setup.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/init.h>
  22. #include <linux/kexec.h>
  23. #include <linux/crash_dump.h>
  24. #include <linux/root_dev.h>
  25. #include <linux/cpu.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/smp.h>
  28. #include <linux/fs.h>
  29. #include <linux/proc_fs.h>
  30. #include <asm/unified.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/elf.h>
  34. #include <asm/procinfo.h>
  35. #include <asm/sections.h>
  36. #include <asm/setup.h>
  37. #include <asm/mach-types.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/cachetype.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/mach/arch.h>
  42. #include <asm/mach/irq.h>
  43. #include <asm/mach/time.h>
  44. #include <asm/traps.h>
  45. #include <asm/unwind.h>
  46. #include "compat.h"
  47. #include "atags.h"
  48. #include "tcm.h"
  49. #ifndef MEM_SIZE
  50. #define MEM_SIZE (16*1024*1024)
  51. #endif
  52. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  53. char fpe_type[8];
  54. static int __init fpe_setup(char *line)
  55. {
  56. memcpy(fpe_type, line, 8);
  57. return 1;
  58. }
  59. __setup("fpe=", fpe_setup);
  60. #endif
  61. extern void paging_init(struct machine_desc *desc);
  62. extern void reboot_setup(char *str);
  63. unsigned int processor_id;
  64. EXPORT_SYMBOL(processor_id);
  65. unsigned int __machine_arch_type;
  66. EXPORT_SYMBOL(__machine_arch_type);
  67. unsigned int cacheid;
  68. EXPORT_SYMBOL(cacheid);
  69. unsigned int __atags_pointer __initdata;
  70. unsigned int system_rev;
  71. EXPORT_SYMBOL(system_rev);
  72. unsigned int system_serial_low;
  73. EXPORT_SYMBOL(system_serial_low);
  74. unsigned int system_serial_high;
  75. EXPORT_SYMBOL(system_serial_high);
  76. unsigned int elf_hwcap;
  77. EXPORT_SYMBOL(elf_hwcap);
  78. #ifdef MULTI_CPU
  79. struct processor processor;
  80. #endif
  81. #ifdef MULTI_TLB
  82. struct cpu_tlb_fns cpu_tlb;
  83. #endif
  84. #ifdef MULTI_USER
  85. struct cpu_user_fns cpu_user;
  86. #endif
  87. #ifdef MULTI_CACHE
  88. struct cpu_cache_fns cpu_cache;
  89. #endif
  90. #ifdef CONFIG_OUTER_CACHE
  91. struct outer_cache_fns outer_cache;
  92. EXPORT_SYMBOL(outer_cache);
  93. #endif
  94. struct stack {
  95. u32 irq[3];
  96. u32 abt[3];
  97. u32 und[3];
  98. } ____cacheline_aligned;
  99. static struct stack stacks[NR_CPUS];
  100. char elf_platform[ELF_PLATFORM_SIZE];
  101. EXPORT_SYMBOL(elf_platform);
  102. static const char *cpu_name;
  103. static const char *machine_name;
  104. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  105. static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
  106. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  107. #define ENDIANNESS ((char)endian_test.l)
  108. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  109. /*
  110. * Standard memory resources
  111. */
  112. static struct resource mem_res[] = {
  113. {
  114. .name = "Video RAM",
  115. .start = 0,
  116. .end = 0,
  117. .flags = IORESOURCE_MEM
  118. },
  119. {
  120. .name = "Kernel text",
  121. .start = 0,
  122. .end = 0,
  123. .flags = IORESOURCE_MEM
  124. },
  125. {
  126. .name = "Kernel data",
  127. .start = 0,
  128. .end = 0,
  129. .flags = IORESOURCE_MEM
  130. }
  131. };
  132. #define video_ram mem_res[0]
  133. #define kernel_code mem_res[1]
  134. #define kernel_data mem_res[2]
  135. static struct resource io_res[] = {
  136. {
  137. .name = "reserved",
  138. .start = 0x3bc,
  139. .end = 0x3be,
  140. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  141. },
  142. {
  143. .name = "reserved",
  144. .start = 0x378,
  145. .end = 0x37f,
  146. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  147. },
  148. {
  149. .name = "reserved",
  150. .start = 0x278,
  151. .end = 0x27f,
  152. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  153. }
  154. };
  155. #define lp0 io_res[0]
  156. #define lp1 io_res[1]
  157. #define lp2 io_res[2]
  158. static const char *proc_arch[] = {
  159. "undefined/unknown",
  160. "3",
  161. "4",
  162. "4T",
  163. "5",
  164. "5T",
  165. "5TE",
  166. "5TEJ",
  167. "6TEJ",
  168. "7",
  169. "?(11)",
  170. "?(12)",
  171. "?(13)",
  172. "?(14)",
  173. "?(15)",
  174. "?(16)",
  175. "?(17)",
  176. };
  177. int cpu_architecture(void)
  178. {
  179. int cpu_arch;
  180. if ((read_cpuid_id() & 0x0008f000) == 0) {
  181. cpu_arch = CPU_ARCH_UNKNOWN;
  182. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  183. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  184. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  185. cpu_arch = (read_cpuid_id() >> 16) & 7;
  186. if (cpu_arch)
  187. cpu_arch += CPU_ARCH_ARMv3;
  188. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  189. unsigned int mmfr0;
  190. /* Revised CPUID format. Read the Memory Model Feature
  191. * Register 0 and check for VMSAv7 or PMSAv7 */
  192. asm("mrc p15, 0, %0, c0, c1, 4"
  193. : "=r" (mmfr0));
  194. if ((mmfr0 & 0x0000000f) == 0x00000003 ||
  195. (mmfr0 & 0x000000f0) == 0x00000030)
  196. cpu_arch = CPU_ARCH_ARMv7;
  197. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  198. (mmfr0 & 0x000000f0) == 0x00000020)
  199. cpu_arch = CPU_ARCH_ARMv6;
  200. else
  201. cpu_arch = CPU_ARCH_UNKNOWN;
  202. } else
  203. cpu_arch = CPU_ARCH_UNKNOWN;
  204. return cpu_arch;
  205. }
  206. static void __init cacheid_init(void)
  207. {
  208. unsigned int cachetype = read_cpuid_cachetype();
  209. unsigned int arch = cpu_architecture();
  210. if (arch >= CPU_ARCH_ARMv6) {
  211. if ((cachetype & (7 << 29)) == 4 << 29) {
  212. /* ARMv7 register format */
  213. cacheid = CACHEID_VIPT_NONALIASING;
  214. if ((cachetype & (3 << 14)) == 1 << 14)
  215. cacheid |= CACHEID_ASID_TAGGED;
  216. } else if (cachetype & (1 << 23))
  217. cacheid = CACHEID_VIPT_ALIASING;
  218. else
  219. cacheid = CACHEID_VIPT_NONALIASING;
  220. } else {
  221. cacheid = CACHEID_VIVT;
  222. }
  223. printk("CPU: %s data cache, %s instruction cache\n",
  224. cache_is_vivt() ? "VIVT" :
  225. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  226. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
  227. cache_is_vivt() ? "VIVT" :
  228. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  229. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  230. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  231. }
  232. /*
  233. * These functions re-use the assembly code in head.S, which
  234. * already provide the required functionality.
  235. */
  236. extern struct proc_info_list *lookup_processor_type(unsigned int);
  237. extern struct machine_desc *lookup_machine_type(unsigned int);
  238. static void __init feat_v6_fixup(void)
  239. {
  240. int id = read_cpuid_id();
  241. if ((id & 0xff0f0000) != 0x41070000)
  242. return;
  243. /*
  244. * HWCAP_TLS is available only on 1136 r1p0 and later,
  245. * see also kuser_get_tls_init.
  246. */
  247. if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
  248. elf_hwcap &= ~HWCAP_TLS;
  249. }
  250. static void __init setup_processor(void)
  251. {
  252. struct proc_info_list *list;
  253. /*
  254. * locate processor in the list of supported processor
  255. * types. The linker builds this table for us from the
  256. * entries in arch/arm/mm/proc-*.S
  257. */
  258. list = lookup_processor_type(read_cpuid_id());
  259. if (!list) {
  260. printk("CPU configuration botched (ID %08x), unable "
  261. "to continue.\n", read_cpuid_id());
  262. while (1);
  263. }
  264. cpu_name = list->cpu_name;
  265. #ifdef MULTI_CPU
  266. processor = *list->proc;
  267. #endif
  268. #ifdef MULTI_TLB
  269. cpu_tlb = *list->tlb;
  270. #endif
  271. #ifdef MULTI_USER
  272. cpu_user = *list->user;
  273. #endif
  274. #ifdef MULTI_CACHE
  275. cpu_cache = *list->cache;
  276. #endif
  277. printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  278. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  279. proc_arch[cpu_architecture()], cr_alignment);
  280. sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
  281. sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
  282. elf_hwcap = list->elf_hwcap;
  283. #ifndef CONFIG_ARM_THUMB
  284. elf_hwcap &= ~HWCAP_THUMB;
  285. #endif
  286. feat_v6_fixup();
  287. cacheid_init();
  288. cpu_proc_init();
  289. }
  290. /*
  291. * cpu_init - initialise one CPU.
  292. *
  293. * cpu_init sets up the per-CPU stacks.
  294. */
  295. void cpu_init(void)
  296. {
  297. unsigned int cpu = smp_processor_id();
  298. struct stack *stk = &stacks[cpu];
  299. if (cpu >= NR_CPUS) {
  300. printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
  301. BUG();
  302. }
  303. /*
  304. * Define the placement constraint for the inline asm directive below.
  305. * In Thumb-2, msr with an immediate value is not allowed.
  306. */
  307. #ifdef CONFIG_THUMB2_KERNEL
  308. #define PLC "r"
  309. #else
  310. #define PLC "I"
  311. #endif
  312. /*
  313. * setup stacks for re-entrant exception handlers
  314. */
  315. __asm__ (
  316. "msr cpsr_c, %1\n\t"
  317. "add r14, %0, %2\n\t"
  318. "mov sp, r14\n\t"
  319. "msr cpsr_c, %3\n\t"
  320. "add r14, %0, %4\n\t"
  321. "mov sp, r14\n\t"
  322. "msr cpsr_c, %5\n\t"
  323. "add r14, %0, %6\n\t"
  324. "mov sp, r14\n\t"
  325. "msr cpsr_c, %7"
  326. :
  327. : "r" (stk),
  328. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  329. "I" (offsetof(struct stack, irq[0])),
  330. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  331. "I" (offsetof(struct stack, abt[0])),
  332. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  333. "I" (offsetof(struct stack, und[0])),
  334. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  335. : "r14");
  336. }
  337. static struct machine_desc * __init setup_machine(unsigned int nr)
  338. {
  339. struct machine_desc *list;
  340. /*
  341. * locate machine in the list of supported machines.
  342. */
  343. list = lookup_machine_type(nr);
  344. if (!list) {
  345. printk("Machine configuration botched (nr %d), unable "
  346. "to continue.\n", nr);
  347. while (1);
  348. }
  349. printk("Machine: %s\n", list->name);
  350. return list;
  351. }
  352. static int __init arm_add_memory(unsigned long start, unsigned long size)
  353. {
  354. struct membank *bank = &meminfo.bank[meminfo.nr_banks];
  355. if (meminfo.nr_banks >= NR_BANKS) {
  356. printk(KERN_CRIT "NR_BANKS too low, "
  357. "ignoring memory at %#lx\n", start);
  358. return -EINVAL;
  359. }
  360. /*
  361. * Ensure that start/size are aligned to a page boundary.
  362. * Size is appropriately rounded down, start is rounded up.
  363. */
  364. size -= start & ~PAGE_MASK;
  365. bank->start = PAGE_ALIGN(start);
  366. bank->size = size & PAGE_MASK;
  367. bank->node = PHYS_TO_NID(start);
  368. /*
  369. * Check whether this memory region has non-zero size or
  370. * invalid node number.
  371. */
  372. if (bank->size == 0 || bank->node >= MAX_NUMNODES)
  373. return -EINVAL;
  374. meminfo.nr_banks++;
  375. return 0;
  376. }
  377. /*
  378. * Pick out the memory size. We look for mem=size@start,
  379. * where start and size are "size[KkMm]"
  380. */
  381. static int __init early_mem(char *p)
  382. {
  383. static int usermem __initdata = 0;
  384. unsigned long size, start;
  385. char *endp;
  386. /*
  387. * If the user specifies memory size, we
  388. * blow away any automatically generated
  389. * size.
  390. */
  391. if (usermem == 0) {
  392. usermem = 1;
  393. meminfo.nr_banks = 0;
  394. }
  395. start = PHYS_OFFSET;
  396. size = memparse(p, &endp);
  397. if (*endp == '@')
  398. start = memparse(endp + 1, NULL);
  399. arm_add_memory(start, size);
  400. return 0;
  401. }
  402. early_param("mem", early_mem);
  403. static void __init
  404. setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
  405. {
  406. #ifdef CONFIG_BLK_DEV_RAM
  407. extern int rd_size, rd_image_start, rd_prompt, rd_doload;
  408. rd_image_start = image_start;
  409. rd_prompt = prompt;
  410. rd_doload = doload;
  411. if (rd_sz)
  412. rd_size = rd_sz;
  413. #endif
  414. }
  415. static void __init
  416. request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
  417. {
  418. struct resource *res;
  419. int i;
  420. kernel_code.start = virt_to_phys(_text);
  421. kernel_code.end = virt_to_phys(_etext - 1);
  422. kernel_data.start = virt_to_phys(_data);
  423. kernel_data.end = virt_to_phys(_end - 1);
  424. for (i = 0; i < mi->nr_banks; i++) {
  425. if (mi->bank[i].size == 0)
  426. continue;
  427. res = alloc_bootmem_low(sizeof(*res));
  428. res->name = "System RAM";
  429. res->start = mi->bank[i].start;
  430. res->end = mi->bank[i].start + mi->bank[i].size - 1;
  431. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  432. request_resource(&iomem_resource, res);
  433. if (kernel_code.start >= res->start &&
  434. kernel_code.end <= res->end)
  435. request_resource(res, &kernel_code);
  436. if (kernel_data.start >= res->start &&
  437. kernel_data.end <= res->end)
  438. request_resource(res, &kernel_data);
  439. }
  440. if (mdesc->video_start) {
  441. video_ram.start = mdesc->video_start;
  442. video_ram.end = mdesc->video_end;
  443. request_resource(&iomem_resource, &video_ram);
  444. }
  445. /*
  446. * Some machines don't have the possibility of ever
  447. * possessing lp0, lp1 or lp2
  448. */
  449. if (mdesc->reserve_lp0)
  450. request_resource(&ioport_resource, &lp0);
  451. if (mdesc->reserve_lp1)
  452. request_resource(&ioport_resource, &lp1);
  453. if (mdesc->reserve_lp2)
  454. request_resource(&ioport_resource, &lp2);
  455. }
  456. /*
  457. * Tag parsing.
  458. *
  459. * This is the new way of passing data to the kernel at boot time. Rather
  460. * than passing a fixed inflexible structure to the kernel, we pass a list
  461. * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
  462. * tag for the list to be recognised (to distinguish the tagged list from
  463. * a param_struct). The list is terminated with a zero-length tag (this tag
  464. * is not parsed in any way).
  465. */
  466. static int __init parse_tag_core(const struct tag *tag)
  467. {
  468. if (tag->hdr.size > 2) {
  469. if ((tag->u.core.flags & 1) == 0)
  470. root_mountflags &= ~MS_RDONLY;
  471. ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
  472. }
  473. return 0;
  474. }
  475. __tagtable(ATAG_CORE, parse_tag_core);
  476. static int __init parse_tag_mem32(const struct tag *tag)
  477. {
  478. return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
  479. }
  480. __tagtable(ATAG_MEM, parse_tag_mem32);
  481. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  482. struct screen_info screen_info = {
  483. .orig_video_lines = 30,
  484. .orig_video_cols = 80,
  485. .orig_video_mode = 0,
  486. .orig_video_ega_bx = 0,
  487. .orig_video_isVGA = 1,
  488. .orig_video_points = 8
  489. };
  490. static int __init parse_tag_videotext(const struct tag *tag)
  491. {
  492. screen_info.orig_x = tag->u.videotext.x;
  493. screen_info.orig_y = tag->u.videotext.y;
  494. screen_info.orig_video_page = tag->u.videotext.video_page;
  495. screen_info.orig_video_mode = tag->u.videotext.video_mode;
  496. screen_info.orig_video_cols = tag->u.videotext.video_cols;
  497. screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
  498. screen_info.orig_video_lines = tag->u.videotext.video_lines;
  499. screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
  500. screen_info.orig_video_points = tag->u.videotext.video_points;
  501. return 0;
  502. }
  503. __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
  504. #endif
  505. static int __init parse_tag_ramdisk(const struct tag *tag)
  506. {
  507. setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
  508. (tag->u.ramdisk.flags & 2) == 0,
  509. tag->u.ramdisk.start, tag->u.ramdisk.size);
  510. return 0;
  511. }
  512. __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
  513. static int __init parse_tag_serialnr(const struct tag *tag)
  514. {
  515. system_serial_low = tag->u.serialnr.low;
  516. system_serial_high = tag->u.serialnr.high;
  517. return 0;
  518. }
  519. __tagtable(ATAG_SERIAL, parse_tag_serialnr);
  520. static int __init parse_tag_revision(const struct tag *tag)
  521. {
  522. system_rev = tag->u.revision.rev;
  523. return 0;
  524. }
  525. __tagtable(ATAG_REVISION, parse_tag_revision);
  526. #ifndef CONFIG_CMDLINE_FORCE
  527. static int __init parse_tag_cmdline(const struct tag *tag)
  528. {
  529. strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
  530. return 0;
  531. }
  532. __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
  533. #endif /* CONFIG_CMDLINE_FORCE */
  534. /*
  535. * Scan the tag table for this tag, and call its parse function.
  536. * The tag table is built by the linker from all the __tagtable
  537. * declarations.
  538. */
  539. static int __init parse_tag(const struct tag *tag)
  540. {
  541. extern struct tagtable __tagtable_begin, __tagtable_end;
  542. struct tagtable *t;
  543. for (t = &__tagtable_begin; t < &__tagtable_end; t++)
  544. if (tag->hdr.tag == t->tag) {
  545. t->parse(tag);
  546. break;
  547. }
  548. return t < &__tagtable_end;
  549. }
  550. /*
  551. * Parse all tags in the list, checking both the global and architecture
  552. * specific tag tables.
  553. */
  554. static void __init parse_tags(const struct tag *t)
  555. {
  556. for (; t->hdr.size; t = tag_next(t))
  557. if (!parse_tag(t))
  558. printk(KERN_WARNING
  559. "Ignoring unrecognised tag 0x%08x\n",
  560. t->hdr.tag);
  561. }
  562. /*
  563. * This holds our defaults.
  564. */
  565. static struct init_tags {
  566. struct tag_header hdr1;
  567. struct tag_core core;
  568. struct tag_header hdr2;
  569. struct tag_mem32 mem;
  570. struct tag_header hdr3;
  571. } init_tags __initdata = {
  572. { tag_size(tag_core), ATAG_CORE },
  573. { 1, PAGE_SIZE, 0xff },
  574. { tag_size(tag_mem32), ATAG_MEM },
  575. { MEM_SIZE, PHYS_OFFSET },
  576. { 0, ATAG_NONE }
  577. };
  578. static void (*init_machine)(void) __initdata;
  579. static int __init customize_machine(void)
  580. {
  581. /* customizes platform devices, or adds new ones */
  582. if (init_machine)
  583. init_machine();
  584. return 0;
  585. }
  586. arch_initcall(customize_machine);
  587. #ifdef CONFIG_KEXEC
  588. static inline unsigned long long get_total_mem(void)
  589. {
  590. unsigned long total;
  591. total = max_low_pfn - min_low_pfn;
  592. return total << PAGE_SHIFT;
  593. }
  594. /**
  595. * reserve_crashkernel() - reserves memory are for crash kernel
  596. *
  597. * This function reserves memory area given in "crashkernel=" kernel command
  598. * line parameter. The memory reserved is used by a dump capture kernel when
  599. * primary kernel is crashing.
  600. */
  601. static void __init reserve_crashkernel(void)
  602. {
  603. unsigned long long crash_size, crash_base;
  604. unsigned long long total_mem;
  605. int ret;
  606. total_mem = get_total_mem();
  607. ret = parse_crashkernel(boot_command_line, total_mem,
  608. &crash_size, &crash_base);
  609. if (ret)
  610. return;
  611. ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
  612. if (ret < 0) {
  613. printk(KERN_WARNING "crashkernel reservation failed - "
  614. "memory is in use (0x%lx)\n", (unsigned long)crash_base);
  615. return;
  616. }
  617. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  618. "for crashkernel (System RAM: %ldMB)\n",
  619. (unsigned long)(crash_size >> 20),
  620. (unsigned long)(crash_base >> 20),
  621. (unsigned long)(total_mem >> 20));
  622. crashk_res.start = crash_base;
  623. crashk_res.end = crash_base + crash_size - 1;
  624. insert_resource(&iomem_resource, &crashk_res);
  625. }
  626. #else
  627. static inline void reserve_crashkernel(void) {}
  628. #endif /* CONFIG_KEXEC */
  629. /*
  630. * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
  631. * is_kdump_kernel() to determine if we are booting after a panic. Hence
  632. * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
  633. */
  634. #ifdef CONFIG_CRASH_DUMP
  635. /*
  636. * elfcorehdr= specifies the location of elf core header stored by the crashed
  637. * kernel. This option will be passed by kexec loader to the capture kernel.
  638. */
  639. static int __init setup_elfcorehdr(char *arg)
  640. {
  641. char *end;
  642. if (!arg)
  643. return -EINVAL;
  644. elfcorehdr_addr = memparse(arg, &end);
  645. return end > arg ? 0 : -EINVAL;
  646. }
  647. early_param("elfcorehdr", setup_elfcorehdr);
  648. #endif /* CONFIG_CRASH_DUMP */
  649. void __init setup_arch(char **cmdline_p)
  650. {
  651. struct tag *tags = (struct tag *)&init_tags;
  652. struct machine_desc *mdesc;
  653. char *from = default_command_line;
  654. unwind_init();
  655. setup_processor();
  656. mdesc = setup_machine(machine_arch_type);
  657. machine_name = mdesc->name;
  658. if (mdesc->soft_reboot)
  659. reboot_setup("s");
  660. if (__atags_pointer)
  661. tags = phys_to_virt(__atags_pointer);
  662. else if (mdesc->boot_params)
  663. tags = phys_to_virt(mdesc->boot_params);
  664. /*
  665. * If we have the old style parameters, convert them to
  666. * a tag list.
  667. */
  668. if (tags->hdr.tag != ATAG_CORE)
  669. convert_to_tag_list(tags);
  670. if (tags->hdr.tag != ATAG_CORE)
  671. tags = (struct tag *)&init_tags;
  672. if (mdesc->fixup)
  673. mdesc->fixup(mdesc, tags, &from, &meminfo);
  674. if (tags->hdr.tag == ATAG_CORE) {
  675. if (meminfo.nr_banks != 0)
  676. squash_mem_tags(tags);
  677. save_atags(tags);
  678. parse_tags(tags);
  679. }
  680. init_mm.start_code = (unsigned long) _text;
  681. init_mm.end_code = (unsigned long) _etext;
  682. init_mm.end_data = (unsigned long) _edata;
  683. init_mm.brk = (unsigned long) _end;
  684. /* parse_early_param needs a boot_command_line */
  685. strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
  686. /* populate cmd_line too for later use, preserving boot_command_line */
  687. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  688. *cmdline_p = cmd_line;
  689. parse_early_param();
  690. paging_init(mdesc);
  691. request_standard_resources(&meminfo, mdesc);
  692. #ifdef CONFIG_SMP
  693. smp_init_cpus();
  694. #endif
  695. reserve_crashkernel();
  696. cpu_init();
  697. tcm_init();
  698. /*
  699. * Set up various architecture-specific pointers
  700. */
  701. arch_nr_irqs = mdesc->nr_irqs;
  702. init_arch_irq = mdesc->init_irq;
  703. system_timer = mdesc->timer;
  704. init_machine = mdesc->init_machine;
  705. #ifdef CONFIG_VT
  706. #if defined(CONFIG_VGA_CONSOLE)
  707. conswitchp = &vga_con;
  708. #elif defined(CONFIG_DUMMY_CONSOLE)
  709. conswitchp = &dummy_con;
  710. #endif
  711. #endif
  712. early_trap_init();
  713. }
  714. static int __init topology_init(void)
  715. {
  716. int cpu;
  717. for_each_possible_cpu(cpu) {
  718. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  719. cpuinfo->cpu.hotpluggable = 1;
  720. register_cpu(&cpuinfo->cpu, cpu);
  721. }
  722. return 0;
  723. }
  724. subsys_initcall(topology_init);
  725. #ifdef CONFIG_HAVE_PROC_CPU
  726. static int __init proc_cpu_init(void)
  727. {
  728. struct proc_dir_entry *res;
  729. res = proc_mkdir("cpu", NULL);
  730. if (!res)
  731. return -ENOMEM;
  732. return 0;
  733. }
  734. fs_initcall(proc_cpu_init);
  735. #endif
  736. static const char *hwcap_str[] = {
  737. "swp",
  738. "half",
  739. "thumb",
  740. "26bit",
  741. "fastmult",
  742. "fpa",
  743. "vfp",
  744. "edsp",
  745. "java",
  746. "iwmmxt",
  747. "crunch",
  748. "thumbee",
  749. "neon",
  750. "vfpv3",
  751. "vfpv3d16",
  752. NULL
  753. };
  754. static int c_show(struct seq_file *m, void *v)
  755. {
  756. int i;
  757. seq_printf(m, "Processor\t: %s rev %d (%s)\n",
  758. cpu_name, read_cpuid_id() & 15, elf_platform);
  759. #if defined(CONFIG_SMP)
  760. for_each_online_cpu(i) {
  761. /*
  762. * glibc reads /proc/cpuinfo to determine the number of
  763. * online processors, looking for lines beginning with
  764. * "processor". Give glibc what it expects.
  765. */
  766. seq_printf(m, "processor\t: %d\n", i);
  767. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
  768. per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
  769. (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
  770. }
  771. #else /* CONFIG_SMP */
  772. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  773. loops_per_jiffy / (500000/HZ),
  774. (loops_per_jiffy / (5000/HZ)) % 100);
  775. #endif
  776. /* dump out the processor features */
  777. seq_puts(m, "Features\t: ");
  778. for (i = 0; hwcap_str[i]; i++)
  779. if (elf_hwcap & (1 << i))
  780. seq_printf(m, "%s ", hwcap_str[i]);
  781. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
  782. seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
  783. if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
  784. /* pre-ARM7 */
  785. seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
  786. } else {
  787. if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  788. /* ARM7 */
  789. seq_printf(m, "CPU variant\t: 0x%02x\n",
  790. (read_cpuid_id() >> 16) & 127);
  791. } else {
  792. /* post-ARM7 */
  793. seq_printf(m, "CPU variant\t: 0x%x\n",
  794. (read_cpuid_id() >> 20) & 15);
  795. }
  796. seq_printf(m, "CPU part\t: 0x%03x\n",
  797. (read_cpuid_id() >> 4) & 0xfff);
  798. }
  799. seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
  800. seq_puts(m, "\n");
  801. seq_printf(m, "Hardware\t: %s\n", machine_name);
  802. seq_printf(m, "Revision\t: %04x\n", system_rev);
  803. seq_printf(m, "Serial\t\t: %08x%08x\n",
  804. system_serial_high, system_serial_low);
  805. return 0;
  806. }
  807. static void *c_start(struct seq_file *m, loff_t *pos)
  808. {
  809. return *pos < 1 ? (void *)1 : NULL;
  810. }
  811. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  812. {
  813. ++*pos;
  814. return NULL;
  815. }
  816. static void c_stop(struct seq_file *m, void *v)
  817. {
  818. }
  819. const struct seq_operations cpuinfo_op = {
  820. .start = c_start,
  821. .next = c_next,
  822. .stop = c_stop,
  823. .show = c_show
  824. };