cciss.c 125 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534
  1. /*
  2. * Disk Array driver for HP Smart Array controllers.
  3. * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17. * 02111-1307, USA.
  18. *
  19. * Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/types.h>
  25. #include <linux/pci.h>
  26. #include <linux/kernel.h>
  27. #include <linux/slab.h>
  28. #include <linux/smp_lock.h>
  29. #include <linux/delay.h>
  30. #include <linux/major.h>
  31. #include <linux/fs.h>
  32. #include <linux/bio.h>
  33. #include <linux/blkpg.h>
  34. #include <linux/timer.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/init.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/hdreg.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/compat.h>
  42. #include <linux/mutex.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/io.h>
  45. #include <linux/dma-mapping.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/genhd.h>
  48. #include <linux/completion.h>
  49. #include <scsi/scsi.h>
  50. #include <scsi/sg.h>
  51. #include <scsi/scsi_ioctl.h>
  52. #include <linux/cdrom.h>
  53. #include <linux/scatterlist.h>
  54. #include <linux/kthread.h>
  55. #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  56. #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
  57. #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
  58. /* Embedded module documentation macros - see modules.h */
  59. MODULE_AUTHOR("Hewlett-Packard Company");
  60. MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  61. MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
  62. " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
  63. " Smart Array G2 Series SAS/SATA Controllers");
  64. MODULE_VERSION("3.6.20");
  65. MODULE_LICENSE("GPL");
  66. #include "cciss_cmd.h"
  67. #include "cciss.h"
  68. #include <linux/cciss_ioctl.h>
  69. /* define the PCI info for the cards we can control */
  70. static const struct pci_device_id cciss_pci_device_id[] = {
  71. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
  72. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  73. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  74. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  75. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  76. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  77. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
  78. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
  79. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
  80. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
  81. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
  82. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
  83. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
  84. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
  85. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
  86. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
  87. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
  88. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
  89. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
  90. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
  91. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
  92. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
  93. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
  94. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
  95. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
  96. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
  97. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
  98. {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
  99. PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  100. {0,}
  101. };
  102. MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
  103. /* board_id = Subsystem Device ID & Vendor ID
  104. * product = Marketing Name for the board
  105. * access = Address of the struct of function pointers
  106. */
  107. static struct board_type products[] = {
  108. {0x40700E11, "Smart Array 5300", &SA5_access},
  109. {0x40800E11, "Smart Array 5i", &SA5B_access},
  110. {0x40820E11, "Smart Array 532", &SA5B_access},
  111. {0x40830E11, "Smart Array 5312", &SA5B_access},
  112. {0x409A0E11, "Smart Array 641", &SA5_access},
  113. {0x409B0E11, "Smart Array 642", &SA5_access},
  114. {0x409C0E11, "Smart Array 6400", &SA5_access},
  115. {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
  116. {0x40910E11, "Smart Array 6i", &SA5_access},
  117. {0x3225103C, "Smart Array P600", &SA5_access},
  118. {0x3223103C, "Smart Array P800", &SA5_access},
  119. {0x3234103C, "Smart Array P400", &SA5_access},
  120. {0x3235103C, "Smart Array P400i", &SA5_access},
  121. {0x3211103C, "Smart Array E200i", &SA5_access},
  122. {0x3212103C, "Smart Array E200", &SA5_access},
  123. {0x3213103C, "Smart Array E200i", &SA5_access},
  124. {0x3214103C, "Smart Array E200i", &SA5_access},
  125. {0x3215103C, "Smart Array E200i", &SA5_access},
  126. {0x3237103C, "Smart Array E500", &SA5_access},
  127. {0x323D103C, "Smart Array P700m", &SA5_access},
  128. {0x3241103C, "Smart Array P212", &SA5_access},
  129. {0x3243103C, "Smart Array P410", &SA5_access},
  130. {0x3245103C, "Smart Array P410i", &SA5_access},
  131. {0x3247103C, "Smart Array P411", &SA5_access},
  132. {0x3249103C, "Smart Array P812", &SA5_access},
  133. {0x324A103C, "Smart Array P712m", &SA5_access},
  134. {0x324B103C, "Smart Array P711m", &SA5_access},
  135. {0xFFFF103C, "Unknown Smart Array", &SA5_access},
  136. };
  137. /* How long to wait (in milliseconds) for board to go into simple mode */
  138. #define MAX_CONFIG_WAIT 30000
  139. #define MAX_IOCTL_CONFIG_WAIT 1000
  140. /*define how many times we will try a command because of bus resets */
  141. #define MAX_CMD_RETRIES 3
  142. #define MAX_CTLR 32
  143. /* Originally cciss driver only supports 8 major numbers */
  144. #define MAX_CTLR_ORIG 8
  145. static ctlr_info_t *hba[MAX_CTLR];
  146. static struct task_struct *cciss_scan_thread;
  147. static DEFINE_MUTEX(scan_mutex);
  148. static LIST_HEAD(scan_q);
  149. static void do_cciss_request(struct request_queue *q);
  150. static irqreturn_t do_cciss_intr(int irq, void *dev_id);
  151. static int cciss_open(struct block_device *bdev, fmode_t mode);
  152. static int cciss_release(struct gendisk *disk, fmode_t mode);
  153. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  154. unsigned int cmd, unsigned long arg);
  155. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
  156. static int cciss_revalidate(struct gendisk *disk);
  157. static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
  158. static int deregister_disk(ctlr_info_t *h, int drv_index,
  159. int clear_all, int via_ioctl);
  160. static void cciss_read_capacity(int ctlr, int logvol, int withirq,
  161. sector_t *total_size, unsigned int *block_size);
  162. static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
  163. sector_t *total_size, unsigned int *block_size);
  164. static void cciss_geometry_inquiry(int ctlr, int logvol,
  165. int withirq, sector_t total_size,
  166. unsigned int block_size, InquiryData_struct *inq_buff,
  167. drive_info_struct *drv);
  168. static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
  169. __u32);
  170. static void start_io(ctlr_info_t *h);
  171. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  172. __u8 page_code, unsigned char *scsi3addr, int cmd_type);
  173. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  174. __u8 page_code, unsigned char scsi3addr[],
  175. int cmd_type);
  176. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  177. int attempt_retry);
  178. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
  179. static void fail_all_cmds(unsigned long ctlr);
  180. static int add_to_scan_list(struct ctlr_info *h);
  181. static int scan_thread(void *data);
  182. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
  183. static void cciss_hba_release(struct device *dev);
  184. static void cciss_device_release(struct device *dev);
  185. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
  186. #ifdef CONFIG_PROC_FS
  187. static void cciss_procinit(int i);
  188. #else
  189. static void cciss_procinit(int i)
  190. {
  191. }
  192. #endif /* CONFIG_PROC_FS */
  193. #ifdef CONFIG_COMPAT
  194. static int cciss_compat_ioctl(struct block_device *, fmode_t,
  195. unsigned, unsigned long);
  196. #endif
  197. static const struct block_device_operations cciss_fops = {
  198. .owner = THIS_MODULE,
  199. .open = cciss_open,
  200. .release = cciss_release,
  201. .locked_ioctl = cciss_ioctl,
  202. .getgeo = cciss_getgeo,
  203. #ifdef CONFIG_COMPAT
  204. .compat_ioctl = cciss_compat_ioctl,
  205. #endif
  206. .revalidate_disk = cciss_revalidate,
  207. };
  208. /*
  209. * Enqueuing and dequeuing functions for cmdlists.
  210. */
  211. static inline void addQ(struct hlist_head *list, CommandList_struct *c)
  212. {
  213. hlist_add_head(&c->list, list);
  214. }
  215. static inline void removeQ(CommandList_struct *c)
  216. {
  217. /*
  218. * After kexec/dump some commands might still
  219. * be in flight, which the firmware will try
  220. * to complete. Resetting the firmware doesn't work
  221. * with old fw revisions, so we have to mark
  222. * them off as 'stale' to prevent the driver from
  223. * falling over.
  224. */
  225. if (WARN_ON(hlist_unhashed(&c->list))) {
  226. c->cmd_type = CMD_MSG_STALE;
  227. return;
  228. }
  229. hlist_del_init(&c->list);
  230. }
  231. #include "cciss_scsi.c" /* For SCSI tape support */
  232. #define RAID_UNKNOWN 6
  233. #ifdef CONFIG_PROC_FS
  234. /*
  235. * Report information about this controller.
  236. */
  237. #define ENG_GIG 1000000000
  238. #define ENG_GIG_FACTOR (ENG_GIG/512)
  239. #define ENGAGE_SCSI "engage scsi"
  240. static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
  241. "UNKNOWN"
  242. };
  243. static struct proc_dir_entry *proc_cciss;
  244. static void cciss_seq_show_header(struct seq_file *seq)
  245. {
  246. ctlr_info_t *h = seq->private;
  247. seq_printf(seq, "%s: HP %s Controller\n"
  248. "Board ID: 0x%08lx\n"
  249. "Firmware Version: %c%c%c%c\n"
  250. "IRQ: %d\n"
  251. "Logical drives: %d\n"
  252. "Current Q depth: %d\n"
  253. "Current # commands on controller: %d\n"
  254. "Max Q depth since init: %d\n"
  255. "Max # commands on controller since init: %d\n"
  256. "Max SG entries since init: %d\n",
  257. h->devname,
  258. h->product_name,
  259. (unsigned long)h->board_id,
  260. h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
  261. h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
  262. h->num_luns,
  263. h->Qdepth, h->commands_outstanding,
  264. h->maxQsinceinit, h->max_outstanding, h->maxSG);
  265. #ifdef CONFIG_CISS_SCSI_TAPE
  266. cciss_seq_tape_report(seq, h->ctlr);
  267. #endif /* CONFIG_CISS_SCSI_TAPE */
  268. }
  269. static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
  270. {
  271. ctlr_info_t *h = seq->private;
  272. unsigned ctlr = h->ctlr;
  273. unsigned long flags;
  274. /* prevent displaying bogus info during configuration
  275. * or deconfiguration of a logical volume
  276. */
  277. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  278. if (h->busy_configuring) {
  279. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  280. return ERR_PTR(-EBUSY);
  281. }
  282. h->busy_configuring = 1;
  283. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  284. if (*pos == 0)
  285. cciss_seq_show_header(seq);
  286. return pos;
  287. }
  288. static int cciss_seq_show(struct seq_file *seq, void *v)
  289. {
  290. sector_t vol_sz, vol_sz_frac;
  291. ctlr_info_t *h = seq->private;
  292. unsigned ctlr = h->ctlr;
  293. loff_t *pos = v;
  294. drive_info_struct *drv = &h->drv[*pos];
  295. if (*pos > h->highest_lun)
  296. return 0;
  297. if (drv->heads == 0)
  298. return 0;
  299. vol_sz = drv->nr_blocks;
  300. vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
  301. vol_sz_frac *= 100;
  302. sector_div(vol_sz_frac, ENG_GIG_FACTOR);
  303. if (drv->raid_level > 5)
  304. drv->raid_level = RAID_UNKNOWN;
  305. seq_printf(seq, "cciss/c%dd%d:"
  306. "\t%4u.%02uGB\tRAID %s\n",
  307. ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
  308. raid_label[drv->raid_level]);
  309. return 0;
  310. }
  311. static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  312. {
  313. ctlr_info_t *h = seq->private;
  314. if (*pos > h->highest_lun)
  315. return NULL;
  316. *pos += 1;
  317. return pos;
  318. }
  319. static void cciss_seq_stop(struct seq_file *seq, void *v)
  320. {
  321. ctlr_info_t *h = seq->private;
  322. /* Only reset h->busy_configuring if we succeeded in setting
  323. * it during cciss_seq_start. */
  324. if (v == ERR_PTR(-EBUSY))
  325. return;
  326. h->busy_configuring = 0;
  327. }
  328. static const struct seq_operations cciss_seq_ops = {
  329. .start = cciss_seq_start,
  330. .show = cciss_seq_show,
  331. .next = cciss_seq_next,
  332. .stop = cciss_seq_stop,
  333. };
  334. static int cciss_seq_open(struct inode *inode, struct file *file)
  335. {
  336. int ret = seq_open(file, &cciss_seq_ops);
  337. struct seq_file *seq = file->private_data;
  338. if (!ret)
  339. seq->private = PDE(inode)->data;
  340. return ret;
  341. }
  342. static ssize_t
  343. cciss_proc_write(struct file *file, const char __user *buf,
  344. size_t length, loff_t *ppos)
  345. {
  346. int err;
  347. char *buffer;
  348. #ifndef CONFIG_CISS_SCSI_TAPE
  349. return -EINVAL;
  350. #endif
  351. if (!buf || length > PAGE_SIZE - 1)
  352. return -EINVAL;
  353. buffer = (char *)__get_free_page(GFP_KERNEL);
  354. if (!buffer)
  355. return -ENOMEM;
  356. err = -EFAULT;
  357. if (copy_from_user(buffer, buf, length))
  358. goto out;
  359. buffer[length] = '\0';
  360. #ifdef CONFIG_CISS_SCSI_TAPE
  361. if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
  362. struct seq_file *seq = file->private_data;
  363. ctlr_info_t *h = seq->private;
  364. int rc;
  365. rc = cciss_engage_scsi(h->ctlr);
  366. if (rc != 0)
  367. err = -rc;
  368. else
  369. err = length;
  370. } else
  371. #endif /* CONFIG_CISS_SCSI_TAPE */
  372. err = -EINVAL;
  373. /* might be nice to have "disengage" too, but it's not
  374. safely possible. (only 1 module use count, lock issues.) */
  375. out:
  376. free_page((unsigned long)buffer);
  377. return err;
  378. }
  379. static struct file_operations cciss_proc_fops = {
  380. .owner = THIS_MODULE,
  381. .open = cciss_seq_open,
  382. .read = seq_read,
  383. .llseek = seq_lseek,
  384. .release = seq_release,
  385. .write = cciss_proc_write,
  386. };
  387. static void __devinit cciss_procinit(int i)
  388. {
  389. struct proc_dir_entry *pde;
  390. if (proc_cciss == NULL)
  391. proc_cciss = proc_mkdir("driver/cciss", NULL);
  392. if (!proc_cciss)
  393. return;
  394. pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
  395. S_IROTH, proc_cciss,
  396. &cciss_proc_fops, hba[i]);
  397. }
  398. #endif /* CONFIG_PROC_FS */
  399. #define MAX_PRODUCT_NAME_LEN 19
  400. #define to_hba(n) container_of(n, struct ctlr_info, dev)
  401. static ssize_t host_store_rescan(struct device *dev,
  402. struct device_attribute *attr,
  403. const char *buf, size_t count)
  404. {
  405. struct ctlr_info *h = to_hba(dev);
  406. add_to_scan_list(h);
  407. wake_up_process(cciss_scan_thread);
  408. wait_for_completion_interruptible(&h->scan_wait);
  409. return count;
  410. }
  411. DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  412. static ssize_t dev_show_unique_id(struct device *dev,
  413. struct device_attribute *attr,
  414. char *buf)
  415. {
  416. drive_info_struct *drv = dev_get_drvdata(dev);
  417. struct ctlr_info *h = to_hba(drv->dev->parent);
  418. __u8 sn[16];
  419. unsigned long flags;
  420. int ret = 0;
  421. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  422. if (h->busy_configuring)
  423. ret = -EBUSY;
  424. else
  425. memcpy(sn, drv->serial_no, sizeof(sn));
  426. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  427. if (ret)
  428. return ret;
  429. else
  430. return snprintf(buf, 16 * 2 + 2,
  431. "%02X%02X%02X%02X%02X%02X%02X%02X"
  432. "%02X%02X%02X%02X%02X%02X%02X%02X\n",
  433. sn[0], sn[1], sn[2], sn[3],
  434. sn[4], sn[5], sn[6], sn[7],
  435. sn[8], sn[9], sn[10], sn[11],
  436. sn[12], sn[13], sn[14], sn[15]);
  437. }
  438. DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
  439. static ssize_t dev_show_vendor(struct device *dev,
  440. struct device_attribute *attr,
  441. char *buf)
  442. {
  443. drive_info_struct *drv = dev_get_drvdata(dev);
  444. struct ctlr_info *h = to_hba(drv->dev->parent);
  445. char vendor[VENDOR_LEN + 1];
  446. unsigned long flags;
  447. int ret = 0;
  448. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  449. if (h->busy_configuring)
  450. ret = -EBUSY;
  451. else
  452. memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
  453. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  454. if (ret)
  455. return ret;
  456. else
  457. return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
  458. }
  459. DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
  460. static ssize_t dev_show_model(struct device *dev,
  461. struct device_attribute *attr,
  462. char *buf)
  463. {
  464. drive_info_struct *drv = dev_get_drvdata(dev);
  465. struct ctlr_info *h = to_hba(drv->dev->parent);
  466. char model[MODEL_LEN + 1];
  467. unsigned long flags;
  468. int ret = 0;
  469. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  470. if (h->busy_configuring)
  471. ret = -EBUSY;
  472. else
  473. memcpy(model, drv->model, MODEL_LEN + 1);
  474. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  475. if (ret)
  476. return ret;
  477. else
  478. return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
  479. }
  480. DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
  481. static ssize_t dev_show_rev(struct device *dev,
  482. struct device_attribute *attr,
  483. char *buf)
  484. {
  485. drive_info_struct *drv = dev_get_drvdata(dev);
  486. struct ctlr_info *h = to_hba(drv->dev->parent);
  487. char rev[REV_LEN + 1];
  488. unsigned long flags;
  489. int ret = 0;
  490. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  491. if (h->busy_configuring)
  492. ret = -EBUSY;
  493. else
  494. memcpy(rev, drv->rev, REV_LEN + 1);
  495. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  496. if (ret)
  497. return ret;
  498. else
  499. return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
  500. }
  501. DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
  502. static ssize_t cciss_show_lunid(struct device *dev,
  503. struct device_attribute *attr, char *buf)
  504. {
  505. drive_info_struct *drv = dev_get_drvdata(dev);
  506. struct ctlr_info *h = to_hba(drv->dev->parent);
  507. unsigned long flags;
  508. unsigned char lunid[8];
  509. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  510. if (h->busy_configuring) {
  511. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  512. return -EBUSY;
  513. }
  514. if (!drv->heads) {
  515. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  516. return -ENOTTY;
  517. }
  518. memcpy(lunid, drv->LunID, sizeof(lunid));
  519. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  520. return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
  521. lunid[0], lunid[1], lunid[2], lunid[3],
  522. lunid[4], lunid[5], lunid[6], lunid[7]);
  523. }
  524. DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
  525. static struct attribute *cciss_host_attrs[] = {
  526. &dev_attr_rescan.attr,
  527. NULL
  528. };
  529. static struct attribute_group cciss_host_attr_group = {
  530. .attrs = cciss_host_attrs,
  531. };
  532. static struct attribute_group *cciss_host_attr_groups[] = {
  533. &cciss_host_attr_group,
  534. NULL
  535. };
  536. static struct device_type cciss_host_type = {
  537. .name = "cciss_host",
  538. .groups = cciss_host_attr_groups,
  539. .release = cciss_hba_release,
  540. };
  541. static struct attribute *cciss_dev_attrs[] = {
  542. &dev_attr_unique_id.attr,
  543. &dev_attr_model.attr,
  544. &dev_attr_vendor.attr,
  545. &dev_attr_rev.attr,
  546. &dev_attr_lunid.attr,
  547. NULL
  548. };
  549. static struct attribute_group cciss_dev_attr_group = {
  550. .attrs = cciss_dev_attrs,
  551. };
  552. static const struct attribute_group *cciss_dev_attr_groups[] = {
  553. &cciss_dev_attr_group,
  554. NULL
  555. };
  556. static struct device_type cciss_dev_type = {
  557. .name = "cciss_device",
  558. .groups = cciss_dev_attr_groups,
  559. .release = cciss_device_release,
  560. };
  561. static struct bus_type cciss_bus_type = {
  562. .name = "cciss",
  563. };
  564. /*
  565. * cciss_hba_release is called when the reference count
  566. * of h->dev goes to zero.
  567. */
  568. static void cciss_hba_release(struct device *dev)
  569. {
  570. /*
  571. * nothing to do, but need this to avoid a warning
  572. * about not having a release handler from lib/kref.c.
  573. */
  574. }
  575. /*
  576. * Initialize sysfs entry for each controller. This sets up and registers
  577. * the 'cciss#' directory for each individual controller under
  578. * /sys/bus/pci/devices/<dev>/.
  579. */
  580. static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
  581. {
  582. device_initialize(&h->dev);
  583. h->dev.type = &cciss_host_type;
  584. h->dev.bus = &cciss_bus_type;
  585. dev_set_name(&h->dev, "%s", h->devname);
  586. h->dev.parent = &h->pdev->dev;
  587. return device_add(&h->dev);
  588. }
  589. /*
  590. * Remove sysfs entries for an hba.
  591. */
  592. static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
  593. {
  594. device_del(&h->dev);
  595. put_device(&h->dev); /* final put. */
  596. }
  597. /* cciss_device_release is called when the reference count
  598. * of h->drv[x].dev goes to zero.
  599. */
  600. static void cciss_device_release(struct device *dev)
  601. {
  602. kfree(dev);
  603. }
  604. /*
  605. * Initialize sysfs for each logical drive. This sets up and registers
  606. * the 'c#d#' directory for each individual logical drive under
  607. * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
  608. * /sys/block/cciss!c#d# to this entry.
  609. */
  610. static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
  611. int drv_index)
  612. {
  613. struct device *dev;
  614. /* Special case for c*d0, we only create it once. */
  615. if (drv_index == 0 && h->drv[drv_index].dev != NULL)
  616. return 0;
  617. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  618. if (!dev)
  619. return -ENOMEM;
  620. device_initialize(dev);
  621. dev->type = &cciss_dev_type;
  622. dev->bus = &cciss_bus_type;
  623. dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
  624. dev->parent = &h->dev;
  625. h->drv[drv_index].dev = dev;
  626. dev_set_drvdata(dev, &h->drv[drv_index]);
  627. return device_add(dev);
  628. }
  629. /*
  630. * Remove sysfs entries for a logical drive.
  631. */
  632. static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
  633. int ctlr_exiting)
  634. {
  635. struct device *dev = h->drv[drv_index].dev;
  636. /* special case for c*d0, we only destroy it on controller exit */
  637. if (drv_index == 0 && !ctlr_exiting)
  638. return;
  639. device_del(dev);
  640. put_device(dev); /* the "final" put. */
  641. h->drv[drv_index].dev = NULL;
  642. }
  643. /*
  644. * For operations that cannot sleep, a command block is allocated at init,
  645. * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
  646. * which ones are free or in use. For operations that can wait for kmalloc
  647. * to possible sleep, this routine can be called with get_from_pool set to 0.
  648. * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
  649. */
  650. static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
  651. {
  652. CommandList_struct *c;
  653. int i;
  654. u64bit temp64;
  655. dma_addr_t cmd_dma_handle, err_dma_handle;
  656. if (!get_from_pool) {
  657. c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
  658. sizeof(CommandList_struct), &cmd_dma_handle);
  659. if (c == NULL)
  660. return NULL;
  661. memset(c, 0, sizeof(CommandList_struct));
  662. c->cmdindex = -1;
  663. c->err_info = (ErrorInfo_struct *)
  664. pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
  665. &err_dma_handle);
  666. if (c->err_info == NULL) {
  667. pci_free_consistent(h->pdev,
  668. sizeof(CommandList_struct), c, cmd_dma_handle);
  669. return NULL;
  670. }
  671. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  672. } else { /* get it out of the controllers pool */
  673. do {
  674. i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
  675. if (i == h->nr_cmds)
  676. return NULL;
  677. } while (test_and_set_bit
  678. (i & (BITS_PER_LONG - 1),
  679. h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
  680. #ifdef CCISS_DEBUG
  681. printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
  682. #endif
  683. c = h->cmd_pool + i;
  684. memset(c, 0, sizeof(CommandList_struct));
  685. cmd_dma_handle = h->cmd_pool_dhandle
  686. + i * sizeof(CommandList_struct);
  687. c->err_info = h->errinfo_pool + i;
  688. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  689. err_dma_handle = h->errinfo_pool_dhandle
  690. + i * sizeof(ErrorInfo_struct);
  691. h->nr_allocs++;
  692. c->cmdindex = i;
  693. }
  694. INIT_HLIST_NODE(&c->list);
  695. c->busaddr = (__u32) cmd_dma_handle;
  696. temp64.val = (__u64) err_dma_handle;
  697. c->ErrDesc.Addr.lower = temp64.val32.lower;
  698. c->ErrDesc.Addr.upper = temp64.val32.upper;
  699. c->ErrDesc.Len = sizeof(ErrorInfo_struct);
  700. c->ctlr = h->ctlr;
  701. return c;
  702. }
  703. /*
  704. * Frees a command block that was previously allocated with cmd_alloc().
  705. */
  706. static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
  707. {
  708. int i;
  709. u64bit temp64;
  710. if (!got_from_pool) {
  711. temp64.val32.lower = c->ErrDesc.Addr.lower;
  712. temp64.val32.upper = c->ErrDesc.Addr.upper;
  713. pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
  714. c->err_info, (dma_addr_t) temp64.val);
  715. pci_free_consistent(h->pdev, sizeof(CommandList_struct),
  716. c, (dma_addr_t) c->busaddr);
  717. } else {
  718. i = c - h->cmd_pool;
  719. clear_bit(i & (BITS_PER_LONG - 1),
  720. h->cmd_pool_bits + (i / BITS_PER_LONG));
  721. h->nr_frees++;
  722. }
  723. }
  724. static inline ctlr_info_t *get_host(struct gendisk *disk)
  725. {
  726. return disk->queue->queuedata;
  727. }
  728. static inline drive_info_struct *get_drv(struct gendisk *disk)
  729. {
  730. return disk->private_data;
  731. }
  732. /*
  733. * Open. Make sure the device is really there.
  734. */
  735. static int cciss_open(struct block_device *bdev, fmode_t mode)
  736. {
  737. ctlr_info_t *host = get_host(bdev->bd_disk);
  738. drive_info_struct *drv = get_drv(bdev->bd_disk);
  739. #ifdef CCISS_DEBUG
  740. printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
  741. #endif /* CCISS_DEBUG */
  742. if (drv->busy_configuring)
  743. return -EBUSY;
  744. /*
  745. * Root is allowed to open raw volume zero even if it's not configured
  746. * so array config can still work. Root is also allowed to open any
  747. * volume that has a LUN ID, so it can issue IOCTL to reread the
  748. * disk information. I don't think I really like this
  749. * but I'm already using way to many device nodes to claim another one
  750. * for "raw controller".
  751. */
  752. if (drv->heads == 0) {
  753. if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
  754. /* if not node 0 make sure it is a partition = 0 */
  755. if (MINOR(bdev->bd_dev) & 0x0f) {
  756. return -ENXIO;
  757. /* if it is, make sure we have a LUN ID */
  758. } else if (memcmp(drv->LunID, CTLR_LUNID,
  759. sizeof(drv->LunID))) {
  760. return -ENXIO;
  761. }
  762. }
  763. if (!capable(CAP_SYS_ADMIN))
  764. return -EPERM;
  765. }
  766. drv->usage_count++;
  767. host->usage_count++;
  768. return 0;
  769. }
  770. /*
  771. * Close. Sync first.
  772. */
  773. static int cciss_release(struct gendisk *disk, fmode_t mode)
  774. {
  775. ctlr_info_t *host = get_host(disk);
  776. drive_info_struct *drv = get_drv(disk);
  777. #ifdef CCISS_DEBUG
  778. printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
  779. #endif /* CCISS_DEBUG */
  780. drv->usage_count--;
  781. host->usage_count--;
  782. return 0;
  783. }
  784. #ifdef CONFIG_COMPAT
  785. static int do_ioctl(struct block_device *bdev, fmode_t mode,
  786. unsigned cmd, unsigned long arg)
  787. {
  788. int ret;
  789. lock_kernel();
  790. ret = cciss_ioctl(bdev, mode, cmd, arg);
  791. unlock_kernel();
  792. return ret;
  793. }
  794. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  795. unsigned cmd, unsigned long arg);
  796. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  797. unsigned cmd, unsigned long arg);
  798. static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
  799. unsigned cmd, unsigned long arg)
  800. {
  801. switch (cmd) {
  802. case CCISS_GETPCIINFO:
  803. case CCISS_GETINTINFO:
  804. case CCISS_SETINTINFO:
  805. case CCISS_GETNODENAME:
  806. case CCISS_SETNODENAME:
  807. case CCISS_GETHEARTBEAT:
  808. case CCISS_GETBUSTYPES:
  809. case CCISS_GETFIRMVER:
  810. case CCISS_GETDRIVVER:
  811. case CCISS_REVALIDVOLS:
  812. case CCISS_DEREGDISK:
  813. case CCISS_REGNEWDISK:
  814. case CCISS_REGNEWD:
  815. case CCISS_RESCANDISK:
  816. case CCISS_GETLUNINFO:
  817. return do_ioctl(bdev, mode, cmd, arg);
  818. case CCISS_PASSTHRU32:
  819. return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
  820. case CCISS_BIG_PASSTHRU32:
  821. return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
  822. default:
  823. return -ENOIOCTLCMD;
  824. }
  825. }
  826. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  827. unsigned cmd, unsigned long arg)
  828. {
  829. IOCTL32_Command_struct __user *arg32 =
  830. (IOCTL32_Command_struct __user *) arg;
  831. IOCTL_Command_struct arg64;
  832. IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
  833. int err;
  834. u32 cp;
  835. err = 0;
  836. err |=
  837. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  838. sizeof(arg64.LUN_info));
  839. err |=
  840. copy_from_user(&arg64.Request, &arg32->Request,
  841. sizeof(arg64.Request));
  842. err |=
  843. copy_from_user(&arg64.error_info, &arg32->error_info,
  844. sizeof(arg64.error_info));
  845. err |= get_user(arg64.buf_size, &arg32->buf_size);
  846. err |= get_user(cp, &arg32->buf);
  847. arg64.buf = compat_ptr(cp);
  848. err |= copy_to_user(p, &arg64, sizeof(arg64));
  849. if (err)
  850. return -EFAULT;
  851. err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
  852. if (err)
  853. return err;
  854. err |=
  855. copy_in_user(&arg32->error_info, &p->error_info,
  856. sizeof(arg32->error_info));
  857. if (err)
  858. return -EFAULT;
  859. return err;
  860. }
  861. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  862. unsigned cmd, unsigned long arg)
  863. {
  864. BIG_IOCTL32_Command_struct __user *arg32 =
  865. (BIG_IOCTL32_Command_struct __user *) arg;
  866. BIG_IOCTL_Command_struct arg64;
  867. BIG_IOCTL_Command_struct __user *p =
  868. compat_alloc_user_space(sizeof(arg64));
  869. int err;
  870. u32 cp;
  871. err = 0;
  872. err |=
  873. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  874. sizeof(arg64.LUN_info));
  875. err |=
  876. copy_from_user(&arg64.Request, &arg32->Request,
  877. sizeof(arg64.Request));
  878. err |=
  879. copy_from_user(&arg64.error_info, &arg32->error_info,
  880. sizeof(arg64.error_info));
  881. err |= get_user(arg64.buf_size, &arg32->buf_size);
  882. err |= get_user(arg64.malloc_size, &arg32->malloc_size);
  883. err |= get_user(cp, &arg32->buf);
  884. arg64.buf = compat_ptr(cp);
  885. err |= copy_to_user(p, &arg64, sizeof(arg64));
  886. if (err)
  887. return -EFAULT;
  888. err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
  889. if (err)
  890. return err;
  891. err |=
  892. copy_in_user(&arg32->error_info, &p->error_info,
  893. sizeof(arg32->error_info));
  894. if (err)
  895. return -EFAULT;
  896. return err;
  897. }
  898. #endif
  899. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  900. {
  901. drive_info_struct *drv = get_drv(bdev->bd_disk);
  902. if (!drv->cylinders)
  903. return -ENXIO;
  904. geo->heads = drv->heads;
  905. geo->sectors = drv->sectors;
  906. geo->cylinders = drv->cylinders;
  907. return 0;
  908. }
  909. static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
  910. {
  911. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  912. c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
  913. (void)check_for_unit_attention(host, c);
  914. }
  915. /*
  916. * ioctl
  917. */
  918. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  919. unsigned int cmd, unsigned long arg)
  920. {
  921. struct gendisk *disk = bdev->bd_disk;
  922. ctlr_info_t *host = get_host(disk);
  923. drive_info_struct *drv = get_drv(disk);
  924. int ctlr = host->ctlr;
  925. void __user *argp = (void __user *)arg;
  926. #ifdef CCISS_DEBUG
  927. printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
  928. #endif /* CCISS_DEBUG */
  929. switch (cmd) {
  930. case CCISS_GETPCIINFO:
  931. {
  932. cciss_pci_info_struct pciinfo;
  933. if (!arg)
  934. return -EINVAL;
  935. pciinfo.domain = pci_domain_nr(host->pdev->bus);
  936. pciinfo.bus = host->pdev->bus->number;
  937. pciinfo.dev_fn = host->pdev->devfn;
  938. pciinfo.board_id = host->board_id;
  939. if (copy_to_user
  940. (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
  941. return -EFAULT;
  942. return 0;
  943. }
  944. case CCISS_GETINTINFO:
  945. {
  946. cciss_coalint_struct intinfo;
  947. if (!arg)
  948. return -EINVAL;
  949. intinfo.delay =
  950. readl(&host->cfgtable->HostWrite.CoalIntDelay);
  951. intinfo.count =
  952. readl(&host->cfgtable->HostWrite.CoalIntCount);
  953. if (copy_to_user
  954. (argp, &intinfo, sizeof(cciss_coalint_struct)))
  955. return -EFAULT;
  956. return 0;
  957. }
  958. case CCISS_SETINTINFO:
  959. {
  960. cciss_coalint_struct intinfo;
  961. unsigned long flags;
  962. int i;
  963. if (!arg)
  964. return -EINVAL;
  965. if (!capable(CAP_SYS_ADMIN))
  966. return -EPERM;
  967. if (copy_from_user
  968. (&intinfo, argp, sizeof(cciss_coalint_struct)))
  969. return -EFAULT;
  970. if ((intinfo.delay == 0) && (intinfo.count == 0))
  971. {
  972. // printk("cciss_ioctl: delay and count cannot be 0\n");
  973. return -EINVAL;
  974. }
  975. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  976. /* Update the field, and then ring the doorbell */
  977. writel(intinfo.delay,
  978. &(host->cfgtable->HostWrite.CoalIntDelay));
  979. writel(intinfo.count,
  980. &(host->cfgtable->HostWrite.CoalIntCount));
  981. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  982. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  983. if (!(readl(host->vaddr + SA5_DOORBELL)
  984. & CFGTBL_ChangeReq))
  985. break;
  986. /* delay and try again */
  987. udelay(1000);
  988. }
  989. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  990. if (i >= MAX_IOCTL_CONFIG_WAIT)
  991. return -EAGAIN;
  992. return 0;
  993. }
  994. case CCISS_GETNODENAME:
  995. {
  996. NodeName_type NodeName;
  997. int i;
  998. if (!arg)
  999. return -EINVAL;
  1000. for (i = 0; i < 16; i++)
  1001. NodeName[i] =
  1002. readb(&host->cfgtable->ServerName[i]);
  1003. if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
  1004. return -EFAULT;
  1005. return 0;
  1006. }
  1007. case CCISS_SETNODENAME:
  1008. {
  1009. NodeName_type NodeName;
  1010. unsigned long flags;
  1011. int i;
  1012. if (!arg)
  1013. return -EINVAL;
  1014. if (!capable(CAP_SYS_ADMIN))
  1015. return -EPERM;
  1016. if (copy_from_user
  1017. (NodeName, argp, sizeof(NodeName_type)))
  1018. return -EFAULT;
  1019. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1020. /* Update the field, and then ring the doorbell */
  1021. for (i = 0; i < 16; i++)
  1022. writeb(NodeName[i],
  1023. &host->cfgtable->ServerName[i]);
  1024. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  1025. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  1026. if (!(readl(host->vaddr + SA5_DOORBELL)
  1027. & CFGTBL_ChangeReq))
  1028. break;
  1029. /* delay and try again */
  1030. udelay(1000);
  1031. }
  1032. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1033. if (i >= MAX_IOCTL_CONFIG_WAIT)
  1034. return -EAGAIN;
  1035. return 0;
  1036. }
  1037. case CCISS_GETHEARTBEAT:
  1038. {
  1039. Heartbeat_type heartbeat;
  1040. if (!arg)
  1041. return -EINVAL;
  1042. heartbeat = readl(&host->cfgtable->HeartBeat);
  1043. if (copy_to_user
  1044. (argp, &heartbeat, sizeof(Heartbeat_type)))
  1045. return -EFAULT;
  1046. return 0;
  1047. }
  1048. case CCISS_GETBUSTYPES:
  1049. {
  1050. BusTypes_type BusTypes;
  1051. if (!arg)
  1052. return -EINVAL;
  1053. BusTypes = readl(&host->cfgtable->BusTypes);
  1054. if (copy_to_user
  1055. (argp, &BusTypes, sizeof(BusTypes_type)))
  1056. return -EFAULT;
  1057. return 0;
  1058. }
  1059. case CCISS_GETFIRMVER:
  1060. {
  1061. FirmwareVer_type firmware;
  1062. if (!arg)
  1063. return -EINVAL;
  1064. memcpy(firmware, host->firm_ver, 4);
  1065. if (copy_to_user
  1066. (argp, firmware, sizeof(FirmwareVer_type)))
  1067. return -EFAULT;
  1068. return 0;
  1069. }
  1070. case CCISS_GETDRIVVER:
  1071. {
  1072. DriverVer_type DriverVer = DRIVER_VERSION;
  1073. if (!arg)
  1074. return -EINVAL;
  1075. if (copy_to_user
  1076. (argp, &DriverVer, sizeof(DriverVer_type)))
  1077. return -EFAULT;
  1078. return 0;
  1079. }
  1080. case CCISS_DEREGDISK:
  1081. case CCISS_REGNEWD:
  1082. case CCISS_REVALIDVOLS:
  1083. return rebuild_lun_table(host, 0, 1);
  1084. case CCISS_GETLUNINFO:{
  1085. LogvolInfo_struct luninfo;
  1086. memcpy(&luninfo.LunID, drv->LunID,
  1087. sizeof(luninfo.LunID));
  1088. luninfo.num_opens = drv->usage_count;
  1089. luninfo.num_parts = 0;
  1090. if (copy_to_user(argp, &luninfo,
  1091. sizeof(LogvolInfo_struct)))
  1092. return -EFAULT;
  1093. return 0;
  1094. }
  1095. case CCISS_PASSTHRU:
  1096. {
  1097. IOCTL_Command_struct iocommand;
  1098. CommandList_struct *c;
  1099. char *buff = NULL;
  1100. u64bit temp64;
  1101. unsigned long flags;
  1102. DECLARE_COMPLETION_ONSTACK(wait);
  1103. if (!arg)
  1104. return -EINVAL;
  1105. if (!capable(CAP_SYS_RAWIO))
  1106. return -EPERM;
  1107. if (copy_from_user
  1108. (&iocommand, argp, sizeof(IOCTL_Command_struct)))
  1109. return -EFAULT;
  1110. if ((iocommand.buf_size < 1) &&
  1111. (iocommand.Request.Type.Direction != XFER_NONE)) {
  1112. return -EINVAL;
  1113. }
  1114. #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
  1115. /* Check kmalloc limits */
  1116. if (iocommand.buf_size > 128000)
  1117. return -EINVAL;
  1118. #endif
  1119. if (iocommand.buf_size > 0) {
  1120. buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
  1121. if (buff == NULL)
  1122. return -EFAULT;
  1123. }
  1124. if (iocommand.Request.Type.Direction == XFER_WRITE) {
  1125. /* Copy the data into the buffer we created */
  1126. if (copy_from_user
  1127. (buff, iocommand.buf, iocommand.buf_size)) {
  1128. kfree(buff);
  1129. return -EFAULT;
  1130. }
  1131. } else {
  1132. memset(buff, 0, iocommand.buf_size);
  1133. }
  1134. if ((c = cmd_alloc(host, 0)) == NULL) {
  1135. kfree(buff);
  1136. return -ENOMEM;
  1137. }
  1138. // Fill in the command type
  1139. c->cmd_type = CMD_IOCTL_PEND;
  1140. // Fill in Command Header
  1141. c->Header.ReplyQueue = 0; // unused in simple mode
  1142. if (iocommand.buf_size > 0) // buffer to fill
  1143. {
  1144. c->Header.SGList = 1;
  1145. c->Header.SGTotal = 1;
  1146. } else // no buffers to fill
  1147. {
  1148. c->Header.SGList = 0;
  1149. c->Header.SGTotal = 0;
  1150. }
  1151. c->Header.LUN = iocommand.LUN_info;
  1152. c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
  1153. // Fill in Request block
  1154. c->Request = iocommand.Request;
  1155. // Fill in the scatter gather information
  1156. if (iocommand.buf_size > 0) {
  1157. temp64.val = pci_map_single(host->pdev, buff,
  1158. iocommand.buf_size,
  1159. PCI_DMA_BIDIRECTIONAL);
  1160. c->SG[0].Addr.lower = temp64.val32.lower;
  1161. c->SG[0].Addr.upper = temp64.val32.upper;
  1162. c->SG[0].Len = iocommand.buf_size;
  1163. c->SG[0].Ext = 0; // we are not chaining
  1164. }
  1165. c->waiting = &wait;
  1166. /* Put the request on the tail of the request queue */
  1167. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1168. addQ(&host->reqQ, c);
  1169. host->Qdepth++;
  1170. start_io(host);
  1171. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1172. wait_for_completion(&wait);
  1173. /* unlock the buffers from DMA */
  1174. temp64.val32.lower = c->SG[0].Addr.lower;
  1175. temp64.val32.upper = c->SG[0].Addr.upper;
  1176. pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
  1177. iocommand.buf_size,
  1178. PCI_DMA_BIDIRECTIONAL);
  1179. check_ioctl_unit_attention(host, c);
  1180. /* Copy the error information out */
  1181. iocommand.error_info = *(c->err_info);
  1182. if (copy_to_user
  1183. (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
  1184. kfree(buff);
  1185. cmd_free(host, c, 0);
  1186. return -EFAULT;
  1187. }
  1188. if (iocommand.Request.Type.Direction == XFER_READ) {
  1189. /* Copy the data out of the buffer we created */
  1190. if (copy_to_user
  1191. (iocommand.buf, buff, iocommand.buf_size)) {
  1192. kfree(buff);
  1193. cmd_free(host, c, 0);
  1194. return -EFAULT;
  1195. }
  1196. }
  1197. kfree(buff);
  1198. cmd_free(host, c, 0);
  1199. return 0;
  1200. }
  1201. case CCISS_BIG_PASSTHRU:{
  1202. BIG_IOCTL_Command_struct *ioc;
  1203. CommandList_struct *c;
  1204. unsigned char **buff = NULL;
  1205. int *buff_size = NULL;
  1206. u64bit temp64;
  1207. unsigned long flags;
  1208. BYTE sg_used = 0;
  1209. int status = 0;
  1210. int i;
  1211. DECLARE_COMPLETION_ONSTACK(wait);
  1212. __u32 left;
  1213. __u32 sz;
  1214. BYTE __user *data_ptr;
  1215. if (!arg)
  1216. return -EINVAL;
  1217. if (!capable(CAP_SYS_RAWIO))
  1218. return -EPERM;
  1219. ioc = (BIG_IOCTL_Command_struct *)
  1220. kmalloc(sizeof(*ioc), GFP_KERNEL);
  1221. if (!ioc) {
  1222. status = -ENOMEM;
  1223. goto cleanup1;
  1224. }
  1225. if (copy_from_user(ioc, argp, sizeof(*ioc))) {
  1226. status = -EFAULT;
  1227. goto cleanup1;
  1228. }
  1229. if ((ioc->buf_size < 1) &&
  1230. (ioc->Request.Type.Direction != XFER_NONE)) {
  1231. status = -EINVAL;
  1232. goto cleanup1;
  1233. }
  1234. /* Check kmalloc limits using all SGs */
  1235. if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
  1236. status = -EINVAL;
  1237. goto cleanup1;
  1238. }
  1239. if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
  1240. status = -EINVAL;
  1241. goto cleanup1;
  1242. }
  1243. buff =
  1244. kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
  1245. if (!buff) {
  1246. status = -ENOMEM;
  1247. goto cleanup1;
  1248. }
  1249. buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
  1250. GFP_KERNEL);
  1251. if (!buff_size) {
  1252. status = -ENOMEM;
  1253. goto cleanup1;
  1254. }
  1255. left = ioc->buf_size;
  1256. data_ptr = ioc->buf;
  1257. while (left) {
  1258. sz = (left >
  1259. ioc->malloc_size) ? ioc->
  1260. malloc_size : left;
  1261. buff_size[sg_used] = sz;
  1262. buff[sg_used] = kmalloc(sz, GFP_KERNEL);
  1263. if (buff[sg_used] == NULL) {
  1264. status = -ENOMEM;
  1265. goto cleanup1;
  1266. }
  1267. if (ioc->Request.Type.Direction == XFER_WRITE) {
  1268. if (copy_from_user
  1269. (buff[sg_used], data_ptr, sz)) {
  1270. status = -EFAULT;
  1271. goto cleanup1;
  1272. }
  1273. } else {
  1274. memset(buff[sg_used], 0, sz);
  1275. }
  1276. left -= sz;
  1277. data_ptr += sz;
  1278. sg_used++;
  1279. }
  1280. if ((c = cmd_alloc(host, 0)) == NULL) {
  1281. status = -ENOMEM;
  1282. goto cleanup1;
  1283. }
  1284. c->cmd_type = CMD_IOCTL_PEND;
  1285. c->Header.ReplyQueue = 0;
  1286. if (ioc->buf_size > 0) {
  1287. c->Header.SGList = sg_used;
  1288. c->Header.SGTotal = sg_used;
  1289. } else {
  1290. c->Header.SGList = 0;
  1291. c->Header.SGTotal = 0;
  1292. }
  1293. c->Header.LUN = ioc->LUN_info;
  1294. c->Header.Tag.lower = c->busaddr;
  1295. c->Request = ioc->Request;
  1296. if (ioc->buf_size > 0) {
  1297. int i;
  1298. for (i = 0; i < sg_used; i++) {
  1299. temp64.val =
  1300. pci_map_single(host->pdev, buff[i],
  1301. buff_size[i],
  1302. PCI_DMA_BIDIRECTIONAL);
  1303. c->SG[i].Addr.lower =
  1304. temp64.val32.lower;
  1305. c->SG[i].Addr.upper =
  1306. temp64.val32.upper;
  1307. c->SG[i].Len = buff_size[i];
  1308. c->SG[i].Ext = 0; /* we are not chaining */
  1309. }
  1310. }
  1311. c->waiting = &wait;
  1312. /* Put the request on the tail of the request queue */
  1313. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1314. addQ(&host->reqQ, c);
  1315. host->Qdepth++;
  1316. start_io(host);
  1317. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1318. wait_for_completion(&wait);
  1319. /* unlock the buffers from DMA */
  1320. for (i = 0; i < sg_used; i++) {
  1321. temp64.val32.lower = c->SG[i].Addr.lower;
  1322. temp64.val32.upper = c->SG[i].Addr.upper;
  1323. pci_unmap_single(host->pdev,
  1324. (dma_addr_t) temp64.val, buff_size[i],
  1325. PCI_DMA_BIDIRECTIONAL);
  1326. }
  1327. check_ioctl_unit_attention(host, c);
  1328. /* Copy the error information out */
  1329. ioc->error_info = *(c->err_info);
  1330. if (copy_to_user(argp, ioc, sizeof(*ioc))) {
  1331. cmd_free(host, c, 0);
  1332. status = -EFAULT;
  1333. goto cleanup1;
  1334. }
  1335. if (ioc->Request.Type.Direction == XFER_READ) {
  1336. /* Copy the data out of the buffer we created */
  1337. BYTE __user *ptr = ioc->buf;
  1338. for (i = 0; i < sg_used; i++) {
  1339. if (copy_to_user
  1340. (ptr, buff[i], buff_size[i])) {
  1341. cmd_free(host, c, 0);
  1342. status = -EFAULT;
  1343. goto cleanup1;
  1344. }
  1345. ptr += buff_size[i];
  1346. }
  1347. }
  1348. cmd_free(host, c, 0);
  1349. status = 0;
  1350. cleanup1:
  1351. if (buff) {
  1352. for (i = 0; i < sg_used; i++)
  1353. kfree(buff[i]);
  1354. kfree(buff);
  1355. }
  1356. kfree(buff_size);
  1357. kfree(ioc);
  1358. return status;
  1359. }
  1360. /* scsi_cmd_ioctl handles these, below, though some are not */
  1361. /* very meaningful for cciss. SG_IO is the main one people want. */
  1362. case SG_GET_VERSION_NUM:
  1363. case SG_SET_TIMEOUT:
  1364. case SG_GET_TIMEOUT:
  1365. case SG_GET_RESERVED_SIZE:
  1366. case SG_SET_RESERVED_SIZE:
  1367. case SG_EMULATED_HOST:
  1368. case SG_IO:
  1369. case SCSI_IOCTL_SEND_COMMAND:
  1370. return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
  1371. /* scsi_cmd_ioctl would normally handle these, below, but */
  1372. /* they aren't a good fit for cciss, as CD-ROMs are */
  1373. /* not supported, and we don't have any bus/target/lun */
  1374. /* which we present to the kernel. */
  1375. case CDROM_SEND_PACKET:
  1376. case CDROMCLOSETRAY:
  1377. case CDROMEJECT:
  1378. case SCSI_IOCTL_GET_IDLUN:
  1379. case SCSI_IOCTL_GET_BUS_NUMBER:
  1380. default:
  1381. return -ENOTTY;
  1382. }
  1383. }
  1384. static void cciss_check_queues(ctlr_info_t *h)
  1385. {
  1386. int start_queue = h->next_to_run;
  1387. int i;
  1388. /* check to see if we have maxed out the number of commands that can
  1389. * be placed on the queue. If so then exit. We do this check here
  1390. * in case the interrupt we serviced was from an ioctl and did not
  1391. * free any new commands.
  1392. */
  1393. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
  1394. return;
  1395. /* We have room on the queue for more commands. Now we need to queue
  1396. * them up. We will also keep track of the next queue to run so
  1397. * that every queue gets a chance to be started first.
  1398. */
  1399. for (i = 0; i < h->highest_lun + 1; i++) {
  1400. int curr_queue = (start_queue + i) % (h->highest_lun + 1);
  1401. /* make sure the disk has been added and the drive is real
  1402. * because this can be called from the middle of init_one.
  1403. */
  1404. if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
  1405. continue;
  1406. blk_start_queue(h->gendisk[curr_queue]->queue);
  1407. /* check to see if we have maxed out the number of commands
  1408. * that can be placed on the queue.
  1409. */
  1410. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
  1411. if (curr_queue == start_queue) {
  1412. h->next_to_run =
  1413. (start_queue + 1) % (h->highest_lun + 1);
  1414. break;
  1415. } else {
  1416. h->next_to_run = curr_queue;
  1417. break;
  1418. }
  1419. }
  1420. }
  1421. }
  1422. static void cciss_softirq_done(struct request *rq)
  1423. {
  1424. CommandList_struct *cmd = rq->completion_data;
  1425. ctlr_info_t *h = hba[cmd->ctlr];
  1426. unsigned long flags;
  1427. u64bit temp64;
  1428. int i, ddir;
  1429. if (cmd->Request.Type.Direction == XFER_READ)
  1430. ddir = PCI_DMA_FROMDEVICE;
  1431. else
  1432. ddir = PCI_DMA_TODEVICE;
  1433. /* command did not need to be retried */
  1434. /* unmap the DMA mapping for all the scatter gather elements */
  1435. for (i = 0; i < cmd->Header.SGList; i++) {
  1436. temp64.val32.lower = cmd->SG[i].Addr.lower;
  1437. temp64.val32.upper = cmd->SG[i].Addr.upper;
  1438. pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
  1439. }
  1440. #ifdef CCISS_DEBUG
  1441. printk("Done with %p\n", rq);
  1442. #endif /* CCISS_DEBUG */
  1443. /* set the residual count for pc requests */
  1444. if (blk_pc_request(rq))
  1445. rq->resid_len = cmd->err_info->ResidualCnt;
  1446. blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
  1447. spin_lock_irqsave(&h->lock, flags);
  1448. cmd_free(h, cmd, 1);
  1449. cciss_check_queues(h);
  1450. spin_unlock_irqrestore(&h->lock, flags);
  1451. }
  1452. static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
  1453. unsigned char scsi3addr[], uint32_t log_unit)
  1454. {
  1455. memcpy(scsi3addr, h->drv[log_unit].LunID,
  1456. sizeof(h->drv[log_unit].LunID));
  1457. }
  1458. /* This function gets the SCSI vendor, model, and revision of a logical drive
  1459. * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
  1460. * they cannot be read.
  1461. */
  1462. static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
  1463. char *vendor, char *model, char *rev)
  1464. {
  1465. int rc;
  1466. InquiryData_struct *inq_buf;
  1467. unsigned char scsi3addr[8];
  1468. *vendor = '\0';
  1469. *model = '\0';
  1470. *rev = '\0';
  1471. inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1472. if (!inq_buf)
  1473. return;
  1474. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1475. if (withirq)
  1476. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
  1477. sizeof(InquiryData_struct), 0,
  1478. scsi3addr, TYPE_CMD);
  1479. else
  1480. rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
  1481. sizeof(InquiryData_struct), 0,
  1482. scsi3addr, TYPE_CMD);
  1483. if (rc == IO_OK) {
  1484. memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
  1485. vendor[VENDOR_LEN] = '\0';
  1486. memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
  1487. model[MODEL_LEN] = '\0';
  1488. memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
  1489. rev[REV_LEN] = '\0';
  1490. }
  1491. kfree(inq_buf);
  1492. return;
  1493. }
  1494. /* This function gets the serial number of a logical drive via
  1495. * inquiry page 0x83. Serial no. is 16 bytes. If the serial
  1496. * number cannot be had, for whatever reason, 16 bytes of 0xff
  1497. * are returned instead.
  1498. */
  1499. static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
  1500. unsigned char *serial_no, int buflen)
  1501. {
  1502. #define PAGE_83_INQ_BYTES 64
  1503. int rc;
  1504. unsigned char *buf;
  1505. unsigned char scsi3addr[8];
  1506. if (buflen > 16)
  1507. buflen = 16;
  1508. memset(serial_no, 0xff, buflen);
  1509. buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
  1510. if (!buf)
  1511. return;
  1512. memset(serial_no, 0, buflen);
  1513. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1514. if (withirq)
  1515. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
  1516. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1517. else
  1518. rc = sendcmd(CISS_INQUIRY, ctlr, buf,
  1519. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1520. if (rc == IO_OK)
  1521. memcpy(serial_no, &buf[8], buflen);
  1522. kfree(buf);
  1523. return;
  1524. }
  1525. /*
  1526. * cciss_add_disk sets up the block device queue for a logical drive
  1527. */
  1528. static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
  1529. int drv_index)
  1530. {
  1531. disk->queue = blk_init_queue(do_cciss_request, &h->lock);
  1532. if (!disk->queue)
  1533. goto init_queue_failure;
  1534. sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
  1535. disk->major = h->major;
  1536. disk->first_minor = drv_index << NWD_SHIFT;
  1537. disk->fops = &cciss_fops;
  1538. if (h->drv[drv_index].dev == NULL) {
  1539. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1540. goto cleanup_queue;
  1541. }
  1542. disk->private_data = &h->drv[drv_index];
  1543. disk->driverfs_dev = h->drv[drv_index].dev;
  1544. /* Set up queue information */
  1545. blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
  1546. /* This is a hardware imposed limit. */
  1547. blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
  1548. /* This is a limit in the driver and could be eliminated. */
  1549. blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
  1550. blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
  1551. blk_queue_softirq_done(disk->queue, cciss_softirq_done);
  1552. disk->queue->queuedata = h;
  1553. blk_queue_logical_block_size(disk->queue,
  1554. h->drv[drv_index].block_size);
  1555. /* Make sure all queue data is written out before */
  1556. /* setting h->drv[drv_index].queue, as setting this */
  1557. /* allows the interrupt handler to start the queue */
  1558. wmb();
  1559. h->drv[drv_index].queue = disk->queue;
  1560. add_disk(disk);
  1561. return 0;
  1562. cleanup_queue:
  1563. blk_cleanup_queue(disk->queue);
  1564. disk->queue = NULL;
  1565. init_queue_failure:
  1566. return -1;
  1567. }
  1568. /* This function will check the usage_count of the drive to be updated/added.
  1569. * If the usage_count is zero and it is a heretofore unknown drive, or,
  1570. * the drive's capacity, geometry, or serial number has changed,
  1571. * then the drive information will be updated and the disk will be
  1572. * re-registered with the kernel. If these conditions don't hold,
  1573. * then it will be left alone for the next reboot. The exception to this
  1574. * is disk 0 which will always be left registered with the kernel since it
  1575. * is also the controller node. Any changes to disk 0 will show up on
  1576. * the next reboot.
  1577. */
  1578. static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
  1579. int via_ioctl)
  1580. {
  1581. ctlr_info_t *h = hba[ctlr];
  1582. struct gendisk *disk;
  1583. InquiryData_struct *inq_buff = NULL;
  1584. unsigned int block_size;
  1585. sector_t total_size;
  1586. unsigned long flags = 0;
  1587. int ret = 0;
  1588. drive_info_struct *drvinfo;
  1589. /* Get information about the disk and modify the driver structure */
  1590. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1591. drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
  1592. if (inq_buff == NULL || drvinfo == NULL)
  1593. goto mem_msg;
  1594. /* testing to see if 16-byte CDBs are already being used */
  1595. if (h->cciss_read == CCISS_READ_16) {
  1596. cciss_read_capacity_16(h->ctlr, drv_index, 1,
  1597. &total_size, &block_size);
  1598. } else {
  1599. cciss_read_capacity(ctlr, drv_index, 1,
  1600. &total_size, &block_size);
  1601. /* if read_capacity returns all F's this volume is >2TB */
  1602. /* in size so we switch to 16-byte CDB's for all */
  1603. /* read/write ops */
  1604. if (total_size == 0xFFFFFFFFULL) {
  1605. cciss_read_capacity_16(ctlr, drv_index, 1,
  1606. &total_size, &block_size);
  1607. h->cciss_read = CCISS_READ_16;
  1608. h->cciss_write = CCISS_WRITE_16;
  1609. } else {
  1610. h->cciss_read = CCISS_READ_10;
  1611. h->cciss_write = CCISS_WRITE_10;
  1612. }
  1613. }
  1614. cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
  1615. inq_buff, drvinfo);
  1616. drvinfo->block_size = block_size;
  1617. drvinfo->nr_blocks = total_size + 1;
  1618. cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
  1619. drvinfo->model, drvinfo->rev);
  1620. cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
  1621. sizeof(drvinfo->serial_no));
  1622. /* Is it the same disk we already know, and nothing's changed? */
  1623. if (h->drv[drv_index].raid_level != -1 &&
  1624. ((memcmp(drvinfo->serial_no,
  1625. h->drv[drv_index].serial_no, 16) == 0) &&
  1626. drvinfo->block_size == h->drv[drv_index].block_size &&
  1627. drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
  1628. drvinfo->heads == h->drv[drv_index].heads &&
  1629. drvinfo->sectors == h->drv[drv_index].sectors &&
  1630. drvinfo->cylinders == h->drv[drv_index].cylinders))
  1631. /* The disk is unchanged, nothing to update */
  1632. goto freeret;
  1633. /* If we get here it's not the same disk, or something's changed,
  1634. * so we need to * deregister it, and re-register it, if it's not
  1635. * in use.
  1636. * If the disk already exists then deregister it before proceeding
  1637. * (unless it's the first disk (for the controller node).
  1638. */
  1639. if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
  1640. printk(KERN_WARNING "disk %d has changed.\n", drv_index);
  1641. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1642. h->drv[drv_index].busy_configuring = 1;
  1643. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1644. /* deregister_disk sets h->drv[drv_index].queue = NULL
  1645. * which keeps the interrupt handler from starting
  1646. * the queue.
  1647. */
  1648. ret = deregister_disk(h, drv_index, 0, via_ioctl);
  1649. h->drv[drv_index].busy_configuring = 0;
  1650. }
  1651. /* If the disk is in use return */
  1652. if (ret)
  1653. goto freeret;
  1654. /* Save the new information from cciss_geometry_inquiry
  1655. * and serial number inquiry.
  1656. */
  1657. h->drv[drv_index].block_size = drvinfo->block_size;
  1658. h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
  1659. h->drv[drv_index].heads = drvinfo->heads;
  1660. h->drv[drv_index].sectors = drvinfo->sectors;
  1661. h->drv[drv_index].cylinders = drvinfo->cylinders;
  1662. h->drv[drv_index].raid_level = drvinfo->raid_level;
  1663. memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
  1664. memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
  1665. memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
  1666. memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
  1667. ++h->num_luns;
  1668. disk = h->gendisk[drv_index];
  1669. set_capacity(disk, h->drv[drv_index].nr_blocks);
  1670. /* If it's not disk 0 (drv_index != 0)
  1671. * or if it was disk 0, but there was previously
  1672. * no actual corresponding configured logical drive
  1673. * (raid_leve == -1) then we want to update the
  1674. * logical drive's information.
  1675. */
  1676. if (drv_index || first_time) {
  1677. if (cciss_add_disk(h, disk, drv_index) != 0) {
  1678. cciss_free_gendisk(h, drv_index);
  1679. printk(KERN_WARNING "cciss:%d could not update "
  1680. "disk %d\n", h->ctlr, drv_index);
  1681. --h->num_luns;
  1682. }
  1683. }
  1684. freeret:
  1685. kfree(inq_buff);
  1686. kfree(drvinfo);
  1687. return;
  1688. mem_msg:
  1689. printk(KERN_ERR "cciss: out of memory\n");
  1690. goto freeret;
  1691. }
  1692. /* This function will find the first index of the controllers drive array
  1693. * that has a -1 for the raid_level and will return that index. This is
  1694. * where new drives will be added. If the index to be returned is greater
  1695. * than the highest_lun index for the controller then highest_lun is set
  1696. * to this new index. If there are no available indexes then -1 is returned.
  1697. * "controller_node" is used to know if this is a real logical drive, or just
  1698. * the controller node, which determines if this counts towards highest_lun.
  1699. */
  1700. static int cciss_find_free_drive_index(int ctlr, int controller_node)
  1701. {
  1702. int i;
  1703. for (i = 0; i < CISS_MAX_LUN; i++) {
  1704. if (hba[ctlr]->drv[i].raid_level == -1) {
  1705. if (i > hba[ctlr]->highest_lun)
  1706. if (!controller_node)
  1707. hba[ctlr]->highest_lun = i;
  1708. return i;
  1709. }
  1710. }
  1711. return -1;
  1712. }
  1713. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
  1714. {
  1715. put_disk(h->gendisk[drv_index]);
  1716. h->gendisk[drv_index] = NULL;
  1717. }
  1718. /* cciss_add_gendisk finds a free hba[]->drv structure
  1719. * and allocates a gendisk if needed, and sets the lunid
  1720. * in the drvinfo structure. It returns the index into
  1721. * the ->drv[] array, or -1 if none are free.
  1722. * is_controller_node indicates whether highest_lun should
  1723. * count this disk, or if it's only being added to provide
  1724. * a means to talk to the controller in case no logical
  1725. * drives have yet been configured.
  1726. */
  1727. static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
  1728. int controller_node)
  1729. {
  1730. int drv_index;
  1731. drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
  1732. if (drv_index == -1)
  1733. return -1;
  1734. /*Check if the gendisk needs to be allocated */
  1735. if (!h->gendisk[drv_index]) {
  1736. h->gendisk[drv_index] =
  1737. alloc_disk(1 << NWD_SHIFT);
  1738. if (!h->gendisk[drv_index]) {
  1739. printk(KERN_ERR "cciss%d: could not "
  1740. "allocate a new disk %d\n",
  1741. h->ctlr, drv_index);
  1742. return -1;
  1743. }
  1744. }
  1745. memcpy(h->drv[drv_index].LunID, lunid,
  1746. sizeof(h->drv[drv_index].LunID));
  1747. if (h->drv[drv_index].dev == NULL) {
  1748. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1749. goto err_free_disk;
  1750. }
  1751. /* Don't need to mark this busy because nobody */
  1752. /* else knows about this disk yet to contend */
  1753. /* for access to it. */
  1754. h->drv[drv_index].busy_configuring = 0;
  1755. wmb();
  1756. return drv_index;
  1757. err_free_disk:
  1758. cciss_free_gendisk(h, drv_index);
  1759. return -1;
  1760. }
  1761. /* This is for the special case of a controller which
  1762. * has no logical drives. In this case, we still need
  1763. * to register a disk so the controller can be accessed
  1764. * by the Array Config Utility.
  1765. */
  1766. static void cciss_add_controller_node(ctlr_info_t *h)
  1767. {
  1768. struct gendisk *disk;
  1769. int drv_index;
  1770. if (h->gendisk[0] != NULL) /* already did this? Then bail. */
  1771. return;
  1772. drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
  1773. if (drv_index == -1)
  1774. goto error;
  1775. h->drv[drv_index].block_size = 512;
  1776. h->drv[drv_index].nr_blocks = 0;
  1777. h->drv[drv_index].heads = 0;
  1778. h->drv[drv_index].sectors = 0;
  1779. h->drv[drv_index].cylinders = 0;
  1780. h->drv[drv_index].raid_level = -1;
  1781. memset(h->drv[drv_index].serial_no, 0, 16);
  1782. disk = h->gendisk[drv_index];
  1783. if (cciss_add_disk(h, disk, drv_index) == 0)
  1784. return;
  1785. cciss_free_gendisk(h, drv_index);
  1786. error:
  1787. printk(KERN_WARNING "cciss%d: could not "
  1788. "add disk 0.\n", h->ctlr);
  1789. return;
  1790. }
  1791. /* This function will add and remove logical drives from the Logical
  1792. * drive array of the controller and maintain persistency of ordering
  1793. * so that mount points are preserved until the next reboot. This allows
  1794. * for the removal of logical drives in the middle of the drive array
  1795. * without a re-ordering of those drives.
  1796. * INPUT
  1797. * h = The controller to perform the operations on
  1798. */
  1799. static int rebuild_lun_table(ctlr_info_t *h, int first_time,
  1800. int via_ioctl)
  1801. {
  1802. int ctlr = h->ctlr;
  1803. int num_luns;
  1804. ReportLunData_struct *ld_buff = NULL;
  1805. int return_code;
  1806. int listlength = 0;
  1807. int i;
  1808. int drv_found;
  1809. int drv_index = 0;
  1810. unsigned char lunid[8] = CTLR_LUNID;
  1811. unsigned long flags;
  1812. if (!capable(CAP_SYS_RAWIO))
  1813. return -EPERM;
  1814. /* Set busy_configuring flag for this operation */
  1815. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1816. if (h->busy_configuring) {
  1817. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1818. return -EBUSY;
  1819. }
  1820. h->busy_configuring = 1;
  1821. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1822. ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
  1823. if (ld_buff == NULL)
  1824. goto mem_msg;
  1825. return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
  1826. sizeof(ReportLunData_struct),
  1827. 0, CTLR_LUNID, TYPE_CMD);
  1828. if (return_code == IO_OK)
  1829. listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
  1830. else { /* reading number of logical volumes failed */
  1831. printk(KERN_WARNING "cciss: report logical volume"
  1832. " command failed\n");
  1833. listlength = 0;
  1834. goto freeret;
  1835. }
  1836. num_luns = listlength / 8; /* 8 bytes per entry */
  1837. if (num_luns > CISS_MAX_LUN) {
  1838. num_luns = CISS_MAX_LUN;
  1839. printk(KERN_WARNING "cciss: more luns configured"
  1840. " on controller than can be handled by"
  1841. " this driver.\n");
  1842. }
  1843. if (num_luns == 0)
  1844. cciss_add_controller_node(h);
  1845. /* Compare controller drive array to driver's drive array
  1846. * to see if any drives are missing on the controller due
  1847. * to action of Array Config Utility (user deletes drive)
  1848. * and deregister logical drives which have disappeared.
  1849. */
  1850. for (i = 0; i <= h->highest_lun; i++) {
  1851. int j;
  1852. drv_found = 0;
  1853. /* skip holes in the array from already deleted drives */
  1854. if (h->drv[i].raid_level == -1)
  1855. continue;
  1856. for (j = 0; j < num_luns; j++) {
  1857. memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
  1858. if (memcmp(h->drv[i].LunID, lunid,
  1859. sizeof(lunid)) == 0) {
  1860. drv_found = 1;
  1861. break;
  1862. }
  1863. }
  1864. if (!drv_found) {
  1865. /* Deregister it from the OS, it's gone. */
  1866. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1867. h->drv[i].busy_configuring = 1;
  1868. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1869. return_code = deregister_disk(h, i, 1, via_ioctl);
  1870. h->drv[i].busy_configuring = 0;
  1871. }
  1872. }
  1873. /* Compare controller drive array to driver's drive array.
  1874. * Check for updates in the drive information and any new drives
  1875. * on the controller due to ACU adding logical drives, or changing
  1876. * a logical drive's size, etc. Reregister any new/changed drives
  1877. */
  1878. for (i = 0; i < num_luns; i++) {
  1879. int j;
  1880. drv_found = 0;
  1881. memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
  1882. /* Find if the LUN is already in the drive array
  1883. * of the driver. If so then update its info
  1884. * if not in use. If it does not exist then find
  1885. * the first free index and add it.
  1886. */
  1887. for (j = 0; j <= h->highest_lun; j++) {
  1888. if (h->drv[j].raid_level != -1 &&
  1889. memcmp(h->drv[j].LunID, lunid,
  1890. sizeof(h->drv[j].LunID)) == 0) {
  1891. drv_index = j;
  1892. drv_found = 1;
  1893. break;
  1894. }
  1895. }
  1896. /* check if the drive was found already in the array */
  1897. if (!drv_found) {
  1898. drv_index = cciss_add_gendisk(h, lunid, 0);
  1899. if (drv_index == -1)
  1900. goto freeret;
  1901. }
  1902. cciss_update_drive_info(ctlr, drv_index, first_time,
  1903. via_ioctl);
  1904. } /* end for */
  1905. freeret:
  1906. kfree(ld_buff);
  1907. h->busy_configuring = 0;
  1908. /* We return -1 here to tell the ACU that we have registered/updated
  1909. * all of the drives that we can and to keep it from calling us
  1910. * additional times.
  1911. */
  1912. return -1;
  1913. mem_msg:
  1914. printk(KERN_ERR "cciss: out of memory\n");
  1915. h->busy_configuring = 0;
  1916. goto freeret;
  1917. }
  1918. static void cciss_clear_drive_info(drive_info_struct *drive_info)
  1919. {
  1920. /* zero out the disk size info */
  1921. drive_info->nr_blocks = 0;
  1922. drive_info->block_size = 0;
  1923. drive_info->heads = 0;
  1924. drive_info->sectors = 0;
  1925. drive_info->cylinders = 0;
  1926. drive_info->raid_level = -1;
  1927. memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
  1928. memset(drive_info->model, 0, sizeof(drive_info->model));
  1929. memset(drive_info->rev, 0, sizeof(drive_info->rev));
  1930. memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
  1931. /*
  1932. * don't clear the LUNID though, we need to remember which
  1933. * one this one is.
  1934. */
  1935. }
  1936. /* This function will deregister the disk and it's queue from the
  1937. * kernel. It must be called with the controller lock held and the
  1938. * drv structures busy_configuring flag set. It's parameters are:
  1939. *
  1940. * disk = This is the disk to be deregistered
  1941. * drv = This is the drive_info_struct associated with the disk to be
  1942. * deregistered. It contains information about the disk used
  1943. * by the driver.
  1944. * clear_all = This flag determines whether or not the disk information
  1945. * is going to be completely cleared out and the highest_lun
  1946. * reset. Sometimes we want to clear out information about
  1947. * the disk in preparation for re-adding it. In this case
  1948. * the highest_lun should be left unchanged and the LunID
  1949. * should not be cleared.
  1950. * via_ioctl
  1951. * This indicates whether we've reached this path via ioctl.
  1952. * This affects the maximum usage count allowed for c0d0 to be messed with.
  1953. * If this path is reached via ioctl(), then the max_usage_count will
  1954. * be 1, as the process calling ioctl() has got to have the device open.
  1955. * If we get here via sysfs, then the max usage count will be zero.
  1956. */
  1957. static int deregister_disk(ctlr_info_t *h, int drv_index,
  1958. int clear_all, int via_ioctl)
  1959. {
  1960. int i;
  1961. struct gendisk *disk;
  1962. drive_info_struct *drv;
  1963. if (!capable(CAP_SYS_RAWIO))
  1964. return -EPERM;
  1965. drv = &h->drv[drv_index];
  1966. disk = h->gendisk[drv_index];
  1967. /* make sure logical volume is NOT is use */
  1968. if (clear_all || (h->gendisk[0] == disk)) {
  1969. if (drv->usage_count > via_ioctl)
  1970. return -EBUSY;
  1971. } else if (drv->usage_count > 0)
  1972. return -EBUSY;
  1973. /* invalidate the devices and deregister the disk. If it is disk
  1974. * zero do not deregister it but just zero out it's values. This
  1975. * allows us to delete disk zero but keep the controller registered.
  1976. */
  1977. if (h->gendisk[0] != disk) {
  1978. struct request_queue *q = disk->queue;
  1979. if (disk->flags & GENHD_FL_UP) {
  1980. cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
  1981. del_gendisk(disk);
  1982. }
  1983. if (q) {
  1984. blk_cleanup_queue(q);
  1985. /* Set drv->queue to NULL so that we do not try
  1986. * to call blk_start_queue on this queue in the
  1987. * interrupt handler
  1988. */
  1989. drv->queue = NULL;
  1990. }
  1991. /* If clear_all is set then we are deleting the logical
  1992. * drive, not just refreshing its info. For drives
  1993. * other than disk 0 we will call put_disk. We do not
  1994. * do this for disk 0 as we need it to be able to
  1995. * configure the controller.
  1996. */
  1997. if (clear_all){
  1998. /* This isn't pretty, but we need to find the
  1999. * disk in our array and NULL our the pointer.
  2000. * This is so that we will call alloc_disk if
  2001. * this index is used again later.
  2002. */
  2003. for (i=0; i < CISS_MAX_LUN; i++){
  2004. if (h->gendisk[i] == disk) {
  2005. h->gendisk[i] = NULL;
  2006. break;
  2007. }
  2008. }
  2009. put_disk(disk);
  2010. }
  2011. } else {
  2012. set_capacity(disk, 0);
  2013. }
  2014. --h->num_luns;
  2015. cciss_clear_drive_info(drv);
  2016. if (clear_all) {
  2017. /* check to see if it was the last disk */
  2018. if (drv == h->drv + h->highest_lun) {
  2019. /* if so, find the new hightest lun */
  2020. int i, newhighest = -1;
  2021. for (i = 0; i <= h->highest_lun; i++) {
  2022. /* if the disk has size > 0, it is available */
  2023. if (h->drv[i].heads)
  2024. newhighest = i;
  2025. }
  2026. h->highest_lun = newhighest;
  2027. }
  2028. memset(drv->LunID, 0, sizeof(drv->LunID));
  2029. }
  2030. return 0;
  2031. }
  2032. static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
  2033. size_t size, __u8 page_code, unsigned char *scsi3addr,
  2034. int cmd_type)
  2035. {
  2036. ctlr_info_t *h = hba[ctlr];
  2037. u64bit buff_dma_handle;
  2038. int status = IO_OK;
  2039. c->cmd_type = CMD_IOCTL_PEND;
  2040. c->Header.ReplyQueue = 0;
  2041. if (buff != NULL) {
  2042. c->Header.SGList = 1;
  2043. c->Header.SGTotal = 1;
  2044. } else {
  2045. c->Header.SGList = 0;
  2046. c->Header.SGTotal = 0;
  2047. }
  2048. c->Header.Tag.lower = c->busaddr;
  2049. memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
  2050. c->Request.Type.Type = cmd_type;
  2051. if (cmd_type == TYPE_CMD) {
  2052. switch (cmd) {
  2053. case CISS_INQUIRY:
  2054. /* are we trying to read a vital product page */
  2055. if (page_code != 0) {
  2056. c->Request.CDB[1] = 0x01;
  2057. c->Request.CDB[2] = page_code;
  2058. }
  2059. c->Request.CDBLen = 6;
  2060. c->Request.Type.Attribute = ATTR_SIMPLE;
  2061. c->Request.Type.Direction = XFER_READ;
  2062. c->Request.Timeout = 0;
  2063. c->Request.CDB[0] = CISS_INQUIRY;
  2064. c->Request.CDB[4] = size & 0xFF;
  2065. break;
  2066. case CISS_REPORT_LOG:
  2067. case CISS_REPORT_PHYS:
  2068. /* Talking to controller so It's a physical command
  2069. mode = 00 target = 0. Nothing to write.
  2070. */
  2071. c->Request.CDBLen = 12;
  2072. c->Request.Type.Attribute = ATTR_SIMPLE;
  2073. c->Request.Type.Direction = XFER_READ;
  2074. c->Request.Timeout = 0;
  2075. c->Request.CDB[0] = cmd;
  2076. c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
  2077. c->Request.CDB[7] = (size >> 16) & 0xFF;
  2078. c->Request.CDB[8] = (size >> 8) & 0xFF;
  2079. c->Request.CDB[9] = size & 0xFF;
  2080. break;
  2081. case CCISS_READ_CAPACITY:
  2082. c->Request.CDBLen = 10;
  2083. c->Request.Type.Attribute = ATTR_SIMPLE;
  2084. c->Request.Type.Direction = XFER_READ;
  2085. c->Request.Timeout = 0;
  2086. c->Request.CDB[0] = cmd;
  2087. break;
  2088. case CCISS_READ_CAPACITY_16:
  2089. c->Request.CDBLen = 16;
  2090. c->Request.Type.Attribute = ATTR_SIMPLE;
  2091. c->Request.Type.Direction = XFER_READ;
  2092. c->Request.Timeout = 0;
  2093. c->Request.CDB[0] = cmd;
  2094. c->Request.CDB[1] = 0x10;
  2095. c->Request.CDB[10] = (size >> 24) & 0xFF;
  2096. c->Request.CDB[11] = (size >> 16) & 0xFF;
  2097. c->Request.CDB[12] = (size >> 8) & 0xFF;
  2098. c->Request.CDB[13] = size & 0xFF;
  2099. c->Request.Timeout = 0;
  2100. c->Request.CDB[0] = cmd;
  2101. break;
  2102. case CCISS_CACHE_FLUSH:
  2103. c->Request.CDBLen = 12;
  2104. c->Request.Type.Attribute = ATTR_SIMPLE;
  2105. c->Request.Type.Direction = XFER_WRITE;
  2106. c->Request.Timeout = 0;
  2107. c->Request.CDB[0] = BMIC_WRITE;
  2108. c->Request.CDB[6] = BMIC_CACHE_FLUSH;
  2109. break;
  2110. case TEST_UNIT_READY:
  2111. c->Request.CDBLen = 6;
  2112. c->Request.Type.Attribute = ATTR_SIMPLE;
  2113. c->Request.Type.Direction = XFER_NONE;
  2114. c->Request.Timeout = 0;
  2115. break;
  2116. default:
  2117. printk(KERN_WARNING
  2118. "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
  2119. return IO_ERROR;
  2120. }
  2121. } else if (cmd_type == TYPE_MSG) {
  2122. switch (cmd) {
  2123. case 0: /* ABORT message */
  2124. c->Request.CDBLen = 12;
  2125. c->Request.Type.Attribute = ATTR_SIMPLE;
  2126. c->Request.Type.Direction = XFER_WRITE;
  2127. c->Request.Timeout = 0;
  2128. c->Request.CDB[0] = cmd; /* abort */
  2129. c->Request.CDB[1] = 0; /* abort a command */
  2130. /* buff contains the tag of the command to abort */
  2131. memcpy(&c->Request.CDB[4], buff, 8);
  2132. break;
  2133. case 1: /* RESET message */
  2134. c->Request.CDBLen = 16;
  2135. c->Request.Type.Attribute = ATTR_SIMPLE;
  2136. c->Request.Type.Direction = XFER_NONE;
  2137. c->Request.Timeout = 0;
  2138. memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
  2139. c->Request.CDB[0] = cmd; /* reset */
  2140. c->Request.CDB[1] = 0x03; /* reset a target */
  2141. break;
  2142. case 3: /* No-Op message */
  2143. c->Request.CDBLen = 1;
  2144. c->Request.Type.Attribute = ATTR_SIMPLE;
  2145. c->Request.Type.Direction = XFER_WRITE;
  2146. c->Request.Timeout = 0;
  2147. c->Request.CDB[0] = cmd;
  2148. break;
  2149. default:
  2150. printk(KERN_WARNING
  2151. "cciss%d: unknown message type %d\n", ctlr, cmd);
  2152. return IO_ERROR;
  2153. }
  2154. } else {
  2155. printk(KERN_WARNING
  2156. "cciss%d: unknown command type %d\n", ctlr, cmd_type);
  2157. return IO_ERROR;
  2158. }
  2159. /* Fill in the scatter gather information */
  2160. if (size > 0) {
  2161. buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
  2162. buff, size,
  2163. PCI_DMA_BIDIRECTIONAL);
  2164. c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
  2165. c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
  2166. c->SG[0].Len = size;
  2167. c->SG[0].Ext = 0; /* we are not chaining */
  2168. }
  2169. return status;
  2170. }
  2171. static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
  2172. {
  2173. switch (c->err_info->ScsiStatus) {
  2174. case SAM_STAT_GOOD:
  2175. return IO_OK;
  2176. case SAM_STAT_CHECK_CONDITION:
  2177. switch (0xf & c->err_info->SenseInfo[2]) {
  2178. case 0: return IO_OK; /* no sense */
  2179. case 1: return IO_OK; /* recovered error */
  2180. default:
  2181. printk(KERN_WARNING "cciss%d: cmd 0x%02x "
  2182. "check condition, sense key = 0x%02x\n",
  2183. h->ctlr, c->Request.CDB[0],
  2184. c->err_info->SenseInfo[2]);
  2185. }
  2186. break;
  2187. default:
  2188. printk(KERN_WARNING "cciss%d: cmd 0x%02x"
  2189. "scsi status = 0x%02x\n", h->ctlr,
  2190. c->Request.CDB[0], c->err_info->ScsiStatus);
  2191. break;
  2192. }
  2193. return IO_ERROR;
  2194. }
  2195. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
  2196. {
  2197. int return_status = IO_OK;
  2198. if (c->err_info->CommandStatus == CMD_SUCCESS)
  2199. return IO_OK;
  2200. switch (c->err_info->CommandStatus) {
  2201. case CMD_TARGET_STATUS:
  2202. return_status = check_target_status(h, c);
  2203. break;
  2204. case CMD_DATA_UNDERRUN:
  2205. case CMD_DATA_OVERRUN:
  2206. /* expected for inquiry and report lun commands */
  2207. break;
  2208. case CMD_INVALID:
  2209. printk(KERN_WARNING "cciss: cmd 0x%02x is "
  2210. "reported invalid\n", c->Request.CDB[0]);
  2211. return_status = IO_ERROR;
  2212. break;
  2213. case CMD_PROTOCOL_ERR:
  2214. printk(KERN_WARNING "cciss: cmd 0x%02x has "
  2215. "protocol error \n", c->Request.CDB[0]);
  2216. return_status = IO_ERROR;
  2217. break;
  2218. case CMD_HARDWARE_ERR:
  2219. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2220. " hardware error\n", c->Request.CDB[0]);
  2221. return_status = IO_ERROR;
  2222. break;
  2223. case CMD_CONNECTION_LOST:
  2224. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2225. "connection lost\n", c->Request.CDB[0]);
  2226. return_status = IO_ERROR;
  2227. break;
  2228. case CMD_ABORTED:
  2229. printk(KERN_WARNING "cciss: cmd 0x%02x was "
  2230. "aborted\n", c->Request.CDB[0]);
  2231. return_status = IO_ERROR;
  2232. break;
  2233. case CMD_ABORT_FAILED:
  2234. printk(KERN_WARNING "cciss: cmd 0x%02x reports "
  2235. "abort failed\n", c->Request.CDB[0]);
  2236. return_status = IO_ERROR;
  2237. break;
  2238. case CMD_UNSOLICITED_ABORT:
  2239. printk(KERN_WARNING
  2240. "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
  2241. c->Request.CDB[0]);
  2242. return_status = IO_NEEDS_RETRY;
  2243. break;
  2244. default:
  2245. printk(KERN_WARNING "cciss: cmd 0x%02x returned "
  2246. "unknown status %x\n", c->Request.CDB[0],
  2247. c->err_info->CommandStatus);
  2248. return_status = IO_ERROR;
  2249. }
  2250. return return_status;
  2251. }
  2252. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  2253. int attempt_retry)
  2254. {
  2255. DECLARE_COMPLETION_ONSTACK(wait);
  2256. u64bit buff_dma_handle;
  2257. unsigned long flags;
  2258. int return_status = IO_OK;
  2259. resend_cmd2:
  2260. c->waiting = &wait;
  2261. /* Put the request on the tail of the queue and send it */
  2262. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2263. addQ(&h->reqQ, c);
  2264. h->Qdepth++;
  2265. start_io(h);
  2266. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  2267. wait_for_completion(&wait);
  2268. if (c->err_info->CommandStatus == 0 || !attempt_retry)
  2269. goto command_done;
  2270. return_status = process_sendcmd_error(h, c);
  2271. if (return_status == IO_NEEDS_RETRY &&
  2272. c->retry_count < MAX_CMD_RETRIES) {
  2273. printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
  2274. c->Request.CDB[0]);
  2275. c->retry_count++;
  2276. /* erase the old error information */
  2277. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2278. return_status = IO_OK;
  2279. INIT_COMPLETION(wait);
  2280. goto resend_cmd2;
  2281. }
  2282. command_done:
  2283. /* unlock the buffers from DMA */
  2284. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2285. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2286. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2287. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2288. return return_status;
  2289. }
  2290. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  2291. __u8 page_code, unsigned char scsi3addr[],
  2292. int cmd_type)
  2293. {
  2294. ctlr_info_t *h = hba[ctlr];
  2295. CommandList_struct *c;
  2296. int return_status;
  2297. c = cmd_alloc(h, 0);
  2298. if (!c)
  2299. return -ENOMEM;
  2300. return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2301. scsi3addr, cmd_type);
  2302. if (return_status == IO_OK)
  2303. return_status = sendcmd_withirq_core(h, c, 1);
  2304. cmd_free(h, c, 0);
  2305. return return_status;
  2306. }
  2307. static void cciss_geometry_inquiry(int ctlr, int logvol,
  2308. int withirq, sector_t total_size,
  2309. unsigned int block_size,
  2310. InquiryData_struct *inq_buff,
  2311. drive_info_struct *drv)
  2312. {
  2313. int return_code;
  2314. unsigned long t;
  2315. unsigned char scsi3addr[8];
  2316. memset(inq_buff, 0, sizeof(InquiryData_struct));
  2317. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2318. if (withirq)
  2319. return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
  2320. inq_buff, sizeof(*inq_buff),
  2321. 0xC1, scsi3addr, TYPE_CMD);
  2322. else
  2323. return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
  2324. sizeof(*inq_buff), 0xC1, scsi3addr,
  2325. TYPE_CMD);
  2326. if (return_code == IO_OK) {
  2327. if (inq_buff->data_byte[8] == 0xFF) {
  2328. printk(KERN_WARNING
  2329. "cciss: reading geometry failed, volume "
  2330. "does not support reading geometry\n");
  2331. drv->heads = 255;
  2332. drv->sectors = 32; // Sectors per track
  2333. drv->cylinders = total_size + 1;
  2334. drv->raid_level = RAID_UNKNOWN;
  2335. } else {
  2336. drv->heads = inq_buff->data_byte[6];
  2337. drv->sectors = inq_buff->data_byte[7];
  2338. drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
  2339. drv->cylinders += inq_buff->data_byte[5];
  2340. drv->raid_level = inq_buff->data_byte[8];
  2341. }
  2342. drv->block_size = block_size;
  2343. drv->nr_blocks = total_size + 1;
  2344. t = drv->heads * drv->sectors;
  2345. if (t > 1) {
  2346. sector_t real_size = total_size + 1;
  2347. unsigned long rem = sector_div(real_size, t);
  2348. if (rem)
  2349. real_size++;
  2350. drv->cylinders = real_size;
  2351. }
  2352. } else { /* Get geometry failed */
  2353. printk(KERN_WARNING "cciss: reading geometry failed\n");
  2354. }
  2355. }
  2356. static void
  2357. cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
  2358. unsigned int *block_size)
  2359. {
  2360. ReadCapdata_struct *buf;
  2361. int return_code;
  2362. unsigned char scsi3addr[8];
  2363. buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
  2364. if (!buf) {
  2365. printk(KERN_WARNING "cciss: out of memory\n");
  2366. return;
  2367. }
  2368. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2369. if (withirq)
  2370. return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
  2371. ctlr, buf, sizeof(ReadCapdata_struct),
  2372. 0, scsi3addr, TYPE_CMD);
  2373. else
  2374. return_code = sendcmd(CCISS_READ_CAPACITY,
  2375. ctlr, buf, sizeof(ReadCapdata_struct),
  2376. 0, scsi3addr, TYPE_CMD);
  2377. if (return_code == IO_OK) {
  2378. *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
  2379. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2380. } else { /* read capacity command failed */
  2381. printk(KERN_WARNING "cciss: read capacity failed\n");
  2382. *total_size = 0;
  2383. *block_size = BLOCK_SIZE;
  2384. }
  2385. kfree(buf);
  2386. }
  2387. static void
  2388. cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
  2389. {
  2390. ReadCapdata_struct_16 *buf;
  2391. int return_code;
  2392. unsigned char scsi3addr[8];
  2393. buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
  2394. if (!buf) {
  2395. printk(KERN_WARNING "cciss: out of memory\n");
  2396. return;
  2397. }
  2398. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2399. if (withirq) {
  2400. return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
  2401. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2402. 0, scsi3addr, TYPE_CMD);
  2403. }
  2404. else {
  2405. return_code = sendcmd(CCISS_READ_CAPACITY_16,
  2406. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2407. 0, scsi3addr, TYPE_CMD);
  2408. }
  2409. if (return_code == IO_OK) {
  2410. *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
  2411. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2412. } else { /* read capacity command failed */
  2413. printk(KERN_WARNING "cciss: read capacity failed\n");
  2414. *total_size = 0;
  2415. *block_size = BLOCK_SIZE;
  2416. }
  2417. printk(KERN_INFO " blocks= %llu block_size= %d\n",
  2418. (unsigned long long)*total_size+1, *block_size);
  2419. kfree(buf);
  2420. }
  2421. static int cciss_revalidate(struct gendisk *disk)
  2422. {
  2423. ctlr_info_t *h = get_host(disk);
  2424. drive_info_struct *drv = get_drv(disk);
  2425. int logvol;
  2426. int FOUND = 0;
  2427. unsigned int block_size;
  2428. sector_t total_size;
  2429. InquiryData_struct *inq_buff = NULL;
  2430. for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
  2431. if (memcmp(h->drv[logvol].LunID, drv->LunID,
  2432. sizeof(drv->LunID)) == 0) {
  2433. FOUND = 1;
  2434. break;
  2435. }
  2436. }
  2437. if (!FOUND)
  2438. return 1;
  2439. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  2440. if (inq_buff == NULL) {
  2441. printk(KERN_WARNING "cciss: out of memory\n");
  2442. return 1;
  2443. }
  2444. if (h->cciss_read == CCISS_READ_10) {
  2445. cciss_read_capacity(h->ctlr, logvol, 1,
  2446. &total_size, &block_size);
  2447. } else {
  2448. cciss_read_capacity_16(h->ctlr, logvol, 1,
  2449. &total_size, &block_size);
  2450. }
  2451. cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
  2452. inq_buff, drv);
  2453. blk_queue_logical_block_size(drv->queue, drv->block_size);
  2454. set_capacity(disk, drv->nr_blocks);
  2455. kfree(inq_buff);
  2456. return 0;
  2457. }
  2458. /*
  2459. * Wait polling for a command to complete.
  2460. * The memory mapped FIFO is polled for the completion.
  2461. * Used only at init time, interrupts from the HBA are disabled.
  2462. */
  2463. static unsigned long pollcomplete(int ctlr)
  2464. {
  2465. unsigned long done;
  2466. int i;
  2467. /* Wait (up to 20 seconds) for a command to complete */
  2468. for (i = 20 * HZ; i > 0; i--) {
  2469. done = hba[ctlr]->access.command_completed(hba[ctlr]);
  2470. if (done == FIFO_EMPTY)
  2471. schedule_timeout_uninterruptible(1);
  2472. else
  2473. return done;
  2474. }
  2475. /* Invalid address to tell caller we ran out of time */
  2476. return 1;
  2477. }
  2478. /* Send command c to controller h and poll for it to complete.
  2479. * Turns interrupts off on the board. Used at driver init time
  2480. * and during SCSI error recovery.
  2481. */
  2482. static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
  2483. {
  2484. int i;
  2485. unsigned long complete;
  2486. int status = IO_ERROR;
  2487. u64bit buff_dma_handle;
  2488. resend_cmd1:
  2489. /* Disable interrupt on the board. */
  2490. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  2491. /* Make sure there is room in the command FIFO */
  2492. /* Actually it should be completely empty at this time */
  2493. /* unless we are in here doing error handling for the scsi */
  2494. /* tape side of the driver. */
  2495. for (i = 200000; i > 0; i--) {
  2496. /* if fifo isn't full go */
  2497. if (!(h->access.fifo_full(h)))
  2498. break;
  2499. udelay(10);
  2500. printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
  2501. " waiting!\n", h->ctlr);
  2502. }
  2503. h->access.submit_command(h, c); /* Send the cmd */
  2504. do {
  2505. complete = pollcomplete(h->ctlr);
  2506. #ifdef CCISS_DEBUG
  2507. printk(KERN_DEBUG "cciss: command completed\n");
  2508. #endif /* CCISS_DEBUG */
  2509. if (complete == 1) {
  2510. printk(KERN_WARNING
  2511. "cciss cciss%d: SendCmd Timeout out, "
  2512. "No command list address returned!\n", h->ctlr);
  2513. status = IO_ERROR;
  2514. break;
  2515. }
  2516. /* Make sure it's the command we're expecting. */
  2517. if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
  2518. printk(KERN_WARNING "cciss%d: Unexpected command "
  2519. "completion.\n", h->ctlr);
  2520. continue;
  2521. }
  2522. /* It is our command. If no error, we're done. */
  2523. if (!(complete & CISS_ERROR_BIT)) {
  2524. status = IO_OK;
  2525. break;
  2526. }
  2527. /* There is an error... */
  2528. /* if data overrun or underun on Report command ignore it */
  2529. if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
  2530. (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
  2531. (c->Request.CDB[0] == CISS_INQUIRY)) &&
  2532. ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
  2533. (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
  2534. complete = c->busaddr;
  2535. status = IO_OK;
  2536. break;
  2537. }
  2538. if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
  2539. printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
  2540. h->ctlr, c);
  2541. if (c->retry_count < MAX_CMD_RETRIES) {
  2542. printk(KERN_WARNING "cciss%d: retrying %p\n",
  2543. h->ctlr, c);
  2544. c->retry_count++;
  2545. /* erase the old error information */
  2546. memset(c->err_info, 0, sizeof(c->err_info));
  2547. goto resend_cmd1;
  2548. }
  2549. printk(KERN_WARNING "cciss%d: retried %p too many "
  2550. "times\n", h->ctlr, c);
  2551. status = IO_ERROR;
  2552. break;
  2553. }
  2554. if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
  2555. printk(KERN_WARNING "cciss%d: command could not be "
  2556. "aborted.\n", h->ctlr);
  2557. status = IO_ERROR;
  2558. break;
  2559. }
  2560. if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
  2561. status = check_target_status(h, c);
  2562. break;
  2563. }
  2564. printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
  2565. printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
  2566. c->Request.CDB[0], c->err_info->CommandStatus);
  2567. status = IO_ERROR;
  2568. break;
  2569. } while (1);
  2570. /* unlock the data buffer from DMA */
  2571. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2572. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2573. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2574. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2575. return status;
  2576. }
  2577. /*
  2578. * Send a command to the controller, and wait for it to complete.
  2579. * Used at init time, and during SCSI error recovery.
  2580. */
  2581. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  2582. __u8 page_code, unsigned char *scsi3addr, int cmd_type)
  2583. {
  2584. CommandList_struct *c;
  2585. int status;
  2586. c = cmd_alloc(hba[ctlr], 1);
  2587. if (!c) {
  2588. printk(KERN_WARNING "cciss: unable to get memory");
  2589. return IO_ERROR;
  2590. }
  2591. status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2592. scsi3addr, cmd_type);
  2593. if (status == IO_OK)
  2594. status = sendcmd_core(hba[ctlr], c);
  2595. cmd_free(hba[ctlr], c, 1);
  2596. return status;
  2597. }
  2598. /*
  2599. * Map (physical) PCI mem into (virtual) kernel space
  2600. */
  2601. static void __iomem *remap_pci_mem(ulong base, ulong size)
  2602. {
  2603. ulong page_base = ((ulong) base) & PAGE_MASK;
  2604. ulong page_offs = ((ulong) base) - page_base;
  2605. void __iomem *page_remapped = ioremap(page_base, page_offs + size);
  2606. return page_remapped ? (page_remapped + page_offs) : NULL;
  2607. }
  2608. /*
  2609. * Takes jobs of the Q and sends them to the hardware, then puts it on
  2610. * the Q to wait for completion.
  2611. */
  2612. static void start_io(ctlr_info_t *h)
  2613. {
  2614. CommandList_struct *c;
  2615. while (!hlist_empty(&h->reqQ)) {
  2616. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  2617. /* can't do anything if fifo is full */
  2618. if ((h->access.fifo_full(h))) {
  2619. printk(KERN_WARNING "cciss: fifo full\n");
  2620. break;
  2621. }
  2622. /* Get the first entry from the Request Q */
  2623. removeQ(c);
  2624. h->Qdepth--;
  2625. /* Tell the controller execute command */
  2626. h->access.submit_command(h, c);
  2627. /* Put job onto the completed Q */
  2628. addQ(&h->cmpQ, c);
  2629. }
  2630. }
  2631. /* Assumes that CCISS_LOCK(h->ctlr) is held. */
  2632. /* Zeros out the error record and then resends the command back */
  2633. /* to the controller */
  2634. static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
  2635. {
  2636. /* erase the old error information */
  2637. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2638. /* add it to software queue and then send it to the controller */
  2639. addQ(&h->reqQ, c);
  2640. h->Qdepth++;
  2641. if (h->Qdepth > h->maxQsinceinit)
  2642. h->maxQsinceinit = h->Qdepth;
  2643. start_io(h);
  2644. }
  2645. static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
  2646. unsigned int msg_byte, unsigned int host_byte,
  2647. unsigned int driver_byte)
  2648. {
  2649. /* inverse of macros in scsi.h */
  2650. return (scsi_status_byte & 0xff) |
  2651. ((msg_byte & 0xff) << 8) |
  2652. ((host_byte & 0xff) << 16) |
  2653. ((driver_byte & 0xff) << 24);
  2654. }
  2655. static inline int evaluate_target_status(ctlr_info_t *h,
  2656. CommandList_struct *cmd, int *retry_cmd)
  2657. {
  2658. unsigned char sense_key;
  2659. unsigned char status_byte, msg_byte, host_byte, driver_byte;
  2660. int error_value;
  2661. *retry_cmd = 0;
  2662. /* If we get in here, it means we got "target status", that is, scsi status */
  2663. status_byte = cmd->err_info->ScsiStatus;
  2664. driver_byte = DRIVER_OK;
  2665. msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
  2666. if (blk_pc_request(cmd->rq))
  2667. host_byte = DID_PASSTHROUGH;
  2668. else
  2669. host_byte = DID_OK;
  2670. error_value = make_status_bytes(status_byte, msg_byte,
  2671. host_byte, driver_byte);
  2672. if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
  2673. if (!blk_pc_request(cmd->rq))
  2674. printk(KERN_WARNING "cciss: cmd %p "
  2675. "has SCSI Status 0x%x\n",
  2676. cmd, cmd->err_info->ScsiStatus);
  2677. return error_value;
  2678. }
  2679. /* check the sense key */
  2680. sense_key = 0xf & cmd->err_info->SenseInfo[2];
  2681. /* no status or recovered error */
  2682. if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
  2683. error_value = 0;
  2684. if (check_for_unit_attention(h, cmd)) {
  2685. *retry_cmd = !blk_pc_request(cmd->rq);
  2686. return 0;
  2687. }
  2688. if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
  2689. if (error_value != 0)
  2690. printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
  2691. " sense key = 0x%x\n", cmd, sense_key);
  2692. return error_value;
  2693. }
  2694. /* SG_IO or similar, copy sense data back */
  2695. if (cmd->rq->sense) {
  2696. if (cmd->rq->sense_len > cmd->err_info->SenseLen)
  2697. cmd->rq->sense_len = cmd->err_info->SenseLen;
  2698. memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
  2699. cmd->rq->sense_len);
  2700. } else
  2701. cmd->rq->sense_len = 0;
  2702. return error_value;
  2703. }
  2704. /* checks the status of the job and calls complete buffers to mark all
  2705. * buffers for the completed job. Note that this function does not need
  2706. * to hold the hba/queue lock.
  2707. */
  2708. static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
  2709. int timeout)
  2710. {
  2711. int retry_cmd = 0;
  2712. struct request *rq = cmd->rq;
  2713. rq->errors = 0;
  2714. if (timeout)
  2715. rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
  2716. if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
  2717. goto after_error_processing;
  2718. switch (cmd->err_info->CommandStatus) {
  2719. case CMD_TARGET_STATUS:
  2720. rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
  2721. break;
  2722. case CMD_DATA_UNDERRUN:
  2723. if (blk_fs_request(cmd->rq)) {
  2724. printk(KERN_WARNING "cciss: cmd %p has"
  2725. " completed with data underrun "
  2726. "reported\n", cmd);
  2727. cmd->rq->resid_len = cmd->err_info->ResidualCnt;
  2728. }
  2729. break;
  2730. case CMD_DATA_OVERRUN:
  2731. if (blk_fs_request(cmd->rq))
  2732. printk(KERN_WARNING "cciss: cmd %p has"
  2733. " completed with data overrun "
  2734. "reported\n", cmd);
  2735. break;
  2736. case CMD_INVALID:
  2737. printk(KERN_WARNING "cciss: cmd %p is "
  2738. "reported invalid\n", cmd);
  2739. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2740. cmd->err_info->CommandStatus, DRIVER_OK,
  2741. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2742. break;
  2743. case CMD_PROTOCOL_ERR:
  2744. printk(KERN_WARNING "cciss: cmd %p has "
  2745. "protocol error \n", cmd);
  2746. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2747. cmd->err_info->CommandStatus, DRIVER_OK,
  2748. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2749. break;
  2750. case CMD_HARDWARE_ERR:
  2751. printk(KERN_WARNING "cciss: cmd %p had "
  2752. " hardware error\n", cmd);
  2753. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2754. cmd->err_info->CommandStatus, DRIVER_OK,
  2755. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2756. break;
  2757. case CMD_CONNECTION_LOST:
  2758. printk(KERN_WARNING "cciss: cmd %p had "
  2759. "connection lost\n", cmd);
  2760. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2761. cmd->err_info->CommandStatus, DRIVER_OK,
  2762. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2763. break;
  2764. case CMD_ABORTED:
  2765. printk(KERN_WARNING "cciss: cmd %p was "
  2766. "aborted\n", cmd);
  2767. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2768. cmd->err_info->CommandStatus, DRIVER_OK,
  2769. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2770. break;
  2771. case CMD_ABORT_FAILED:
  2772. printk(KERN_WARNING "cciss: cmd %p reports "
  2773. "abort failed\n", cmd);
  2774. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2775. cmd->err_info->CommandStatus, DRIVER_OK,
  2776. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2777. break;
  2778. case CMD_UNSOLICITED_ABORT:
  2779. printk(KERN_WARNING "cciss%d: unsolicited "
  2780. "abort %p\n", h->ctlr, cmd);
  2781. if (cmd->retry_count < MAX_CMD_RETRIES) {
  2782. retry_cmd = 1;
  2783. printk(KERN_WARNING
  2784. "cciss%d: retrying %p\n", h->ctlr, cmd);
  2785. cmd->retry_count++;
  2786. } else
  2787. printk(KERN_WARNING
  2788. "cciss%d: %p retried too "
  2789. "many times\n", h->ctlr, cmd);
  2790. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2791. cmd->err_info->CommandStatus, DRIVER_OK,
  2792. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2793. break;
  2794. case CMD_TIMEOUT:
  2795. printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
  2796. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2797. cmd->err_info->CommandStatus, DRIVER_OK,
  2798. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2799. break;
  2800. default:
  2801. printk(KERN_WARNING "cciss: cmd %p returned "
  2802. "unknown status %x\n", cmd,
  2803. cmd->err_info->CommandStatus);
  2804. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2805. cmd->err_info->CommandStatus, DRIVER_OK,
  2806. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2807. }
  2808. after_error_processing:
  2809. /* We need to return this command */
  2810. if (retry_cmd) {
  2811. resend_cciss_cmd(h, cmd);
  2812. return;
  2813. }
  2814. cmd->rq->completion_data = cmd;
  2815. blk_complete_request(cmd->rq);
  2816. }
  2817. /*
  2818. * Get a request and submit it to the controller.
  2819. */
  2820. static void do_cciss_request(struct request_queue *q)
  2821. {
  2822. ctlr_info_t *h = q->queuedata;
  2823. CommandList_struct *c;
  2824. sector_t start_blk;
  2825. int seg;
  2826. struct request *creq;
  2827. u64bit temp64;
  2828. struct scatterlist tmp_sg[MAXSGENTRIES];
  2829. drive_info_struct *drv;
  2830. int i, dir;
  2831. /* We call start_io here in case there is a command waiting on the
  2832. * queue that has not been sent.
  2833. */
  2834. if (blk_queue_plugged(q))
  2835. goto startio;
  2836. queue:
  2837. creq = blk_peek_request(q);
  2838. if (!creq)
  2839. goto startio;
  2840. BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
  2841. if ((c = cmd_alloc(h, 1)) == NULL)
  2842. goto full;
  2843. blk_start_request(creq);
  2844. spin_unlock_irq(q->queue_lock);
  2845. c->cmd_type = CMD_RWREQ;
  2846. c->rq = creq;
  2847. /* fill in the request */
  2848. drv = creq->rq_disk->private_data;
  2849. c->Header.ReplyQueue = 0; // unused in simple mode
  2850. /* got command from pool, so use the command block index instead */
  2851. /* for direct lookups. */
  2852. /* The first 2 bits are reserved for controller error reporting. */
  2853. c->Header.Tag.lower = (c->cmdindex << 3);
  2854. c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
  2855. memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
  2856. c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
  2857. c->Request.Type.Type = TYPE_CMD; // It is a command.
  2858. c->Request.Type.Attribute = ATTR_SIMPLE;
  2859. c->Request.Type.Direction =
  2860. (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
  2861. c->Request.Timeout = 0; // Don't time out
  2862. c->Request.CDB[0] =
  2863. (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
  2864. start_blk = blk_rq_pos(creq);
  2865. #ifdef CCISS_DEBUG
  2866. printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
  2867. (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
  2868. #endif /* CCISS_DEBUG */
  2869. sg_init_table(tmp_sg, MAXSGENTRIES);
  2870. seg = blk_rq_map_sg(q, creq, tmp_sg);
  2871. /* get the DMA records for the setup */
  2872. if (c->Request.Type.Direction == XFER_READ)
  2873. dir = PCI_DMA_FROMDEVICE;
  2874. else
  2875. dir = PCI_DMA_TODEVICE;
  2876. for (i = 0; i < seg; i++) {
  2877. c->SG[i].Len = tmp_sg[i].length;
  2878. temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
  2879. tmp_sg[i].offset,
  2880. tmp_sg[i].length, dir);
  2881. c->SG[i].Addr.lower = temp64.val32.lower;
  2882. c->SG[i].Addr.upper = temp64.val32.upper;
  2883. c->SG[i].Ext = 0; // we are not chaining
  2884. }
  2885. /* track how many SG entries we are using */
  2886. if (seg > h->maxSG)
  2887. h->maxSG = seg;
  2888. #ifdef CCISS_DEBUG
  2889. printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
  2890. blk_rq_sectors(creq), seg);
  2891. #endif /* CCISS_DEBUG */
  2892. c->Header.SGList = c->Header.SGTotal = seg;
  2893. if (likely(blk_fs_request(creq))) {
  2894. if(h->cciss_read == CCISS_READ_10) {
  2895. c->Request.CDB[1] = 0;
  2896. c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
  2897. c->Request.CDB[3] = (start_blk >> 16) & 0xff;
  2898. c->Request.CDB[4] = (start_blk >> 8) & 0xff;
  2899. c->Request.CDB[5] = start_blk & 0xff;
  2900. c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
  2901. c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
  2902. c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
  2903. c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
  2904. } else {
  2905. u32 upper32 = upper_32_bits(start_blk);
  2906. c->Request.CDBLen = 16;
  2907. c->Request.CDB[1]= 0;
  2908. c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
  2909. c->Request.CDB[3]= (upper32 >> 16) & 0xff;
  2910. c->Request.CDB[4]= (upper32 >> 8) & 0xff;
  2911. c->Request.CDB[5]= upper32 & 0xff;
  2912. c->Request.CDB[6]= (start_blk >> 24) & 0xff;
  2913. c->Request.CDB[7]= (start_blk >> 16) & 0xff;
  2914. c->Request.CDB[8]= (start_blk >> 8) & 0xff;
  2915. c->Request.CDB[9]= start_blk & 0xff;
  2916. c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
  2917. c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
  2918. c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
  2919. c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
  2920. c->Request.CDB[14] = c->Request.CDB[15] = 0;
  2921. }
  2922. } else if (blk_pc_request(creq)) {
  2923. c->Request.CDBLen = creq->cmd_len;
  2924. memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
  2925. } else {
  2926. printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
  2927. BUG();
  2928. }
  2929. spin_lock_irq(q->queue_lock);
  2930. addQ(&h->reqQ, c);
  2931. h->Qdepth++;
  2932. if (h->Qdepth > h->maxQsinceinit)
  2933. h->maxQsinceinit = h->Qdepth;
  2934. goto queue;
  2935. full:
  2936. blk_stop_queue(q);
  2937. startio:
  2938. /* We will already have the driver lock here so not need
  2939. * to lock it.
  2940. */
  2941. start_io(h);
  2942. }
  2943. static inline unsigned long get_next_completion(ctlr_info_t *h)
  2944. {
  2945. return h->access.command_completed(h);
  2946. }
  2947. static inline int interrupt_pending(ctlr_info_t *h)
  2948. {
  2949. return h->access.intr_pending(h);
  2950. }
  2951. static inline long interrupt_not_for_us(ctlr_info_t *h)
  2952. {
  2953. return (((h->access.intr_pending(h) == 0) ||
  2954. (h->interrupts_enabled == 0)));
  2955. }
  2956. static irqreturn_t do_cciss_intr(int irq, void *dev_id)
  2957. {
  2958. ctlr_info_t *h = dev_id;
  2959. CommandList_struct *c;
  2960. unsigned long flags;
  2961. __u32 a, a1, a2;
  2962. if (interrupt_not_for_us(h))
  2963. return IRQ_NONE;
  2964. /*
  2965. * If there are completed commands in the completion queue,
  2966. * we had better do something about it.
  2967. */
  2968. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2969. while (interrupt_pending(h)) {
  2970. while ((a = get_next_completion(h)) != FIFO_EMPTY) {
  2971. a1 = a;
  2972. if ((a & 0x04)) {
  2973. a2 = (a >> 3);
  2974. if (a2 >= h->nr_cmds) {
  2975. printk(KERN_WARNING
  2976. "cciss: controller cciss%d failed, stopping.\n",
  2977. h->ctlr);
  2978. fail_all_cmds(h->ctlr);
  2979. return IRQ_HANDLED;
  2980. }
  2981. c = h->cmd_pool + a2;
  2982. a = c->busaddr;
  2983. } else {
  2984. struct hlist_node *tmp;
  2985. a &= ~3;
  2986. c = NULL;
  2987. hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
  2988. if (c->busaddr == a)
  2989. break;
  2990. }
  2991. }
  2992. /*
  2993. * If we've found the command, take it off the
  2994. * completion Q and free it
  2995. */
  2996. if (c && c->busaddr == a) {
  2997. removeQ(c);
  2998. if (c->cmd_type == CMD_RWREQ) {
  2999. complete_command(h, c, 0);
  3000. } else if (c->cmd_type == CMD_IOCTL_PEND) {
  3001. complete(c->waiting);
  3002. }
  3003. # ifdef CONFIG_CISS_SCSI_TAPE
  3004. else if (c->cmd_type == CMD_SCSI)
  3005. complete_scsi_command(c, 0, a1);
  3006. # endif
  3007. continue;
  3008. }
  3009. }
  3010. }
  3011. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  3012. return IRQ_HANDLED;
  3013. }
  3014. /**
  3015. * add_to_scan_list() - add controller to rescan queue
  3016. * @h: Pointer to the controller.
  3017. *
  3018. * Adds the controller to the rescan queue if not already on the queue.
  3019. *
  3020. * returns 1 if added to the queue, 0 if skipped (could be on the
  3021. * queue already, or the controller could be initializing or shutting
  3022. * down).
  3023. **/
  3024. static int add_to_scan_list(struct ctlr_info *h)
  3025. {
  3026. struct ctlr_info *test_h;
  3027. int found = 0;
  3028. int ret = 0;
  3029. if (h->busy_initializing)
  3030. return 0;
  3031. if (!mutex_trylock(&h->busy_shutting_down))
  3032. return 0;
  3033. mutex_lock(&scan_mutex);
  3034. list_for_each_entry(test_h, &scan_q, scan_list) {
  3035. if (test_h == h) {
  3036. found = 1;
  3037. break;
  3038. }
  3039. }
  3040. if (!found && !h->busy_scanning) {
  3041. INIT_COMPLETION(h->scan_wait);
  3042. list_add_tail(&h->scan_list, &scan_q);
  3043. ret = 1;
  3044. }
  3045. mutex_unlock(&scan_mutex);
  3046. mutex_unlock(&h->busy_shutting_down);
  3047. return ret;
  3048. }
  3049. /**
  3050. * remove_from_scan_list() - remove controller from rescan queue
  3051. * @h: Pointer to the controller.
  3052. *
  3053. * Removes the controller from the rescan queue if present. Blocks if
  3054. * the controller is currently conducting a rescan.
  3055. **/
  3056. static void remove_from_scan_list(struct ctlr_info *h)
  3057. {
  3058. struct ctlr_info *test_h, *tmp_h;
  3059. int scanning = 0;
  3060. mutex_lock(&scan_mutex);
  3061. list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
  3062. if (test_h == h) {
  3063. list_del(&h->scan_list);
  3064. complete_all(&h->scan_wait);
  3065. mutex_unlock(&scan_mutex);
  3066. return;
  3067. }
  3068. }
  3069. if (&h->busy_scanning)
  3070. scanning = 0;
  3071. mutex_unlock(&scan_mutex);
  3072. if (scanning)
  3073. wait_for_completion(&h->scan_wait);
  3074. }
  3075. /**
  3076. * scan_thread() - kernel thread used to rescan controllers
  3077. * @data: Ignored.
  3078. *
  3079. * A kernel thread used scan for drive topology changes on
  3080. * controllers. The thread processes only one controller at a time
  3081. * using a queue. Controllers are added to the queue using
  3082. * add_to_scan_list() and removed from the queue either after done
  3083. * processing or using remove_from_scan_list().
  3084. *
  3085. * returns 0.
  3086. **/
  3087. static int scan_thread(void *data)
  3088. {
  3089. struct ctlr_info *h;
  3090. while (1) {
  3091. set_current_state(TASK_INTERRUPTIBLE);
  3092. schedule();
  3093. if (kthread_should_stop())
  3094. break;
  3095. while (1) {
  3096. mutex_lock(&scan_mutex);
  3097. if (list_empty(&scan_q)) {
  3098. mutex_unlock(&scan_mutex);
  3099. break;
  3100. }
  3101. h = list_entry(scan_q.next,
  3102. struct ctlr_info,
  3103. scan_list);
  3104. list_del(&h->scan_list);
  3105. h->busy_scanning = 1;
  3106. mutex_unlock(&scan_mutex);
  3107. if (h) {
  3108. rebuild_lun_table(h, 0, 0);
  3109. complete_all(&h->scan_wait);
  3110. mutex_lock(&scan_mutex);
  3111. h->busy_scanning = 0;
  3112. mutex_unlock(&scan_mutex);
  3113. }
  3114. }
  3115. }
  3116. return 0;
  3117. }
  3118. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
  3119. {
  3120. if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
  3121. return 0;
  3122. switch (c->err_info->SenseInfo[12]) {
  3123. case STATE_CHANGED:
  3124. printk(KERN_WARNING "cciss%d: a state change "
  3125. "detected, command retried\n", h->ctlr);
  3126. return 1;
  3127. break;
  3128. case LUN_FAILED:
  3129. printk(KERN_WARNING "cciss%d: LUN failure "
  3130. "detected, action required\n", h->ctlr);
  3131. return 1;
  3132. break;
  3133. case REPORT_LUNS_CHANGED:
  3134. printk(KERN_WARNING "cciss%d: report LUN data "
  3135. "changed\n", h->ctlr);
  3136. add_to_scan_list(h);
  3137. wake_up_process(cciss_scan_thread);
  3138. return 1;
  3139. break;
  3140. case POWER_OR_RESET:
  3141. printk(KERN_WARNING "cciss%d: a power on "
  3142. "or device reset detected\n", h->ctlr);
  3143. return 1;
  3144. break;
  3145. case UNIT_ATTENTION_CLEARED:
  3146. printk(KERN_WARNING "cciss%d: unit attention "
  3147. "cleared by another initiator\n", h->ctlr);
  3148. return 1;
  3149. break;
  3150. default:
  3151. printk(KERN_WARNING "cciss%d: unknown "
  3152. "unit attention detected\n", h->ctlr);
  3153. return 1;
  3154. }
  3155. }
  3156. /*
  3157. * We cannot read the structure directly, for portability we must use
  3158. * the io functions.
  3159. * This is for debug only.
  3160. */
  3161. #ifdef CCISS_DEBUG
  3162. static void print_cfg_table(CfgTable_struct *tb)
  3163. {
  3164. int i;
  3165. char temp_name[17];
  3166. printk("Controller Configuration information\n");
  3167. printk("------------------------------------\n");
  3168. for (i = 0; i < 4; i++)
  3169. temp_name[i] = readb(&(tb->Signature[i]));
  3170. temp_name[4] = '\0';
  3171. printk(" Signature = %s\n", temp_name);
  3172. printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
  3173. printk(" Transport methods supported = 0x%x\n",
  3174. readl(&(tb->TransportSupport)));
  3175. printk(" Transport methods active = 0x%x\n",
  3176. readl(&(tb->TransportActive)));
  3177. printk(" Requested transport Method = 0x%x\n",
  3178. readl(&(tb->HostWrite.TransportRequest)));
  3179. printk(" Coalesce Interrupt Delay = 0x%x\n",
  3180. readl(&(tb->HostWrite.CoalIntDelay)));
  3181. printk(" Coalesce Interrupt Count = 0x%x\n",
  3182. readl(&(tb->HostWrite.CoalIntCount)));
  3183. printk(" Max outstanding commands = 0x%d\n",
  3184. readl(&(tb->CmdsOutMax)));
  3185. printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
  3186. for (i = 0; i < 16; i++)
  3187. temp_name[i] = readb(&(tb->ServerName[i]));
  3188. temp_name[16] = '\0';
  3189. printk(" Server Name = %s\n", temp_name);
  3190. printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
  3191. }
  3192. #endif /* CCISS_DEBUG */
  3193. static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
  3194. {
  3195. int i, offset, mem_type, bar_type;
  3196. if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
  3197. return 0;
  3198. offset = 0;
  3199. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3200. bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
  3201. if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
  3202. offset += 4;
  3203. else {
  3204. mem_type = pci_resource_flags(pdev, i) &
  3205. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  3206. switch (mem_type) {
  3207. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  3208. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  3209. offset += 4; /* 32 bit */
  3210. break;
  3211. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  3212. offset += 8;
  3213. break;
  3214. default: /* reserved in PCI 2.2 */
  3215. printk(KERN_WARNING
  3216. "Base address is invalid\n");
  3217. return -1;
  3218. break;
  3219. }
  3220. }
  3221. if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
  3222. return i + 1;
  3223. }
  3224. return -1;
  3225. }
  3226. /* If MSI/MSI-X is supported by the kernel we will try to enable it on
  3227. * controllers that are capable. If not, we use IO-APIC mode.
  3228. */
  3229. static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
  3230. struct pci_dev *pdev, __u32 board_id)
  3231. {
  3232. #ifdef CONFIG_PCI_MSI
  3233. int err;
  3234. struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
  3235. {0, 2}, {0, 3}
  3236. };
  3237. /* Some boards advertise MSI but don't really support it */
  3238. if ((board_id == 0x40700E11) ||
  3239. (board_id == 0x40800E11) ||
  3240. (board_id == 0x40820E11) || (board_id == 0x40830E11))
  3241. goto default_int_mode;
  3242. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
  3243. err = pci_enable_msix(pdev, cciss_msix_entries, 4);
  3244. if (!err) {
  3245. c->intr[0] = cciss_msix_entries[0].vector;
  3246. c->intr[1] = cciss_msix_entries[1].vector;
  3247. c->intr[2] = cciss_msix_entries[2].vector;
  3248. c->intr[3] = cciss_msix_entries[3].vector;
  3249. c->msix_vector = 1;
  3250. return;
  3251. }
  3252. if (err > 0) {
  3253. printk(KERN_WARNING "cciss: only %d MSI-X vectors "
  3254. "available\n", err);
  3255. goto default_int_mode;
  3256. } else {
  3257. printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
  3258. err);
  3259. goto default_int_mode;
  3260. }
  3261. }
  3262. if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
  3263. if (!pci_enable_msi(pdev)) {
  3264. c->msi_vector = 1;
  3265. } else {
  3266. printk(KERN_WARNING "cciss: MSI init failed\n");
  3267. }
  3268. }
  3269. default_int_mode:
  3270. #endif /* CONFIG_PCI_MSI */
  3271. /* if we get here we're going to use the default interrupt mode */
  3272. c->intr[SIMPLE_MODE_INT] = pdev->irq;
  3273. return;
  3274. }
  3275. static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
  3276. {
  3277. ushort subsystem_vendor_id, subsystem_device_id, command;
  3278. __u32 board_id, scratchpad = 0;
  3279. __u64 cfg_offset;
  3280. __u32 cfg_base_addr;
  3281. __u64 cfg_base_addr_index;
  3282. int i, err;
  3283. /* check to see if controller has been disabled */
  3284. /* BEFORE trying to enable it */
  3285. (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
  3286. if (!(command & 0x02)) {
  3287. printk(KERN_WARNING
  3288. "cciss: controller appears to be disabled\n");
  3289. return -ENODEV;
  3290. }
  3291. err = pci_enable_device(pdev);
  3292. if (err) {
  3293. printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
  3294. return err;
  3295. }
  3296. err = pci_request_regions(pdev, "cciss");
  3297. if (err) {
  3298. printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
  3299. "aborting\n");
  3300. return err;
  3301. }
  3302. subsystem_vendor_id = pdev->subsystem_vendor;
  3303. subsystem_device_id = pdev->subsystem_device;
  3304. board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
  3305. subsystem_vendor_id);
  3306. #ifdef CCISS_DEBUG
  3307. printk("command = %x\n", command);
  3308. printk("irq = %x\n", pdev->irq);
  3309. printk("board_id = %x\n", board_id);
  3310. #endif /* CCISS_DEBUG */
  3311. /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
  3312. * else we use the IO-APIC interrupt assigned to us by system ROM.
  3313. */
  3314. cciss_interrupt_mode(c, pdev, board_id);
  3315. /* find the memory BAR */
  3316. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3317. if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
  3318. break;
  3319. }
  3320. if (i == DEVICE_COUNT_RESOURCE) {
  3321. printk(KERN_WARNING "cciss: No memory BAR found\n");
  3322. err = -ENODEV;
  3323. goto err_out_free_res;
  3324. }
  3325. c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
  3326. * already removed
  3327. */
  3328. #ifdef CCISS_DEBUG
  3329. printk("address 0 = %lx\n", c->paddr);
  3330. #endif /* CCISS_DEBUG */
  3331. c->vaddr = remap_pci_mem(c->paddr, 0x250);
  3332. /* Wait for the board to become ready. (PCI hotplug needs this.)
  3333. * We poll for up to 120 secs, once per 100ms. */
  3334. for (i = 0; i < 1200; i++) {
  3335. scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
  3336. if (scratchpad == CCISS_FIRMWARE_READY)
  3337. break;
  3338. set_current_state(TASK_INTERRUPTIBLE);
  3339. schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
  3340. }
  3341. if (scratchpad != CCISS_FIRMWARE_READY) {
  3342. printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
  3343. err = -ENODEV;
  3344. goto err_out_free_res;
  3345. }
  3346. /* get the address index number */
  3347. cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
  3348. cfg_base_addr &= (__u32) 0x0000ffff;
  3349. #ifdef CCISS_DEBUG
  3350. printk("cfg base address = %x\n", cfg_base_addr);
  3351. #endif /* CCISS_DEBUG */
  3352. cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
  3353. #ifdef CCISS_DEBUG
  3354. printk("cfg base address index = %llx\n",
  3355. (unsigned long long)cfg_base_addr_index);
  3356. #endif /* CCISS_DEBUG */
  3357. if (cfg_base_addr_index == -1) {
  3358. printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
  3359. err = -ENODEV;
  3360. goto err_out_free_res;
  3361. }
  3362. cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
  3363. #ifdef CCISS_DEBUG
  3364. printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
  3365. #endif /* CCISS_DEBUG */
  3366. c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
  3367. cfg_base_addr_index) +
  3368. cfg_offset, sizeof(CfgTable_struct));
  3369. c->board_id = board_id;
  3370. #ifdef CCISS_DEBUG
  3371. print_cfg_table(c->cfgtable);
  3372. #endif /* CCISS_DEBUG */
  3373. /* Some controllers support Zero Memory Raid (ZMR).
  3374. * When configured in ZMR mode the number of supported
  3375. * commands drops to 64. So instead of just setting an
  3376. * arbitrary value we make the driver a little smarter.
  3377. * We read the config table to tell us how many commands
  3378. * are supported on the controller then subtract 4 to
  3379. * leave a little room for ioctl calls.
  3380. */
  3381. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3382. for (i = 0; i < ARRAY_SIZE(products); i++) {
  3383. if (board_id == products[i].board_id) {
  3384. c->product_name = products[i].product_name;
  3385. c->access = *(products[i].access);
  3386. c->nr_cmds = c->max_commands - 4;
  3387. break;
  3388. }
  3389. }
  3390. if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
  3391. (readb(&c->cfgtable->Signature[1]) != 'I') ||
  3392. (readb(&c->cfgtable->Signature[2]) != 'S') ||
  3393. (readb(&c->cfgtable->Signature[3]) != 'S')) {
  3394. printk("Does not appear to be a valid CISS config table\n");
  3395. err = -ENODEV;
  3396. goto err_out_free_res;
  3397. }
  3398. /* We didn't find the controller in our list. We know the
  3399. * signature is valid. If it's an HP device let's try to
  3400. * bind to the device and fire it up. Otherwise we bail.
  3401. */
  3402. if (i == ARRAY_SIZE(products)) {
  3403. if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
  3404. c->product_name = products[i-1].product_name;
  3405. c->access = *(products[i-1].access);
  3406. c->nr_cmds = c->max_commands - 4;
  3407. printk(KERN_WARNING "cciss: This is an unknown "
  3408. "Smart Array controller.\n"
  3409. "cciss: Please update to the latest driver "
  3410. "available from www.hp.com.\n");
  3411. } else {
  3412. printk(KERN_WARNING "cciss: Sorry, I don't know how"
  3413. " to access the Smart Array controller %08lx\n"
  3414. , (unsigned long)board_id);
  3415. err = -ENODEV;
  3416. goto err_out_free_res;
  3417. }
  3418. }
  3419. #ifdef CONFIG_X86
  3420. {
  3421. /* Need to enable prefetch in the SCSI core for 6400 in x86 */
  3422. __u32 prefetch;
  3423. prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
  3424. prefetch |= 0x100;
  3425. writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
  3426. }
  3427. #endif
  3428. /* Disabling DMA prefetch and refetch for the P600.
  3429. * An ASIC bug may result in accesses to invalid memory addresses.
  3430. * We've disabled prefetch for some time now. Testing with XEN
  3431. * kernels revealed a bug in the refetch if dom0 resides on a P600.
  3432. */
  3433. if(board_id == 0x3225103C) {
  3434. __u32 dma_prefetch;
  3435. __u32 dma_refetch;
  3436. dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
  3437. dma_prefetch |= 0x8000;
  3438. writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
  3439. pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
  3440. dma_refetch |= 0x1;
  3441. pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
  3442. }
  3443. #ifdef CCISS_DEBUG
  3444. printk("Trying to put board into Simple mode\n");
  3445. #endif /* CCISS_DEBUG */
  3446. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3447. /* Update the field, and then ring the doorbell */
  3448. writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
  3449. writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
  3450. /* under certain very rare conditions, this can take awhile.
  3451. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
  3452. * as we enter this code.) */
  3453. for (i = 0; i < MAX_CONFIG_WAIT; i++) {
  3454. if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
  3455. break;
  3456. /* delay and try again */
  3457. set_current_state(TASK_INTERRUPTIBLE);
  3458. schedule_timeout(msecs_to_jiffies(1));
  3459. }
  3460. #ifdef CCISS_DEBUG
  3461. printk(KERN_DEBUG "I counter got to %d %x\n", i,
  3462. readl(c->vaddr + SA5_DOORBELL));
  3463. #endif /* CCISS_DEBUG */
  3464. #ifdef CCISS_DEBUG
  3465. print_cfg_table(c->cfgtable);
  3466. #endif /* CCISS_DEBUG */
  3467. if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
  3468. printk(KERN_WARNING "cciss: unable to get board into"
  3469. " simple mode\n");
  3470. err = -ENODEV;
  3471. goto err_out_free_res;
  3472. }
  3473. return 0;
  3474. err_out_free_res:
  3475. /*
  3476. * Deliberately omit pci_disable_device(): it does something nasty to
  3477. * Smart Array controllers that pci_enable_device does not undo
  3478. */
  3479. pci_release_regions(pdev);
  3480. return err;
  3481. }
  3482. /* Function to find the first free pointer into our hba[] array
  3483. * Returns -1 if no free entries are left.
  3484. */
  3485. static int alloc_cciss_hba(void)
  3486. {
  3487. int i;
  3488. for (i = 0; i < MAX_CTLR; i++) {
  3489. if (!hba[i]) {
  3490. ctlr_info_t *p;
  3491. p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
  3492. if (!p)
  3493. goto Enomem;
  3494. hba[i] = p;
  3495. return i;
  3496. }
  3497. }
  3498. printk(KERN_WARNING "cciss: This driver supports a maximum"
  3499. " of %d controllers.\n", MAX_CTLR);
  3500. return -1;
  3501. Enomem:
  3502. printk(KERN_ERR "cciss: out of memory.\n");
  3503. return -1;
  3504. }
  3505. static void free_hba(int n)
  3506. {
  3507. ctlr_info_t *h = hba[n];
  3508. int i;
  3509. hba[n] = NULL;
  3510. for (i = 0; i < h->highest_lun + 1; i++)
  3511. if (h->gendisk[i] != NULL)
  3512. put_disk(h->gendisk[i]);
  3513. kfree(h);
  3514. }
  3515. /* Send a message CDB to the firmware. */
  3516. static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
  3517. {
  3518. typedef struct {
  3519. CommandListHeader_struct CommandHeader;
  3520. RequestBlock_struct Request;
  3521. ErrDescriptor_struct ErrorDescriptor;
  3522. } Command;
  3523. static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
  3524. Command *cmd;
  3525. dma_addr_t paddr64;
  3526. uint32_t paddr32, tag;
  3527. void __iomem *vaddr;
  3528. int i, err;
  3529. vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
  3530. if (vaddr == NULL)
  3531. return -ENOMEM;
  3532. /* The Inbound Post Queue only accepts 32-bit physical addresses for the
  3533. CCISS commands, so they must be allocated from the lower 4GiB of
  3534. memory. */
  3535. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3536. if (err) {
  3537. iounmap(vaddr);
  3538. return -ENOMEM;
  3539. }
  3540. cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
  3541. if (cmd == NULL) {
  3542. iounmap(vaddr);
  3543. return -ENOMEM;
  3544. }
  3545. /* This must fit, because of the 32-bit consistent DMA mask. Also,
  3546. although there's no guarantee, we assume that the address is at
  3547. least 4-byte aligned (most likely, it's page-aligned). */
  3548. paddr32 = paddr64;
  3549. cmd->CommandHeader.ReplyQueue = 0;
  3550. cmd->CommandHeader.SGList = 0;
  3551. cmd->CommandHeader.SGTotal = 0;
  3552. cmd->CommandHeader.Tag.lower = paddr32;
  3553. cmd->CommandHeader.Tag.upper = 0;
  3554. memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
  3555. cmd->Request.CDBLen = 16;
  3556. cmd->Request.Type.Type = TYPE_MSG;
  3557. cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
  3558. cmd->Request.Type.Direction = XFER_NONE;
  3559. cmd->Request.Timeout = 0; /* Don't time out */
  3560. cmd->Request.CDB[0] = opcode;
  3561. cmd->Request.CDB[1] = type;
  3562. memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
  3563. cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
  3564. cmd->ErrorDescriptor.Addr.upper = 0;
  3565. cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
  3566. writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
  3567. for (i = 0; i < 10; i++) {
  3568. tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
  3569. if ((tag & ~3) == paddr32)
  3570. break;
  3571. schedule_timeout_uninterruptible(HZ);
  3572. }
  3573. iounmap(vaddr);
  3574. /* we leak the DMA buffer here ... no choice since the controller could
  3575. still complete the command. */
  3576. if (i == 10) {
  3577. printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
  3578. opcode, type);
  3579. return -ETIMEDOUT;
  3580. }
  3581. pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
  3582. if (tag & 2) {
  3583. printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
  3584. opcode, type);
  3585. return -EIO;
  3586. }
  3587. printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
  3588. opcode, type);
  3589. return 0;
  3590. }
  3591. #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
  3592. #define cciss_noop(p) cciss_message(p, 3, 0)
  3593. static __devinit int cciss_reset_msi(struct pci_dev *pdev)
  3594. {
  3595. /* the #defines are stolen from drivers/pci/msi.h. */
  3596. #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
  3597. #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
  3598. int pos;
  3599. u16 control = 0;
  3600. pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
  3601. if (pos) {
  3602. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3603. if (control & PCI_MSI_FLAGS_ENABLE) {
  3604. printk(KERN_INFO "cciss: resetting MSI\n");
  3605. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
  3606. }
  3607. }
  3608. pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
  3609. if (pos) {
  3610. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3611. if (control & PCI_MSIX_FLAGS_ENABLE) {
  3612. printk(KERN_INFO "cciss: resetting MSI-X\n");
  3613. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
  3614. }
  3615. }
  3616. return 0;
  3617. }
  3618. /* This does a hard reset of the controller using PCI power management
  3619. * states. */
  3620. static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
  3621. {
  3622. u16 pmcsr, saved_config_space[32];
  3623. int i, pos;
  3624. printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
  3625. /* This is very nearly the same thing as
  3626. pci_save_state(pci_dev);
  3627. pci_set_power_state(pci_dev, PCI_D3hot);
  3628. pci_set_power_state(pci_dev, PCI_D0);
  3629. pci_restore_state(pci_dev);
  3630. but we can't use these nice canned kernel routines on
  3631. kexec, because they also check the MSI/MSI-X state in PCI
  3632. configuration space and do the wrong thing when it is
  3633. set/cleared. Also, the pci_save/restore_state functions
  3634. violate the ordering requirements for restoring the
  3635. configuration space from the CCISS document (see the
  3636. comment below). So we roll our own .... */
  3637. for (i = 0; i < 32; i++)
  3638. pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
  3639. pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3640. if (pos == 0) {
  3641. printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
  3642. return -ENODEV;
  3643. }
  3644. /* Quoting from the Open CISS Specification: "The Power
  3645. * Management Control/Status Register (CSR) controls the power
  3646. * state of the device. The normal operating state is D0,
  3647. * CSR=00h. The software off state is D3, CSR=03h. To reset
  3648. * the controller, place the interface device in D3 then to
  3649. * D0, this causes a secondary PCI reset which will reset the
  3650. * controller." */
  3651. /* enter the D3hot power management state */
  3652. pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
  3653. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3654. pmcsr |= PCI_D3hot;
  3655. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3656. schedule_timeout_uninterruptible(HZ >> 1);
  3657. /* enter the D0 power management state */
  3658. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3659. pmcsr |= PCI_D0;
  3660. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3661. schedule_timeout_uninterruptible(HZ >> 1);
  3662. /* Restore the PCI configuration space. The Open CISS
  3663. * Specification says, "Restore the PCI Configuration
  3664. * Registers, offsets 00h through 60h. It is important to
  3665. * restore the command register, 16-bits at offset 04h,
  3666. * last. Do not restore the configuration status register,
  3667. * 16-bits at offset 06h." Note that the offset is 2*i. */
  3668. for (i = 0; i < 32; i++) {
  3669. if (i == 2 || i == 3)
  3670. continue;
  3671. pci_write_config_word(pdev, 2*i, saved_config_space[i]);
  3672. }
  3673. wmb();
  3674. pci_write_config_word(pdev, 4, saved_config_space[2]);
  3675. return 0;
  3676. }
  3677. /*
  3678. * This is it. Find all the controllers and register them. I really hate
  3679. * stealing all these major device numbers.
  3680. * returns the number of block devices registered.
  3681. */
  3682. static int __devinit cciss_init_one(struct pci_dev *pdev,
  3683. const struct pci_device_id *ent)
  3684. {
  3685. int i;
  3686. int j = 0;
  3687. int rc;
  3688. int dac, return_code;
  3689. InquiryData_struct *inq_buff;
  3690. if (reset_devices) {
  3691. /* Reset the controller with a PCI power-cycle */
  3692. if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
  3693. return -ENODEV;
  3694. /* Now try to get the controller to respond to a no-op. Some
  3695. devices (notably the HP Smart Array 5i Controller) need
  3696. up to 30 seconds to respond. */
  3697. for (i=0; i<30; i++) {
  3698. if (cciss_noop(pdev) == 0)
  3699. break;
  3700. schedule_timeout_uninterruptible(HZ);
  3701. }
  3702. if (i == 30) {
  3703. printk(KERN_ERR "cciss: controller seems dead\n");
  3704. return -EBUSY;
  3705. }
  3706. }
  3707. i = alloc_cciss_hba();
  3708. if (i < 0)
  3709. return -1;
  3710. hba[i]->busy_initializing = 1;
  3711. INIT_HLIST_HEAD(&hba[i]->cmpQ);
  3712. INIT_HLIST_HEAD(&hba[i]->reqQ);
  3713. mutex_init(&hba[i]->busy_shutting_down);
  3714. if (cciss_pci_init(hba[i], pdev) != 0)
  3715. goto clean0;
  3716. sprintf(hba[i]->devname, "cciss%d", i);
  3717. hba[i]->ctlr = i;
  3718. hba[i]->pdev = pdev;
  3719. init_completion(&hba[i]->scan_wait);
  3720. if (cciss_create_hba_sysfs_entry(hba[i]))
  3721. goto clean0;
  3722. /* configure PCI DMA stuff */
  3723. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
  3724. dac = 1;
  3725. else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
  3726. dac = 0;
  3727. else {
  3728. printk(KERN_ERR "cciss: no suitable DMA available\n");
  3729. goto clean1;
  3730. }
  3731. /*
  3732. * register with the major number, or get a dynamic major number
  3733. * by passing 0 as argument. This is done for greater than
  3734. * 8 controller support.
  3735. */
  3736. if (i < MAX_CTLR_ORIG)
  3737. hba[i]->major = COMPAQ_CISS_MAJOR + i;
  3738. rc = register_blkdev(hba[i]->major, hba[i]->devname);
  3739. if (rc == -EBUSY || rc == -EINVAL) {
  3740. printk(KERN_ERR
  3741. "cciss: Unable to get major number %d for %s "
  3742. "on hba %d\n", hba[i]->major, hba[i]->devname, i);
  3743. goto clean1;
  3744. } else {
  3745. if (i >= MAX_CTLR_ORIG)
  3746. hba[i]->major = rc;
  3747. }
  3748. /* make sure the board interrupts are off */
  3749. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
  3750. if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
  3751. IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
  3752. printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
  3753. hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
  3754. goto clean2;
  3755. }
  3756. printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
  3757. hba[i]->devname, pdev->device, pci_name(pdev),
  3758. hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
  3759. hba[i]->cmd_pool_bits =
  3760. kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3761. * sizeof(unsigned long), GFP_KERNEL);
  3762. hba[i]->cmd_pool = (CommandList_struct *)
  3763. pci_alloc_consistent(hba[i]->pdev,
  3764. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3765. &(hba[i]->cmd_pool_dhandle));
  3766. hba[i]->errinfo_pool = (ErrorInfo_struct *)
  3767. pci_alloc_consistent(hba[i]->pdev,
  3768. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3769. &(hba[i]->errinfo_pool_dhandle));
  3770. if ((hba[i]->cmd_pool_bits == NULL)
  3771. || (hba[i]->cmd_pool == NULL)
  3772. || (hba[i]->errinfo_pool == NULL)) {
  3773. printk(KERN_ERR "cciss: out of memory");
  3774. goto clean4;
  3775. }
  3776. spin_lock_init(&hba[i]->lock);
  3777. /* Initialize the pdev driver private data.
  3778. have it point to hba[i]. */
  3779. pci_set_drvdata(pdev, hba[i]);
  3780. /* command and error info recs zeroed out before
  3781. they are used */
  3782. memset(hba[i]->cmd_pool_bits, 0,
  3783. DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3784. * sizeof(unsigned long));
  3785. hba[i]->num_luns = 0;
  3786. hba[i]->highest_lun = -1;
  3787. for (j = 0; j < CISS_MAX_LUN; j++) {
  3788. hba[i]->drv[j].raid_level = -1;
  3789. hba[i]->drv[j].queue = NULL;
  3790. hba[i]->gendisk[j] = NULL;
  3791. }
  3792. cciss_scsi_setup(i);
  3793. /* Turn the interrupts on so we can service requests */
  3794. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
  3795. /* Get the firmware version */
  3796. inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  3797. if (inq_buff == NULL) {
  3798. printk(KERN_ERR "cciss: out of memory\n");
  3799. goto clean4;
  3800. }
  3801. return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
  3802. sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
  3803. if (return_code == IO_OK) {
  3804. hba[i]->firm_ver[0] = inq_buff->data_byte[32];
  3805. hba[i]->firm_ver[1] = inq_buff->data_byte[33];
  3806. hba[i]->firm_ver[2] = inq_buff->data_byte[34];
  3807. hba[i]->firm_ver[3] = inq_buff->data_byte[35];
  3808. } else { /* send command failed */
  3809. printk(KERN_WARNING "cciss: unable to determine firmware"
  3810. " version of controller\n");
  3811. }
  3812. kfree(inq_buff);
  3813. cciss_procinit(i);
  3814. hba[i]->cciss_max_sectors = 2048;
  3815. rebuild_lun_table(hba[i], 1, 0);
  3816. hba[i]->busy_initializing = 0;
  3817. return 1;
  3818. clean4:
  3819. kfree(hba[i]->cmd_pool_bits);
  3820. if (hba[i]->cmd_pool)
  3821. pci_free_consistent(hba[i]->pdev,
  3822. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3823. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3824. if (hba[i]->errinfo_pool)
  3825. pci_free_consistent(hba[i]->pdev,
  3826. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3827. hba[i]->errinfo_pool,
  3828. hba[i]->errinfo_pool_dhandle);
  3829. free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
  3830. clean2:
  3831. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3832. clean1:
  3833. cciss_destroy_hba_sysfs_entry(hba[i]);
  3834. clean0:
  3835. hba[i]->busy_initializing = 0;
  3836. /* cleanup any queues that may have been initialized */
  3837. for (j=0; j <= hba[i]->highest_lun; j++){
  3838. drive_info_struct *drv = &(hba[i]->drv[j]);
  3839. if (drv->queue)
  3840. blk_cleanup_queue(drv->queue);
  3841. }
  3842. /*
  3843. * Deliberately omit pci_disable_device(): it does something nasty to
  3844. * Smart Array controllers that pci_enable_device does not undo
  3845. */
  3846. pci_release_regions(pdev);
  3847. pci_set_drvdata(pdev, NULL);
  3848. free_hba(i);
  3849. return -1;
  3850. }
  3851. static void cciss_shutdown(struct pci_dev *pdev)
  3852. {
  3853. ctlr_info_t *tmp_ptr;
  3854. int i;
  3855. char flush_buf[4];
  3856. int return_code;
  3857. tmp_ptr = pci_get_drvdata(pdev);
  3858. if (tmp_ptr == NULL)
  3859. return;
  3860. i = tmp_ptr->ctlr;
  3861. if (hba[i] == NULL)
  3862. return;
  3863. /* Turn board interrupts off and send the flush cache command */
  3864. /* sendcmd will turn off interrupt, and send the flush...
  3865. * To write all data in the battery backed cache to disks */
  3866. memset(flush_buf, 0, 4);
  3867. return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
  3868. CTLR_LUNID, TYPE_CMD);
  3869. if (return_code == IO_OK) {
  3870. printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
  3871. } else {
  3872. printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
  3873. }
  3874. free_irq(hba[i]->intr[2], hba[i]);
  3875. }
  3876. static void __devexit cciss_remove_one(struct pci_dev *pdev)
  3877. {
  3878. ctlr_info_t *tmp_ptr;
  3879. int i, j;
  3880. if (pci_get_drvdata(pdev) == NULL) {
  3881. printk(KERN_ERR "cciss: Unable to remove device \n");
  3882. return;
  3883. }
  3884. tmp_ptr = pci_get_drvdata(pdev);
  3885. i = tmp_ptr->ctlr;
  3886. if (hba[i] == NULL) {
  3887. printk(KERN_ERR "cciss: device appears to "
  3888. "already be removed \n");
  3889. return;
  3890. }
  3891. mutex_lock(&hba[i]->busy_shutting_down);
  3892. remove_from_scan_list(hba[i]);
  3893. remove_proc_entry(hba[i]->devname, proc_cciss);
  3894. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3895. /* remove it from the disk list */
  3896. for (j = 0; j < CISS_MAX_LUN; j++) {
  3897. struct gendisk *disk = hba[i]->gendisk[j];
  3898. if (disk) {
  3899. struct request_queue *q = disk->queue;
  3900. if (disk->flags & GENHD_FL_UP) {
  3901. cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
  3902. del_gendisk(disk);
  3903. }
  3904. if (q)
  3905. blk_cleanup_queue(q);
  3906. }
  3907. }
  3908. #ifdef CONFIG_CISS_SCSI_TAPE
  3909. cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
  3910. #endif
  3911. cciss_shutdown(pdev);
  3912. #ifdef CONFIG_PCI_MSI
  3913. if (hba[i]->msix_vector)
  3914. pci_disable_msix(hba[i]->pdev);
  3915. else if (hba[i]->msi_vector)
  3916. pci_disable_msi(hba[i]->pdev);
  3917. #endif /* CONFIG_PCI_MSI */
  3918. iounmap(hba[i]->vaddr);
  3919. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
  3920. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3921. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3922. hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
  3923. kfree(hba[i]->cmd_pool_bits);
  3924. /*
  3925. * Deliberately omit pci_disable_device(): it does something nasty to
  3926. * Smart Array controllers that pci_enable_device does not undo
  3927. */
  3928. pci_release_regions(pdev);
  3929. pci_set_drvdata(pdev, NULL);
  3930. cciss_destroy_hba_sysfs_entry(hba[i]);
  3931. mutex_unlock(&hba[i]->busy_shutting_down);
  3932. free_hba(i);
  3933. }
  3934. static struct pci_driver cciss_pci_driver = {
  3935. .name = "cciss",
  3936. .probe = cciss_init_one,
  3937. .remove = __devexit_p(cciss_remove_one),
  3938. .id_table = cciss_pci_device_id, /* id_table */
  3939. .shutdown = cciss_shutdown,
  3940. };
  3941. /*
  3942. * This is it. Register the PCI driver information for the cards we control
  3943. * the OS will call our registered routines when it finds one of our cards.
  3944. */
  3945. static int __init cciss_init(void)
  3946. {
  3947. int err;
  3948. /*
  3949. * The hardware requires that commands are aligned on a 64-bit
  3950. * boundary. Given that we use pci_alloc_consistent() to allocate an
  3951. * array of them, the size must be a multiple of 8 bytes.
  3952. */
  3953. BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
  3954. printk(KERN_INFO DRIVER_NAME "\n");
  3955. err = bus_register(&cciss_bus_type);
  3956. if (err)
  3957. return err;
  3958. /* Start the scan thread */
  3959. cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
  3960. if (IS_ERR(cciss_scan_thread)) {
  3961. err = PTR_ERR(cciss_scan_thread);
  3962. goto err_bus_unregister;
  3963. }
  3964. /* Register for our PCI devices */
  3965. err = pci_register_driver(&cciss_pci_driver);
  3966. if (err)
  3967. goto err_thread_stop;
  3968. return err;
  3969. err_thread_stop:
  3970. kthread_stop(cciss_scan_thread);
  3971. err_bus_unregister:
  3972. bus_unregister(&cciss_bus_type);
  3973. return err;
  3974. }
  3975. static void __exit cciss_cleanup(void)
  3976. {
  3977. int i;
  3978. pci_unregister_driver(&cciss_pci_driver);
  3979. /* double check that all controller entrys have been removed */
  3980. for (i = 0; i < MAX_CTLR; i++) {
  3981. if (hba[i] != NULL) {
  3982. printk(KERN_WARNING "cciss: had to remove"
  3983. " controller %d\n", i);
  3984. cciss_remove_one(hba[i]->pdev);
  3985. }
  3986. }
  3987. kthread_stop(cciss_scan_thread);
  3988. remove_proc_entry("driver/cciss", NULL);
  3989. bus_unregister(&cciss_bus_type);
  3990. }
  3991. static void fail_all_cmds(unsigned long ctlr)
  3992. {
  3993. /* If we get here, the board is apparently dead. */
  3994. ctlr_info_t *h = hba[ctlr];
  3995. CommandList_struct *c;
  3996. unsigned long flags;
  3997. printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
  3998. h->alive = 0; /* the controller apparently died... */
  3999. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  4000. pci_disable_device(h->pdev); /* Make sure it is really dead. */
  4001. /* move everything off the request queue onto the completed queue */
  4002. while (!hlist_empty(&h->reqQ)) {
  4003. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  4004. removeQ(c);
  4005. h->Qdepth--;
  4006. addQ(&h->cmpQ, c);
  4007. }
  4008. /* Now, fail everything on the completed queue with a HW error */
  4009. while (!hlist_empty(&h->cmpQ)) {
  4010. c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
  4011. removeQ(c);
  4012. if (c->cmd_type != CMD_MSG_STALE)
  4013. c->err_info->CommandStatus = CMD_HARDWARE_ERR;
  4014. if (c->cmd_type == CMD_RWREQ) {
  4015. complete_command(h, c, 0);
  4016. } else if (c->cmd_type == CMD_IOCTL_PEND)
  4017. complete(c->waiting);
  4018. #ifdef CONFIG_CISS_SCSI_TAPE
  4019. else if (c->cmd_type == CMD_SCSI)
  4020. complete_scsi_command(c, 0, 0);
  4021. #endif
  4022. }
  4023. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  4024. return;
  4025. }
  4026. module_init(cciss_init);
  4027. module_exit(cciss_cleanup);