perf_event.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/file.h>
  16. #include <linux/poll.h>
  17. #include <linux/sysfs.h>
  18. #include <linux/dcache.h>
  19. #include <linux/percpu.h>
  20. #include <linux/ptrace.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/hardirq.h>
  24. #include <linux/rculist.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/syscalls.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/kernel_stat.h>
  29. #include <linux/perf_event.h>
  30. #include <linux/ftrace_event.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <asm/irq_regs.h>
  33. /*
  34. * Each CPU has a list of per CPU events:
  35. */
  36. DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
  37. int perf_max_events __read_mostly = 1;
  38. static int perf_reserved_percpu __read_mostly;
  39. static int perf_overcommit __read_mostly = 1;
  40. static atomic_t nr_events __read_mostly;
  41. static atomic_t nr_mmap_events __read_mostly;
  42. static atomic_t nr_comm_events __read_mostly;
  43. static atomic_t nr_task_events __read_mostly;
  44. /*
  45. * perf event paranoia level:
  46. * -1 - not paranoid at all
  47. * 0 - disallow raw tracepoint access for unpriv
  48. * 1 - disallow cpu events for unpriv
  49. * 2 - disallow kernel profiling for unpriv
  50. */
  51. int sysctl_perf_event_paranoid __read_mostly = 1;
  52. static inline bool perf_paranoid_tracepoint_raw(void)
  53. {
  54. return sysctl_perf_event_paranoid > -1;
  55. }
  56. static inline bool perf_paranoid_cpu(void)
  57. {
  58. return sysctl_perf_event_paranoid > 0;
  59. }
  60. static inline bool perf_paranoid_kernel(void)
  61. {
  62. return sysctl_perf_event_paranoid > 1;
  63. }
  64. int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
  65. /*
  66. * max perf event sample rate
  67. */
  68. int sysctl_perf_event_sample_rate __read_mostly = 100000;
  69. static atomic64_t perf_event_id;
  70. /*
  71. * Lock for (sysadmin-configurable) event reservations:
  72. */
  73. static DEFINE_SPINLOCK(perf_resource_lock);
  74. /*
  75. * Architecture provided APIs - weak aliases:
  76. */
  77. extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
  78. {
  79. return NULL;
  80. }
  81. void __weak hw_perf_disable(void) { barrier(); }
  82. void __weak hw_perf_enable(void) { barrier(); }
  83. void __weak hw_perf_event_setup(int cpu) { barrier(); }
  84. void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
  85. int __weak
  86. hw_perf_group_sched_in(struct perf_event *group_leader,
  87. struct perf_cpu_context *cpuctx,
  88. struct perf_event_context *ctx, int cpu)
  89. {
  90. return 0;
  91. }
  92. void __weak perf_event_print_debug(void) { }
  93. static DEFINE_PER_CPU(int, perf_disable_count);
  94. void __perf_disable(void)
  95. {
  96. __get_cpu_var(perf_disable_count)++;
  97. }
  98. bool __perf_enable(void)
  99. {
  100. return !--__get_cpu_var(perf_disable_count);
  101. }
  102. void perf_disable(void)
  103. {
  104. __perf_disable();
  105. hw_perf_disable();
  106. }
  107. void perf_enable(void)
  108. {
  109. if (__perf_enable())
  110. hw_perf_enable();
  111. }
  112. static void get_ctx(struct perf_event_context *ctx)
  113. {
  114. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  115. }
  116. static void free_ctx(struct rcu_head *head)
  117. {
  118. struct perf_event_context *ctx;
  119. ctx = container_of(head, struct perf_event_context, rcu_head);
  120. kfree(ctx);
  121. }
  122. static void put_ctx(struct perf_event_context *ctx)
  123. {
  124. if (atomic_dec_and_test(&ctx->refcount)) {
  125. if (ctx->parent_ctx)
  126. put_ctx(ctx->parent_ctx);
  127. if (ctx->task)
  128. put_task_struct(ctx->task);
  129. call_rcu(&ctx->rcu_head, free_ctx);
  130. }
  131. }
  132. static void unclone_ctx(struct perf_event_context *ctx)
  133. {
  134. if (ctx->parent_ctx) {
  135. put_ctx(ctx->parent_ctx);
  136. ctx->parent_ctx = NULL;
  137. }
  138. }
  139. /*
  140. * If we inherit events we want to return the parent event id
  141. * to userspace.
  142. */
  143. static u64 primary_event_id(struct perf_event *event)
  144. {
  145. u64 id = event->id;
  146. if (event->parent)
  147. id = event->parent->id;
  148. return id;
  149. }
  150. /*
  151. * Get the perf_event_context for a task and lock it.
  152. * This has to cope with with the fact that until it is locked,
  153. * the context could get moved to another task.
  154. */
  155. static struct perf_event_context *
  156. perf_lock_task_context(struct task_struct *task, unsigned long *flags)
  157. {
  158. struct perf_event_context *ctx;
  159. rcu_read_lock();
  160. retry:
  161. ctx = rcu_dereference(task->perf_event_ctxp);
  162. if (ctx) {
  163. /*
  164. * If this context is a clone of another, it might
  165. * get swapped for another underneath us by
  166. * perf_event_task_sched_out, though the
  167. * rcu_read_lock() protects us from any context
  168. * getting freed. Lock the context and check if it
  169. * got swapped before we could get the lock, and retry
  170. * if so. If we locked the right context, then it
  171. * can't get swapped on us any more.
  172. */
  173. spin_lock_irqsave(&ctx->lock, *flags);
  174. if (ctx != rcu_dereference(task->perf_event_ctxp)) {
  175. spin_unlock_irqrestore(&ctx->lock, *flags);
  176. goto retry;
  177. }
  178. if (!atomic_inc_not_zero(&ctx->refcount)) {
  179. spin_unlock_irqrestore(&ctx->lock, *flags);
  180. ctx = NULL;
  181. }
  182. }
  183. rcu_read_unlock();
  184. return ctx;
  185. }
  186. /*
  187. * Get the context for a task and increment its pin_count so it
  188. * can't get swapped to another task. This also increments its
  189. * reference count so that the context can't get freed.
  190. */
  191. static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
  192. {
  193. struct perf_event_context *ctx;
  194. unsigned long flags;
  195. ctx = perf_lock_task_context(task, &flags);
  196. if (ctx) {
  197. ++ctx->pin_count;
  198. spin_unlock_irqrestore(&ctx->lock, flags);
  199. }
  200. return ctx;
  201. }
  202. static void perf_unpin_context(struct perf_event_context *ctx)
  203. {
  204. unsigned long flags;
  205. spin_lock_irqsave(&ctx->lock, flags);
  206. --ctx->pin_count;
  207. spin_unlock_irqrestore(&ctx->lock, flags);
  208. put_ctx(ctx);
  209. }
  210. /*
  211. * Add a event from the lists for its context.
  212. * Must be called with ctx->mutex and ctx->lock held.
  213. */
  214. static void
  215. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  216. {
  217. struct perf_event *group_leader = event->group_leader;
  218. /*
  219. * Depending on whether it is a standalone or sibling event,
  220. * add it straight to the context's event list, or to the group
  221. * leader's sibling list:
  222. */
  223. if (group_leader == event)
  224. list_add_tail(&event->group_entry, &ctx->group_list);
  225. else {
  226. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  227. group_leader->nr_siblings++;
  228. }
  229. list_add_rcu(&event->event_entry, &ctx->event_list);
  230. ctx->nr_events++;
  231. if (event->attr.inherit_stat)
  232. ctx->nr_stat++;
  233. }
  234. /*
  235. * Remove a event from the lists for its context.
  236. * Must be called with ctx->mutex and ctx->lock held.
  237. */
  238. static void
  239. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  240. {
  241. struct perf_event *sibling, *tmp;
  242. if (list_empty(&event->group_entry))
  243. return;
  244. ctx->nr_events--;
  245. if (event->attr.inherit_stat)
  246. ctx->nr_stat--;
  247. list_del_init(&event->group_entry);
  248. list_del_rcu(&event->event_entry);
  249. if (event->group_leader != event)
  250. event->group_leader->nr_siblings--;
  251. /*
  252. * If this was a group event with sibling events then
  253. * upgrade the siblings to singleton events by adding them
  254. * to the context list directly:
  255. */
  256. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  257. list_move_tail(&sibling->group_entry, &ctx->group_list);
  258. sibling->group_leader = sibling;
  259. }
  260. }
  261. static void
  262. event_sched_out(struct perf_event *event,
  263. struct perf_cpu_context *cpuctx,
  264. struct perf_event_context *ctx)
  265. {
  266. if (event->state != PERF_EVENT_STATE_ACTIVE)
  267. return;
  268. event->state = PERF_EVENT_STATE_INACTIVE;
  269. if (event->pending_disable) {
  270. event->pending_disable = 0;
  271. event->state = PERF_EVENT_STATE_OFF;
  272. }
  273. event->tstamp_stopped = ctx->time;
  274. event->pmu->disable(event);
  275. event->oncpu = -1;
  276. if (!is_software_event(event))
  277. cpuctx->active_oncpu--;
  278. ctx->nr_active--;
  279. if (event->attr.exclusive || !cpuctx->active_oncpu)
  280. cpuctx->exclusive = 0;
  281. }
  282. static void
  283. group_sched_out(struct perf_event *group_event,
  284. struct perf_cpu_context *cpuctx,
  285. struct perf_event_context *ctx)
  286. {
  287. struct perf_event *event;
  288. if (group_event->state != PERF_EVENT_STATE_ACTIVE)
  289. return;
  290. event_sched_out(group_event, cpuctx, ctx);
  291. /*
  292. * Schedule out siblings (if any):
  293. */
  294. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  295. event_sched_out(event, cpuctx, ctx);
  296. if (group_event->attr.exclusive)
  297. cpuctx->exclusive = 0;
  298. }
  299. /*
  300. * Cross CPU call to remove a performance event
  301. *
  302. * We disable the event on the hardware level first. After that we
  303. * remove it from the context list.
  304. */
  305. static void __perf_event_remove_from_context(void *info)
  306. {
  307. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  308. struct perf_event *event = info;
  309. struct perf_event_context *ctx = event->ctx;
  310. /*
  311. * If this is a task context, we need to check whether it is
  312. * the current task context of this cpu. If not it has been
  313. * scheduled out before the smp call arrived.
  314. */
  315. if (ctx->task && cpuctx->task_ctx != ctx)
  316. return;
  317. spin_lock(&ctx->lock);
  318. /*
  319. * Protect the list operation against NMI by disabling the
  320. * events on a global level.
  321. */
  322. perf_disable();
  323. event_sched_out(event, cpuctx, ctx);
  324. list_del_event(event, ctx);
  325. if (!ctx->task) {
  326. /*
  327. * Allow more per task events with respect to the
  328. * reservation:
  329. */
  330. cpuctx->max_pertask =
  331. min(perf_max_events - ctx->nr_events,
  332. perf_max_events - perf_reserved_percpu);
  333. }
  334. perf_enable();
  335. spin_unlock(&ctx->lock);
  336. }
  337. /*
  338. * Remove the event from a task's (or a CPU's) list of events.
  339. *
  340. * Must be called with ctx->mutex held.
  341. *
  342. * CPU events are removed with a smp call. For task events we only
  343. * call when the task is on a CPU.
  344. *
  345. * If event->ctx is a cloned context, callers must make sure that
  346. * every task struct that event->ctx->task could possibly point to
  347. * remains valid. This is OK when called from perf_release since
  348. * that only calls us on the top-level context, which can't be a clone.
  349. * When called from perf_event_exit_task, it's OK because the
  350. * context has been detached from its task.
  351. */
  352. static void perf_event_remove_from_context(struct perf_event *event)
  353. {
  354. struct perf_event_context *ctx = event->ctx;
  355. struct task_struct *task = ctx->task;
  356. if (!task) {
  357. /*
  358. * Per cpu events are removed via an smp call and
  359. * the removal is always sucessful.
  360. */
  361. smp_call_function_single(event->cpu,
  362. __perf_event_remove_from_context,
  363. event, 1);
  364. return;
  365. }
  366. retry:
  367. task_oncpu_function_call(task, __perf_event_remove_from_context,
  368. event);
  369. spin_lock_irq(&ctx->lock);
  370. /*
  371. * If the context is active we need to retry the smp call.
  372. */
  373. if (ctx->nr_active && !list_empty(&event->group_entry)) {
  374. spin_unlock_irq(&ctx->lock);
  375. goto retry;
  376. }
  377. /*
  378. * The lock prevents that this context is scheduled in so we
  379. * can remove the event safely, if the call above did not
  380. * succeed.
  381. */
  382. if (!list_empty(&event->group_entry)) {
  383. list_del_event(event, ctx);
  384. }
  385. spin_unlock_irq(&ctx->lock);
  386. }
  387. static inline u64 perf_clock(void)
  388. {
  389. return cpu_clock(smp_processor_id());
  390. }
  391. /*
  392. * Update the record of the current time in a context.
  393. */
  394. static void update_context_time(struct perf_event_context *ctx)
  395. {
  396. u64 now = perf_clock();
  397. ctx->time += now - ctx->timestamp;
  398. ctx->timestamp = now;
  399. }
  400. /*
  401. * Update the total_time_enabled and total_time_running fields for a event.
  402. */
  403. static void update_event_times(struct perf_event *event)
  404. {
  405. struct perf_event_context *ctx = event->ctx;
  406. u64 run_end;
  407. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  408. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  409. return;
  410. event->total_time_enabled = ctx->time - event->tstamp_enabled;
  411. if (event->state == PERF_EVENT_STATE_INACTIVE)
  412. run_end = event->tstamp_stopped;
  413. else
  414. run_end = ctx->time;
  415. event->total_time_running = run_end - event->tstamp_running;
  416. }
  417. /*
  418. * Update total_time_enabled and total_time_running for all events in a group.
  419. */
  420. static void update_group_times(struct perf_event *leader)
  421. {
  422. struct perf_event *event;
  423. update_event_times(leader);
  424. list_for_each_entry(event, &leader->sibling_list, group_entry)
  425. update_event_times(event);
  426. }
  427. /*
  428. * Cross CPU call to disable a performance event
  429. */
  430. static void __perf_event_disable(void *info)
  431. {
  432. struct perf_event *event = info;
  433. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  434. struct perf_event_context *ctx = event->ctx;
  435. /*
  436. * If this is a per-task event, need to check whether this
  437. * event's task is the current task on this cpu.
  438. */
  439. if (ctx->task && cpuctx->task_ctx != ctx)
  440. return;
  441. spin_lock(&ctx->lock);
  442. /*
  443. * If the event is on, turn it off.
  444. * If it is in error state, leave it in error state.
  445. */
  446. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  447. update_context_time(ctx);
  448. update_group_times(event);
  449. if (event == event->group_leader)
  450. group_sched_out(event, cpuctx, ctx);
  451. else
  452. event_sched_out(event, cpuctx, ctx);
  453. event->state = PERF_EVENT_STATE_OFF;
  454. }
  455. spin_unlock(&ctx->lock);
  456. }
  457. /*
  458. * Disable a event.
  459. *
  460. * If event->ctx is a cloned context, callers must make sure that
  461. * every task struct that event->ctx->task could possibly point to
  462. * remains valid. This condition is satisifed when called through
  463. * perf_event_for_each_child or perf_event_for_each because they
  464. * hold the top-level event's child_mutex, so any descendant that
  465. * goes to exit will block in sync_child_event.
  466. * When called from perf_pending_event it's OK because event->ctx
  467. * is the current context on this CPU and preemption is disabled,
  468. * hence we can't get into perf_event_task_sched_out for this context.
  469. */
  470. static void perf_event_disable(struct perf_event *event)
  471. {
  472. struct perf_event_context *ctx = event->ctx;
  473. struct task_struct *task = ctx->task;
  474. if (!task) {
  475. /*
  476. * Disable the event on the cpu that it's on
  477. */
  478. smp_call_function_single(event->cpu, __perf_event_disable,
  479. event, 1);
  480. return;
  481. }
  482. retry:
  483. task_oncpu_function_call(task, __perf_event_disable, event);
  484. spin_lock_irq(&ctx->lock);
  485. /*
  486. * If the event is still active, we need to retry the cross-call.
  487. */
  488. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  489. spin_unlock_irq(&ctx->lock);
  490. goto retry;
  491. }
  492. /*
  493. * Since we have the lock this context can't be scheduled
  494. * in, so we can change the state safely.
  495. */
  496. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  497. update_group_times(event);
  498. event->state = PERF_EVENT_STATE_OFF;
  499. }
  500. spin_unlock_irq(&ctx->lock);
  501. }
  502. static int
  503. event_sched_in(struct perf_event *event,
  504. struct perf_cpu_context *cpuctx,
  505. struct perf_event_context *ctx,
  506. int cpu)
  507. {
  508. if (event->state <= PERF_EVENT_STATE_OFF)
  509. return 0;
  510. event->state = PERF_EVENT_STATE_ACTIVE;
  511. event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
  512. /*
  513. * The new state must be visible before we turn it on in the hardware:
  514. */
  515. smp_wmb();
  516. if (event->pmu->enable(event)) {
  517. event->state = PERF_EVENT_STATE_INACTIVE;
  518. event->oncpu = -1;
  519. return -EAGAIN;
  520. }
  521. event->tstamp_running += ctx->time - event->tstamp_stopped;
  522. if (!is_software_event(event))
  523. cpuctx->active_oncpu++;
  524. ctx->nr_active++;
  525. if (event->attr.exclusive)
  526. cpuctx->exclusive = 1;
  527. return 0;
  528. }
  529. static int
  530. group_sched_in(struct perf_event *group_event,
  531. struct perf_cpu_context *cpuctx,
  532. struct perf_event_context *ctx,
  533. int cpu)
  534. {
  535. struct perf_event *event, *partial_group;
  536. int ret;
  537. if (group_event->state == PERF_EVENT_STATE_OFF)
  538. return 0;
  539. ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
  540. if (ret)
  541. return ret < 0 ? ret : 0;
  542. if (event_sched_in(group_event, cpuctx, ctx, cpu))
  543. return -EAGAIN;
  544. /*
  545. * Schedule in siblings as one group (if any):
  546. */
  547. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  548. if (event_sched_in(event, cpuctx, ctx, cpu)) {
  549. partial_group = event;
  550. goto group_error;
  551. }
  552. }
  553. return 0;
  554. group_error:
  555. /*
  556. * Groups can be scheduled in as one unit only, so undo any
  557. * partial group before returning:
  558. */
  559. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  560. if (event == partial_group)
  561. break;
  562. event_sched_out(event, cpuctx, ctx);
  563. }
  564. event_sched_out(group_event, cpuctx, ctx);
  565. return -EAGAIN;
  566. }
  567. /*
  568. * Return 1 for a group consisting entirely of software events,
  569. * 0 if the group contains any hardware events.
  570. */
  571. static int is_software_only_group(struct perf_event *leader)
  572. {
  573. struct perf_event *event;
  574. if (!is_software_event(leader))
  575. return 0;
  576. list_for_each_entry(event, &leader->sibling_list, group_entry)
  577. if (!is_software_event(event))
  578. return 0;
  579. return 1;
  580. }
  581. /*
  582. * Work out whether we can put this event group on the CPU now.
  583. */
  584. static int group_can_go_on(struct perf_event *event,
  585. struct perf_cpu_context *cpuctx,
  586. int can_add_hw)
  587. {
  588. /*
  589. * Groups consisting entirely of software events can always go on.
  590. */
  591. if (is_software_only_group(event))
  592. return 1;
  593. /*
  594. * If an exclusive group is already on, no other hardware
  595. * events can go on.
  596. */
  597. if (cpuctx->exclusive)
  598. return 0;
  599. /*
  600. * If this group is exclusive and there are already
  601. * events on the CPU, it can't go on.
  602. */
  603. if (event->attr.exclusive && cpuctx->active_oncpu)
  604. return 0;
  605. /*
  606. * Otherwise, try to add it if all previous groups were able
  607. * to go on.
  608. */
  609. return can_add_hw;
  610. }
  611. static void add_event_to_ctx(struct perf_event *event,
  612. struct perf_event_context *ctx)
  613. {
  614. list_add_event(event, ctx);
  615. event->tstamp_enabled = ctx->time;
  616. event->tstamp_running = ctx->time;
  617. event->tstamp_stopped = ctx->time;
  618. }
  619. /*
  620. * Cross CPU call to install and enable a performance event
  621. *
  622. * Must be called with ctx->mutex held
  623. */
  624. static void __perf_install_in_context(void *info)
  625. {
  626. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  627. struct perf_event *event = info;
  628. struct perf_event_context *ctx = event->ctx;
  629. struct perf_event *leader = event->group_leader;
  630. int cpu = smp_processor_id();
  631. int err;
  632. /*
  633. * If this is a task context, we need to check whether it is
  634. * the current task context of this cpu. If not it has been
  635. * scheduled out before the smp call arrived.
  636. * Or possibly this is the right context but it isn't
  637. * on this cpu because it had no events.
  638. */
  639. if (ctx->task && cpuctx->task_ctx != ctx) {
  640. if (cpuctx->task_ctx || ctx->task != current)
  641. return;
  642. cpuctx->task_ctx = ctx;
  643. }
  644. spin_lock(&ctx->lock);
  645. ctx->is_active = 1;
  646. update_context_time(ctx);
  647. /*
  648. * Protect the list operation against NMI by disabling the
  649. * events on a global level. NOP for non NMI based events.
  650. */
  651. perf_disable();
  652. add_event_to_ctx(event, ctx);
  653. /*
  654. * Don't put the event on if it is disabled or if
  655. * it is in a group and the group isn't on.
  656. */
  657. if (event->state != PERF_EVENT_STATE_INACTIVE ||
  658. (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
  659. goto unlock;
  660. /*
  661. * An exclusive event can't go on if there are already active
  662. * hardware events, and no hardware event can go on if there
  663. * is already an exclusive event on.
  664. */
  665. if (!group_can_go_on(event, cpuctx, 1))
  666. err = -EEXIST;
  667. else
  668. err = event_sched_in(event, cpuctx, ctx, cpu);
  669. if (err) {
  670. /*
  671. * This event couldn't go on. If it is in a group
  672. * then we have to pull the whole group off.
  673. * If the event group is pinned then put it in error state.
  674. */
  675. if (leader != event)
  676. group_sched_out(leader, cpuctx, ctx);
  677. if (leader->attr.pinned) {
  678. update_group_times(leader);
  679. leader->state = PERF_EVENT_STATE_ERROR;
  680. }
  681. }
  682. if (!err && !ctx->task && cpuctx->max_pertask)
  683. cpuctx->max_pertask--;
  684. unlock:
  685. perf_enable();
  686. spin_unlock(&ctx->lock);
  687. }
  688. /*
  689. * Attach a performance event to a context
  690. *
  691. * First we add the event to the list with the hardware enable bit
  692. * in event->hw_config cleared.
  693. *
  694. * If the event is attached to a task which is on a CPU we use a smp
  695. * call to enable it in the task context. The task might have been
  696. * scheduled away, but we check this in the smp call again.
  697. *
  698. * Must be called with ctx->mutex held.
  699. */
  700. static void
  701. perf_install_in_context(struct perf_event_context *ctx,
  702. struct perf_event *event,
  703. int cpu)
  704. {
  705. struct task_struct *task = ctx->task;
  706. if (!task) {
  707. /*
  708. * Per cpu events are installed via an smp call and
  709. * the install is always sucessful.
  710. */
  711. smp_call_function_single(cpu, __perf_install_in_context,
  712. event, 1);
  713. return;
  714. }
  715. retry:
  716. task_oncpu_function_call(task, __perf_install_in_context,
  717. event);
  718. spin_lock_irq(&ctx->lock);
  719. /*
  720. * we need to retry the smp call.
  721. */
  722. if (ctx->is_active && list_empty(&event->group_entry)) {
  723. spin_unlock_irq(&ctx->lock);
  724. goto retry;
  725. }
  726. /*
  727. * The lock prevents that this context is scheduled in so we
  728. * can add the event safely, if it the call above did not
  729. * succeed.
  730. */
  731. if (list_empty(&event->group_entry))
  732. add_event_to_ctx(event, ctx);
  733. spin_unlock_irq(&ctx->lock);
  734. }
  735. /*
  736. * Put a event into inactive state and update time fields.
  737. * Enabling the leader of a group effectively enables all
  738. * the group members that aren't explicitly disabled, so we
  739. * have to update their ->tstamp_enabled also.
  740. * Note: this works for group members as well as group leaders
  741. * since the non-leader members' sibling_lists will be empty.
  742. */
  743. static void __perf_event_mark_enabled(struct perf_event *event,
  744. struct perf_event_context *ctx)
  745. {
  746. struct perf_event *sub;
  747. event->state = PERF_EVENT_STATE_INACTIVE;
  748. event->tstamp_enabled = ctx->time - event->total_time_enabled;
  749. list_for_each_entry(sub, &event->sibling_list, group_entry)
  750. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  751. sub->tstamp_enabled =
  752. ctx->time - sub->total_time_enabled;
  753. }
  754. /*
  755. * Cross CPU call to enable a performance event
  756. */
  757. static void __perf_event_enable(void *info)
  758. {
  759. struct perf_event *event = info;
  760. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  761. struct perf_event_context *ctx = event->ctx;
  762. struct perf_event *leader = event->group_leader;
  763. int err;
  764. /*
  765. * If this is a per-task event, need to check whether this
  766. * event's task is the current task on this cpu.
  767. */
  768. if (ctx->task && cpuctx->task_ctx != ctx) {
  769. if (cpuctx->task_ctx || ctx->task != current)
  770. return;
  771. cpuctx->task_ctx = ctx;
  772. }
  773. spin_lock(&ctx->lock);
  774. ctx->is_active = 1;
  775. update_context_time(ctx);
  776. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  777. goto unlock;
  778. __perf_event_mark_enabled(event, ctx);
  779. /*
  780. * If the event is in a group and isn't the group leader,
  781. * then don't put it on unless the group is on.
  782. */
  783. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  784. goto unlock;
  785. if (!group_can_go_on(event, cpuctx, 1)) {
  786. err = -EEXIST;
  787. } else {
  788. perf_disable();
  789. if (event == leader)
  790. err = group_sched_in(event, cpuctx, ctx,
  791. smp_processor_id());
  792. else
  793. err = event_sched_in(event, cpuctx, ctx,
  794. smp_processor_id());
  795. perf_enable();
  796. }
  797. if (err) {
  798. /*
  799. * If this event can't go on and it's part of a
  800. * group, then the whole group has to come off.
  801. */
  802. if (leader != event)
  803. group_sched_out(leader, cpuctx, ctx);
  804. if (leader->attr.pinned) {
  805. update_group_times(leader);
  806. leader->state = PERF_EVENT_STATE_ERROR;
  807. }
  808. }
  809. unlock:
  810. spin_unlock(&ctx->lock);
  811. }
  812. /*
  813. * Enable a event.
  814. *
  815. * If event->ctx is a cloned context, callers must make sure that
  816. * every task struct that event->ctx->task could possibly point to
  817. * remains valid. This condition is satisfied when called through
  818. * perf_event_for_each_child or perf_event_for_each as described
  819. * for perf_event_disable.
  820. */
  821. static void perf_event_enable(struct perf_event *event)
  822. {
  823. struct perf_event_context *ctx = event->ctx;
  824. struct task_struct *task = ctx->task;
  825. if (!task) {
  826. /*
  827. * Enable the event on the cpu that it's on
  828. */
  829. smp_call_function_single(event->cpu, __perf_event_enable,
  830. event, 1);
  831. return;
  832. }
  833. spin_lock_irq(&ctx->lock);
  834. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  835. goto out;
  836. /*
  837. * If the event is in error state, clear that first.
  838. * That way, if we see the event in error state below, we
  839. * know that it has gone back into error state, as distinct
  840. * from the task having been scheduled away before the
  841. * cross-call arrived.
  842. */
  843. if (event->state == PERF_EVENT_STATE_ERROR)
  844. event->state = PERF_EVENT_STATE_OFF;
  845. retry:
  846. spin_unlock_irq(&ctx->lock);
  847. task_oncpu_function_call(task, __perf_event_enable, event);
  848. spin_lock_irq(&ctx->lock);
  849. /*
  850. * If the context is active and the event is still off,
  851. * we need to retry the cross-call.
  852. */
  853. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
  854. goto retry;
  855. /*
  856. * Since we have the lock this context can't be scheduled
  857. * in, so we can change the state safely.
  858. */
  859. if (event->state == PERF_EVENT_STATE_OFF)
  860. __perf_event_mark_enabled(event, ctx);
  861. out:
  862. spin_unlock_irq(&ctx->lock);
  863. }
  864. static int perf_event_refresh(struct perf_event *event, int refresh)
  865. {
  866. /*
  867. * not supported on inherited events
  868. */
  869. if (event->attr.inherit)
  870. return -EINVAL;
  871. atomic_add(refresh, &event->event_limit);
  872. perf_event_enable(event);
  873. return 0;
  874. }
  875. void __perf_event_sched_out(struct perf_event_context *ctx,
  876. struct perf_cpu_context *cpuctx)
  877. {
  878. struct perf_event *event;
  879. spin_lock(&ctx->lock);
  880. ctx->is_active = 0;
  881. if (likely(!ctx->nr_events))
  882. goto out;
  883. update_context_time(ctx);
  884. perf_disable();
  885. if (ctx->nr_active)
  886. list_for_each_entry(event, &ctx->group_list, group_entry)
  887. group_sched_out(event, cpuctx, ctx);
  888. perf_enable();
  889. out:
  890. spin_unlock(&ctx->lock);
  891. }
  892. /*
  893. * Test whether two contexts are equivalent, i.e. whether they
  894. * have both been cloned from the same version of the same context
  895. * and they both have the same number of enabled events.
  896. * If the number of enabled events is the same, then the set
  897. * of enabled events should be the same, because these are both
  898. * inherited contexts, therefore we can't access individual events
  899. * in them directly with an fd; we can only enable/disable all
  900. * events via prctl, or enable/disable all events in a family
  901. * via ioctl, which will have the same effect on both contexts.
  902. */
  903. static int context_equiv(struct perf_event_context *ctx1,
  904. struct perf_event_context *ctx2)
  905. {
  906. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  907. && ctx1->parent_gen == ctx2->parent_gen
  908. && !ctx1->pin_count && !ctx2->pin_count;
  909. }
  910. static void __perf_event_sync_stat(struct perf_event *event,
  911. struct perf_event *next_event)
  912. {
  913. u64 value;
  914. if (!event->attr.inherit_stat)
  915. return;
  916. /*
  917. * Update the event value, we cannot use perf_event_read()
  918. * because we're in the middle of a context switch and have IRQs
  919. * disabled, which upsets smp_call_function_single(), however
  920. * we know the event must be on the current CPU, therefore we
  921. * don't need to use it.
  922. */
  923. switch (event->state) {
  924. case PERF_EVENT_STATE_ACTIVE:
  925. event->pmu->read(event);
  926. /* fall-through */
  927. case PERF_EVENT_STATE_INACTIVE:
  928. update_event_times(event);
  929. break;
  930. default:
  931. break;
  932. }
  933. /*
  934. * In order to keep per-task stats reliable we need to flip the event
  935. * values when we flip the contexts.
  936. */
  937. value = atomic64_read(&next_event->count);
  938. value = atomic64_xchg(&event->count, value);
  939. atomic64_set(&next_event->count, value);
  940. swap(event->total_time_enabled, next_event->total_time_enabled);
  941. swap(event->total_time_running, next_event->total_time_running);
  942. /*
  943. * Since we swizzled the values, update the user visible data too.
  944. */
  945. perf_event_update_userpage(event);
  946. perf_event_update_userpage(next_event);
  947. }
  948. #define list_next_entry(pos, member) \
  949. list_entry(pos->member.next, typeof(*pos), member)
  950. static void perf_event_sync_stat(struct perf_event_context *ctx,
  951. struct perf_event_context *next_ctx)
  952. {
  953. struct perf_event *event, *next_event;
  954. if (!ctx->nr_stat)
  955. return;
  956. update_context_time(ctx);
  957. event = list_first_entry(&ctx->event_list,
  958. struct perf_event, event_entry);
  959. next_event = list_first_entry(&next_ctx->event_list,
  960. struct perf_event, event_entry);
  961. while (&event->event_entry != &ctx->event_list &&
  962. &next_event->event_entry != &next_ctx->event_list) {
  963. __perf_event_sync_stat(event, next_event);
  964. event = list_next_entry(event, event_entry);
  965. next_event = list_next_entry(next_event, event_entry);
  966. }
  967. }
  968. /*
  969. * Called from scheduler to remove the events of the current task,
  970. * with interrupts disabled.
  971. *
  972. * We stop each event and update the event value in event->count.
  973. *
  974. * This does not protect us against NMI, but disable()
  975. * sets the disabled bit in the control field of event _before_
  976. * accessing the event control register. If a NMI hits, then it will
  977. * not restart the event.
  978. */
  979. void perf_event_task_sched_out(struct task_struct *task,
  980. struct task_struct *next, int cpu)
  981. {
  982. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  983. struct perf_event_context *ctx = task->perf_event_ctxp;
  984. struct perf_event_context *next_ctx;
  985. struct perf_event_context *parent;
  986. struct pt_regs *regs;
  987. int do_switch = 1;
  988. regs = task_pt_regs(task);
  989. perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
  990. if (likely(!ctx || !cpuctx->task_ctx))
  991. return;
  992. rcu_read_lock();
  993. parent = rcu_dereference(ctx->parent_ctx);
  994. next_ctx = next->perf_event_ctxp;
  995. if (parent && next_ctx &&
  996. rcu_dereference(next_ctx->parent_ctx) == parent) {
  997. /*
  998. * Looks like the two contexts are clones, so we might be
  999. * able to optimize the context switch. We lock both
  1000. * contexts and check that they are clones under the
  1001. * lock (including re-checking that neither has been
  1002. * uncloned in the meantime). It doesn't matter which
  1003. * order we take the locks because no other cpu could
  1004. * be trying to lock both of these tasks.
  1005. */
  1006. spin_lock(&ctx->lock);
  1007. spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1008. if (context_equiv(ctx, next_ctx)) {
  1009. /*
  1010. * XXX do we need a memory barrier of sorts
  1011. * wrt to rcu_dereference() of perf_event_ctxp
  1012. */
  1013. task->perf_event_ctxp = next_ctx;
  1014. next->perf_event_ctxp = ctx;
  1015. ctx->task = next;
  1016. next_ctx->task = task;
  1017. do_switch = 0;
  1018. perf_event_sync_stat(ctx, next_ctx);
  1019. }
  1020. spin_unlock(&next_ctx->lock);
  1021. spin_unlock(&ctx->lock);
  1022. }
  1023. rcu_read_unlock();
  1024. if (do_switch) {
  1025. __perf_event_sched_out(ctx, cpuctx);
  1026. cpuctx->task_ctx = NULL;
  1027. }
  1028. }
  1029. /*
  1030. * Called with IRQs disabled
  1031. */
  1032. static void __perf_event_task_sched_out(struct perf_event_context *ctx)
  1033. {
  1034. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  1035. if (!cpuctx->task_ctx)
  1036. return;
  1037. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1038. return;
  1039. __perf_event_sched_out(ctx, cpuctx);
  1040. cpuctx->task_ctx = NULL;
  1041. }
  1042. /*
  1043. * Called with IRQs disabled
  1044. */
  1045. static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
  1046. {
  1047. __perf_event_sched_out(&cpuctx->ctx, cpuctx);
  1048. }
  1049. static void
  1050. __perf_event_sched_in(struct perf_event_context *ctx,
  1051. struct perf_cpu_context *cpuctx, int cpu)
  1052. {
  1053. struct perf_event *event;
  1054. int can_add_hw = 1;
  1055. spin_lock(&ctx->lock);
  1056. ctx->is_active = 1;
  1057. if (likely(!ctx->nr_events))
  1058. goto out;
  1059. ctx->timestamp = perf_clock();
  1060. perf_disable();
  1061. /*
  1062. * First go through the list and put on any pinned groups
  1063. * in order to give them the best chance of going on.
  1064. */
  1065. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1066. if (event->state <= PERF_EVENT_STATE_OFF ||
  1067. !event->attr.pinned)
  1068. continue;
  1069. if (event->cpu != -1 && event->cpu != cpu)
  1070. continue;
  1071. if (group_can_go_on(event, cpuctx, 1))
  1072. group_sched_in(event, cpuctx, ctx, cpu);
  1073. /*
  1074. * If this pinned group hasn't been scheduled,
  1075. * put it in error state.
  1076. */
  1077. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1078. update_group_times(event);
  1079. event->state = PERF_EVENT_STATE_ERROR;
  1080. }
  1081. }
  1082. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1083. /*
  1084. * Ignore events in OFF or ERROR state, and
  1085. * ignore pinned events since we did them already.
  1086. */
  1087. if (event->state <= PERF_EVENT_STATE_OFF ||
  1088. event->attr.pinned)
  1089. continue;
  1090. /*
  1091. * Listen to the 'cpu' scheduling filter constraint
  1092. * of events:
  1093. */
  1094. if (event->cpu != -1 && event->cpu != cpu)
  1095. continue;
  1096. if (group_can_go_on(event, cpuctx, can_add_hw))
  1097. if (group_sched_in(event, cpuctx, ctx, cpu))
  1098. can_add_hw = 0;
  1099. }
  1100. perf_enable();
  1101. out:
  1102. spin_unlock(&ctx->lock);
  1103. }
  1104. /*
  1105. * Called from scheduler to add the events of the current task
  1106. * with interrupts disabled.
  1107. *
  1108. * We restore the event value and then enable it.
  1109. *
  1110. * This does not protect us against NMI, but enable()
  1111. * sets the enabled bit in the control field of event _before_
  1112. * accessing the event control register. If a NMI hits, then it will
  1113. * keep the event running.
  1114. */
  1115. void perf_event_task_sched_in(struct task_struct *task, int cpu)
  1116. {
  1117. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  1118. struct perf_event_context *ctx = task->perf_event_ctxp;
  1119. if (likely(!ctx))
  1120. return;
  1121. if (cpuctx->task_ctx == ctx)
  1122. return;
  1123. __perf_event_sched_in(ctx, cpuctx, cpu);
  1124. cpuctx->task_ctx = ctx;
  1125. }
  1126. static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
  1127. {
  1128. struct perf_event_context *ctx = &cpuctx->ctx;
  1129. __perf_event_sched_in(ctx, cpuctx, cpu);
  1130. }
  1131. #define MAX_INTERRUPTS (~0ULL)
  1132. static void perf_log_throttle(struct perf_event *event, int enable);
  1133. static void perf_adjust_period(struct perf_event *event, u64 events)
  1134. {
  1135. struct hw_perf_event *hwc = &event->hw;
  1136. u64 period, sample_period;
  1137. s64 delta;
  1138. events *= hwc->sample_period;
  1139. period = div64_u64(events, event->attr.sample_freq);
  1140. delta = (s64)(period - hwc->sample_period);
  1141. delta = (delta + 7) / 8; /* low pass filter */
  1142. sample_period = hwc->sample_period + delta;
  1143. if (!sample_period)
  1144. sample_period = 1;
  1145. hwc->sample_period = sample_period;
  1146. }
  1147. static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
  1148. {
  1149. struct perf_event *event;
  1150. struct hw_perf_event *hwc;
  1151. u64 interrupts, freq;
  1152. spin_lock(&ctx->lock);
  1153. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  1154. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1155. continue;
  1156. hwc = &event->hw;
  1157. interrupts = hwc->interrupts;
  1158. hwc->interrupts = 0;
  1159. /*
  1160. * unthrottle events on the tick
  1161. */
  1162. if (interrupts == MAX_INTERRUPTS) {
  1163. perf_log_throttle(event, 1);
  1164. event->pmu->unthrottle(event);
  1165. interrupts = 2*sysctl_perf_event_sample_rate/HZ;
  1166. }
  1167. if (!event->attr.freq || !event->attr.sample_freq)
  1168. continue;
  1169. /*
  1170. * if the specified freq < HZ then we need to skip ticks
  1171. */
  1172. if (event->attr.sample_freq < HZ) {
  1173. freq = event->attr.sample_freq;
  1174. hwc->freq_count += freq;
  1175. hwc->freq_interrupts += interrupts;
  1176. if (hwc->freq_count < HZ)
  1177. continue;
  1178. interrupts = hwc->freq_interrupts;
  1179. hwc->freq_interrupts = 0;
  1180. hwc->freq_count -= HZ;
  1181. } else
  1182. freq = HZ;
  1183. perf_adjust_period(event, freq * interrupts);
  1184. /*
  1185. * In order to avoid being stalled by an (accidental) huge
  1186. * sample period, force reset the sample period if we didn't
  1187. * get any events in this freq period.
  1188. */
  1189. if (!interrupts) {
  1190. perf_disable();
  1191. event->pmu->disable(event);
  1192. atomic64_set(&hwc->period_left, 0);
  1193. event->pmu->enable(event);
  1194. perf_enable();
  1195. }
  1196. }
  1197. spin_unlock(&ctx->lock);
  1198. }
  1199. /*
  1200. * Round-robin a context's events:
  1201. */
  1202. static void rotate_ctx(struct perf_event_context *ctx)
  1203. {
  1204. struct perf_event *event;
  1205. if (!ctx->nr_events)
  1206. return;
  1207. spin_lock(&ctx->lock);
  1208. /*
  1209. * Rotate the first entry last (works just fine for group events too):
  1210. */
  1211. perf_disable();
  1212. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1213. list_move_tail(&event->group_entry, &ctx->group_list);
  1214. break;
  1215. }
  1216. perf_enable();
  1217. spin_unlock(&ctx->lock);
  1218. }
  1219. void perf_event_task_tick(struct task_struct *curr, int cpu)
  1220. {
  1221. struct perf_cpu_context *cpuctx;
  1222. struct perf_event_context *ctx;
  1223. if (!atomic_read(&nr_events))
  1224. return;
  1225. cpuctx = &per_cpu(perf_cpu_context, cpu);
  1226. ctx = curr->perf_event_ctxp;
  1227. perf_ctx_adjust_freq(&cpuctx->ctx);
  1228. if (ctx)
  1229. perf_ctx_adjust_freq(ctx);
  1230. perf_event_cpu_sched_out(cpuctx);
  1231. if (ctx)
  1232. __perf_event_task_sched_out(ctx);
  1233. rotate_ctx(&cpuctx->ctx);
  1234. if (ctx)
  1235. rotate_ctx(ctx);
  1236. perf_event_cpu_sched_in(cpuctx, cpu);
  1237. if (ctx)
  1238. perf_event_task_sched_in(curr, cpu);
  1239. }
  1240. /*
  1241. * Enable all of a task's events that have been marked enable-on-exec.
  1242. * This expects task == current.
  1243. */
  1244. static void perf_event_enable_on_exec(struct task_struct *task)
  1245. {
  1246. struct perf_event_context *ctx;
  1247. struct perf_event *event;
  1248. unsigned long flags;
  1249. int enabled = 0;
  1250. local_irq_save(flags);
  1251. ctx = task->perf_event_ctxp;
  1252. if (!ctx || !ctx->nr_events)
  1253. goto out;
  1254. __perf_event_task_sched_out(ctx);
  1255. spin_lock(&ctx->lock);
  1256. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1257. if (!event->attr.enable_on_exec)
  1258. continue;
  1259. event->attr.enable_on_exec = 0;
  1260. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1261. continue;
  1262. __perf_event_mark_enabled(event, ctx);
  1263. enabled = 1;
  1264. }
  1265. /*
  1266. * Unclone this context if we enabled any event.
  1267. */
  1268. if (enabled)
  1269. unclone_ctx(ctx);
  1270. spin_unlock(&ctx->lock);
  1271. perf_event_task_sched_in(task, smp_processor_id());
  1272. out:
  1273. local_irq_restore(flags);
  1274. }
  1275. /*
  1276. * Cross CPU call to read the hardware event
  1277. */
  1278. static void __perf_event_read(void *info)
  1279. {
  1280. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  1281. struct perf_event *event = info;
  1282. struct perf_event_context *ctx = event->ctx;
  1283. /*
  1284. * If this is a task context, we need to check whether it is
  1285. * the current task context of this cpu. If not it has been
  1286. * scheduled out before the smp call arrived. In that case
  1287. * event->count would have been updated to a recent sample
  1288. * when the event was scheduled out.
  1289. */
  1290. if (ctx->task && cpuctx->task_ctx != ctx)
  1291. return;
  1292. spin_lock(&ctx->lock);
  1293. update_context_time(ctx);
  1294. update_event_times(event);
  1295. spin_unlock(&ctx->lock);
  1296. event->pmu->read(event);
  1297. }
  1298. static u64 perf_event_read(struct perf_event *event)
  1299. {
  1300. /*
  1301. * If event is enabled and currently active on a CPU, update the
  1302. * value in the event structure:
  1303. */
  1304. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1305. smp_call_function_single(event->oncpu,
  1306. __perf_event_read, event, 1);
  1307. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1308. struct perf_event_context *ctx = event->ctx;
  1309. unsigned long flags;
  1310. spin_lock_irqsave(&ctx->lock, flags);
  1311. update_context_time(ctx);
  1312. update_event_times(event);
  1313. spin_unlock_irqrestore(&ctx->lock, flags);
  1314. }
  1315. return atomic64_read(&event->count);
  1316. }
  1317. /*
  1318. * Initialize the perf_event context in a task_struct:
  1319. */
  1320. static void
  1321. __perf_event_init_context(struct perf_event_context *ctx,
  1322. struct task_struct *task)
  1323. {
  1324. memset(ctx, 0, sizeof(*ctx));
  1325. spin_lock_init(&ctx->lock);
  1326. mutex_init(&ctx->mutex);
  1327. INIT_LIST_HEAD(&ctx->group_list);
  1328. INIT_LIST_HEAD(&ctx->event_list);
  1329. atomic_set(&ctx->refcount, 1);
  1330. ctx->task = task;
  1331. }
  1332. static struct perf_event_context *find_get_context(pid_t pid, int cpu)
  1333. {
  1334. struct perf_event_context *ctx;
  1335. struct perf_cpu_context *cpuctx;
  1336. struct task_struct *task;
  1337. unsigned long flags;
  1338. int err;
  1339. /*
  1340. * If cpu is not a wildcard then this is a percpu event:
  1341. */
  1342. if (cpu != -1) {
  1343. /* Must be root to operate on a CPU event: */
  1344. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1345. return ERR_PTR(-EACCES);
  1346. if (cpu < 0 || cpu > num_possible_cpus())
  1347. return ERR_PTR(-EINVAL);
  1348. /*
  1349. * We could be clever and allow to attach a event to an
  1350. * offline CPU and activate it when the CPU comes up, but
  1351. * that's for later.
  1352. */
  1353. if (!cpu_isset(cpu, cpu_online_map))
  1354. return ERR_PTR(-ENODEV);
  1355. cpuctx = &per_cpu(perf_cpu_context, cpu);
  1356. ctx = &cpuctx->ctx;
  1357. get_ctx(ctx);
  1358. return ctx;
  1359. }
  1360. rcu_read_lock();
  1361. if (!pid)
  1362. task = current;
  1363. else
  1364. task = find_task_by_vpid(pid);
  1365. if (task)
  1366. get_task_struct(task);
  1367. rcu_read_unlock();
  1368. if (!task)
  1369. return ERR_PTR(-ESRCH);
  1370. /*
  1371. * Can't attach events to a dying task.
  1372. */
  1373. err = -ESRCH;
  1374. if (task->flags & PF_EXITING)
  1375. goto errout;
  1376. /* Reuse ptrace permission checks for now. */
  1377. err = -EACCES;
  1378. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  1379. goto errout;
  1380. retry:
  1381. ctx = perf_lock_task_context(task, &flags);
  1382. if (ctx) {
  1383. unclone_ctx(ctx);
  1384. spin_unlock_irqrestore(&ctx->lock, flags);
  1385. }
  1386. if (!ctx) {
  1387. ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  1388. err = -ENOMEM;
  1389. if (!ctx)
  1390. goto errout;
  1391. __perf_event_init_context(ctx, task);
  1392. get_ctx(ctx);
  1393. if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
  1394. /*
  1395. * We raced with some other task; use
  1396. * the context they set.
  1397. */
  1398. kfree(ctx);
  1399. goto retry;
  1400. }
  1401. get_task_struct(task);
  1402. }
  1403. put_task_struct(task);
  1404. return ctx;
  1405. errout:
  1406. put_task_struct(task);
  1407. return ERR_PTR(err);
  1408. }
  1409. static void perf_event_free_filter(struct perf_event *event);
  1410. static void free_event_rcu(struct rcu_head *head)
  1411. {
  1412. struct perf_event *event;
  1413. event = container_of(head, struct perf_event, rcu_head);
  1414. if (event->ns)
  1415. put_pid_ns(event->ns);
  1416. perf_event_free_filter(event);
  1417. kfree(event);
  1418. }
  1419. static void perf_pending_sync(struct perf_event *event);
  1420. static void free_event(struct perf_event *event)
  1421. {
  1422. perf_pending_sync(event);
  1423. if (!event->parent) {
  1424. atomic_dec(&nr_events);
  1425. if (event->attr.mmap)
  1426. atomic_dec(&nr_mmap_events);
  1427. if (event->attr.comm)
  1428. atomic_dec(&nr_comm_events);
  1429. if (event->attr.task)
  1430. atomic_dec(&nr_task_events);
  1431. }
  1432. if (event->output) {
  1433. fput(event->output->filp);
  1434. event->output = NULL;
  1435. }
  1436. if (event->destroy)
  1437. event->destroy(event);
  1438. put_ctx(event->ctx);
  1439. call_rcu(&event->rcu_head, free_event_rcu);
  1440. }
  1441. /*
  1442. * Called when the last reference to the file is gone.
  1443. */
  1444. static int perf_release(struct inode *inode, struct file *file)
  1445. {
  1446. struct perf_event *event = file->private_data;
  1447. struct perf_event_context *ctx = event->ctx;
  1448. file->private_data = NULL;
  1449. WARN_ON_ONCE(ctx->parent_ctx);
  1450. mutex_lock(&ctx->mutex);
  1451. perf_event_remove_from_context(event);
  1452. mutex_unlock(&ctx->mutex);
  1453. mutex_lock(&event->owner->perf_event_mutex);
  1454. list_del_init(&event->owner_entry);
  1455. mutex_unlock(&event->owner->perf_event_mutex);
  1456. put_task_struct(event->owner);
  1457. free_event(event);
  1458. return 0;
  1459. }
  1460. int perf_event_release_kernel(struct perf_event *event)
  1461. {
  1462. struct perf_event_context *ctx = event->ctx;
  1463. WARN_ON_ONCE(ctx->parent_ctx);
  1464. mutex_lock(&ctx->mutex);
  1465. perf_event_remove_from_context(event);
  1466. mutex_unlock(&ctx->mutex);
  1467. mutex_lock(&event->owner->perf_event_mutex);
  1468. list_del_init(&event->owner_entry);
  1469. mutex_unlock(&event->owner->perf_event_mutex);
  1470. put_task_struct(event->owner);
  1471. free_event(event);
  1472. return 0;
  1473. }
  1474. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  1475. static int perf_event_read_size(struct perf_event *event)
  1476. {
  1477. int entry = sizeof(u64); /* value */
  1478. int size = 0;
  1479. int nr = 1;
  1480. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1481. size += sizeof(u64);
  1482. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1483. size += sizeof(u64);
  1484. if (event->attr.read_format & PERF_FORMAT_ID)
  1485. entry += sizeof(u64);
  1486. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  1487. nr += event->group_leader->nr_siblings;
  1488. size += sizeof(u64);
  1489. }
  1490. size += entry * nr;
  1491. return size;
  1492. }
  1493. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  1494. {
  1495. struct perf_event *child;
  1496. u64 total = 0;
  1497. *enabled = 0;
  1498. *running = 0;
  1499. mutex_lock(&event->child_mutex);
  1500. total += perf_event_read(event);
  1501. *enabled += event->total_time_enabled +
  1502. atomic64_read(&event->child_total_time_enabled);
  1503. *running += event->total_time_running +
  1504. atomic64_read(&event->child_total_time_running);
  1505. list_for_each_entry(child, &event->child_list, child_list) {
  1506. total += perf_event_read(child);
  1507. *enabled += child->total_time_enabled;
  1508. *running += child->total_time_running;
  1509. }
  1510. mutex_unlock(&event->child_mutex);
  1511. return total;
  1512. }
  1513. EXPORT_SYMBOL_GPL(perf_event_read_value);
  1514. static int perf_event_read_group(struct perf_event *event,
  1515. u64 read_format, char __user *buf)
  1516. {
  1517. struct perf_event *leader = event->group_leader, *sub;
  1518. int n = 0, size = 0, ret = -EFAULT;
  1519. struct perf_event_context *ctx = leader->ctx;
  1520. u64 values[5];
  1521. u64 count, enabled, running;
  1522. mutex_lock(&ctx->mutex);
  1523. count = perf_event_read_value(leader, &enabled, &running);
  1524. values[n++] = 1 + leader->nr_siblings;
  1525. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1526. values[n++] = enabled;
  1527. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1528. values[n++] = running;
  1529. values[n++] = count;
  1530. if (read_format & PERF_FORMAT_ID)
  1531. values[n++] = primary_event_id(leader);
  1532. size = n * sizeof(u64);
  1533. if (copy_to_user(buf, values, size))
  1534. goto unlock;
  1535. ret = size;
  1536. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1537. n = 0;
  1538. values[n++] = perf_event_read_value(sub, &enabled, &running);
  1539. if (read_format & PERF_FORMAT_ID)
  1540. values[n++] = primary_event_id(sub);
  1541. size = n * sizeof(u64);
  1542. if (copy_to_user(buf + size, values, size)) {
  1543. ret = -EFAULT;
  1544. goto unlock;
  1545. }
  1546. ret += size;
  1547. }
  1548. unlock:
  1549. mutex_unlock(&ctx->mutex);
  1550. return ret;
  1551. }
  1552. static int perf_event_read_one(struct perf_event *event,
  1553. u64 read_format, char __user *buf)
  1554. {
  1555. u64 enabled, running;
  1556. u64 values[4];
  1557. int n = 0;
  1558. values[n++] = perf_event_read_value(event, &enabled, &running);
  1559. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1560. values[n++] = enabled;
  1561. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1562. values[n++] = running;
  1563. if (read_format & PERF_FORMAT_ID)
  1564. values[n++] = primary_event_id(event);
  1565. if (copy_to_user(buf, values, n * sizeof(u64)))
  1566. return -EFAULT;
  1567. return n * sizeof(u64);
  1568. }
  1569. /*
  1570. * Read the performance event - simple non blocking version for now
  1571. */
  1572. static ssize_t
  1573. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  1574. {
  1575. u64 read_format = event->attr.read_format;
  1576. int ret;
  1577. /*
  1578. * Return end-of-file for a read on a event that is in
  1579. * error state (i.e. because it was pinned but it couldn't be
  1580. * scheduled on to the CPU at some point).
  1581. */
  1582. if (event->state == PERF_EVENT_STATE_ERROR)
  1583. return 0;
  1584. if (count < perf_event_read_size(event))
  1585. return -ENOSPC;
  1586. WARN_ON_ONCE(event->ctx->parent_ctx);
  1587. if (read_format & PERF_FORMAT_GROUP)
  1588. ret = perf_event_read_group(event, read_format, buf);
  1589. else
  1590. ret = perf_event_read_one(event, read_format, buf);
  1591. return ret;
  1592. }
  1593. static ssize_t
  1594. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  1595. {
  1596. struct perf_event *event = file->private_data;
  1597. return perf_read_hw(event, buf, count);
  1598. }
  1599. static unsigned int perf_poll(struct file *file, poll_table *wait)
  1600. {
  1601. struct perf_event *event = file->private_data;
  1602. struct perf_mmap_data *data;
  1603. unsigned int events = POLL_HUP;
  1604. rcu_read_lock();
  1605. data = rcu_dereference(event->data);
  1606. if (data)
  1607. events = atomic_xchg(&data->poll, 0);
  1608. rcu_read_unlock();
  1609. poll_wait(file, &event->waitq, wait);
  1610. return events;
  1611. }
  1612. static void perf_event_reset(struct perf_event *event)
  1613. {
  1614. (void)perf_event_read(event);
  1615. atomic64_set(&event->count, 0);
  1616. perf_event_update_userpage(event);
  1617. }
  1618. /*
  1619. * Holding the top-level event's child_mutex means that any
  1620. * descendant process that has inherited this event will block
  1621. * in sync_child_event if it goes to exit, thus satisfying the
  1622. * task existence requirements of perf_event_enable/disable.
  1623. */
  1624. static void perf_event_for_each_child(struct perf_event *event,
  1625. void (*func)(struct perf_event *))
  1626. {
  1627. struct perf_event *child;
  1628. WARN_ON_ONCE(event->ctx->parent_ctx);
  1629. mutex_lock(&event->child_mutex);
  1630. func(event);
  1631. list_for_each_entry(child, &event->child_list, child_list)
  1632. func(child);
  1633. mutex_unlock(&event->child_mutex);
  1634. }
  1635. static void perf_event_for_each(struct perf_event *event,
  1636. void (*func)(struct perf_event *))
  1637. {
  1638. struct perf_event_context *ctx = event->ctx;
  1639. struct perf_event *sibling;
  1640. WARN_ON_ONCE(ctx->parent_ctx);
  1641. mutex_lock(&ctx->mutex);
  1642. event = event->group_leader;
  1643. perf_event_for_each_child(event, func);
  1644. func(event);
  1645. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  1646. perf_event_for_each_child(event, func);
  1647. mutex_unlock(&ctx->mutex);
  1648. }
  1649. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  1650. {
  1651. struct perf_event_context *ctx = event->ctx;
  1652. unsigned long size;
  1653. int ret = 0;
  1654. u64 value;
  1655. if (!event->attr.sample_period)
  1656. return -EINVAL;
  1657. size = copy_from_user(&value, arg, sizeof(value));
  1658. if (size != sizeof(value))
  1659. return -EFAULT;
  1660. if (!value)
  1661. return -EINVAL;
  1662. spin_lock_irq(&ctx->lock);
  1663. if (event->attr.freq) {
  1664. if (value > sysctl_perf_event_sample_rate) {
  1665. ret = -EINVAL;
  1666. goto unlock;
  1667. }
  1668. event->attr.sample_freq = value;
  1669. } else {
  1670. event->attr.sample_period = value;
  1671. event->hw.sample_period = value;
  1672. }
  1673. unlock:
  1674. spin_unlock_irq(&ctx->lock);
  1675. return ret;
  1676. }
  1677. static int perf_event_set_output(struct perf_event *event, int output_fd);
  1678. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  1679. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1680. {
  1681. struct perf_event *event = file->private_data;
  1682. void (*func)(struct perf_event *);
  1683. u32 flags = arg;
  1684. switch (cmd) {
  1685. case PERF_EVENT_IOC_ENABLE:
  1686. func = perf_event_enable;
  1687. break;
  1688. case PERF_EVENT_IOC_DISABLE:
  1689. func = perf_event_disable;
  1690. break;
  1691. case PERF_EVENT_IOC_RESET:
  1692. func = perf_event_reset;
  1693. break;
  1694. case PERF_EVENT_IOC_REFRESH:
  1695. return perf_event_refresh(event, arg);
  1696. case PERF_EVENT_IOC_PERIOD:
  1697. return perf_event_period(event, (u64 __user *)arg);
  1698. case PERF_EVENT_IOC_SET_OUTPUT:
  1699. return perf_event_set_output(event, arg);
  1700. case PERF_EVENT_IOC_SET_FILTER:
  1701. return perf_event_set_filter(event, (void __user *)arg);
  1702. default:
  1703. return -ENOTTY;
  1704. }
  1705. if (flags & PERF_IOC_FLAG_GROUP)
  1706. perf_event_for_each(event, func);
  1707. else
  1708. perf_event_for_each_child(event, func);
  1709. return 0;
  1710. }
  1711. int perf_event_task_enable(void)
  1712. {
  1713. struct perf_event *event;
  1714. mutex_lock(&current->perf_event_mutex);
  1715. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  1716. perf_event_for_each_child(event, perf_event_enable);
  1717. mutex_unlock(&current->perf_event_mutex);
  1718. return 0;
  1719. }
  1720. int perf_event_task_disable(void)
  1721. {
  1722. struct perf_event *event;
  1723. mutex_lock(&current->perf_event_mutex);
  1724. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  1725. perf_event_for_each_child(event, perf_event_disable);
  1726. mutex_unlock(&current->perf_event_mutex);
  1727. return 0;
  1728. }
  1729. #ifndef PERF_EVENT_INDEX_OFFSET
  1730. # define PERF_EVENT_INDEX_OFFSET 0
  1731. #endif
  1732. static int perf_event_index(struct perf_event *event)
  1733. {
  1734. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1735. return 0;
  1736. return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
  1737. }
  1738. /*
  1739. * Callers need to ensure there can be no nesting of this function, otherwise
  1740. * the seqlock logic goes bad. We can not serialize this because the arch
  1741. * code calls this from NMI context.
  1742. */
  1743. void perf_event_update_userpage(struct perf_event *event)
  1744. {
  1745. struct perf_event_mmap_page *userpg;
  1746. struct perf_mmap_data *data;
  1747. rcu_read_lock();
  1748. data = rcu_dereference(event->data);
  1749. if (!data)
  1750. goto unlock;
  1751. userpg = data->user_page;
  1752. /*
  1753. * Disable preemption so as to not let the corresponding user-space
  1754. * spin too long if we get preempted.
  1755. */
  1756. preempt_disable();
  1757. ++userpg->lock;
  1758. barrier();
  1759. userpg->index = perf_event_index(event);
  1760. userpg->offset = atomic64_read(&event->count);
  1761. if (event->state == PERF_EVENT_STATE_ACTIVE)
  1762. userpg->offset -= atomic64_read(&event->hw.prev_count);
  1763. userpg->time_enabled = event->total_time_enabled +
  1764. atomic64_read(&event->child_total_time_enabled);
  1765. userpg->time_running = event->total_time_running +
  1766. atomic64_read(&event->child_total_time_running);
  1767. barrier();
  1768. ++userpg->lock;
  1769. preempt_enable();
  1770. unlock:
  1771. rcu_read_unlock();
  1772. }
  1773. static unsigned long perf_data_size(struct perf_mmap_data *data)
  1774. {
  1775. return data->nr_pages << (PAGE_SHIFT + data->data_order);
  1776. }
  1777. #ifndef CONFIG_PERF_USE_VMALLOC
  1778. /*
  1779. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  1780. */
  1781. static struct page *
  1782. perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
  1783. {
  1784. if (pgoff > data->nr_pages)
  1785. return NULL;
  1786. if (pgoff == 0)
  1787. return virt_to_page(data->user_page);
  1788. return virt_to_page(data->data_pages[pgoff - 1]);
  1789. }
  1790. static struct perf_mmap_data *
  1791. perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
  1792. {
  1793. struct perf_mmap_data *data;
  1794. unsigned long size;
  1795. int i;
  1796. WARN_ON(atomic_read(&event->mmap_count));
  1797. size = sizeof(struct perf_mmap_data);
  1798. size += nr_pages * sizeof(void *);
  1799. data = kzalloc(size, GFP_KERNEL);
  1800. if (!data)
  1801. goto fail;
  1802. data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
  1803. if (!data->user_page)
  1804. goto fail_user_page;
  1805. for (i = 0; i < nr_pages; i++) {
  1806. data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
  1807. if (!data->data_pages[i])
  1808. goto fail_data_pages;
  1809. }
  1810. data->data_order = 0;
  1811. data->nr_pages = nr_pages;
  1812. return data;
  1813. fail_data_pages:
  1814. for (i--; i >= 0; i--)
  1815. free_page((unsigned long)data->data_pages[i]);
  1816. free_page((unsigned long)data->user_page);
  1817. fail_user_page:
  1818. kfree(data);
  1819. fail:
  1820. return NULL;
  1821. }
  1822. static void perf_mmap_free_page(unsigned long addr)
  1823. {
  1824. struct page *page = virt_to_page((void *)addr);
  1825. page->mapping = NULL;
  1826. __free_page(page);
  1827. }
  1828. static void perf_mmap_data_free(struct perf_mmap_data *data)
  1829. {
  1830. int i;
  1831. perf_mmap_free_page((unsigned long)data->user_page);
  1832. for (i = 0; i < data->nr_pages; i++)
  1833. perf_mmap_free_page((unsigned long)data->data_pages[i]);
  1834. }
  1835. #else
  1836. /*
  1837. * Back perf_mmap() with vmalloc memory.
  1838. *
  1839. * Required for architectures that have d-cache aliasing issues.
  1840. */
  1841. static struct page *
  1842. perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
  1843. {
  1844. if (pgoff > (1UL << data->data_order))
  1845. return NULL;
  1846. return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
  1847. }
  1848. static void perf_mmap_unmark_page(void *addr)
  1849. {
  1850. struct page *page = vmalloc_to_page(addr);
  1851. page->mapping = NULL;
  1852. }
  1853. static void perf_mmap_data_free_work(struct work_struct *work)
  1854. {
  1855. struct perf_mmap_data *data;
  1856. void *base;
  1857. int i, nr;
  1858. data = container_of(work, struct perf_mmap_data, work);
  1859. nr = 1 << data->data_order;
  1860. base = data->user_page;
  1861. for (i = 0; i < nr + 1; i++)
  1862. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  1863. vfree(base);
  1864. }
  1865. static void perf_mmap_data_free(struct perf_mmap_data *data)
  1866. {
  1867. schedule_work(&data->work);
  1868. }
  1869. static struct perf_mmap_data *
  1870. perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
  1871. {
  1872. struct perf_mmap_data *data;
  1873. unsigned long size;
  1874. void *all_buf;
  1875. WARN_ON(atomic_read(&event->mmap_count));
  1876. size = sizeof(struct perf_mmap_data);
  1877. size += sizeof(void *);
  1878. data = kzalloc(size, GFP_KERNEL);
  1879. if (!data)
  1880. goto fail;
  1881. INIT_WORK(&data->work, perf_mmap_data_free_work);
  1882. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  1883. if (!all_buf)
  1884. goto fail_all_buf;
  1885. data->user_page = all_buf;
  1886. data->data_pages[0] = all_buf + PAGE_SIZE;
  1887. data->data_order = ilog2(nr_pages);
  1888. data->nr_pages = 1;
  1889. return data;
  1890. fail_all_buf:
  1891. kfree(data);
  1892. fail:
  1893. return NULL;
  1894. }
  1895. #endif
  1896. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1897. {
  1898. struct perf_event *event = vma->vm_file->private_data;
  1899. struct perf_mmap_data *data;
  1900. int ret = VM_FAULT_SIGBUS;
  1901. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  1902. if (vmf->pgoff == 0)
  1903. ret = 0;
  1904. return ret;
  1905. }
  1906. rcu_read_lock();
  1907. data = rcu_dereference(event->data);
  1908. if (!data)
  1909. goto unlock;
  1910. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  1911. goto unlock;
  1912. vmf->page = perf_mmap_to_page(data, vmf->pgoff);
  1913. if (!vmf->page)
  1914. goto unlock;
  1915. get_page(vmf->page);
  1916. vmf->page->mapping = vma->vm_file->f_mapping;
  1917. vmf->page->index = vmf->pgoff;
  1918. ret = 0;
  1919. unlock:
  1920. rcu_read_unlock();
  1921. return ret;
  1922. }
  1923. static void
  1924. perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
  1925. {
  1926. long max_size = perf_data_size(data);
  1927. atomic_set(&data->lock, -1);
  1928. if (event->attr.watermark) {
  1929. data->watermark = min_t(long, max_size,
  1930. event->attr.wakeup_watermark);
  1931. }
  1932. if (!data->watermark)
  1933. data->watermark = max_size / 2;
  1934. rcu_assign_pointer(event->data, data);
  1935. }
  1936. static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
  1937. {
  1938. struct perf_mmap_data *data;
  1939. data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
  1940. perf_mmap_data_free(data);
  1941. kfree(data);
  1942. }
  1943. static void perf_mmap_data_release(struct perf_event *event)
  1944. {
  1945. struct perf_mmap_data *data = event->data;
  1946. WARN_ON(atomic_read(&event->mmap_count));
  1947. rcu_assign_pointer(event->data, NULL);
  1948. call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
  1949. }
  1950. static void perf_mmap_open(struct vm_area_struct *vma)
  1951. {
  1952. struct perf_event *event = vma->vm_file->private_data;
  1953. atomic_inc(&event->mmap_count);
  1954. }
  1955. static void perf_mmap_close(struct vm_area_struct *vma)
  1956. {
  1957. struct perf_event *event = vma->vm_file->private_data;
  1958. WARN_ON_ONCE(event->ctx->parent_ctx);
  1959. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  1960. unsigned long size = perf_data_size(event->data);
  1961. struct user_struct *user = current_user();
  1962. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  1963. vma->vm_mm->locked_vm -= event->data->nr_locked;
  1964. perf_mmap_data_release(event);
  1965. mutex_unlock(&event->mmap_mutex);
  1966. }
  1967. }
  1968. static const struct vm_operations_struct perf_mmap_vmops = {
  1969. .open = perf_mmap_open,
  1970. .close = perf_mmap_close,
  1971. .fault = perf_mmap_fault,
  1972. .page_mkwrite = perf_mmap_fault,
  1973. };
  1974. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  1975. {
  1976. struct perf_event *event = file->private_data;
  1977. unsigned long user_locked, user_lock_limit;
  1978. struct user_struct *user = current_user();
  1979. unsigned long locked, lock_limit;
  1980. struct perf_mmap_data *data;
  1981. unsigned long vma_size;
  1982. unsigned long nr_pages;
  1983. long user_extra, extra;
  1984. int ret = 0;
  1985. if (!(vma->vm_flags & VM_SHARED))
  1986. return -EINVAL;
  1987. vma_size = vma->vm_end - vma->vm_start;
  1988. nr_pages = (vma_size / PAGE_SIZE) - 1;
  1989. /*
  1990. * If we have data pages ensure they're a power-of-two number, so we
  1991. * can do bitmasks instead of modulo.
  1992. */
  1993. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  1994. return -EINVAL;
  1995. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  1996. return -EINVAL;
  1997. if (vma->vm_pgoff != 0)
  1998. return -EINVAL;
  1999. WARN_ON_ONCE(event->ctx->parent_ctx);
  2000. mutex_lock(&event->mmap_mutex);
  2001. if (event->output) {
  2002. ret = -EINVAL;
  2003. goto unlock;
  2004. }
  2005. if (atomic_inc_not_zero(&event->mmap_count)) {
  2006. if (nr_pages != event->data->nr_pages)
  2007. ret = -EINVAL;
  2008. goto unlock;
  2009. }
  2010. user_extra = nr_pages + 1;
  2011. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  2012. /*
  2013. * Increase the limit linearly with more CPUs:
  2014. */
  2015. user_lock_limit *= num_online_cpus();
  2016. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  2017. extra = 0;
  2018. if (user_locked > user_lock_limit)
  2019. extra = user_locked - user_lock_limit;
  2020. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  2021. lock_limit >>= PAGE_SHIFT;
  2022. locked = vma->vm_mm->locked_vm + extra;
  2023. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  2024. !capable(CAP_IPC_LOCK)) {
  2025. ret = -EPERM;
  2026. goto unlock;
  2027. }
  2028. WARN_ON(event->data);
  2029. data = perf_mmap_data_alloc(event, nr_pages);
  2030. ret = -ENOMEM;
  2031. if (!data)
  2032. goto unlock;
  2033. ret = 0;
  2034. perf_mmap_data_init(event, data);
  2035. atomic_set(&event->mmap_count, 1);
  2036. atomic_long_add(user_extra, &user->locked_vm);
  2037. vma->vm_mm->locked_vm += extra;
  2038. event->data->nr_locked = extra;
  2039. if (vma->vm_flags & VM_WRITE)
  2040. event->data->writable = 1;
  2041. unlock:
  2042. mutex_unlock(&event->mmap_mutex);
  2043. vma->vm_flags |= VM_RESERVED;
  2044. vma->vm_ops = &perf_mmap_vmops;
  2045. return ret;
  2046. }
  2047. static int perf_fasync(int fd, struct file *filp, int on)
  2048. {
  2049. struct inode *inode = filp->f_path.dentry->d_inode;
  2050. struct perf_event *event = filp->private_data;
  2051. int retval;
  2052. mutex_lock(&inode->i_mutex);
  2053. retval = fasync_helper(fd, filp, on, &event->fasync);
  2054. mutex_unlock(&inode->i_mutex);
  2055. if (retval < 0)
  2056. return retval;
  2057. return 0;
  2058. }
  2059. static const struct file_operations perf_fops = {
  2060. .release = perf_release,
  2061. .read = perf_read,
  2062. .poll = perf_poll,
  2063. .unlocked_ioctl = perf_ioctl,
  2064. .compat_ioctl = perf_ioctl,
  2065. .mmap = perf_mmap,
  2066. .fasync = perf_fasync,
  2067. };
  2068. /*
  2069. * Perf event wakeup
  2070. *
  2071. * If there's data, ensure we set the poll() state and publish everything
  2072. * to user-space before waking everybody up.
  2073. */
  2074. void perf_event_wakeup(struct perf_event *event)
  2075. {
  2076. wake_up_all(&event->waitq);
  2077. if (event->pending_kill) {
  2078. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  2079. event->pending_kill = 0;
  2080. }
  2081. }
  2082. /*
  2083. * Pending wakeups
  2084. *
  2085. * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
  2086. *
  2087. * The NMI bit means we cannot possibly take locks. Therefore, maintain a
  2088. * single linked list and use cmpxchg() to add entries lockless.
  2089. */
  2090. static void perf_pending_event(struct perf_pending_entry *entry)
  2091. {
  2092. struct perf_event *event = container_of(entry,
  2093. struct perf_event, pending);
  2094. if (event->pending_disable) {
  2095. event->pending_disable = 0;
  2096. __perf_event_disable(event);
  2097. }
  2098. if (event->pending_wakeup) {
  2099. event->pending_wakeup = 0;
  2100. perf_event_wakeup(event);
  2101. }
  2102. }
  2103. #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
  2104. static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
  2105. PENDING_TAIL,
  2106. };
  2107. static void perf_pending_queue(struct perf_pending_entry *entry,
  2108. void (*func)(struct perf_pending_entry *))
  2109. {
  2110. struct perf_pending_entry **head;
  2111. if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
  2112. return;
  2113. entry->func = func;
  2114. head = &get_cpu_var(perf_pending_head);
  2115. do {
  2116. entry->next = *head;
  2117. } while (cmpxchg(head, entry->next, entry) != entry->next);
  2118. set_perf_event_pending();
  2119. put_cpu_var(perf_pending_head);
  2120. }
  2121. static int __perf_pending_run(void)
  2122. {
  2123. struct perf_pending_entry *list;
  2124. int nr = 0;
  2125. list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
  2126. while (list != PENDING_TAIL) {
  2127. void (*func)(struct perf_pending_entry *);
  2128. struct perf_pending_entry *entry = list;
  2129. list = list->next;
  2130. func = entry->func;
  2131. entry->next = NULL;
  2132. /*
  2133. * Ensure we observe the unqueue before we issue the wakeup,
  2134. * so that we won't be waiting forever.
  2135. * -- see perf_not_pending().
  2136. */
  2137. smp_wmb();
  2138. func(entry);
  2139. nr++;
  2140. }
  2141. return nr;
  2142. }
  2143. static inline int perf_not_pending(struct perf_event *event)
  2144. {
  2145. /*
  2146. * If we flush on whatever cpu we run, there is a chance we don't
  2147. * need to wait.
  2148. */
  2149. get_cpu();
  2150. __perf_pending_run();
  2151. put_cpu();
  2152. /*
  2153. * Ensure we see the proper queue state before going to sleep
  2154. * so that we do not miss the wakeup. -- see perf_pending_handle()
  2155. */
  2156. smp_rmb();
  2157. return event->pending.next == NULL;
  2158. }
  2159. static void perf_pending_sync(struct perf_event *event)
  2160. {
  2161. wait_event(event->waitq, perf_not_pending(event));
  2162. }
  2163. void perf_event_do_pending(void)
  2164. {
  2165. __perf_pending_run();
  2166. }
  2167. /*
  2168. * Callchain support -- arch specific
  2169. */
  2170. __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  2171. {
  2172. return NULL;
  2173. }
  2174. /*
  2175. * Output
  2176. */
  2177. static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
  2178. unsigned long offset, unsigned long head)
  2179. {
  2180. unsigned long mask;
  2181. if (!data->writable)
  2182. return true;
  2183. mask = perf_data_size(data) - 1;
  2184. offset = (offset - tail) & mask;
  2185. head = (head - tail) & mask;
  2186. if ((int)(head - offset) < 0)
  2187. return false;
  2188. return true;
  2189. }
  2190. static void perf_output_wakeup(struct perf_output_handle *handle)
  2191. {
  2192. atomic_set(&handle->data->poll, POLL_IN);
  2193. if (handle->nmi) {
  2194. handle->event->pending_wakeup = 1;
  2195. perf_pending_queue(&handle->event->pending,
  2196. perf_pending_event);
  2197. } else
  2198. perf_event_wakeup(handle->event);
  2199. }
  2200. /*
  2201. * Curious locking construct.
  2202. *
  2203. * We need to ensure a later event_id doesn't publish a head when a former
  2204. * event_id isn't done writing. However since we need to deal with NMIs we
  2205. * cannot fully serialize things.
  2206. *
  2207. * What we do is serialize between CPUs so we only have to deal with NMI
  2208. * nesting on a single CPU.
  2209. *
  2210. * We only publish the head (and generate a wakeup) when the outer-most
  2211. * event_id completes.
  2212. */
  2213. static void perf_output_lock(struct perf_output_handle *handle)
  2214. {
  2215. struct perf_mmap_data *data = handle->data;
  2216. int cur, cpu = get_cpu();
  2217. handle->locked = 0;
  2218. for (;;) {
  2219. cur = atomic_cmpxchg(&data->lock, -1, cpu);
  2220. if (cur == -1) {
  2221. handle->locked = 1;
  2222. break;
  2223. }
  2224. if (cur == cpu)
  2225. break;
  2226. cpu_relax();
  2227. }
  2228. }
  2229. static void perf_output_unlock(struct perf_output_handle *handle)
  2230. {
  2231. struct perf_mmap_data *data = handle->data;
  2232. unsigned long head;
  2233. int cpu;
  2234. data->done_head = data->head;
  2235. if (!handle->locked)
  2236. goto out;
  2237. again:
  2238. /*
  2239. * The xchg implies a full barrier that ensures all writes are done
  2240. * before we publish the new head, matched by a rmb() in userspace when
  2241. * reading this position.
  2242. */
  2243. while ((head = atomic_long_xchg(&data->done_head, 0)))
  2244. data->user_page->data_head = head;
  2245. /*
  2246. * NMI can happen here, which means we can miss a done_head update.
  2247. */
  2248. cpu = atomic_xchg(&data->lock, -1);
  2249. WARN_ON_ONCE(cpu != smp_processor_id());
  2250. /*
  2251. * Therefore we have to validate we did not indeed do so.
  2252. */
  2253. if (unlikely(atomic_long_read(&data->done_head))) {
  2254. /*
  2255. * Since we had it locked, we can lock it again.
  2256. */
  2257. while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
  2258. cpu_relax();
  2259. goto again;
  2260. }
  2261. if (atomic_xchg(&data->wakeup, 0))
  2262. perf_output_wakeup(handle);
  2263. out:
  2264. put_cpu();
  2265. }
  2266. void perf_output_copy(struct perf_output_handle *handle,
  2267. const void *buf, unsigned int len)
  2268. {
  2269. unsigned int pages_mask;
  2270. unsigned long offset;
  2271. unsigned int size;
  2272. void **pages;
  2273. offset = handle->offset;
  2274. pages_mask = handle->data->nr_pages - 1;
  2275. pages = handle->data->data_pages;
  2276. do {
  2277. unsigned long page_offset;
  2278. unsigned long page_size;
  2279. int nr;
  2280. nr = (offset >> PAGE_SHIFT) & pages_mask;
  2281. page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
  2282. page_offset = offset & (page_size - 1);
  2283. size = min_t(unsigned int, page_size - page_offset, len);
  2284. memcpy(pages[nr] + page_offset, buf, size);
  2285. len -= size;
  2286. buf += size;
  2287. offset += size;
  2288. } while (len);
  2289. handle->offset = offset;
  2290. /*
  2291. * Check we didn't copy past our reservation window, taking the
  2292. * possible unsigned int wrap into account.
  2293. */
  2294. WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
  2295. }
  2296. int perf_output_begin(struct perf_output_handle *handle,
  2297. struct perf_event *event, unsigned int size,
  2298. int nmi, int sample)
  2299. {
  2300. struct perf_event *output_event;
  2301. struct perf_mmap_data *data;
  2302. unsigned long tail, offset, head;
  2303. int have_lost;
  2304. struct {
  2305. struct perf_event_header header;
  2306. u64 id;
  2307. u64 lost;
  2308. } lost_event;
  2309. rcu_read_lock();
  2310. /*
  2311. * For inherited events we send all the output towards the parent.
  2312. */
  2313. if (event->parent)
  2314. event = event->parent;
  2315. output_event = rcu_dereference(event->output);
  2316. if (output_event)
  2317. event = output_event;
  2318. data = rcu_dereference(event->data);
  2319. if (!data)
  2320. goto out;
  2321. handle->data = data;
  2322. handle->event = event;
  2323. handle->nmi = nmi;
  2324. handle->sample = sample;
  2325. if (!data->nr_pages)
  2326. goto fail;
  2327. have_lost = atomic_read(&data->lost);
  2328. if (have_lost)
  2329. size += sizeof(lost_event);
  2330. perf_output_lock(handle);
  2331. do {
  2332. /*
  2333. * Userspace could choose to issue a mb() before updating the
  2334. * tail pointer. So that all reads will be completed before the
  2335. * write is issued.
  2336. */
  2337. tail = ACCESS_ONCE(data->user_page->data_tail);
  2338. smp_rmb();
  2339. offset = head = atomic_long_read(&data->head);
  2340. head += size;
  2341. if (unlikely(!perf_output_space(data, tail, offset, head)))
  2342. goto fail;
  2343. } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
  2344. handle->offset = offset;
  2345. handle->head = head;
  2346. if (head - tail > data->watermark)
  2347. atomic_set(&data->wakeup, 1);
  2348. if (have_lost) {
  2349. lost_event.header.type = PERF_RECORD_LOST;
  2350. lost_event.header.misc = 0;
  2351. lost_event.header.size = sizeof(lost_event);
  2352. lost_event.id = event->id;
  2353. lost_event.lost = atomic_xchg(&data->lost, 0);
  2354. perf_output_put(handle, lost_event);
  2355. }
  2356. return 0;
  2357. fail:
  2358. atomic_inc(&data->lost);
  2359. perf_output_unlock(handle);
  2360. out:
  2361. rcu_read_unlock();
  2362. return -ENOSPC;
  2363. }
  2364. void perf_output_end(struct perf_output_handle *handle)
  2365. {
  2366. struct perf_event *event = handle->event;
  2367. struct perf_mmap_data *data = handle->data;
  2368. int wakeup_events = event->attr.wakeup_events;
  2369. if (handle->sample && wakeup_events) {
  2370. int events = atomic_inc_return(&data->events);
  2371. if (events >= wakeup_events) {
  2372. atomic_sub(wakeup_events, &data->events);
  2373. atomic_set(&data->wakeup, 1);
  2374. }
  2375. }
  2376. perf_output_unlock(handle);
  2377. rcu_read_unlock();
  2378. }
  2379. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  2380. {
  2381. /*
  2382. * only top level events have the pid namespace they were created in
  2383. */
  2384. if (event->parent)
  2385. event = event->parent;
  2386. return task_tgid_nr_ns(p, event->ns);
  2387. }
  2388. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  2389. {
  2390. /*
  2391. * only top level events have the pid namespace they were created in
  2392. */
  2393. if (event->parent)
  2394. event = event->parent;
  2395. return task_pid_nr_ns(p, event->ns);
  2396. }
  2397. static void perf_output_read_one(struct perf_output_handle *handle,
  2398. struct perf_event *event)
  2399. {
  2400. u64 read_format = event->attr.read_format;
  2401. u64 values[4];
  2402. int n = 0;
  2403. values[n++] = atomic64_read(&event->count);
  2404. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  2405. values[n++] = event->total_time_enabled +
  2406. atomic64_read(&event->child_total_time_enabled);
  2407. }
  2408. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  2409. values[n++] = event->total_time_running +
  2410. atomic64_read(&event->child_total_time_running);
  2411. }
  2412. if (read_format & PERF_FORMAT_ID)
  2413. values[n++] = primary_event_id(event);
  2414. perf_output_copy(handle, values, n * sizeof(u64));
  2415. }
  2416. /*
  2417. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  2418. */
  2419. static void perf_output_read_group(struct perf_output_handle *handle,
  2420. struct perf_event *event)
  2421. {
  2422. struct perf_event *leader = event->group_leader, *sub;
  2423. u64 read_format = event->attr.read_format;
  2424. u64 values[5];
  2425. int n = 0;
  2426. values[n++] = 1 + leader->nr_siblings;
  2427. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2428. values[n++] = leader->total_time_enabled;
  2429. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2430. values[n++] = leader->total_time_running;
  2431. if (leader != event)
  2432. leader->pmu->read(leader);
  2433. values[n++] = atomic64_read(&leader->count);
  2434. if (read_format & PERF_FORMAT_ID)
  2435. values[n++] = primary_event_id(leader);
  2436. perf_output_copy(handle, values, n * sizeof(u64));
  2437. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2438. n = 0;
  2439. if (sub != event)
  2440. sub->pmu->read(sub);
  2441. values[n++] = atomic64_read(&sub->count);
  2442. if (read_format & PERF_FORMAT_ID)
  2443. values[n++] = primary_event_id(sub);
  2444. perf_output_copy(handle, values, n * sizeof(u64));
  2445. }
  2446. }
  2447. static void perf_output_read(struct perf_output_handle *handle,
  2448. struct perf_event *event)
  2449. {
  2450. if (event->attr.read_format & PERF_FORMAT_GROUP)
  2451. perf_output_read_group(handle, event);
  2452. else
  2453. perf_output_read_one(handle, event);
  2454. }
  2455. void perf_output_sample(struct perf_output_handle *handle,
  2456. struct perf_event_header *header,
  2457. struct perf_sample_data *data,
  2458. struct perf_event *event)
  2459. {
  2460. u64 sample_type = data->type;
  2461. perf_output_put(handle, *header);
  2462. if (sample_type & PERF_SAMPLE_IP)
  2463. perf_output_put(handle, data->ip);
  2464. if (sample_type & PERF_SAMPLE_TID)
  2465. perf_output_put(handle, data->tid_entry);
  2466. if (sample_type & PERF_SAMPLE_TIME)
  2467. perf_output_put(handle, data->time);
  2468. if (sample_type & PERF_SAMPLE_ADDR)
  2469. perf_output_put(handle, data->addr);
  2470. if (sample_type & PERF_SAMPLE_ID)
  2471. perf_output_put(handle, data->id);
  2472. if (sample_type & PERF_SAMPLE_STREAM_ID)
  2473. perf_output_put(handle, data->stream_id);
  2474. if (sample_type & PERF_SAMPLE_CPU)
  2475. perf_output_put(handle, data->cpu_entry);
  2476. if (sample_type & PERF_SAMPLE_PERIOD)
  2477. perf_output_put(handle, data->period);
  2478. if (sample_type & PERF_SAMPLE_READ)
  2479. perf_output_read(handle, event);
  2480. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2481. if (data->callchain) {
  2482. int size = 1;
  2483. if (data->callchain)
  2484. size += data->callchain->nr;
  2485. size *= sizeof(u64);
  2486. perf_output_copy(handle, data->callchain, size);
  2487. } else {
  2488. u64 nr = 0;
  2489. perf_output_put(handle, nr);
  2490. }
  2491. }
  2492. if (sample_type & PERF_SAMPLE_RAW) {
  2493. if (data->raw) {
  2494. perf_output_put(handle, data->raw->size);
  2495. perf_output_copy(handle, data->raw->data,
  2496. data->raw->size);
  2497. } else {
  2498. struct {
  2499. u32 size;
  2500. u32 data;
  2501. } raw = {
  2502. .size = sizeof(u32),
  2503. .data = 0,
  2504. };
  2505. perf_output_put(handle, raw);
  2506. }
  2507. }
  2508. }
  2509. void perf_prepare_sample(struct perf_event_header *header,
  2510. struct perf_sample_data *data,
  2511. struct perf_event *event,
  2512. struct pt_regs *regs)
  2513. {
  2514. u64 sample_type = event->attr.sample_type;
  2515. data->type = sample_type;
  2516. header->type = PERF_RECORD_SAMPLE;
  2517. header->size = sizeof(*header);
  2518. header->misc = 0;
  2519. header->misc |= perf_misc_flags(regs);
  2520. if (sample_type & PERF_SAMPLE_IP) {
  2521. data->ip = perf_instruction_pointer(regs);
  2522. header->size += sizeof(data->ip);
  2523. }
  2524. if (sample_type & PERF_SAMPLE_TID) {
  2525. /* namespace issues */
  2526. data->tid_entry.pid = perf_event_pid(event, current);
  2527. data->tid_entry.tid = perf_event_tid(event, current);
  2528. header->size += sizeof(data->tid_entry);
  2529. }
  2530. if (sample_type & PERF_SAMPLE_TIME) {
  2531. data->time = perf_clock();
  2532. header->size += sizeof(data->time);
  2533. }
  2534. if (sample_type & PERF_SAMPLE_ADDR)
  2535. header->size += sizeof(data->addr);
  2536. if (sample_type & PERF_SAMPLE_ID) {
  2537. data->id = primary_event_id(event);
  2538. header->size += sizeof(data->id);
  2539. }
  2540. if (sample_type & PERF_SAMPLE_STREAM_ID) {
  2541. data->stream_id = event->id;
  2542. header->size += sizeof(data->stream_id);
  2543. }
  2544. if (sample_type & PERF_SAMPLE_CPU) {
  2545. data->cpu_entry.cpu = raw_smp_processor_id();
  2546. data->cpu_entry.reserved = 0;
  2547. header->size += sizeof(data->cpu_entry);
  2548. }
  2549. if (sample_type & PERF_SAMPLE_PERIOD)
  2550. header->size += sizeof(data->period);
  2551. if (sample_type & PERF_SAMPLE_READ)
  2552. header->size += perf_event_read_size(event);
  2553. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2554. int size = 1;
  2555. data->callchain = perf_callchain(regs);
  2556. if (data->callchain)
  2557. size += data->callchain->nr;
  2558. header->size += size * sizeof(u64);
  2559. }
  2560. if (sample_type & PERF_SAMPLE_RAW) {
  2561. int size = sizeof(u32);
  2562. if (data->raw)
  2563. size += data->raw->size;
  2564. else
  2565. size += sizeof(u32);
  2566. WARN_ON_ONCE(size & (sizeof(u64)-1));
  2567. header->size += size;
  2568. }
  2569. }
  2570. static void perf_event_output(struct perf_event *event, int nmi,
  2571. struct perf_sample_data *data,
  2572. struct pt_regs *regs)
  2573. {
  2574. struct perf_output_handle handle;
  2575. struct perf_event_header header;
  2576. perf_prepare_sample(&header, data, event, regs);
  2577. if (perf_output_begin(&handle, event, header.size, nmi, 1))
  2578. return;
  2579. perf_output_sample(&handle, &header, data, event);
  2580. perf_output_end(&handle);
  2581. }
  2582. /*
  2583. * read event_id
  2584. */
  2585. struct perf_read_event {
  2586. struct perf_event_header header;
  2587. u32 pid;
  2588. u32 tid;
  2589. };
  2590. static void
  2591. perf_event_read_event(struct perf_event *event,
  2592. struct task_struct *task)
  2593. {
  2594. struct perf_output_handle handle;
  2595. struct perf_read_event read_event = {
  2596. .header = {
  2597. .type = PERF_RECORD_READ,
  2598. .misc = 0,
  2599. .size = sizeof(read_event) + perf_event_read_size(event),
  2600. },
  2601. .pid = perf_event_pid(event, task),
  2602. .tid = perf_event_tid(event, task),
  2603. };
  2604. int ret;
  2605. ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
  2606. if (ret)
  2607. return;
  2608. perf_output_put(&handle, read_event);
  2609. perf_output_read(&handle, event);
  2610. perf_output_end(&handle);
  2611. }
  2612. /*
  2613. * task tracking -- fork/exit
  2614. *
  2615. * enabled by: attr.comm | attr.mmap | attr.task
  2616. */
  2617. struct perf_task_event {
  2618. struct task_struct *task;
  2619. struct perf_event_context *task_ctx;
  2620. struct {
  2621. struct perf_event_header header;
  2622. u32 pid;
  2623. u32 ppid;
  2624. u32 tid;
  2625. u32 ptid;
  2626. u64 time;
  2627. } event_id;
  2628. };
  2629. static void perf_event_task_output(struct perf_event *event,
  2630. struct perf_task_event *task_event)
  2631. {
  2632. struct perf_output_handle handle;
  2633. int size;
  2634. struct task_struct *task = task_event->task;
  2635. int ret;
  2636. size = task_event->event_id.header.size;
  2637. ret = perf_output_begin(&handle, event, size, 0, 0);
  2638. if (ret)
  2639. return;
  2640. task_event->event_id.pid = perf_event_pid(event, task);
  2641. task_event->event_id.ppid = perf_event_pid(event, current);
  2642. task_event->event_id.tid = perf_event_tid(event, task);
  2643. task_event->event_id.ptid = perf_event_tid(event, current);
  2644. task_event->event_id.time = perf_clock();
  2645. perf_output_put(&handle, task_event->event_id);
  2646. perf_output_end(&handle);
  2647. }
  2648. static int perf_event_task_match(struct perf_event *event)
  2649. {
  2650. if (event->attr.comm || event->attr.mmap || event->attr.task)
  2651. return 1;
  2652. return 0;
  2653. }
  2654. static void perf_event_task_ctx(struct perf_event_context *ctx,
  2655. struct perf_task_event *task_event)
  2656. {
  2657. struct perf_event *event;
  2658. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2659. if (perf_event_task_match(event))
  2660. perf_event_task_output(event, task_event);
  2661. }
  2662. }
  2663. static void perf_event_task_event(struct perf_task_event *task_event)
  2664. {
  2665. struct perf_cpu_context *cpuctx;
  2666. struct perf_event_context *ctx = task_event->task_ctx;
  2667. rcu_read_lock();
  2668. cpuctx = &get_cpu_var(perf_cpu_context);
  2669. perf_event_task_ctx(&cpuctx->ctx, task_event);
  2670. put_cpu_var(perf_cpu_context);
  2671. if (!ctx)
  2672. ctx = rcu_dereference(task_event->task->perf_event_ctxp);
  2673. if (ctx)
  2674. perf_event_task_ctx(ctx, task_event);
  2675. rcu_read_unlock();
  2676. }
  2677. static void perf_event_task(struct task_struct *task,
  2678. struct perf_event_context *task_ctx,
  2679. int new)
  2680. {
  2681. struct perf_task_event task_event;
  2682. if (!atomic_read(&nr_comm_events) &&
  2683. !atomic_read(&nr_mmap_events) &&
  2684. !atomic_read(&nr_task_events))
  2685. return;
  2686. task_event = (struct perf_task_event){
  2687. .task = task,
  2688. .task_ctx = task_ctx,
  2689. .event_id = {
  2690. .header = {
  2691. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  2692. .misc = 0,
  2693. .size = sizeof(task_event.event_id),
  2694. },
  2695. /* .pid */
  2696. /* .ppid */
  2697. /* .tid */
  2698. /* .ptid */
  2699. },
  2700. };
  2701. perf_event_task_event(&task_event);
  2702. }
  2703. void perf_event_fork(struct task_struct *task)
  2704. {
  2705. perf_event_task(task, NULL, 1);
  2706. }
  2707. /*
  2708. * comm tracking
  2709. */
  2710. struct perf_comm_event {
  2711. struct task_struct *task;
  2712. char *comm;
  2713. int comm_size;
  2714. struct {
  2715. struct perf_event_header header;
  2716. u32 pid;
  2717. u32 tid;
  2718. } event_id;
  2719. };
  2720. static void perf_event_comm_output(struct perf_event *event,
  2721. struct perf_comm_event *comm_event)
  2722. {
  2723. struct perf_output_handle handle;
  2724. int size = comm_event->event_id.header.size;
  2725. int ret = perf_output_begin(&handle, event, size, 0, 0);
  2726. if (ret)
  2727. return;
  2728. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  2729. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  2730. perf_output_put(&handle, comm_event->event_id);
  2731. perf_output_copy(&handle, comm_event->comm,
  2732. comm_event->comm_size);
  2733. perf_output_end(&handle);
  2734. }
  2735. static int perf_event_comm_match(struct perf_event *event)
  2736. {
  2737. if (event->attr.comm)
  2738. return 1;
  2739. return 0;
  2740. }
  2741. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  2742. struct perf_comm_event *comm_event)
  2743. {
  2744. struct perf_event *event;
  2745. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2746. if (perf_event_comm_match(event))
  2747. perf_event_comm_output(event, comm_event);
  2748. }
  2749. }
  2750. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  2751. {
  2752. struct perf_cpu_context *cpuctx;
  2753. struct perf_event_context *ctx;
  2754. unsigned int size;
  2755. char comm[TASK_COMM_LEN];
  2756. memset(comm, 0, sizeof(comm));
  2757. strncpy(comm, comm_event->task->comm, sizeof(comm));
  2758. size = ALIGN(strlen(comm)+1, sizeof(u64));
  2759. comm_event->comm = comm;
  2760. comm_event->comm_size = size;
  2761. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  2762. rcu_read_lock();
  2763. cpuctx = &get_cpu_var(perf_cpu_context);
  2764. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  2765. put_cpu_var(perf_cpu_context);
  2766. /*
  2767. * doesn't really matter which of the child contexts the
  2768. * events ends up in.
  2769. */
  2770. ctx = rcu_dereference(current->perf_event_ctxp);
  2771. if (ctx)
  2772. perf_event_comm_ctx(ctx, comm_event);
  2773. rcu_read_unlock();
  2774. }
  2775. void perf_event_comm(struct task_struct *task)
  2776. {
  2777. struct perf_comm_event comm_event;
  2778. if (task->perf_event_ctxp)
  2779. perf_event_enable_on_exec(task);
  2780. if (!atomic_read(&nr_comm_events))
  2781. return;
  2782. comm_event = (struct perf_comm_event){
  2783. .task = task,
  2784. /* .comm */
  2785. /* .comm_size */
  2786. .event_id = {
  2787. .header = {
  2788. .type = PERF_RECORD_COMM,
  2789. .misc = 0,
  2790. /* .size */
  2791. },
  2792. /* .pid */
  2793. /* .tid */
  2794. },
  2795. };
  2796. perf_event_comm_event(&comm_event);
  2797. }
  2798. /*
  2799. * mmap tracking
  2800. */
  2801. struct perf_mmap_event {
  2802. struct vm_area_struct *vma;
  2803. const char *file_name;
  2804. int file_size;
  2805. struct {
  2806. struct perf_event_header header;
  2807. u32 pid;
  2808. u32 tid;
  2809. u64 start;
  2810. u64 len;
  2811. u64 pgoff;
  2812. } event_id;
  2813. };
  2814. static void perf_event_mmap_output(struct perf_event *event,
  2815. struct perf_mmap_event *mmap_event)
  2816. {
  2817. struct perf_output_handle handle;
  2818. int size = mmap_event->event_id.header.size;
  2819. int ret = perf_output_begin(&handle, event, size, 0, 0);
  2820. if (ret)
  2821. return;
  2822. mmap_event->event_id.pid = perf_event_pid(event, current);
  2823. mmap_event->event_id.tid = perf_event_tid(event, current);
  2824. perf_output_put(&handle, mmap_event->event_id);
  2825. perf_output_copy(&handle, mmap_event->file_name,
  2826. mmap_event->file_size);
  2827. perf_output_end(&handle);
  2828. }
  2829. static int perf_event_mmap_match(struct perf_event *event,
  2830. struct perf_mmap_event *mmap_event)
  2831. {
  2832. if (event->attr.mmap)
  2833. return 1;
  2834. return 0;
  2835. }
  2836. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  2837. struct perf_mmap_event *mmap_event)
  2838. {
  2839. struct perf_event *event;
  2840. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2841. if (perf_event_mmap_match(event, mmap_event))
  2842. perf_event_mmap_output(event, mmap_event);
  2843. }
  2844. }
  2845. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  2846. {
  2847. struct perf_cpu_context *cpuctx;
  2848. struct perf_event_context *ctx;
  2849. struct vm_area_struct *vma = mmap_event->vma;
  2850. struct file *file = vma->vm_file;
  2851. unsigned int size;
  2852. char tmp[16];
  2853. char *buf = NULL;
  2854. const char *name;
  2855. memset(tmp, 0, sizeof(tmp));
  2856. if (file) {
  2857. /*
  2858. * d_path works from the end of the buffer backwards, so we
  2859. * need to add enough zero bytes after the string to handle
  2860. * the 64bit alignment we do later.
  2861. */
  2862. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  2863. if (!buf) {
  2864. name = strncpy(tmp, "//enomem", sizeof(tmp));
  2865. goto got_name;
  2866. }
  2867. name = d_path(&file->f_path, buf, PATH_MAX);
  2868. if (IS_ERR(name)) {
  2869. name = strncpy(tmp, "//toolong", sizeof(tmp));
  2870. goto got_name;
  2871. }
  2872. } else {
  2873. if (arch_vma_name(mmap_event->vma)) {
  2874. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  2875. sizeof(tmp));
  2876. goto got_name;
  2877. }
  2878. if (!vma->vm_mm) {
  2879. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  2880. goto got_name;
  2881. }
  2882. name = strncpy(tmp, "//anon", sizeof(tmp));
  2883. goto got_name;
  2884. }
  2885. got_name:
  2886. size = ALIGN(strlen(name)+1, sizeof(u64));
  2887. mmap_event->file_name = name;
  2888. mmap_event->file_size = size;
  2889. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  2890. rcu_read_lock();
  2891. cpuctx = &get_cpu_var(perf_cpu_context);
  2892. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
  2893. put_cpu_var(perf_cpu_context);
  2894. /*
  2895. * doesn't really matter which of the child contexts the
  2896. * events ends up in.
  2897. */
  2898. ctx = rcu_dereference(current->perf_event_ctxp);
  2899. if (ctx)
  2900. perf_event_mmap_ctx(ctx, mmap_event);
  2901. rcu_read_unlock();
  2902. kfree(buf);
  2903. }
  2904. void __perf_event_mmap(struct vm_area_struct *vma)
  2905. {
  2906. struct perf_mmap_event mmap_event;
  2907. if (!atomic_read(&nr_mmap_events))
  2908. return;
  2909. mmap_event = (struct perf_mmap_event){
  2910. .vma = vma,
  2911. /* .file_name */
  2912. /* .file_size */
  2913. .event_id = {
  2914. .header = {
  2915. .type = PERF_RECORD_MMAP,
  2916. .misc = 0,
  2917. /* .size */
  2918. },
  2919. /* .pid */
  2920. /* .tid */
  2921. .start = vma->vm_start,
  2922. .len = vma->vm_end - vma->vm_start,
  2923. .pgoff = vma->vm_pgoff,
  2924. },
  2925. };
  2926. perf_event_mmap_event(&mmap_event);
  2927. }
  2928. /*
  2929. * IRQ throttle logging
  2930. */
  2931. static void perf_log_throttle(struct perf_event *event, int enable)
  2932. {
  2933. struct perf_output_handle handle;
  2934. int ret;
  2935. struct {
  2936. struct perf_event_header header;
  2937. u64 time;
  2938. u64 id;
  2939. u64 stream_id;
  2940. } throttle_event = {
  2941. .header = {
  2942. .type = PERF_RECORD_THROTTLE,
  2943. .misc = 0,
  2944. .size = sizeof(throttle_event),
  2945. },
  2946. .time = perf_clock(),
  2947. .id = primary_event_id(event),
  2948. .stream_id = event->id,
  2949. };
  2950. if (enable)
  2951. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  2952. ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
  2953. if (ret)
  2954. return;
  2955. perf_output_put(&handle, throttle_event);
  2956. perf_output_end(&handle);
  2957. }
  2958. /*
  2959. * Generic event overflow handling, sampling.
  2960. */
  2961. static int __perf_event_overflow(struct perf_event *event, int nmi,
  2962. int throttle, struct perf_sample_data *data,
  2963. struct pt_regs *regs)
  2964. {
  2965. int events = atomic_read(&event->event_limit);
  2966. struct hw_perf_event *hwc = &event->hw;
  2967. int ret = 0;
  2968. throttle = (throttle && event->pmu->unthrottle != NULL);
  2969. if (!throttle) {
  2970. hwc->interrupts++;
  2971. } else {
  2972. if (hwc->interrupts != MAX_INTERRUPTS) {
  2973. hwc->interrupts++;
  2974. if (HZ * hwc->interrupts >
  2975. (u64)sysctl_perf_event_sample_rate) {
  2976. hwc->interrupts = MAX_INTERRUPTS;
  2977. perf_log_throttle(event, 0);
  2978. ret = 1;
  2979. }
  2980. } else {
  2981. /*
  2982. * Keep re-disabling events even though on the previous
  2983. * pass we disabled it - just in case we raced with a
  2984. * sched-in and the event got enabled again:
  2985. */
  2986. ret = 1;
  2987. }
  2988. }
  2989. if (event->attr.freq) {
  2990. u64 now = perf_clock();
  2991. s64 delta = now - hwc->freq_stamp;
  2992. hwc->freq_stamp = now;
  2993. if (delta > 0 && delta < TICK_NSEC)
  2994. perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
  2995. }
  2996. /*
  2997. * XXX event_limit might not quite work as expected on inherited
  2998. * events
  2999. */
  3000. event->pending_kill = POLL_IN;
  3001. if (events && atomic_dec_and_test(&event->event_limit)) {
  3002. ret = 1;
  3003. event->pending_kill = POLL_HUP;
  3004. if (nmi) {
  3005. event->pending_disable = 1;
  3006. perf_pending_queue(&event->pending,
  3007. perf_pending_event);
  3008. } else
  3009. perf_event_disable(event);
  3010. }
  3011. if (event->overflow_handler)
  3012. event->overflow_handler(event, nmi, data, regs);
  3013. else
  3014. perf_event_output(event, nmi, data, regs);
  3015. return ret;
  3016. }
  3017. int perf_event_overflow(struct perf_event *event, int nmi,
  3018. struct perf_sample_data *data,
  3019. struct pt_regs *regs)
  3020. {
  3021. return __perf_event_overflow(event, nmi, 1, data, regs);
  3022. }
  3023. /*
  3024. * Generic software event infrastructure
  3025. */
  3026. /*
  3027. * We directly increment event->count and keep a second value in
  3028. * event->hw.period_left to count intervals. This period event
  3029. * is kept in the range [-sample_period, 0] so that we can use the
  3030. * sign as trigger.
  3031. */
  3032. static u64 perf_swevent_set_period(struct perf_event *event)
  3033. {
  3034. struct hw_perf_event *hwc = &event->hw;
  3035. u64 period = hwc->last_period;
  3036. u64 nr, offset;
  3037. s64 old, val;
  3038. hwc->last_period = hwc->sample_period;
  3039. again:
  3040. old = val = atomic64_read(&hwc->period_left);
  3041. if (val < 0)
  3042. return 0;
  3043. nr = div64_u64(period + val, period);
  3044. offset = nr * period;
  3045. val -= offset;
  3046. if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
  3047. goto again;
  3048. return nr;
  3049. }
  3050. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  3051. int nmi, struct perf_sample_data *data,
  3052. struct pt_regs *regs)
  3053. {
  3054. struct hw_perf_event *hwc = &event->hw;
  3055. int throttle = 0;
  3056. data->period = event->hw.last_period;
  3057. if (!overflow)
  3058. overflow = perf_swevent_set_period(event);
  3059. if (hwc->interrupts == MAX_INTERRUPTS)
  3060. return;
  3061. for (; overflow; overflow--) {
  3062. if (__perf_event_overflow(event, nmi, throttle,
  3063. data, regs)) {
  3064. /*
  3065. * We inhibit the overflow from happening when
  3066. * hwc->interrupts == MAX_INTERRUPTS.
  3067. */
  3068. break;
  3069. }
  3070. throttle = 1;
  3071. }
  3072. }
  3073. static void perf_swevent_unthrottle(struct perf_event *event)
  3074. {
  3075. /*
  3076. * Nothing to do, we already reset hwc->interrupts.
  3077. */
  3078. }
  3079. static void perf_swevent_add(struct perf_event *event, u64 nr,
  3080. int nmi, struct perf_sample_data *data,
  3081. struct pt_regs *regs)
  3082. {
  3083. struct hw_perf_event *hwc = &event->hw;
  3084. atomic64_add(nr, &event->count);
  3085. if (!regs)
  3086. return;
  3087. if (!hwc->sample_period)
  3088. return;
  3089. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  3090. return perf_swevent_overflow(event, 1, nmi, data, regs);
  3091. if (atomic64_add_negative(nr, &hwc->period_left))
  3092. return;
  3093. perf_swevent_overflow(event, 0, nmi, data, regs);
  3094. }
  3095. static int perf_swevent_is_counting(struct perf_event *event)
  3096. {
  3097. /*
  3098. * The event is active, we're good!
  3099. */
  3100. if (event->state == PERF_EVENT_STATE_ACTIVE)
  3101. return 1;
  3102. /*
  3103. * The event is off/error, not counting.
  3104. */
  3105. if (event->state != PERF_EVENT_STATE_INACTIVE)
  3106. return 0;
  3107. /*
  3108. * The event is inactive, if the context is active
  3109. * we're part of a group that didn't make it on the 'pmu',
  3110. * not counting.
  3111. */
  3112. if (event->ctx->is_active)
  3113. return 0;
  3114. /*
  3115. * We're inactive and the context is too, this means the
  3116. * task is scheduled out, we're counting events that happen
  3117. * to us, like migration events.
  3118. */
  3119. return 1;
  3120. }
  3121. static int perf_tp_event_match(struct perf_event *event,
  3122. struct perf_sample_data *data);
  3123. static int perf_swevent_match(struct perf_event *event,
  3124. enum perf_type_id type,
  3125. u32 event_id,
  3126. struct perf_sample_data *data,
  3127. struct pt_regs *regs)
  3128. {
  3129. if (!perf_swevent_is_counting(event))
  3130. return 0;
  3131. if (event->attr.type != type)
  3132. return 0;
  3133. if (event->attr.config != event_id)
  3134. return 0;
  3135. if (regs) {
  3136. if (event->attr.exclude_user && user_mode(regs))
  3137. return 0;
  3138. if (event->attr.exclude_kernel && !user_mode(regs))
  3139. return 0;
  3140. }
  3141. if (event->attr.type == PERF_TYPE_TRACEPOINT &&
  3142. !perf_tp_event_match(event, data))
  3143. return 0;
  3144. return 1;
  3145. }
  3146. static void perf_swevent_ctx_event(struct perf_event_context *ctx,
  3147. enum perf_type_id type,
  3148. u32 event_id, u64 nr, int nmi,
  3149. struct perf_sample_data *data,
  3150. struct pt_regs *regs)
  3151. {
  3152. struct perf_event *event;
  3153. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3154. if (perf_swevent_match(event, type, event_id, data, regs))
  3155. perf_swevent_add(event, nr, nmi, data, regs);
  3156. }
  3157. }
  3158. /*
  3159. * Must be called with preemption disabled
  3160. */
  3161. int perf_swevent_get_recursion_context(int **recursion)
  3162. {
  3163. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  3164. if (in_nmi())
  3165. *recursion = &cpuctx->recursion[3];
  3166. else if (in_irq())
  3167. *recursion = &cpuctx->recursion[2];
  3168. else if (in_softirq())
  3169. *recursion = &cpuctx->recursion[1];
  3170. else
  3171. *recursion = &cpuctx->recursion[0];
  3172. if (**recursion)
  3173. return -1;
  3174. (**recursion)++;
  3175. return 0;
  3176. }
  3177. void perf_swevent_put_recursion_context(int *recursion)
  3178. {
  3179. (*recursion)--;
  3180. }
  3181. static void __do_perf_sw_event(enum perf_type_id type, u32 event_id,
  3182. u64 nr, int nmi,
  3183. struct perf_sample_data *data,
  3184. struct pt_regs *regs)
  3185. {
  3186. struct perf_event_context *ctx;
  3187. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  3188. rcu_read_lock();
  3189. perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
  3190. nr, nmi, data, regs);
  3191. /*
  3192. * doesn't really matter which of the child contexts the
  3193. * events ends up in.
  3194. */
  3195. ctx = rcu_dereference(current->perf_event_ctxp);
  3196. if (ctx)
  3197. perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
  3198. rcu_read_unlock();
  3199. }
  3200. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  3201. u64 nr, int nmi,
  3202. struct perf_sample_data *data,
  3203. struct pt_regs *regs)
  3204. {
  3205. int *recursion;
  3206. preempt_disable();
  3207. if (perf_swevent_get_recursion_context(&recursion))
  3208. goto out;
  3209. __do_perf_sw_event(type, event_id, nr, nmi, data, regs);
  3210. perf_swevent_put_recursion_context(recursion);
  3211. out:
  3212. preempt_enable();
  3213. }
  3214. void __perf_sw_event(u32 event_id, u64 nr, int nmi,
  3215. struct pt_regs *regs, u64 addr)
  3216. {
  3217. struct perf_sample_data data = {
  3218. .addr = addr,
  3219. };
  3220. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
  3221. &data, regs);
  3222. }
  3223. static void perf_swevent_read(struct perf_event *event)
  3224. {
  3225. }
  3226. static int perf_swevent_enable(struct perf_event *event)
  3227. {
  3228. struct hw_perf_event *hwc = &event->hw;
  3229. if (hwc->sample_period) {
  3230. hwc->last_period = hwc->sample_period;
  3231. perf_swevent_set_period(event);
  3232. }
  3233. return 0;
  3234. }
  3235. static void perf_swevent_disable(struct perf_event *event)
  3236. {
  3237. }
  3238. static const struct pmu perf_ops_generic = {
  3239. .enable = perf_swevent_enable,
  3240. .disable = perf_swevent_disable,
  3241. .read = perf_swevent_read,
  3242. .unthrottle = perf_swevent_unthrottle,
  3243. };
  3244. /*
  3245. * hrtimer based swevent callback
  3246. */
  3247. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  3248. {
  3249. enum hrtimer_restart ret = HRTIMER_RESTART;
  3250. struct perf_sample_data data;
  3251. struct pt_regs *regs;
  3252. struct perf_event *event;
  3253. u64 period;
  3254. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  3255. event->pmu->read(event);
  3256. data.addr = 0;
  3257. regs = get_irq_regs();
  3258. /*
  3259. * In case we exclude kernel IPs or are somehow not in interrupt
  3260. * context, provide the next best thing, the user IP.
  3261. */
  3262. if ((event->attr.exclude_kernel || !regs) &&
  3263. !event->attr.exclude_user)
  3264. regs = task_pt_regs(current);
  3265. if (regs) {
  3266. if (!(event->attr.exclude_idle && current->pid == 0))
  3267. if (perf_event_overflow(event, 0, &data, regs))
  3268. ret = HRTIMER_NORESTART;
  3269. }
  3270. period = max_t(u64, 10000, event->hw.sample_period);
  3271. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  3272. return ret;
  3273. }
  3274. static void perf_swevent_start_hrtimer(struct perf_event *event)
  3275. {
  3276. struct hw_perf_event *hwc = &event->hw;
  3277. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3278. hwc->hrtimer.function = perf_swevent_hrtimer;
  3279. if (hwc->sample_period) {
  3280. u64 period;
  3281. if (hwc->remaining) {
  3282. if (hwc->remaining < 0)
  3283. period = 10000;
  3284. else
  3285. period = hwc->remaining;
  3286. hwc->remaining = 0;
  3287. } else {
  3288. period = max_t(u64, 10000, hwc->sample_period);
  3289. }
  3290. __hrtimer_start_range_ns(&hwc->hrtimer,
  3291. ns_to_ktime(period), 0,
  3292. HRTIMER_MODE_REL, 0);
  3293. }
  3294. }
  3295. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  3296. {
  3297. struct hw_perf_event *hwc = &event->hw;
  3298. if (hwc->sample_period) {
  3299. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  3300. hwc->remaining = ktime_to_ns(remaining);
  3301. hrtimer_cancel(&hwc->hrtimer);
  3302. }
  3303. }
  3304. /*
  3305. * Software event: cpu wall time clock
  3306. */
  3307. static void cpu_clock_perf_event_update(struct perf_event *event)
  3308. {
  3309. int cpu = raw_smp_processor_id();
  3310. s64 prev;
  3311. u64 now;
  3312. now = cpu_clock(cpu);
  3313. prev = atomic64_read(&event->hw.prev_count);
  3314. atomic64_set(&event->hw.prev_count, now);
  3315. atomic64_add(now - prev, &event->count);
  3316. }
  3317. static int cpu_clock_perf_event_enable(struct perf_event *event)
  3318. {
  3319. struct hw_perf_event *hwc = &event->hw;
  3320. int cpu = raw_smp_processor_id();
  3321. atomic64_set(&hwc->prev_count, cpu_clock(cpu));
  3322. perf_swevent_start_hrtimer(event);
  3323. return 0;
  3324. }
  3325. static void cpu_clock_perf_event_disable(struct perf_event *event)
  3326. {
  3327. perf_swevent_cancel_hrtimer(event);
  3328. cpu_clock_perf_event_update(event);
  3329. }
  3330. static void cpu_clock_perf_event_read(struct perf_event *event)
  3331. {
  3332. cpu_clock_perf_event_update(event);
  3333. }
  3334. static const struct pmu perf_ops_cpu_clock = {
  3335. .enable = cpu_clock_perf_event_enable,
  3336. .disable = cpu_clock_perf_event_disable,
  3337. .read = cpu_clock_perf_event_read,
  3338. };
  3339. /*
  3340. * Software event: task time clock
  3341. */
  3342. static void task_clock_perf_event_update(struct perf_event *event, u64 now)
  3343. {
  3344. u64 prev;
  3345. s64 delta;
  3346. prev = atomic64_xchg(&event->hw.prev_count, now);
  3347. delta = now - prev;
  3348. atomic64_add(delta, &event->count);
  3349. }
  3350. static int task_clock_perf_event_enable(struct perf_event *event)
  3351. {
  3352. struct hw_perf_event *hwc = &event->hw;
  3353. u64 now;
  3354. now = event->ctx->time;
  3355. atomic64_set(&hwc->prev_count, now);
  3356. perf_swevent_start_hrtimer(event);
  3357. return 0;
  3358. }
  3359. static void task_clock_perf_event_disable(struct perf_event *event)
  3360. {
  3361. perf_swevent_cancel_hrtimer(event);
  3362. task_clock_perf_event_update(event, event->ctx->time);
  3363. }
  3364. static void task_clock_perf_event_read(struct perf_event *event)
  3365. {
  3366. u64 time;
  3367. if (!in_nmi()) {
  3368. update_context_time(event->ctx);
  3369. time = event->ctx->time;
  3370. } else {
  3371. u64 now = perf_clock();
  3372. u64 delta = now - event->ctx->timestamp;
  3373. time = event->ctx->time + delta;
  3374. }
  3375. task_clock_perf_event_update(event, time);
  3376. }
  3377. static const struct pmu perf_ops_task_clock = {
  3378. .enable = task_clock_perf_event_enable,
  3379. .disable = task_clock_perf_event_disable,
  3380. .read = task_clock_perf_event_read,
  3381. };
  3382. #ifdef CONFIG_EVENT_PROFILE
  3383. void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
  3384. int entry_size)
  3385. {
  3386. struct perf_raw_record raw = {
  3387. .size = entry_size,
  3388. .data = record,
  3389. };
  3390. struct perf_sample_data data = {
  3391. .addr = addr,
  3392. .raw = &raw,
  3393. };
  3394. struct pt_regs *regs = get_irq_regs();
  3395. if (!regs)
  3396. regs = task_pt_regs(current);
  3397. /* Trace events already protected against recursion */
  3398. __do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
  3399. &data, regs);
  3400. }
  3401. EXPORT_SYMBOL_GPL(perf_tp_event);
  3402. static int perf_tp_event_match(struct perf_event *event,
  3403. struct perf_sample_data *data)
  3404. {
  3405. void *record = data->raw->data;
  3406. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  3407. return 1;
  3408. return 0;
  3409. }
  3410. static void tp_perf_event_destroy(struct perf_event *event)
  3411. {
  3412. ftrace_profile_disable(event->attr.config);
  3413. }
  3414. static const struct pmu *tp_perf_event_init(struct perf_event *event)
  3415. {
  3416. /*
  3417. * Raw tracepoint data is a severe data leak, only allow root to
  3418. * have these.
  3419. */
  3420. if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
  3421. perf_paranoid_tracepoint_raw() &&
  3422. !capable(CAP_SYS_ADMIN))
  3423. return ERR_PTR(-EPERM);
  3424. if (ftrace_profile_enable(event->attr.config))
  3425. return NULL;
  3426. event->destroy = tp_perf_event_destroy;
  3427. return &perf_ops_generic;
  3428. }
  3429. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  3430. {
  3431. char *filter_str;
  3432. int ret;
  3433. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  3434. return -EINVAL;
  3435. filter_str = strndup_user(arg, PAGE_SIZE);
  3436. if (IS_ERR(filter_str))
  3437. return PTR_ERR(filter_str);
  3438. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  3439. kfree(filter_str);
  3440. return ret;
  3441. }
  3442. static void perf_event_free_filter(struct perf_event *event)
  3443. {
  3444. ftrace_profile_free_filter(event);
  3445. }
  3446. #else
  3447. static int perf_tp_event_match(struct perf_event *event,
  3448. struct perf_sample_data *data)
  3449. {
  3450. return 1;
  3451. }
  3452. static const struct pmu *tp_perf_event_init(struct perf_event *event)
  3453. {
  3454. return NULL;
  3455. }
  3456. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  3457. {
  3458. return -ENOENT;
  3459. }
  3460. static void perf_event_free_filter(struct perf_event *event)
  3461. {
  3462. }
  3463. #endif /* CONFIG_EVENT_PROFILE */
  3464. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  3465. static void bp_perf_event_destroy(struct perf_event *event)
  3466. {
  3467. release_bp_slot(event);
  3468. }
  3469. static const struct pmu *bp_perf_event_init(struct perf_event *bp)
  3470. {
  3471. int err;
  3472. /*
  3473. * The breakpoint is already filled if we haven't created the counter
  3474. * through perf syscall
  3475. * FIXME: manage to get trigerred to NULL if it comes from syscalls
  3476. */
  3477. if (!bp->callback)
  3478. err = register_perf_hw_breakpoint(bp);
  3479. else
  3480. err = __register_perf_hw_breakpoint(bp);
  3481. if (err)
  3482. return ERR_PTR(err);
  3483. bp->destroy = bp_perf_event_destroy;
  3484. return &perf_ops_bp;
  3485. }
  3486. void perf_bp_event(struct perf_event *bp, void *regs)
  3487. {
  3488. /* TODO */
  3489. }
  3490. #else
  3491. static void bp_perf_event_destroy(struct perf_event *event)
  3492. {
  3493. }
  3494. static const struct pmu *bp_perf_event_init(struct perf_event *bp)
  3495. {
  3496. return NULL;
  3497. }
  3498. void perf_bp_event(struct perf_event *bp, void *regs)
  3499. {
  3500. }
  3501. #endif
  3502. atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
  3503. static void sw_perf_event_destroy(struct perf_event *event)
  3504. {
  3505. u64 event_id = event->attr.config;
  3506. WARN_ON(event->parent);
  3507. atomic_dec(&perf_swevent_enabled[event_id]);
  3508. }
  3509. static const struct pmu *sw_perf_event_init(struct perf_event *event)
  3510. {
  3511. const struct pmu *pmu = NULL;
  3512. u64 event_id = event->attr.config;
  3513. /*
  3514. * Software events (currently) can't in general distinguish
  3515. * between user, kernel and hypervisor events.
  3516. * However, context switches and cpu migrations are considered
  3517. * to be kernel events, and page faults are never hypervisor
  3518. * events.
  3519. */
  3520. switch (event_id) {
  3521. case PERF_COUNT_SW_CPU_CLOCK:
  3522. pmu = &perf_ops_cpu_clock;
  3523. break;
  3524. case PERF_COUNT_SW_TASK_CLOCK:
  3525. /*
  3526. * If the user instantiates this as a per-cpu event,
  3527. * use the cpu_clock event instead.
  3528. */
  3529. if (event->ctx->task)
  3530. pmu = &perf_ops_task_clock;
  3531. else
  3532. pmu = &perf_ops_cpu_clock;
  3533. break;
  3534. case PERF_COUNT_SW_PAGE_FAULTS:
  3535. case PERF_COUNT_SW_PAGE_FAULTS_MIN:
  3536. case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
  3537. case PERF_COUNT_SW_CONTEXT_SWITCHES:
  3538. case PERF_COUNT_SW_CPU_MIGRATIONS:
  3539. case PERF_COUNT_SW_ALIGNMENT_FAULTS:
  3540. case PERF_COUNT_SW_EMULATION_FAULTS:
  3541. if (!event->parent) {
  3542. atomic_inc(&perf_swevent_enabled[event_id]);
  3543. event->destroy = sw_perf_event_destroy;
  3544. }
  3545. pmu = &perf_ops_generic;
  3546. break;
  3547. }
  3548. return pmu;
  3549. }
  3550. /*
  3551. * Allocate and initialize a event structure
  3552. */
  3553. static struct perf_event *
  3554. perf_event_alloc(struct perf_event_attr *attr,
  3555. int cpu,
  3556. struct perf_event_context *ctx,
  3557. struct perf_event *group_leader,
  3558. struct perf_event *parent_event,
  3559. perf_callback_t callback,
  3560. gfp_t gfpflags)
  3561. {
  3562. const struct pmu *pmu;
  3563. struct perf_event *event;
  3564. struct hw_perf_event *hwc;
  3565. long err;
  3566. event = kzalloc(sizeof(*event), gfpflags);
  3567. if (!event)
  3568. return ERR_PTR(-ENOMEM);
  3569. /*
  3570. * Single events are their own group leaders, with an
  3571. * empty sibling list:
  3572. */
  3573. if (!group_leader)
  3574. group_leader = event;
  3575. mutex_init(&event->child_mutex);
  3576. INIT_LIST_HEAD(&event->child_list);
  3577. INIT_LIST_HEAD(&event->group_entry);
  3578. INIT_LIST_HEAD(&event->event_entry);
  3579. INIT_LIST_HEAD(&event->sibling_list);
  3580. init_waitqueue_head(&event->waitq);
  3581. mutex_init(&event->mmap_mutex);
  3582. event->cpu = cpu;
  3583. event->attr = *attr;
  3584. event->group_leader = group_leader;
  3585. event->pmu = NULL;
  3586. event->ctx = ctx;
  3587. event->oncpu = -1;
  3588. event->parent = parent_event;
  3589. event->ns = get_pid_ns(current->nsproxy->pid_ns);
  3590. event->id = atomic64_inc_return(&perf_event_id);
  3591. event->state = PERF_EVENT_STATE_INACTIVE;
  3592. if (!callback && parent_event)
  3593. callback = parent_event->callback;
  3594. event->callback = callback;
  3595. if (attr->disabled)
  3596. event->state = PERF_EVENT_STATE_OFF;
  3597. pmu = NULL;
  3598. hwc = &event->hw;
  3599. hwc->sample_period = attr->sample_period;
  3600. if (attr->freq && attr->sample_freq)
  3601. hwc->sample_period = 1;
  3602. hwc->last_period = hwc->sample_period;
  3603. atomic64_set(&hwc->period_left, hwc->sample_period);
  3604. /*
  3605. * we currently do not support PERF_FORMAT_GROUP on inherited events
  3606. */
  3607. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  3608. goto done;
  3609. switch (attr->type) {
  3610. case PERF_TYPE_RAW:
  3611. case PERF_TYPE_HARDWARE:
  3612. case PERF_TYPE_HW_CACHE:
  3613. pmu = hw_perf_event_init(event);
  3614. break;
  3615. case PERF_TYPE_SOFTWARE:
  3616. pmu = sw_perf_event_init(event);
  3617. break;
  3618. case PERF_TYPE_TRACEPOINT:
  3619. pmu = tp_perf_event_init(event);
  3620. break;
  3621. case PERF_TYPE_BREAKPOINT:
  3622. pmu = bp_perf_event_init(event);
  3623. break;
  3624. default:
  3625. break;
  3626. }
  3627. done:
  3628. err = 0;
  3629. if (!pmu)
  3630. err = -EINVAL;
  3631. else if (IS_ERR(pmu))
  3632. err = PTR_ERR(pmu);
  3633. if (err) {
  3634. if (event->ns)
  3635. put_pid_ns(event->ns);
  3636. kfree(event);
  3637. return ERR_PTR(err);
  3638. }
  3639. event->pmu = pmu;
  3640. if (!event->parent) {
  3641. atomic_inc(&nr_events);
  3642. if (event->attr.mmap)
  3643. atomic_inc(&nr_mmap_events);
  3644. if (event->attr.comm)
  3645. atomic_inc(&nr_comm_events);
  3646. if (event->attr.task)
  3647. atomic_inc(&nr_task_events);
  3648. }
  3649. return event;
  3650. }
  3651. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  3652. struct perf_event_attr *attr)
  3653. {
  3654. u32 size;
  3655. int ret;
  3656. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  3657. return -EFAULT;
  3658. /*
  3659. * zero the full structure, so that a short copy will be nice.
  3660. */
  3661. memset(attr, 0, sizeof(*attr));
  3662. ret = get_user(size, &uattr->size);
  3663. if (ret)
  3664. return ret;
  3665. if (size > PAGE_SIZE) /* silly large */
  3666. goto err_size;
  3667. if (!size) /* abi compat */
  3668. size = PERF_ATTR_SIZE_VER0;
  3669. if (size < PERF_ATTR_SIZE_VER0)
  3670. goto err_size;
  3671. /*
  3672. * If we're handed a bigger struct than we know of,
  3673. * ensure all the unknown bits are 0 - i.e. new
  3674. * user-space does not rely on any kernel feature
  3675. * extensions we dont know about yet.
  3676. */
  3677. if (size > sizeof(*attr)) {
  3678. unsigned char __user *addr;
  3679. unsigned char __user *end;
  3680. unsigned char val;
  3681. addr = (void __user *)uattr + sizeof(*attr);
  3682. end = (void __user *)uattr + size;
  3683. for (; addr < end; addr++) {
  3684. ret = get_user(val, addr);
  3685. if (ret)
  3686. return ret;
  3687. if (val)
  3688. goto err_size;
  3689. }
  3690. size = sizeof(*attr);
  3691. }
  3692. ret = copy_from_user(attr, uattr, size);
  3693. if (ret)
  3694. return -EFAULT;
  3695. /*
  3696. * If the type exists, the corresponding creation will verify
  3697. * the attr->config.
  3698. */
  3699. if (attr->type >= PERF_TYPE_MAX)
  3700. return -EINVAL;
  3701. if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
  3702. return -EINVAL;
  3703. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  3704. return -EINVAL;
  3705. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  3706. return -EINVAL;
  3707. out:
  3708. return ret;
  3709. err_size:
  3710. put_user(sizeof(*attr), &uattr->size);
  3711. ret = -E2BIG;
  3712. goto out;
  3713. }
  3714. static int perf_event_set_output(struct perf_event *event, int output_fd)
  3715. {
  3716. struct perf_event *output_event = NULL;
  3717. struct file *output_file = NULL;
  3718. struct perf_event *old_output;
  3719. int fput_needed = 0;
  3720. int ret = -EINVAL;
  3721. if (!output_fd)
  3722. goto set;
  3723. output_file = fget_light(output_fd, &fput_needed);
  3724. if (!output_file)
  3725. return -EBADF;
  3726. if (output_file->f_op != &perf_fops)
  3727. goto out;
  3728. output_event = output_file->private_data;
  3729. /* Don't chain output fds */
  3730. if (output_event->output)
  3731. goto out;
  3732. /* Don't set an output fd when we already have an output channel */
  3733. if (event->data)
  3734. goto out;
  3735. atomic_long_inc(&output_file->f_count);
  3736. set:
  3737. mutex_lock(&event->mmap_mutex);
  3738. old_output = event->output;
  3739. rcu_assign_pointer(event->output, output_event);
  3740. mutex_unlock(&event->mmap_mutex);
  3741. if (old_output) {
  3742. /*
  3743. * we need to make sure no existing perf_output_*()
  3744. * is still referencing this event.
  3745. */
  3746. synchronize_rcu();
  3747. fput(old_output->filp);
  3748. }
  3749. ret = 0;
  3750. out:
  3751. fput_light(output_file, fput_needed);
  3752. return ret;
  3753. }
  3754. /**
  3755. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  3756. *
  3757. * @attr_uptr: event_id type attributes for monitoring/sampling
  3758. * @pid: target pid
  3759. * @cpu: target cpu
  3760. * @group_fd: group leader event fd
  3761. */
  3762. SYSCALL_DEFINE5(perf_event_open,
  3763. struct perf_event_attr __user *, attr_uptr,
  3764. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  3765. {
  3766. struct perf_event *event, *group_leader;
  3767. struct perf_event_attr attr;
  3768. struct perf_event_context *ctx;
  3769. struct file *event_file = NULL;
  3770. struct file *group_file = NULL;
  3771. int fput_needed = 0;
  3772. int fput_needed2 = 0;
  3773. int err;
  3774. /* for future expandability... */
  3775. if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
  3776. return -EINVAL;
  3777. err = perf_copy_attr(attr_uptr, &attr);
  3778. if (err)
  3779. return err;
  3780. if (!attr.exclude_kernel) {
  3781. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  3782. return -EACCES;
  3783. }
  3784. if (attr.freq) {
  3785. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  3786. return -EINVAL;
  3787. }
  3788. /*
  3789. * Get the target context (task or percpu):
  3790. */
  3791. ctx = find_get_context(pid, cpu);
  3792. if (IS_ERR(ctx))
  3793. return PTR_ERR(ctx);
  3794. /*
  3795. * Look up the group leader (we will attach this event to it):
  3796. */
  3797. group_leader = NULL;
  3798. if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
  3799. err = -EINVAL;
  3800. group_file = fget_light(group_fd, &fput_needed);
  3801. if (!group_file)
  3802. goto err_put_context;
  3803. if (group_file->f_op != &perf_fops)
  3804. goto err_put_context;
  3805. group_leader = group_file->private_data;
  3806. /*
  3807. * Do not allow a recursive hierarchy (this new sibling
  3808. * becoming part of another group-sibling):
  3809. */
  3810. if (group_leader->group_leader != group_leader)
  3811. goto err_put_context;
  3812. /*
  3813. * Do not allow to attach to a group in a different
  3814. * task or CPU context:
  3815. */
  3816. if (group_leader->ctx != ctx)
  3817. goto err_put_context;
  3818. /*
  3819. * Only a group leader can be exclusive or pinned
  3820. */
  3821. if (attr.exclusive || attr.pinned)
  3822. goto err_put_context;
  3823. }
  3824. event = perf_event_alloc(&attr, cpu, ctx, group_leader,
  3825. NULL, NULL, GFP_KERNEL);
  3826. err = PTR_ERR(event);
  3827. if (IS_ERR(event))
  3828. goto err_put_context;
  3829. err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
  3830. if (err < 0)
  3831. goto err_free_put_context;
  3832. event_file = fget_light(err, &fput_needed2);
  3833. if (!event_file)
  3834. goto err_free_put_context;
  3835. if (flags & PERF_FLAG_FD_OUTPUT) {
  3836. err = perf_event_set_output(event, group_fd);
  3837. if (err)
  3838. goto err_fput_free_put_context;
  3839. }
  3840. event->filp = event_file;
  3841. WARN_ON_ONCE(ctx->parent_ctx);
  3842. mutex_lock(&ctx->mutex);
  3843. perf_install_in_context(ctx, event, cpu);
  3844. ++ctx->generation;
  3845. mutex_unlock(&ctx->mutex);
  3846. event->owner = current;
  3847. get_task_struct(current);
  3848. mutex_lock(&current->perf_event_mutex);
  3849. list_add_tail(&event->owner_entry, &current->perf_event_list);
  3850. mutex_unlock(&current->perf_event_mutex);
  3851. err_fput_free_put_context:
  3852. fput_light(event_file, fput_needed2);
  3853. err_free_put_context:
  3854. if (err < 0)
  3855. kfree(event);
  3856. err_put_context:
  3857. if (err < 0)
  3858. put_ctx(ctx);
  3859. fput_light(group_file, fput_needed);
  3860. return err;
  3861. }
  3862. /**
  3863. * perf_event_create_kernel_counter
  3864. *
  3865. * @attr: attributes of the counter to create
  3866. * @cpu: cpu in which the counter is bound
  3867. * @pid: task to profile
  3868. */
  3869. struct perf_event *
  3870. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  3871. pid_t pid, perf_callback_t callback)
  3872. {
  3873. struct perf_event *event;
  3874. struct perf_event_context *ctx;
  3875. int err;
  3876. /*
  3877. * Get the target context (task or percpu):
  3878. */
  3879. ctx = find_get_context(pid, cpu);
  3880. if (IS_ERR(ctx))
  3881. return NULL;
  3882. event = perf_event_alloc(attr, cpu, ctx, NULL,
  3883. NULL, callback, GFP_KERNEL);
  3884. err = PTR_ERR(event);
  3885. if (IS_ERR(event))
  3886. goto err_put_context;
  3887. event->filp = NULL;
  3888. WARN_ON_ONCE(ctx->parent_ctx);
  3889. mutex_lock(&ctx->mutex);
  3890. perf_install_in_context(ctx, event, cpu);
  3891. ++ctx->generation;
  3892. mutex_unlock(&ctx->mutex);
  3893. event->owner = current;
  3894. get_task_struct(current);
  3895. mutex_lock(&current->perf_event_mutex);
  3896. list_add_tail(&event->owner_entry, &current->perf_event_list);
  3897. mutex_unlock(&current->perf_event_mutex);
  3898. return event;
  3899. err_put_context:
  3900. if (err < 0)
  3901. put_ctx(ctx);
  3902. return NULL;
  3903. }
  3904. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  3905. /*
  3906. * inherit a event from parent task to child task:
  3907. */
  3908. static struct perf_event *
  3909. inherit_event(struct perf_event *parent_event,
  3910. struct task_struct *parent,
  3911. struct perf_event_context *parent_ctx,
  3912. struct task_struct *child,
  3913. struct perf_event *group_leader,
  3914. struct perf_event_context *child_ctx)
  3915. {
  3916. struct perf_event *child_event;
  3917. /*
  3918. * Instead of creating recursive hierarchies of events,
  3919. * we link inherited events back to the original parent,
  3920. * which has a filp for sure, which we use as the reference
  3921. * count:
  3922. */
  3923. if (parent_event->parent)
  3924. parent_event = parent_event->parent;
  3925. child_event = perf_event_alloc(&parent_event->attr,
  3926. parent_event->cpu, child_ctx,
  3927. group_leader, parent_event,
  3928. NULL, GFP_KERNEL);
  3929. if (IS_ERR(child_event))
  3930. return child_event;
  3931. get_ctx(child_ctx);
  3932. /*
  3933. * Make the child state follow the state of the parent event,
  3934. * not its attr.disabled bit. We hold the parent's mutex,
  3935. * so we won't race with perf_event_{en, dis}able_family.
  3936. */
  3937. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  3938. child_event->state = PERF_EVENT_STATE_INACTIVE;
  3939. else
  3940. child_event->state = PERF_EVENT_STATE_OFF;
  3941. if (parent_event->attr.freq)
  3942. child_event->hw.sample_period = parent_event->hw.sample_period;
  3943. child_event->overflow_handler = parent_event->overflow_handler;
  3944. /*
  3945. * Link it up in the child's context:
  3946. */
  3947. add_event_to_ctx(child_event, child_ctx);
  3948. /*
  3949. * Get a reference to the parent filp - we will fput it
  3950. * when the child event exits. This is safe to do because
  3951. * we are in the parent and we know that the filp still
  3952. * exists and has a nonzero count:
  3953. */
  3954. atomic_long_inc(&parent_event->filp->f_count);
  3955. /*
  3956. * Link this into the parent event's child list
  3957. */
  3958. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  3959. mutex_lock(&parent_event->child_mutex);
  3960. list_add_tail(&child_event->child_list, &parent_event->child_list);
  3961. mutex_unlock(&parent_event->child_mutex);
  3962. return child_event;
  3963. }
  3964. static int inherit_group(struct perf_event *parent_event,
  3965. struct task_struct *parent,
  3966. struct perf_event_context *parent_ctx,
  3967. struct task_struct *child,
  3968. struct perf_event_context *child_ctx)
  3969. {
  3970. struct perf_event *leader;
  3971. struct perf_event *sub;
  3972. struct perf_event *child_ctr;
  3973. leader = inherit_event(parent_event, parent, parent_ctx,
  3974. child, NULL, child_ctx);
  3975. if (IS_ERR(leader))
  3976. return PTR_ERR(leader);
  3977. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  3978. child_ctr = inherit_event(sub, parent, parent_ctx,
  3979. child, leader, child_ctx);
  3980. if (IS_ERR(child_ctr))
  3981. return PTR_ERR(child_ctr);
  3982. }
  3983. return 0;
  3984. }
  3985. static void sync_child_event(struct perf_event *child_event,
  3986. struct task_struct *child)
  3987. {
  3988. struct perf_event *parent_event = child_event->parent;
  3989. u64 child_val;
  3990. if (child_event->attr.inherit_stat)
  3991. perf_event_read_event(child_event, child);
  3992. child_val = atomic64_read(&child_event->count);
  3993. /*
  3994. * Add back the child's count to the parent's count:
  3995. */
  3996. atomic64_add(child_val, &parent_event->count);
  3997. atomic64_add(child_event->total_time_enabled,
  3998. &parent_event->child_total_time_enabled);
  3999. atomic64_add(child_event->total_time_running,
  4000. &parent_event->child_total_time_running);
  4001. /*
  4002. * Remove this event from the parent's list
  4003. */
  4004. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  4005. mutex_lock(&parent_event->child_mutex);
  4006. list_del_init(&child_event->child_list);
  4007. mutex_unlock(&parent_event->child_mutex);
  4008. /*
  4009. * Release the parent event, if this was the last
  4010. * reference to it.
  4011. */
  4012. fput(parent_event->filp);
  4013. }
  4014. static void
  4015. __perf_event_exit_task(struct perf_event *child_event,
  4016. struct perf_event_context *child_ctx,
  4017. struct task_struct *child)
  4018. {
  4019. struct perf_event *parent_event;
  4020. update_event_times(child_event);
  4021. perf_event_remove_from_context(child_event);
  4022. parent_event = child_event->parent;
  4023. /*
  4024. * It can happen that parent exits first, and has events
  4025. * that are still around due to the child reference. These
  4026. * events need to be zapped - but otherwise linger.
  4027. */
  4028. if (parent_event) {
  4029. sync_child_event(child_event, child);
  4030. free_event(child_event);
  4031. }
  4032. }
  4033. /*
  4034. * When a child task exits, feed back event values to parent events.
  4035. */
  4036. void perf_event_exit_task(struct task_struct *child)
  4037. {
  4038. struct perf_event *child_event, *tmp;
  4039. struct perf_event_context *child_ctx;
  4040. unsigned long flags;
  4041. if (likely(!child->perf_event_ctxp)) {
  4042. perf_event_task(child, NULL, 0);
  4043. return;
  4044. }
  4045. local_irq_save(flags);
  4046. /*
  4047. * We can't reschedule here because interrupts are disabled,
  4048. * and either child is current or it is a task that can't be
  4049. * scheduled, so we are now safe from rescheduling changing
  4050. * our context.
  4051. */
  4052. child_ctx = child->perf_event_ctxp;
  4053. __perf_event_task_sched_out(child_ctx);
  4054. /*
  4055. * Take the context lock here so that if find_get_context is
  4056. * reading child->perf_event_ctxp, we wait until it has
  4057. * incremented the context's refcount before we do put_ctx below.
  4058. */
  4059. spin_lock(&child_ctx->lock);
  4060. child->perf_event_ctxp = NULL;
  4061. /*
  4062. * If this context is a clone; unclone it so it can't get
  4063. * swapped to another process while we're removing all
  4064. * the events from it.
  4065. */
  4066. unclone_ctx(child_ctx);
  4067. spin_unlock_irqrestore(&child_ctx->lock, flags);
  4068. /*
  4069. * Report the task dead after unscheduling the events so that we
  4070. * won't get any samples after PERF_RECORD_EXIT. We can however still
  4071. * get a few PERF_RECORD_READ events.
  4072. */
  4073. perf_event_task(child, child_ctx, 0);
  4074. /*
  4075. * We can recurse on the same lock type through:
  4076. *
  4077. * __perf_event_exit_task()
  4078. * sync_child_event()
  4079. * fput(parent_event->filp)
  4080. * perf_release()
  4081. * mutex_lock(&ctx->mutex)
  4082. *
  4083. * But since its the parent context it won't be the same instance.
  4084. */
  4085. mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
  4086. again:
  4087. list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
  4088. group_entry)
  4089. __perf_event_exit_task(child_event, child_ctx, child);
  4090. /*
  4091. * If the last event was a group event, it will have appended all
  4092. * its siblings to the list, but we obtained 'tmp' before that which
  4093. * will still point to the list head terminating the iteration.
  4094. */
  4095. if (!list_empty(&child_ctx->group_list))
  4096. goto again;
  4097. mutex_unlock(&child_ctx->mutex);
  4098. put_ctx(child_ctx);
  4099. }
  4100. /*
  4101. * free an unexposed, unused context as created by inheritance by
  4102. * init_task below, used by fork() in case of fail.
  4103. */
  4104. void perf_event_free_task(struct task_struct *task)
  4105. {
  4106. struct perf_event_context *ctx = task->perf_event_ctxp;
  4107. struct perf_event *event, *tmp;
  4108. if (!ctx)
  4109. return;
  4110. mutex_lock(&ctx->mutex);
  4111. again:
  4112. list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
  4113. struct perf_event *parent = event->parent;
  4114. if (WARN_ON_ONCE(!parent))
  4115. continue;
  4116. mutex_lock(&parent->child_mutex);
  4117. list_del_init(&event->child_list);
  4118. mutex_unlock(&parent->child_mutex);
  4119. fput(parent->filp);
  4120. list_del_event(event, ctx);
  4121. free_event(event);
  4122. }
  4123. if (!list_empty(&ctx->group_list))
  4124. goto again;
  4125. mutex_unlock(&ctx->mutex);
  4126. put_ctx(ctx);
  4127. }
  4128. /*
  4129. * Initialize the perf_event context in task_struct
  4130. */
  4131. int perf_event_init_task(struct task_struct *child)
  4132. {
  4133. struct perf_event_context *child_ctx, *parent_ctx;
  4134. struct perf_event_context *cloned_ctx;
  4135. struct perf_event *event;
  4136. struct task_struct *parent = current;
  4137. int inherited_all = 1;
  4138. int ret = 0;
  4139. child->perf_event_ctxp = NULL;
  4140. mutex_init(&child->perf_event_mutex);
  4141. INIT_LIST_HEAD(&child->perf_event_list);
  4142. if (likely(!parent->perf_event_ctxp))
  4143. return 0;
  4144. /*
  4145. * This is executed from the parent task context, so inherit
  4146. * events that have been marked for cloning.
  4147. * First allocate and initialize a context for the child.
  4148. */
  4149. child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  4150. if (!child_ctx)
  4151. return -ENOMEM;
  4152. __perf_event_init_context(child_ctx, child);
  4153. child->perf_event_ctxp = child_ctx;
  4154. get_task_struct(child);
  4155. /*
  4156. * If the parent's context is a clone, pin it so it won't get
  4157. * swapped under us.
  4158. */
  4159. parent_ctx = perf_pin_task_context(parent);
  4160. /*
  4161. * No need to check if parent_ctx != NULL here; since we saw
  4162. * it non-NULL earlier, the only reason for it to become NULL
  4163. * is if we exit, and since we're currently in the middle of
  4164. * a fork we can't be exiting at the same time.
  4165. */
  4166. /*
  4167. * Lock the parent list. No need to lock the child - not PID
  4168. * hashed yet and not running, so nobody can access it.
  4169. */
  4170. mutex_lock(&parent_ctx->mutex);
  4171. /*
  4172. * We dont have to disable NMIs - we are only looking at
  4173. * the list, not manipulating it:
  4174. */
  4175. list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
  4176. if (!event->attr.inherit) {
  4177. inherited_all = 0;
  4178. continue;
  4179. }
  4180. ret = inherit_group(event, parent, parent_ctx,
  4181. child, child_ctx);
  4182. if (ret) {
  4183. inherited_all = 0;
  4184. break;
  4185. }
  4186. }
  4187. if (inherited_all) {
  4188. /*
  4189. * Mark the child context as a clone of the parent
  4190. * context, or of whatever the parent is a clone of.
  4191. * Note that if the parent is a clone, it could get
  4192. * uncloned at any point, but that doesn't matter
  4193. * because the list of events and the generation
  4194. * count can't have changed since we took the mutex.
  4195. */
  4196. cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
  4197. if (cloned_ctx) {
  4198. child_ctx->parent_ctx = cloned_ctx;
  4199. child_ctx->parent_gen = parent_ctx->parent_gen;
  4200. } else {
  4201. child_ctx->parent_ctx = parent_ctx;
  4202. child_ctx->parent_gen = parent_ctx->generation;
  4203. }
  4204. get_ctx(child_ctx->parent_ctx);
  4205. }
  4206. mutex_unlock(&parent_ctx->mutex);
  4207. perf_unpin_context(parent_ctx);
  4208. return ret;
  4209. }
  4210. static void __cpuinit perf_event_init_cpu(int cpu)
  4211. {
  4212. struct perf_cpu_context *cpuctx;
  4213. cpuctx = &per_cpu(perf_cpu_context, cpu);
  4214. __perf_event_init_context(&cpuctx->ctx, NULL);
  4215. spin_lock(&perf_resource_lock);
  4216. cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
  4217. spin_unlock(&perf_resource_lock);
  4218. hw_perf_event_setup(cpu);
  4219. }
  4220. #ifdef CONFIG_HOTPLUG_CPU
  4221. static void __perf_event_exit_cpu(void *info)
  4222. {
  4223. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  4224. struct perf_event_context *ctx = &cpuctx->ctx;
  4225. struct perf_event *event, *tmp;
  4226. list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
  4227. __perf_event_remove_from_context(event);
  4228. }
  4229. static void perf_event_exit_cpu(int cpu)
  4230. {
  4231. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  4232. struct perf_event_context *ctx = &cpuctx->ctx;
  4233. mutex_lock(&ctx->mutex);
  4234. smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
  4235. mutex_unlock(&ctx->mutex);
  4236. }
  4237. #else
  4238. static inline void perf_event_exit_cpu(int cpu) { }
  4239. #endif
  4240. static int __cpuinit
  4241. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  4242. {
  4243. unsigned int cpu = (long)hcpu;
  4244. switch (action) {
  4245. case CPU_UP_PREPARE:
  4246. case CPU_UP_PREPARE_FROZEN:
  4247. perf_event_init_cpu(cpu);
  4248. break;
  4249. case CPU_ONLINE:
  4250. case CPU_ONLINE_FROZEN:
  4251. hw_perf_event_setup_online(cpu);
  4252. break;
  4253. case CPU_DOWN_PREPARE:
  4254. case CPU_DOWN_PREPARE_FROZEN:
  4255. perf_event_exit_cpu(cpu);
  4256. break;
  4257. default:
  4258. break;
  4259. }
  4260. return NOTIFY_OK;
  4261. }
  4262. /*
  4263. * This has to have a higher priority than migration_notifier in sched.c.
  4264. */
  4265. static struct notifier_block __cpuinitdata perf_cpu_nb = {
  4266. .notifier_call = perf_cpu_notify,
  4267. .priority = 20,
  4268. };
  4269. void __init perf_event_init(void)
  4270. {
  4271. perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
  4272. (void *)(long)smp_processor_id());
  4273. perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
  4274. (void *)(long)smp_processor_id());
  4275. register_cpu_notifier(&perf_cpu_nb);
  4276. }
  4277. static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
  4278. {
  4279. return sprintf(buf, "%d\n", perf_reserved_percpu);
  4280. }
  4281. static ssize_t
  4282. perf_set_reserve_percpu(struct sysdev_class *class,
  4283. const char *buf,
  4284. size_t count)
  4285. {
  4286. struct perf_cpu_context *cpuctx;
  4287. unsigned long val;
  4288. int err, cpu, mpt;
  4289. err = strict_strtoul(buf, 10, &val);
  4290. if (err)
  4291. return err;
  4292. if (val > perf_max_events)
  4293. return -EINVAL;
  4294. spin_lock(&perf_resource_lock);
  4295. perf_reserved_percpu = val;
  4296. for_each_online_cpu(cpu) {
  4297. cpuctx = &per_cpu(perf_cpu_context, cpu);
  4298. spin_lock_irq(&cpuctx->ctx.lock);
  4299. mpt = min(perf_max_events - cpuctx->ctx.nr_events,
  4300. perf_max_events - perf_reserved_percpu);
  4301. cpuctx->max_pertask = mpt;
  4302. spin_unlock_irq(&cpuctx->ctx.lock);
  4303. }
  4304. spin_unlock(&perf_resource_lock);
  4305. return count;
  4306. }
  4307. static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
  4308. {
  4309. return sprintf(buf, "%d\n", perf_overcommit);
  4310. }
  4311. static ssize_t
  4312. perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
  4313. {
  4314. unsigned long val;
  4315. int err;
  4316. err = strict_strtoul(buf, 10, &val);
  4317. if (err)
  4318. return err;
  4319. if (val > 1)
  4320. return -EINVAL;
  4321. spin_lock(&perf_resource_lock);
  4322. perf_overcommit = val;
  4323. spin_unlock(&perf_resource_lock);
  4324. return count;
  4325. }
  4326. static SYSDEV_CLASS_ATTR(
  4327. reserve_percpu,
  4328. 0644,
  4329. perf_show_reserve_percpu,
  4330. perf_set_reserve_percpu
  4331. );
  4332. static SYSDEV_CLASS_ATTR(
  4333. overcommit,
  4334. 0644,
  4335. perf_show_overcommit,
  4336. perf_set_overcommit
  4337. );
  4338. static struct attribute *perfclass_attrs[] = {
  4339. &attr_reserve_percpu.attr,
  4340. &attr_overcommit.attr,
  4341. NULL
  4342. };
  4343. static struct attribute_group perfclass_attr_group = {
  4344. .attrs = perfclass_attrs,
  4345. .name = "perf_events",
  4346. };
  4347. static int __init perf_event_sysfs_init(void)
  4348. {
  4349. return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
  4350. &perfclass_attr_group);
  4351. }
  4352. device_initcall(perf_event_sysfs_init);