mlock.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/mempolicy.h>
  14. #include <linux/syscalls.h>
  15. #include <linux/sched.h>
  16. #include <linux/export.h>
  17. #include <linux/rmap.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. int can_do_mlock(void)
  22. {
  23. if (capable(CAP_IPC_LOCK))
  24. return 1;
  25. if (rlimit(RLIMIT_MEMLOCK) != 0)
  26. return 1;
  27. return 0;
  28. }
  29. EXPORT_SYMBOL(can_do_mlock);
  30. /*
  31. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  32. * in vmscan and, possibly, the fault path; and to support semi-accurate
  33. * statistics.
  34. *
  35. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  36. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  37. * The unevictable list is an LRU sibling list to the [in]active lists.
  38. * PageUnevictable is set to indicate the unevictable state.
  39. *
  40. * When lazy mlocking via vmscan, it is important to ensure that the
  41. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  42. * may have mlocked a page that is being munlocked. So lazy mlock must take
  43. * the mmap_sem for read, and verify that the vma really is locked
  44. * (see mm/rmap.c).
  45. */
  46. /*
  47. * LRU accounting for clear_page_mlock()
  48. */
  49. void clear_page_mlock(struct page *page)
  50. {
  51. if (!TestClearPageMlocked(page))
  52. return;
  53. mod_zone_page_state(page_zone(page), NR_MLOCK,
  54. -hpage_nr_pages(page));
  55. count_vm_event(UNEVICTABLE_PGCLEARED);
  56. if (!isolate_lru_page(page)) {
  57. putback_lru_page(page);
  58. } else {
  59. /*
  60. * We lost the race. the page already moved to evictable list.
  61. */
  62. if (PageUnevictable(page))
  63. count_vm_event(UNEVICTABLE_PGSTRANDED);
  64. }
  65. }
  66. /*
  67. * Mark page as mlocked if not already.
  68. * If page on LRU, isolate and putback to move to unevictable list.
  69. */
  70. void mlock_vma_page(struct page *page)
  71. {
  72. BUG_ON(!PageLocked(page));
  73. if (!TestSetPageMlocked(page)) {
  74. mod_zone_page_state(page_zone(page), NR_MLOCK,
  75. hpage_nr_pages(page));
  76. count_vm_event(UNEVICTABLE_PGMLOCKED);
  77. if (!isolate_lru_page(page))
  78. putback_lru_page(page);
  79. }
  80. }
  81. /**
  82. * munlock_vma_page - munlock a vma page
  83. * @page - page to be unlocked
  84. *
  85. * called from munlock()/munmap() path with page supposedly on the LRU.
  86. * When we munlock a page, because the vma where we found the page is being
  87. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  88. * page locked so that we can leave it on the unevictable lru list and not
  89. * bother vmscan with it. However, to walk the page's rmap list in
  90. * try_to_munlock() we must isolate the page from the LRU. If some other
  91. * task has removed the page from the LRU, we won't be able to do that.
  92. * So we clear the PageMlocked as we might not get another chance. If we
  93. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  94. * [page_referenced()/try_to_unmap()] to deal with.
  95. */
  96. void munlock_vma_page(struct page *page)
  97. {
  98. BUG_ON(!PageLocked(page));
  99. if (TestClearPageMlocked(page)) {
  100. mod_zone_page_state(page_zone(page), NR_MLOCK,
  101. -hpage_nr_pages(page));
  102. if (!isolate_lru_page(page)) {
  103. int ret = SWAP_AGAIN;
  104. /*
  105. * Optimization: if the page was mapped just once,
  106. * that's our mapping and we don't need to check all the
  107. * other vmas.
  108. */
  109. if (page_mapcount(page) > 1)
  110. ret = try_to_munlock(page);
  111. /*
  112. * did try_to_unlock() succeed or punt?
  113. */
  114. if (ret != SWAP_MLOCK)
  115. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  116. putback_lru_page(page);
  117. } else {
  118. /*
  119. * Some other task has removed the page from the LRU.
  120. * putback_lru_page() will take care of removing the
  121. * page from the unevictable list, if necessary.
  122. * vmscan [page_referenced()] will move the page back
  123. * to the unevictable list if some other vma has it
  124. * mlocked.
  125. */
  126. if (PageUnevictable(page))
  127. count_vm_event(UNEVICTABLE_PGSTRANDED);
  128. else
  129. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  130. }
  131. }
  132. }
  133. /**
  134. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  135. * @vma: target vma
  136. * @start: start address
  137. * @end: end address
  138. *
  139. * This takes care of making the pages present too.
  140. *
  141. * return 0 on success, negative error code on error.
  142. *
  143. * vma->vm_mm->mmap_sem must be held for at least read.
  144. */
  145. long __mlock_vma_pages_range(struct vm_area_struct *vma,
  146. unsigned long start, unsigned long end, int *nonblocking)
  147. {
  148. struct mm_struct *mm = vma->vm_mm;
  149. unsigned long addr = start;
  150. int nr_pages = (end - start) / PAGE_SIZE;
  151. int gup_flags;
  152. VM_BUG_ON(start & ~PAGE_MASK);
  153. VM_BUG_ON(end & ~PAGE_MASK);
  154. VM_BUG_ON(start < vma->vm_start);
  155. VM_BUG_ON(end > vma->vm_end);
  156. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  157. gup_flags = FOLL_TOUCH | FOLL_MLOCK;
  158. /*
  159. * We want to touch writable mappings with a write fault in order
  160. * to break COW, except for shared mappings because these don't COW
  161. * and we would not want to dirty them for nothing.
  162. */
  163. if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  164. gup_flags |= FOLL_WRITE;
  165. /*
  166. * We want mlock to succeed for regions that have any permissions
  167. * other than PROT_NONE.
  168. */
  169. if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  170. gup_flags |= FOLL_FORCE;
  171. return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
  172. NULL, NULL, nonblocking);
  173. }
  174. /*
  175. * convert get_user_pages() return value to posix mlock() error
  176. */
  177. static int __mlock_posix_error_return(long retval)
  178. {
  179. if (retval == -EFAULT)
  180. retval = -ENOMEM;
  181. else if (retval == -ENOMEM)
  182. retval = -EAGAIN;
  183. return retval;
  184. }
  185. /*
  186. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  187. * @vma - vma containing range to be munlock()ed.
  188. * @start - start address in @vma of the range
  189. * @end - end of range in @vma.
  190. *
  191. * For mremap(), munmap() and exit().
  192. *
  193. * Called with @vma VM_LOCKED.
  194. *
  195. * Returns with VM_LOCKED cleared. Callers must be prepared to
  196. * deal with this.
  197. *
  198. * We don't save and restore VM_LOCKED here because pages are
  199. * still on lru. In unmap path, pages might be scanned by reclaim
  200. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  201. * free them. This will result in freeing mlocked pages.
  202. */
  203. void munlock_vma_pages_range(struct vm_area_struct *vma,
  204. unsigned long start, unsigned long end)
  205. {
  206. unsigned long addr;
  207. lru_add_drain();
  208. vma->vm_flags &= ~VM_LOCKED;
  209. for (addr = start; addr < end; addr += PAGE_SIZE) {
  210. struct page *page;
  211. /*
  212. * Although FOLL_DUMP is intended for get_dump_page(),
  213. * it just so happens that its special treatment of the
  214. * ZERO_PAGE (returning an error instead of doing get_page)
  215. * suits munlock very well (and if somehow an abnormal page
  216. * has sneaked into the range, we won't oops here: great).
  217. */
  218. page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
  219. if (page && !IS_ERR(page)) {
  220. lock_page(page);
  221. munlock_vma_page(page);
  222. unlock_page(page);
  223. put_page(page);
  224. }
  225. cond_resched();
  226. }
  227. }
  228. /*
  229. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  230. *
  231. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  232. * munlock is a no-op. However, for some special vmas, we go ahead and
  233. * populate the ptes.
  234. *
  235. * For vmas that pass the filters, merge/split as appropriate.
  236. */
  237. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  238. unsigned long start, unsigned long end, vm_flags_t newflags)
  239. {
  240. struct mm_struct *mm = vma->vm_mm;
  241. pgoff_t pgoff;
  242. int nr_pages;
  243. int ret = 0;
  244. int lock = !!(newflags & VM_LOCKED);
  245. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  246. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  247. goto out; /* don't set VM_LOCKED, don't count */
  248. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  249. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  250. vma->vm_file, pgoff, vma_policy(vma));
  251. if (*prev) {
  252. vma = *prev;
  253. goto success;
  254. }
  255. if (start != vma->vm_start) {
  256. ret = split_vma(mm, vma, start, 1);
  257. if (ret)
  258. goto out;
  259. }
  260. if (end != vma->vm_end) {
  261. ret = split_vma(mm, vma, end, 0);
  262. if (ret)
  263. goto out;
  264. }
  265. success:
  266. /*
  267. * Keep track of amount of locked VM.
  268. */
  269. nr_pages = (end - start) >> PAGE_SHIFT;
  270. if (!lock)
  271. nr_pages = -nr_pages;
  272. mm->locked_vm += nr_pages;
  273. /*
  274. * vm_flags is protected by the mmap_sem held in write mode.
  275. * It's okay if try_to_unmap_one unmaps a page just after we
  276. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  277. */
  278. if (lock)
  279. vma->vm_flags = newflags;
  280. else
  281. munlock_vma_pages_range(vma, start, end);
  282. out:
  283. *prev = vma;
  284. return ret;
  285. }
  286. static int do_mlock(unsigned long start, size_t len, int on)
  287. {
  288. unsigned long nstart, end, tmp;
  289. struct vm_area_struct * vma, * prev;
  290. int error;
  291. VM_BUG_ON(start & ~PAGE_MASK);
  292. VM_BUG_ON(len != PAGE_ALIGN(len));
  293. end = start + len;
  294. if (end < start)
  295. return -EINVAL;
  296. if (end == start)
  297. return 0;
  298. vma = find_vma(current->mm, start);
  299. if (!vma || vma->vm_start > start)
  300. return -ENOMEM;
  301. prev = vma->vm_prev;
  302. if (start > vma->vm_start)
  303. prev = vma;
  304. for (nstart = start ; ; ) {
  305. vm_flags_t newflags;
  306. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  307. newflags = vma->vm_flags | VM_LOCKED;
  308. if (!on)
  309. newflags &= ~VM_LOCKED;
  310. tmp = vma->vm_end;
  311. if (tmp > end)
  312. tmp = end;
  313. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  314. if (error)
  315. break;
  316. nstart = tmp;
  317. if (nstart < prev->vm_end)
  318. nstart = prev->vm_end;
  319. if (nstart >= end)
  320. break;
  321. vma = prev->vm_next;
  322. if (!vma || vma->vm_start != nstart) {
  323. error = -ENOMEM;
  324. break;
  325. }
  326. }
  327. return error;
  328. }
  329. /*
  330. * __mm_populate - populate and/or mlock pages within a range of address space.
  331. *
  332. * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
  333. * flags. VMAs must be already marked with the desired vm_flags, and
  334. * mmap_sem must not be held.
  335. */
  336. int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
  337. {
  338. struct mm_struct *mm = current->mm;
  339. unsigned long end, nstart, nend;
  340. struct vm_area_struct *vma = NULL;
  341. int locked = 0;
  342. int ret = 0;
  343. VM_BUG_ON(start & ~PAGE_MASK);
  344. VM_BUG_ON(len != PAGE_ALIGN(len));
  345. end = start + len;
  346. for (nstart = start; nstart < end; nstart = nend) {
  347. /*
  348. * We want to fault in pages for [nstart; end) address range.
  349. * Find first corresponding VMA.
  350. */
  351. if (!locked) {
  352. locked = 1;
  353. down_read(&mm->mmap_sem);
  354. vma = find_vma(mm, nstart);
  355. } else if (nstart >= vma->vm_end)
  356. vma = vma->vm_next;
  357. if (!vma || vma->vm_start >= end)
  358. break;
  359. /*
  360. * Set [nstart; nend) to intersection of desired address
  361. * range with the first VMA. Also, skip undesirable VMA types.
  362. */
  363. nend = min(end, vma->vm_end);
  364. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  365. continue;
  366. if (nstart < vma->vm_start)
  367. nstart = vma->vm_start;
  368. /*
  369. * Now fault in a range of pages. __mlock_vma_pages_range()
  370. * double checks the vma flags, so that it won't mlock pages
  371. * if the vma was already munlocked.
  372. */
  373. ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  374. if (ret < 0) {
  375. if (ignore_errors) {
  376. ret = 0;
  377. continue; /* continue at next VMA */
  378. }
  379. ret = __mlock_posix_error_return(ret);
  380. break;
  381. }
  382. nend = nstart + ret * PAGE_SIZE;
  383. ret = 0;
  384. }
  385. if (locked)
  386. up_read(&mm->mmap_sem);
  387. return ret; /* 0 or negative error code */
  388. }
  389. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  390. {
  391. unsigned long locked;
  392. unsigned long lock_limit;
  393. int error = -ENOMEM;
  394. if (!can_do_mlock())
  395. return -EPERM;
  396. lru_add_drain_all(); /* flush pagevec */
  397. down_write(&current->mm->mmap_sem);
  398. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  399. start &= PAGE_MASK;
  400. locked = len >> PAGE_SHIFT;
  401. locked += current->mm->locked_vm;
  402. lock_limit = rlimit(RLIMIT_MEMLOCK);
  403. lock_limit >>= PAGE_SHIFT;
  404. /* check against resource limits */
  405. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  406. error = do_mlock(start, len, 1);
  407. up_write(&current->mm->mmap_sem);
  408. if (!error)
  409. error = __mm_populate(start, len, 0);
  410. return error;
  411. }
  412. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  413. {
  414. int ret;
  415. down_write(&current->mm->mmap_sem);
  416. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  417. start &= PAGE_MASK;
  418. ret = do_mlock(start, len, 0);
  419. up_write(&current->mm->mmap_sem);
  420. return ret;
  421. }
  422. static int do_mlockall(int flags)
  423. {
  424. struct vm_area_struct * vma, * prev = NULL;
  425. if (flags & MCL_FUTURE)
  426. current->mm->def_flags |= VM_LOCKED;
  427. else
  428. current->mm->def_flags &= ~VM_LOCKED;
  429. if (flags == MCL_FUTURE)
  430. goto out;
  431. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  432. vm_flags_t newflags;
  433. newflags = vma->vm_flags | VM_LOCKED;
  434. if (!(flags & MCL_CURRENT))
  435. newflags &= ~VM_LOCKED;
  436. /* Ignore errors */
  437. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  438. }
  439. out:
  440. return 0;
  441. }
  442. SYSCALL_DEFINE1(mlockall, int, flags)
  443. {
  444. unsigned long lock_limit;
  445. int ret = -EINVAL;
  446. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  447. goto out;
  448. ret = -EPERM;
  449. if (!can_do_mlock())
  450. goto out;
  451. if (flags & MCL_CURRENT)
  452. lru_add_drain_all(); /* flush pagevec */
  453. down_write(&current->mm->mmap_sem);
  454. lock_limit = rlimit(RLIMIT_MEMLOCK);
  455. lock_limit >>= PAGE_SHIFT;
  456. ret = -ENOMEM;
  457. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  458. capable(CAP_IPC_LOCK))
  459. ret = do_mlockall(flags);
  460. up_write(&current->mm->mmap_sem);
  461. if (!ret && (flags & MCL_CURRENT))
  462. mm_populate(0, TASK_SIZE);
  463. out:
  464. return ret;
  465. }
  466. SYSCALL_DEFINE0(munlockall)
  467. {
  468. int ret;
  469. down_write(&current->mm->mmap_sem);
  470. ret = do_mlockall(0);
  471. up_write(&current->mm->mmap_sem);
  472. return ret;
  473. }
  474. /*
  475. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  476. * shm segments) get accounted against the user_struct instead.
  477. */
  478. static DEFINE_SPINLOCK(shmlock_user_lock);
  479. int user_shm_lock(size_t size, struct user_struct *user)
  480. {
  481. unsigned long lock_limit, locked;
  482. int allowed = 0;
  483. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  484. lock_limit = rlimit(RLIMIT_MEMLOCK);
  485. if (lock_limit == RLIM_INFINITY)
  486. allowed = 1;
  487. lock_limit >>= PAGE_SHIFT;
  488. spin_lock(&shmlock_user_lock);
  489. if (!allowed &&
  490. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  491. goto out;
  492. get_uid(user);
  493. user->locked_shm += locked;
  494. allowed = 1;
  495. out:
  496. spin_unlock(&shmlock_user_lock);
  497. return allowed;
  498. }
  499. void user_shm_unlock(size_t size, struct user_struct *user)
  500. {
  501. spin_lock(&shmlock_user_lock);
  502. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  503. spin_unlock(&shmlock_user_lock);
  504. free_uid(user);
  505. }