x86_ops->hardware_setup();
  2932. if (r < 0)
  2933. goto out;
  2934. for_each_online_cpu(cpu) {
  2935. smp_call_function_single(cpu,
  2936. kvm_x86_ops->check_processor_compatibility,
  2937. &r, 0, 1);
  2938. if (r < 0)
  2939. goto out_free_0;
  2940. }
  2941. on_each_cpu(hardware_enable, NULL, 0, 1);
  2942. r = register_cpu_notifier(&kvm_cpu_notifier);
  2943. if (r)
  2944. goto out_free_1;
  2945. register_reboot_notifier(&kvm_reboot_notifier);
  2946. r = sysdev_class_register(&kvm_sysdev_class);
  2947. if (r)
  2948. goto out_free_2;
  2949. r = sysdev_register(&kvm_sysdev);
  2950. if (r)
  2951. goto out_free_3;
  2952. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2953. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2954. __alignof__(struct kvm_vcpu), 0, 0);
  2955. if (!kvm_vcpu_cache) {
  2956. r = -ENOMEM;
  2957. goto out_free_4;
  2958. }
  2959. kvm_chardev_ops.owner = module;
  2960. r = misc_register(&kvm_dev);
  2961. if (r) {
  2962. printk(KERN_ERR "kvm: misc device register failed\n");
  2963. goto out_free;
  2964. }
  2965. kvm_preempt_ops.sched_in = kvm_sched_in;
  2966. kvm_preempt_ops.sched_out = kvm_sched_out;
  2967. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2968. return 0;
  2969. out_free:
  2970. kmem_cache_destroy(kvm_vcpu_cache);
  2971. out_free_4:
  2972. sysdev_unregister(&kvm_sysdev);
  2973. out_free_3:
  2974. sysdev_class_unregister(&kvm_sysdev_class);
  2975. out_free_2:
  2976. unregister_reboot_notifier(&kvm_reboot_notifier);
  2977. unregister_cpu_notifier(&kvm_cpu_notifier);
  2978. out_free_1:
  2979. on_each_cpu(hardware_disable, NULL, 0, 1);
  2980. out_free_0:
  2981. kvm_x86_ops->hardware_unsetup();
  2982. out:
  2983. kvm_x86_ops = NULL;
  2984. return r;
  2985. }
  2986. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2987. void kvm_exit_x86(void)
  2988. {
  2989. misc_deregister(&kvm_dev);
  2990. kmem_cache_destroy(kvm_vcpu_cache);
  2991. sysdev_unregister(&kvm_sysdev);
  2992. sysdev_class_unregister(&kvm_sysdev_class);
  2993. unregister_reboot_notifier(&kvm_reboot_notifier);
  2994. unregister_cpu_notifier(&kvm_cpu_notifier);
  2995. on_each_cpu(hardware_disable, NULL, 0, 1);
  2996. kvm_x86_ops->hardware_unsetup();
  2997. kvm_x86_ops = NULL;
  2998. }
  2999. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  3000. static __init int kvm_init(void)
  3001. {
  3002. int r;
  3003. r = kvm_mmu_module_init();
  3004. if (r)
  3005. goto out4;
  3006. kvm_init_debug();
  3007. kvm_arch_init();
  3008. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3009. if (bad_page == NULL) {
  3010. r = -ENOMEM;
  3011. goto out;
  3012. }
  3013. return 0;
  3014. out:
  3015. kvm_exit_debug();
  3016. kvm_mmu_module_exit();
  3017. out4:
  3018. return r;
  3019. }
  3020. static __exit void kvm_exit(void)
  3021. {
  3022. kvm_exit_debug();
  3023. __free_page(bad_page);
  3024. kvm_mmu_module_exit();
  3025. }
  3026. module_init(kvm_init)
  3027. module_exit(kvm_exit)