mmu.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include "vmx.h"
  26. #include "kvm.h"
  27. #define pgprintk(x...) do { printk(x); } while (0)
  28. #define rmap_printk(x...) do { printk(x); } while (0)
  29. #define ASSERT(x) \
  30. if (!(x)) { \
  31. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  32. __FILE__, __LINE__, #x); \
  33. }
  34. #define PT64_PT_BITS 9
  35. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  36. #define PT32_PT_BITS 10
  37. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  38. #define PT_WRITABLE_SHIFT 1
  39. #define PT_PRESENT_MASK (1ULL << 0)
  40. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  41. #define PT_USER_MASK (1ULL << 2)
  42. #define PT_PWT_MASK (1ULL << 3)
  43. #define PT_PCD_MASK (1ULL << 4)
  44. #define PT_ACCESSED_MASK (1ULL << 5)
  45. #define PT_DIRTY_MASK (1ULL << 6)
  46. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  47. #define PT_PAT_MASK (1ULL << 7)
  48. #define PT_GLOBAL_MASK (1ULL << 8)
  49. #define PT64_NX_MASK (1ULL << 63)
  50. #define PT_PAT_SHIFT 7
  51. #define PT_DIR_PAT_SHIFT 12
  52. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  53. #define PT32_DIR_PSE36_SIZE 4
  54. #define PT32_DIR_PSE36_SHIFT 13
  55. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  56. #define PT32_PTE_COPY_MASK \
  57. (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
  58. #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
  59. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  60. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  61. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  62. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  63. #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
  64. #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
  65. #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
  66. #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
  67. #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
  68. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  69. #define PT64_LEVEL_BITS 9
  70. #define PT64_LEVEL_SHIFT(level) \
  71. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  72. #define PT64_LEVEL_MASK(level) \
  73. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  74. #define PT64_INDEX(address, level)\
  75. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  76. #define PT32_LEVEL_BITS 10
  77. #define PT32_LEVEL_SHIFT(level) \
  78. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  79. #define PT32_LEVEL_MASK(level) \
  80. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  81. #define PT32_INDEX(address, level)\
  82. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  83. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
  84. #define PT64_DIR_BASE_ADDR_MASK \
  85. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  86. #define PT32_BASE_ADDR_MASK PAGE_MASK
  87. #define PT32_DIR_BASE_ADDR_MASK \
  88. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  89. #define PFERR_PRESENT_MASK (1U << 0)
  90. #define PFERR_WRITE_MASK (1U << 1)
  91. #define PFERR_USER_MASK (1U << 2)
  92. #define PT64_ROOT_LEVEL 4
  93. #define PT32_ROOT_LEVEL 2
  94. #define PT32E_ROOT_LEVEL 3
  95. #define PT_DIRECTORY_LEVEL 2
  96. #define PT_PAGE_TABLE_LEVEL 1
  97. #define RMAP_EXT 4
  98. struct kvm_rmap_desc {
  99. u64 *shadow_ptes[RMAP_EXT];
  100. struct kvm_rmap_desc *more;
  101. };
  102. static int is_write_protection(struct kvm_vcpu *vcpu)
  103. {
  104. return vcpu->cr0 & CR0_WP_MASK;
  105. }
  106. static int is_cpuid_PSE36(void)
  107. {
  108. return 1;
  109. }
  110. static int is_present_pte(unsigned long pte)
  111. {
  112. return pte & PT_PRESENT_MASK;
  113. }
  114. static int is_writeble_pte(unsigned long pte)
  115. {
  116. return pte & PT_WRITABLE_MASK;
  117. }
  118. static int is_io_pte(unsigned long pte)
  119. {
  120. return pte & PT_SHADOW_IO_MARK;
  121. }
  122. static int is_rmap_pte(u64 pte)
  123. {
  124. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  125. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  126. }
  127. /*
  128. * Reverse mapping data structures:
  129. *
  130. * If page->private bit zero is zero, then page->private points to the
  131. * shadow page table entry that points to page_address(page).
  132. *
  133. * If page->private bit zero is one, (then page->private & ~1) points
  134. * to a struct kvm_rmap_desc containing more mappings.
  135. */
  136. static void rmap_add(struct kvm *kvm, u64 *spte)
  137. {
  138. struct page *page;
  139. struct kvm_rmap_desc *desc;
  140. int i;
  141. if (!is_rmap_pte(*spte))
  142. return;
  143. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  144. if (!page->private) {
  145. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  146. page->private = (unsigned long)spte;
  147. } else if (!(page->private & 1)) {
  148. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  149. desc = kzalloc(sizeof *desc, GFP_NOWAIT);
  150. if (!desc)
  151. BUG(); /* FIXME: return error */
  152. desc->shadow_ptes[0] = (u64 *)page->private;
  153. desc->shadow_ptes[1] = spte;
  154. page->private = (unsigned long)desc | 1;
  155. } else {
  156. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  157. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  158. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  159. desc = desc->more;
  160. if (desc->shadow_ptes[RMAP_EXT-1]) {
  161. desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
  162. if (!desc->more)
  163. BUG(); /* FIXME: return error */
  164. desc = desc->more;
  165. }
  166. for (i = 0; desc->shadow_ptes[i]; ++i)
  167. ;
  168. desc->shadow_ptes[i] = spte;
  169. }
  170. }
  171. static void rmap_desc_remove_entry(struct page *page,
  172. struct kvm_rmap_desc *desc,
  173. int i,
  174. struct kvm_rmap_desc *prev_desc)
  175. {
  176. int j;
  177. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  178. ;
  179. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  180. desc->shadow_ptes[j] = 0;
  181. if (j != 0)
  182. return;
  183. if (!prev_desc && !desc->more)
  184. page->private = (unsigned long)desc->shadow_ptes[0];
  185. else
  186. if (prev_desc)
  187. prev_desc->more = desc->more;
  188. else
  189. page->private = (unsigned long)desc->more | 1;
  190. kfree(desc);
  191. }
  192. static void rmap_remove(struct kvm *kvm, u64 *spte)
  193. {
  194. struct page *page;
  195. struct kvm_rmap_desc *desc;
  196. struct kvm_rmap_desc *prev_desc;
  197. int i;
  198. if (!is_rmap_pte(*spte))
  199. return;
  200. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  201. if (!page->private) {
  202. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  203. BUG();
  204. } else if (!(page->private & 1)) {
  205. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  206. if ((u64 *)page->private != spte) {
  207. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  208. spte, *spte);
  209. BUG();
  210. }
  211. page->private = 0;
  212. } else {
  213. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  214. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  215. prev_desc = NULL;
  216. while (desc) {
  217. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  218. if (desc->shadow_ptes[i] == spte) {
  219. rmap_desc_remove_entry(page, desc, i,
  220. prev_desc);
  221. return;
  222. }
  223. prev_desc = desc;
  224. desc = desc->more;
  225. }
  226. BUG();
  227. }
  228. }
  229. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
  230. {
  231. struct kvm_mmu_page *page_head = page_header(page_hpa);
  232. list_del(&page_head->link);
  233. page_head->page_hpa = page_hpa;
  234. list_add(&page_head->link, &vcpu->free_pages);
  235. }
  236. static int is_empty_shadow_page(hpa_t page_hpa)
  237. {
  238. u32 *pos;
  239. u32 *end;
  240. for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
  241. pos != end; pos++)
  242. if (*pos != 0)
  243. return 0;
  244. return 1;
  245. }
  246. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  247. {
  248. return gfn;
  249. }
  250. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  251. u64 *parent_pte)
  252. {
  253. struct kvm_mmu_page *page;
  254. if (list_empty(&vcpu->free_pages))
  255. return NULL;
  256. page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
  257. list_del(&page->link);
  258. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  259. ASSERT(is_empty_shadow_page(page->page_hpa));
  260. page->slot_bitmap = 0;
  261. page->global = 1;
  262. page->multimapped = 0;
  263. page->parent_pte = parent_pte;
  264. return page;
  265. }
  266. static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
  267. {
  268. struct kvm_pte_chain *pte_chain;
  269. struct hlist_node *node;
  270. int i;
  271. if (!parent_pte)
  272. return;
  273. if (!page->multimapped) {
  274. u64 *old = page->parent_pte;
  275. if (!old) {
  276. page->parent_pte = parent_pte;
  277. return;
  278. }
  279. page->multimapped = 1;
  280. pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
  281. BUG_ON(!pte_chain);
  282. INIT_HLIST_HEAD(&page->parent_ptes);
  283. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  284. pte_chain->parent_ptes[0] = old;
  285. }
  286. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  287. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  288. continue;
  289. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  290. if (!pte_chain->parent_ptes[i]) {
  291. pte_chain->parent_ptes[i] = parent_pte;
  292. return;
  293. }
  294. }
  295. pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
  296. BUG_ON(!pte_chain);
  297. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  298. pte_chain->parent_ptes[0] = parent_pte;
  299. }
  300. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  301. u64 *parent_pte)
  302. {
  303. struct kvm_pte_chain *pte_chain;
  304. struct hlist_node *node;
  305. int i;
  306. if (!page->multimapped) {
  307. BUG_ON(page->parent_pte != parent_pte);
  308. page->parent_pte = NULL;
  309. return;
  310. }
  311. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  312. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  313. if (!pte_chain->parent_ptes[i])
  314. break;
  315. if (pte_chain->parent_ptes[i] != parent_pte)
  316. continue;
  317. while (i + 1 < NR_PTE_CHAIN_ENTRIES) {
  318. pte_chain->parent_ptes[i]
  319. = pte_chain->parent_ptes[i + 1];
  320. ++i;
  321. }
  322. pte_chain->parent_ptes[i] = NULL;
  323. return;
  324. }
  325. BUG();
  326. }
  327. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  328. gfn_t gfn)
  329. {
  330. unsigned index;
  331. struct hlist_head *bucket;
  332. struct kvm_mmu_page *page;
  333. struct hlist_node *node;
  334. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  335. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  336. bucket = &vcpu->kvm->mmu_page_hash[index];
  337. hlist_for_each_entry(page, node, bucket, hash_link)
  338. if (page->gfn == gfn && !page->role.metaphysical) {
  339. pgprintk("%s: found role %x\n",
  340. __FUNCTION__, page->role.word);
  341. return page;
  342. }
  343. return NULL;
  344. }
  345. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  346. gfn_t gfn,
  347. gva_t gaddr,
  348. unsigned level,
  349. int metaphysical,
  350. u64 *parent_pte)
  351. {
  352. union kvm_mmu_page_role role;
  353. unsigned index;
  354. unsigned quadrant;
  355. struct hlist_head *bucket;
  356. struct kvm_mmu_page *page;
  357. struct hlist_node *node;
  358. role.word = 0;
  359. role.glevels = vcpu->mmu.root_level;
  360. role.level = level;
  361. role.metaphysical = metaphysical;
  362. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  363. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  364. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  365. role.quadrant = quadrant;
  366. }
  367. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  368. gfn, role.word);
  369. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  370. bucket = &vcpu->kvm->mmu_page_hash[index];
  371. hlist_for_each_entry(page, node, bucket, hash_link)
  372. if (page->gfn == gfn && page->role.word == role.word) {
  373. mmu_page_add_parent_pte(page, parent_pte);
  374. pgprintk("%s: found\n", __FUNCTION__);
  375. return page;
  376. }
  377. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  378. if (!page)
  379. return page;
  380. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  381. page->gfn = gfn;
  382. page->role = role;
  383. hlist_add_head(&page->hash_link, bucket);
  384. return page;
  385. }
  386. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  387. struct kvm_mmu_page *page,
  388. u64 *parent_pte)
  389. {
  390. mmu_page_remove_parent_pte(page, parent_pte);
  391. }
  392. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  393. {
  394. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  395. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  396. __set_bit(slot, &page_head->slot_bitmap);
  397. }
  398. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  399. {
  400. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  401. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  402. }
  403. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  404. {
  405. struct kvm_memory_slot *slot;
  406. struct page *page;
  407. ASSERT((gpa & HPA_ERR_MASK) == 0);
  408. slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  409. if (!slot)
  410. return gpa | HPA_ERR_MASK;
  411. page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
  412. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  413. | (gpa & (PAGE_SIZE-1));
  414. }
  415. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  416. {
  417. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  418. if (gpa == UNMAPPED_GVA)
  419. return UNMAPPED_GVA;
  420. return gpa_to_hpa(vcpu, gpa);
  421. }
  422. static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
  423. int level)
  424. {
  425. u64 *pos;
  426. u64 *end;
  427. ASSERT(vcpu);
  428. ASSERT(VALID_PAGE(page_hpa));
  429. ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
  430. for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
  431. pos != end; pos++) {
  432. u64 current_ent = *pos;
  433. if (is_present_pte(current_ent)) {
  434. if (level != 1)
  435. release_pt_page_64(vcpu,
  436. current_ent &
  437. PT64_BASE_ADDR_MASK,
  438. level - 1);
  439. else
  440. rmap_remove(vcpu->kvm, pos);
  441. }
  442. *pos = 0;
  443. }
  444. kvm_mmu_free_page(vcpu, page_hpa);
  445. }
  446. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  447. {
  448. }
  449. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  450. {
  451. int level = PT32E_ROOT_LEVEL;
  452. hpa_t table_addr = vcpu->mmu.root_hpa;
  453. for (; ; level--) {
  454. u32 index = PT64_INDEX(v, level);
  455. u64 *table;
  456. u64 pte;
  457. ASSERT(VALID_PAGE(table_addr));
  458. table = __va(table_addr);
  459. if (level == 1) {
  460. pte = table[index];
  461. if (is_present_pte(pte) && is_writeble_pte(pte))
  462. return 0;
  463. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  464. page_header_update_slot(vcpu->kvm, table, v);
  465. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  466. PT_USER_MASK;
  467. rmap_add(vcpu->kvm, &table[index]);
  468. return 0;
  469. }
  470. if (table[index] == 0) {
  471. struct kvm_mmu_page *new_table;
  472. gfn_t pseudo_gfn;
  473. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  474. >> PAGE_SHIFT;
  475. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  476. v, level - 1,
  477. 1, &table[index]);
  478. if (!new_table) {
  479. pgprintk("nonpaging_map: ENOMEM\n");
  480. return -ENOMEM;
  481. }
  482. table[index] = new_table->page_hpa | PT_PRESENT_MASK
  483. | PT_WRITABLE_MASK | PT_USER_MASK;
  484. }
  485. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  486. }
  487. }
  488. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  489. {
  490. int i;
  491. #ifdef CONFIG_X86_64
  492. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  493. hpa_t root = vcpu->mmu.root_hpa;
  494. ASSERT(VALID_PAGE(root));
  495. vcpu->mmu.root_hpa = INVALID_PAGE;
  496. return;
  497. }
  498. #endif
  499. for (i = 0; i < 4; ++i) {
  500. hpa_t root = vcpu->mmu.pae_root[i];
  501. ASSERT(VALID_PAGE(root));
  502. root &= PT64_BASE_ADDR_MASK;
  503. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  504. }
  505. vcpu->mmu.root_hpa = INVALID_PAGE;
  506. }
  507. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  508. {
  509. int i;
  510. gfn_t root_gfn;
  511. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  512. #ifdef CONFIG_X86_64
  513. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  514. hpa_t root = vcpu->mmu.root_hpa;
  515. ASSERT(!VALID_PAGE(root));
  516. root = kvm_mmu_get_page(vcpu, root_gfn, 0,
  517. PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
  518. vcpu->mmu.root_hpa = root;
  519. return;
  520. }
  521. #endif
  522. for (i = 0; i < 4; ++i) {
  523. hpa_t root = vcpu->mmu.pae_root[i];
  524. ASSERT(!VALID_PAGE(root));
  525. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
  526. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  527. else if (vcpu->mmu.root_level == 0)
  528. root_gfn = 0;
  529. root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  530. PT32_ROOT_LEVEL, !is_paging(vcpu),
  531. NULL)->page_hpa;
  532. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  533. }
  534. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  535. }
  536. static void nonpaging_flush(struct kvm_vcpu *vcpu)
  537. {
  538. hpa_t root = vcpu->mmu.root_hpa;
  539. ++kvm_stat.tlb_flush;
  540. pgprintk("nonpaging_flush\n");
  541. mmu_free_roots(vcpu);
  542. mmu_alloc_roots(vcpu);
  543. kvm_arch_ops->set_cr3(vcpu, root);
  544. kvm_arch_ops->tlb_flush(vcpu);
  545. }
  546. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  547. {
  548. return vaddr;
  549. }
  550. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  551. u32 error_code)
  552. {
  553. int ret;
  554. gpa_t addr = gva;
  555. ASSERT(vcpu);
  556. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  557. for (;;) {
  558. hpa_t paddr;
  559. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  560. if (is_error_hpa(paddr))
  561. return 1;
  562. ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  563. if (ret) {
  564. nonpaging_flush(vcpu);
  565. continue;
  566. }
  567. break;
  568. }
  569. return ret;
  570. }
  571. static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
  572. {
  573. }
  574. static void nonpaging_free(struct kvm_vcpu *vcpu)
  575. {
  576. mmu_free_roots(vcpu);
  577. }
  578. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  579. {
  580. struct kvm_mmu *context = &vcpu->mmu;
  581. context->new_cr3 = nonpaging_new_cr3;
  582. context->page_fault = nonpaging_page_fault;
  583. context->inval_page = nonpaging_inval_page;
  584. context->gva_to_gpa = nonpaging_gva_to_gpa;
  585. context->free = nonpaging_free;
  586. context->root_level = 0;
  587. context->shadow_root_level = PT32E_ROOT_LEVEL;
  588. mmu_alloc_roots(vcpu);
  589. ASSERT(VALID_PAGE(context->root_hpa));
  590. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  591. return 0;
  592. }
  593. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  594. {
  595. ++kvm_stat.tlb_flush;
  596. kvm_arch_ops->tlb_flush(vcpu);
  597. }
  598. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  599. {
  600. mmu_free_roots(vcpu);
  601. mmu_alloc_roots(vcpu);
  602. kvm_mmu_flush_tlb(vcpu);
  603. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  604. }
  605. static void mark_pagetable_nonglobal(void *shadow_pte)
  606. {
  607. page_header(__pa(shadow_pte))->global = 0;
  608. }
  609. static inline void set_pte_common(struct kvm_vcpu *vcpu,
  610. u64 *shadow_pte,
  611. gpa_t gaddr,
  612. int dirty,
  613. u64 access_bits)
  614. {
  615. hpa_t paddr;
  616. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  617. if (!dirty)
  618. access_bits &= ~PT_WRITABLE_MASK;
  619. if (access_bits & PT_WRITABLE_MASK) {
  620. struct kvm_mmu_page *shadow;
  621. shadow = kvm_mmu_lookup_page(vcpu, gaddr >> PAGE_SHIFT);
  622. if (shadow)
  623. pgprintk("%s: found shadow page for %lx, marking ro\n",
  624. __FUNCTION__, (gfn_t)(gaddr >> PAGE_SHIFT));
  625. if (shadow)
  626. access_bits &= ~PT_WRITABLE_MASK;
  627. }
  628. if (access_bits & PT_WRITABLE_MASK)
  629. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  630. *shadow_pte |= access_bits;
  631. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  632. if (!(*shadow_pte & PT_GLOBAL_MASK))
  633. mark_pagetable_nonglobal(shadow_pte);
  634. if (is_error_hpa(paddr)) {
  635. *shadow_pte |= gaddr;
  636. *shadow_pte |= PT_SHADOW_IO_MARK;
  637. *shadow_pte &= ~PT_PRESENT_MASK;
  638. } else {
  639. *shadow_pte |= paddr;
  640. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  641. rmap_add(vcpu->kvm, shadow_pte);
  642. }
  643. }
  644. static void inject_page_fault(struct kvm_vcpu *vcpu,
  645. u64 addr,
  646. u32 err_code)
  647. {
  648. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  649. }
  650. static inline int fix_read_pf(u64 *shadow_ent)
  651. {
  652. if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
  653. !(*shadow_ent & PT_USER_MASK)) {
  654. /*
  655. * If supervisor write protect is disabled, we shadow kernel
  656. * pages as user pages so we can trap the write access.
  657. */
  658. *shadow_ent |= PT_USER_MASK;
  659. *shadow_ent &= ~PT_WRITABLE_MASK;
  660. return 1;
  661. }
  662. return 0;
  663. }
  664. static int may_access(u64 pte, int write, int user)
  665. {
  666. if (user && !(pte & PT_USER_MASK))
  667. return 0;
  668. if (write && !(pte & PT_WRITABLE_MASK))
  669. return 0;
  670. return 1;
  671. }
  672. /*
  673. * Remove a shadow pte.
  674. */
  675. static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
  676. {
  677. hpa_t page_addr = vcpu->mmu.root_hpa;
  678. int level = vcpu->mmu.shadow_root_level;
  679. ++kvm_stat.invlpg;
  680. for (; ; level--) {
  681. u32 index = PT64_INDEX(addr, level);
  682. u64 *table = __va(page_addr);
  683. if (level == PT_PAGE_TABLE_LEVEL ) {
  684. rmap_remove(vcpu->kvm, &table[index]);
  685. table[index] = 0;
  686. return;
  687. }
  688. if (!is_present_pte(table[index]))
  689. return;
  690. page_addr = table[index] & PT64_BASE_ADDR_MASK;
  691. if (level == PT_DIRECTORY_LEVEL &&
  692. (table[index] & PT_SHADOW_PS_MARK)) {
  693. table[index] = 0;
  694. release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
  695. kvm_arch_ops->tlb_flush(vcpu);
  696. return;
  697. }
  698. }
  699. }
  700. static void paging_free(struct kvm_vcpu *vcpu)
  701. {
  702. nonpaging_free(vcpu);
  703. }
  704. #define PTTYPE 64
  705. #include "paging_tmpl.h"
  706. #undef PTTYPE
  707. #define PTTYPE 32
  708. #include "paging_tmpl.h"
  709. #undef PTTYPE
  710. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  711. {
  712. struct kvm_mmu *context = &vcpu->mmu;
  713. ASSERT(is_pae(vcpu));
  714. context->new_cr3 = paging_new_cr3;
  715. context->page_fault = paging64_page_fault;
  716. context->inval_page = paging_inval_page;
  717. context->gva_to_gpa = paging64_gva_to_gpa;
  718. context->free = paging_free;
  719. context->root_level = level;
  720. context->shadow_root_level = level;
  721. mmu_alloc_roots(vcpu);
  722. ASSERT(VALID_PAGE(context->root_hpa));
  723. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  724. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  725. return 0;
  726. }
  727. static int paging64_init_context(struct kvm_vcpu *vcpu)
  728. {
  729. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  730. }
  731. static int paging32_init_context(struct kvm_vcpu *vcpu)
  732. {
  733. struct kvm_mmu *context = &vcpu->mmu;
  734. context->new_cr3 = paging_new_cr3;
  735. context->page_fault = paging32_page_fault;
  736. context->inval_page = paging_inval_page;
  737. context->gva_to_gpa = paging32_gva_to_gpa;
  738. context->free = paging_free;
  739. context->root_level = PT32_ROOT_LEVEL;
  740. context->shadow_root_level = PT32E_ROOT_LEVEL;
  741. mmu_alloc_roots(vcpu);
  742. ASSERT(VALID_PAGE(context->root_hpa));
  743. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  744. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  745. return 0;
  746. }
  747. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  748. {
  749. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  750. }
  751. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  752. {
  753. ASSERT(vcpu);
  754. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  755. if (!is_paging(vcpu))
  756. return nonpaging_init_context(vcpu);
  757. else if (is_long_mode(vcpu))
  758. return paging64_init_context(vcpu);
  759. else if (is_pae(vcpu))
  760. return paging32E_init_context(vcpu);
  761. else
  762. return paging32_init_context(vcpu);
  763. }
  764. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  765. {
  766. ASSERT(vcpu);
  767. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  768. vcpu->mmu.free(vcpu);
  769. vcpu->mmu.root_hpa = INVALID_PAGE;
  770. }
  771. }
  772. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  773. {
  774. destroy_kvm_mmu(vcpu);
  775. return init_kvm_mmu(vcpu);
  776. }
  777. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  778. {
  779. while (!list_empty(&vcpu->free_pages)) {
  780. struct kvm_mmu_page *page;
  781. page = list_entry(vcpu->free_pages.next,
  782. struct kvm_mmu_page, link);
  783. list_del(&page->link);
  784. __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
  785. page->page_hpa = INVALID_PAGE;
  786. }
  787. free_page((unsigned long)vcpu->mmu.pae_root);
  788. }
  789. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  790. {
  791. struct page *page;
  792. int i;
  793. ASSERT(vcpu);
  794. for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
  795. struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
  796. INIT_LIST_HEAD(&page_header->link);
  797. if ((page = alloc_page(GFP_KERNEL)) == NULL)
  798. goto error_1;
  799. page->private = (unsigned long)page_header;
  800. page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
  801. memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
  802. list_add(&page_header->link, &vcpu->free_pages);
  803. }
  804. /*
  805. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  806. * Therefore we need to allocate shadow page tables in the first
  807. * 4GB of memory, which happens to fit the DMA32 zone.
  808. */
  809. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  810. if (!page)
  811. goto error_1;
  812. vcpu->mmu.pae_root = page_address(page);
  813. for (i = 0; i < 4; ++i)
  814. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  815. return 0;
  816. error_1:
  817. free_mmu_pages(vcpu);
  818. return -ENOMEM;
  819. }
  820. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  821. {
  822. ASSERT(vcpu);
  823. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  824. ASSERT(list_empty(&vcpu->free_pages));
  825. return alloc_mmu_pages(vcpu);
  826. }
  827. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  828. {
  829. ASSERT(vcpu);
  830. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  831. ASSERT(!list_empty(&vcpu->free_pages));
  832. return init_kvm_mmu(vcpu);
  833. }
  834. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  835. {
  836. ASSERT(vcpu);
  837. destroy_kvm_mmu(vcpu);
  838. free_mmu_pages(vcpu);
  839. }
  840. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  841. {
  842. struct kvm_mmu_page *page;
  843. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  844. int i;
  845. u64 *pt;
  846. if (!test_bit(slot, &page->slot_bitmap))
  847. continue;
  848. pt = __va(page->page_hpa);
  849. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  850. /* avoid RMW */
  851. if (pt[i] & PT_WRITABLE_MASK) {
  852. rmap_remove(kvm, &pt[i]);
  853. pt[i] &= ~PT_WRITABLE_MASK;
  854. }
  855. }
  856. }