paging_tmpl.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t *table;
  60. pt_element_t *ptep;
  61. pt_element_t inherited_ar;
  62. };
  63. /*
  64. * Fetch a guest pte for a guest virtual address
  65. */
  66. static void FNAME(walk_addr)(struct guest_walker *walker,
  67. struct kvm_vcpu *vcpu, gva_t addr)
  68. {
  69. hpa_t hpa;
  70. struct kvm_memory_slot *slot;
  71. pt_element_t *ptep;
  72. pt_element_t root;
  73. gfn_t table_gfn;
  74. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  75. walker->level = vcpu->mmu.root_level;
  76. walker->table = NULL;
  77. root = vcpu->cr3;
  78. #if PTTYPE == 64
  79. if (!is_long_mode(vcpu)) {
  80. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  81. root = *walker->ptep;
  82. if (!(root & PT_PRESENT_MASK))
  83. return;
  84. --walker->level;
  85. }
  86. #endif
  87. table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  88. walker->table_gfn[walker->level - 1] = table_gfn;
  89. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  90. walker->level - 1, table_gfn);
  91. slot = gfn_to_memslot(vcpu->kvm, table_gfn);
  92. hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
  93. walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
  94. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  95. (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
  96. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  97. for (;;) {
  98. int index = PT_INDEX(addr, walker->level);
  99. hpa_t paddr;
  100. ptep = &walker->table[index];
  101. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  102. ((unsigned long)ptep & PAGE_MASK));
  103. if (is_present_pte(*ptep) && !(*ptep & PT_ACCESSED_MASK))
  104. *ptep |= PT_ACCESSED_MASK;
  105. if (!is_present_pte(*ptep) ||
  106. walker->level == PT_PAGE_TABLE_LEVEL ||
  107. (walker->level == PT_DIRECTORY_LEVEL &&
  108. (*ptep & PT_PAGE_SIZE_MASK) &&
  109. (PTTYPE == 64 || is_pse(vcpu))))
  110. break;
  111. if (walker->level != 3 || is_long_mode(vcpu))
  112. walker->inherited_ar &= walker->table[index];
  113. table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  114. paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
  115. kunmap_atomic(walker->table, KM_USER0);
  116. walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
  117. KM_USER0);
  118. --walker->level;
  119. walker->table_gfn[walker->level - 1 ] = table_gfn;
  120. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  121. walker->level - 1, table_gfn);
  122. }
  123. walker->ptep = ptep;
  124. }
  125. static void FNAME(release_walker)(struct guest_walker *walker)
  126. {
  127. if (walker->table)
  128. kunmap_atomic(walker->table, KM_USER0);
  129. }
  130. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
  131. u64 *shadow_pte, u64 access_bits)
  132. {
  133. ASSERT(*shadow_pte == 0);
  134. access_bits &= guest_pte;
  135. *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
  136. set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
  137. guest_pte & PT_DIRTY_MASK, access_bits);
  138. }
  139. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
  140. u64 *shadow_pte, u64 access_bits,
  141. int index)
  142. {
  143. gpa_t gaddr;
  144. ASSERT(*shadow_pte == 0);
  145. access_bits &= guest_pde;
  146. gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index;
  147. if (PTTYPE == 32 && is_cpuid_PSE36())
  148. gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
  149. (32 - PT32_DIR_PSE36_SHIFT);
  150. *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
  151. set_pte_common(vcpu, shadow_pte, gaddr,
  152. guest_pde & PT_DIRTY_MASK, access_bits);
  153. }
  154. /*
  155. * Fetch a shadow pte for a specific level in the paging hierarchy.
  156. */
  157. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  158. struct guest_walker *walker)
  159. {
  160. hpa_t shadow_addr;
  161. int level;
  162. u64 *prev_shadow_ent = NULL;
  163. pt_element_t *guest_ent = walker->ptep;
  164. if (!is_present_pte(*guest_ent))
  165. return NULL;
  166. shadow_addr = vcpu->mmu.root_hpa;
  167. level = vcpu->mmu.shadow_root_level;
  168. if (level == PT32E_ROOT_LEVEL) {
  169. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  170. shadow_addr &= PT64_BASE_ADDR_MASK;
  171. --level;
  172. }
  173. for (; ; level--) {
  174. u32 index = SHADOW_PT_INDEX(addr, level);
  175. u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  176. struct kvm_mmu_page *shadow_page;
  177. u64 shadow_pte;
  178. int metaphysical;
  179. gfn_t table_gfn;
  180. if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
  181. if (level == PT_PAGE_TABLE_LEVEL)
  182. return shadow_ent;
  183. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  184. prev_shadow_ent = shadow_ent;
  185. continue;
  186. }
  187. if (level == PT_PAGE_TABLE_LEVEL) {
  188. if (walker->level == PT_DIRECTORY_LEVEL) {
  189. if (prev_shadow_ent)
  190. *prev_shadow_ent |= PT_SHADOW_PS_MARK;
  191. FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
  192. walker->inherited_ar,
  193. PT_INDEX(addr, PT_PAGE_TABLE_LEVEL));
  194. } else {
  195. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  196. FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar);
  197. }
  198. return shadow_ent;
  199. }
  200. if (level - 1 == PT_PAGE_TABLE_LEVEL
  201. && walker->level == PT_DIRECTORY_LEVEL) {
  202. metaphysical = 1;
  203. table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
  204. >> PAGE_SHIFT;
  205. } else {
  206. metaphysical = 0;
  207. table_gfn = walker->table_gfn[level - 2];
  208. }
  209. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  210. metaphysical, shadow_ent);
  211. if (!shadow_page)
  212. return ERR_PTR(-ENOMEM);
  213. shadow_addr = shadow_page->page_hpa;
  214. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  215. | PT_WRITABLE_MASK | PT_USER_MASK;
  216. *shadow_ent = shadow_pte;
  217. prev_shadow_ent = shadow_ent;
  218. }
  219. }
  220. /*
  221. * The guest faulted for write. We need to
  222. *
  223. * - check write permissions
  224. * - update the guest pte dirty bit
  225. * - update our own dirty page tracking structures
  226. */
  227. static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
  228. u64 *shadow_ent,
  229. struct guest_walker *walker,
  230. gva_t addr,
  231. int user,
  232. int *write_pt)
  233. {
  234. pt_element_t *guest_ent;
  235. int writable_shadow;
  236. gfn_t gfn;
  237. if (is_writeble_pte(*shadow_ent))
  238. return 0;
  239. writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
  240. if (user) {
  241. /*
  242. * User mode access. Fail if it's a kernel page or a read-only
  243. * page.
  244. */
  245. if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
  246. return 0;
  247. ASSERT(*shadow_ent & PT_USER_MASK);
  248. } else
  249. /*
  250. * Kernel mode access. Fail if it's a read-only page and
  251. * supervisor write protection is enabled.
  252. */
  253. if (!writable_shadow) {
  254. if (is_write_protection(vcpu))
  255. return 0;
  256. *shadow_ent &= ~PT_USER_MASK;
  257. }
  258. guest_ent = walker->ptep;
  259. if (!is_present_pte(*guest_ent)) {
  260. *shadow_ent = 0;
  261. return 0;
  262. }
  263. gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  264. if (kvm_mmu_lookup_page(vcpu, gfn)) {
  265. pgprintk("%s: found shadow page for %lx, marking ro\n",
  266. __FUNCTION__, gfn);
  267. *write_pt = 1;
  268. return 0;
  269. }
  270. mark_page_dirty(vcpu->kvm, gfn);
  271. *shadow_ent |= PT_WRITABLE_MASK;
  272. *guest_ent |= PT_DIRTY_MASK;
  273. rmap_add(vcpu->kvm, shadow_ent);
  274. return 1;
  275. }
  276. /*
  277. * Page fault handler. There are several causes for a page fault:
  278. * - there is no shadow pte for the guest pte
  279. * - write access through a shadow pte marked read only so that we can set
  280. * the dirty bit
  281. * - write access to a shadow pte marked read only so we can update the page
  282. * dirty bitmap, when userspace requests it
  283. * - mmio access; in this case we will never install a present shadow pte
  284. * - normal guest page fault due to the guest pte marked not present, not
  285. * writable, or not executable
  286. *
  287. * Returns: 1 if we need to emulate the instruction, 0 otherwise
  288. */
  289. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  290. u32 error_code)
  291. {
  292. int write_fault = error_code & PFERR_WRITE_MASK;
  293. int pte_present = error_code & PFERR_PRESENT_MASK;
  294. int user_fault = error_code & PFERR_USER_MASK;
  295. struct guest_walker walker;
  296. u64 *shadow_pte;
  297. int fixed;
  298. int write_pt = 0;
  299. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  300. /*
  301. * Look up the shadow pte for the faulting address.
  302. */
  303. for (;;) {
  304. FNAME(walk_addr)(&walker, vcpu, addr);
  305. shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
  306. if (IS_ERR(shadow_pte)) { /* must be -ENOMEM */
  307. printk("%s: oom\n", __FUNCTION__);
  308. nonpaging_flush(vcpu);
  309. FNAME(release_walker)(&walker);
  310. continue;
  311. }
  312. break;
  313. }
  314. /*
  315. * The page is not mapped by the guest. Let the guest handle it.
  316. */
  317. if (!shadow_pte) {
  318. pgprintk("%s: not mapped\n", __FUNCTION__);
  319. inject_page_fault(vcpu, addr, error_code);
  320. FNAME(release_walker)(&walker);
  321. return 0;
  322. }
  323. pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
  324. shadow_pte, *shadow_pte);
  325. /*
  326. * Update the shadow pte.
  327. */
  328. if (write_fault)
  329. fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
  330. user_fault, &write_pt);
  331. else
  332. fixed = fix_read_pf(shadow_pte);
  333. pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
  334. shadow_pte, *shadow_pte);
  335. FNAME(release_walker)(&walker);
  336. /*
  337. * mmio: emulate if accessible, otherwise its a guest fault.
  338. */
  339. if (is_io_pte(*shadow_pte)) {
  340. if (may_access(*shadow_pte, write_fault, user_fault))
  341. return 1;
  342. pgprintk("%s: io work, no access\n", __FUNCTION__);
  343. inject_page_fault(vcpu, addr,
  344. error_code | PFERR_PRESENT_MASK);
  345. return 0;
  346. }
  347. /*
  348. * pte not present, guest page fault.
  349. */
  350. if (pte_present && !fixed && !write_pt) {
  351. inject_page_fault(vcpu, addr, error_code);
  352. return 0;
  353. }
  354. ++kvm_stat.pf_fixed;
  355. return write_pt;
  356. }
  357. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  358. {
  359. struct guest_walker walker;
  360. pt_element_t guest_pte;
  361. gpa_t gpa;
  362. FNAME(walk_addr)(&walker, vcpu, vaddr);
  363. guest_pte = *walker.ptep;
  364. FNAME(release_walker)(&walker);
  365. if (!is_present_pte(guest_pte))
  366. return UNMAPPED_GVA;
  367. if (walker.level == PT_DIRECTORY_LEVEL) {
  368. ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
  369. ASSERT(PTTYPE == 64 || is_pse(vcpu));
  370. gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
  371. (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
  372. if (PTTYPE == 32 && is_cpuid_PSE36())
  373. gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
  374. (32 - PT32_DIR_PSE36_SHIFT);
  375. } else {
  376. gpa = (guest_pte & PT_BASE_ADDR_MASK);
  377. gpa |= (vaddr & ~PAGE_MASK);
  378. }
  379. return gpa;
  380. }
  381. #undef pt_element_t
  382. #undef guest_walker
  383. #undef FNAME
  384. #undef PT_BASE_ADDR_MASK
  385. #undef PT_INDEX
  386. #undef SHADOW_PT_INDEX
  387. #undef PT_LEVEL_MASK
  388. #undef PT_PTE_COPY_MASK
  389. #undef PT_NON_PTE_COPY_MASK
  390. #undef PT_DIR_BASE_ADDR_MASK
  391. #undef PT_MAX_FULL_LEVELS