sched_fair.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. /*
  23. * Targeted preemption latency for CPU-bound tasks:
  24. * (default: 20ms, units: nanoseconds)
  25. *
  26. * NOTE: this latency value is not the same as the concept of
  27. * 'timeslice length' - timeslices in CFS are of variable length.
  28. * (to see the precise effective timeslice length of your workload,
  29. * run vmstat and monitor the context-switches field)
  30. *
  31. * On SMP systems the value of this is multiplied by the log2 of the
  32. * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
  33. * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
  34. * Targeted preemption latency for CPU-bound tasks:
  35. */
  36. const_debug unsigned int sysctl_sched_latency = 20000000ULL;
  37. /*
  38. * After fork, child runs first. (default) If set to 0 then
  39. * parent will (try to) run first.
  40. */
  41. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  42. /*
  43. * Minimal preemption granularity for CPU-bound tasks:
  44. * (default: 2 msec, units: nanoseconds)
  45. */
  46. const_debug unsigned int sysctl_sched_nr_latency = 20;
  47. /*
  48. * sys_sched_yield() compat mode
  49. *
  50. * This option switches the agressive yield implementation of the
  51. * old scheduler back on.
  52. */
  53. unsigned int __read_mostly sysctl_sched_compat_yield;
  54. /*
  55. * SCHED_BATCH wake-up granularity.
  56. * (default: 10 msec, units: nanoseconds)
  57. *
  58. * This option delays the preemption effects of decoupled workloads
  59. * and reduces their over-scheduling. Synchronous workloads will still
  60. * have immediate wakeup/sleep latencies.
  61. */
  62. const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
  63. /*
  64. * SCHED_OTHER wake-up granularity.
  65. * (default: 10 msec, units: nanoseconds)
  66. *
  67. * This option delays the preemption effects of decoupled workloads
  68. * and reduces their over-scheduling. Synchronous workloads will still
  69. * have immediate wakeup/sleep latencies.
  70. */
  71. const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
  72. /**************************************************************
  73. * CFS operations on generic schedulable entities:
  74. */
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. #else /* CONFIG_FAIR_GROUP_SCHED */
  84. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  85. {
  86. return container_of(cfs_rq, struct rq, cfs);
  87. }
  88. #define entity_is_task(se) 1
  89. #endif /* CONFIG_FAIR_GROUP_SCHED */
  90. static inline struct task_struct *task_of(struct sched_entity *se)
  91. {
  92. return container_of(se, struct task_struct, se);
  93. }
  94. /**************************************************************
  95. * Scheduling class tree data structure manipulation methods:
  96. */
  97. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  98. {
  99. s64 delta = (s64)(vruntime - min_vruntime);
  100. if (delta > 0)
  101. min_vruntime = vruntime;
  102. return min_vruntime;
  103. }
  104. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  105. {
  106. s64 delta = (s64)(vruntime - min_vruntime);
  107. if (delta < 0)
  108. min_vruntime = vruntime;
  109. return min_vruntime;
  110. }
  111. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  112. {
  113. return se->vruntime - cfs_rq->min_vruntime;
  114. }
  115. /*
  116. * Enqueue an entity into the rb-tree:
  117. */
  118. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  119. {
  120. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  121. struct rb_node *parent = NULL;
  122. struct sched_entity *entry;
  123. s64 key = entity_key(cfs_rq, se);
  124. int leftmost = 1;
  125. /*
  126. * Find the right place in the rbtree:
  127. */
  128. while (*link) {
  129. parent = *link;
  130. entry = rb_entry(parent, struct sched_entity, run_node);
  131. /*
  132. * We dont care about collisions. Nodes with
  133. * the same key stay together.
  134. */
  135. if (key < entity_key(cfs_rq, entry)) {
  136. link = &parent->rb_left;
  137. } else {
  138. link = &parent->rb_right;
  139. leftmost = 0;
  140. }
  141. }
  142. /*
  143. * Maintain a cache of leftmost tree entries (it is frequently
  144. * used):
  145. */
  146. if (leftmost)
  147. cfs_rq->rb_leftmost = &se->run_node;
  148. rb_link_node(&se->run_node, parent, link);
  149. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  150. }
  151. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  152. {
  153. if (cfs_rq->rb_leftmost == &se->run_node)
  154. cfs_rq->rb_leftmost = rb_next(&se->run_node);
  155. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  156. }
  157. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  158. {
  159. return cfs_rq->rb_leftmost;
  160. }
  161. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  162. {
  163. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  164. }
  165. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  166. {
  167. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  168. struct sched_entity *se = NULL;
  169. struct rb_node *parent;
  170. while (*link) {
  171. parent = *link;
  172. se = rb_entry(parent, struct sched_entity, run_node);
  173. link = &parent->rb_right;
  174. }
  175. return se;
  176. }
  177. /**************************************************************
  178. * Scheduling class statistics methods:
  179. */
  180. /*
  181. * The idea is to set a period in which each task runs once.
  182. *
  183. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  184. * this period because otherwise the slices get too small.
  185. *
  186. * p = (nr <= nl) ? l : l*nr/nl
  187. */
  188. static u64 __sched_period(unsigned long nr_running)
  189. {
  190. u64 period = sysctl_sched_latency;
  191. unsigned long nr_latency = sysctl_sched_nr_latency;
  192. if (unlikely(nr_running > nr_latency)) {
  193. period *= nr_running;
  194. do_div(period, nr_latency);
  195. }
  196. return period;
  197. }
  198. /*
  199. * We calculate the wall-time slice from the period by taking a part
  200. * proportional to the weight.
  201. *
  202. * s = p*w/rw
  203. */
  204. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  205. {
  206. u64 slice = __sched_period(cfs_rq->nr_running);
  207. slice *= se->load.weight;
  208. do_div(slice, cfs_rq->load.weight);
  209. return slice;
  210. }
  211. /*
  212. * We calculate the vruntime slice.
  213. *
  214. * vs = s/w = p/rw
  215. */
  216. static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
  217. {
  218. u64 vslice = __sched_period(nr_running);
  219. do_div(vslice, rq_weight);
  220. return vslice;
  221. }
  222. static u64 sched_vslice(struct cfs_rq *cfs_rq)
  223. {
  224. return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
  225. }
  226. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  227. {
  228. return __sched_vslice(cfs_rq->load.weight + se->load.weight,
  229. cfs_rq->nr_running + 1);
  230. }
  231. /*
  232. * Update the current task's runtime statistics. Skip current tasks that
  233. * are not in our scheduling class.
  234. */
  235. static inline void
  236. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  237. unsigned long delta_exec)
  238. {
  239. unsigned long delta_exec_weighted;
  240. u64 vruntime;
  241. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  242. curr->sum_exec_runtime += delta_exec;
  243. schedstat_add(cfs_rq, exec_clock, delta_exec);
  244. delta_exec_weighted = delta_exec;
  245. if (unlikely(curr->load.weight != NICE_0_LOAD)) {
  246. delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
  247. &curr->load);
  248. }
  249. curr->vruntime += delta_exec_weighted;
  250. /*
  251. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  252. * value tracking the leftmost vruntime in the tree.
  253. */
  254. if (first_fair(cfs_rq)) {
  255. vruntime = min_vruntime(curr->vruntime,
  256. __pick_next_entity(cfs_rq)->vruntime);
  257. } else
  258. vruntime = curr->vruntime;
  259. cfs_rq->min_vruntime =
  260. max_vruntime(cfs_rq->min_vruntime, vruntime);
  261. }
  262. static void update_curr(struct cfs_rq *cfs_rq)
  263. {
  264. struct sched_entity *curr = cfs_rq->curr;
  265. u64 now = rq_of(cfs_rq)->clock;
  266. unsigned long delta_exec;
  267. if (unlikely(!curr))
  268. return;
  269. /*
  270. * Get the amount of time the current task was running
  271. * since the last time we changed load (this cannot
  272. * overflow on 32 bits):
  273. */
  274. delta_exec = (unsigned long)(now - curr->exec_start);
  275. __update_curr(cfs_rq, curr, delta_exec);
  276. curr->exec_start = now;
  277. }
  278. static inline void
  279. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  280. {
  281. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  282. }
  283. /*
  284. * Task is being enqueued - update stats:
  285. */
  286. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  287. {
  288. /*
  289. * Are we enqueueing a waiting task? (for current tasks
  290. * a dequeue/enqueue event is a NOP)
  291. */
  292. if (se != cfs_rq->curr)
  293. update_stats_wait_start(cfs_rq, se);
  294. }
  295. static void
  296. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  297. {
  298. schedstat_set(se->wait_max, max(se->wait_max,
  299. rq_of(cfs_rq)->clock - se->wait_start));
  300. schedstat_set(se->wait_start, 0);
  301. }
  302. static inline void
  303. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  304. {
  305. /*
  306. * Mark the end of the wait period if dequeueing a
  307. * waiting task:
  308. */
  309. if (se != cfs_rq->curr)
  310. update_stats_wait_end(cfs_rq, se);
  311. }
  312. /*
  313. * We are picking a new current task - update its stats:
  314. */
  315. static inline void
  316. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  317. {
  318. /*
  319. * We are starting a new run period:
  320. */
  321. se->exec_start = rq_of(cfs_rq)->clock;
  322. }
  323. /*
  324. * We are descheduling a task - update its stats:
  325. */
  326. static inline void
  327. update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  328. {
  329. se->exec_start = 0;
  330. }
  331. /**************************************************
  332. * Scheduling class queueing methods:
  333. */
  334. static void
  335. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  336. {
  337. update_load_add(&cfs_rq->load, se->load.weight);
  338. cfs_rq->nr_running++;
  339. se->on_rq = 1;
  340. }
  341. static void
  342. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  343. {
  344. update_load_sub(&cfs_rq->load, se->load.weight);
  345. cfs_rq->nr_running--;
  346. se->on_rq = 0;
  347. }
  348. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  349. {
  350. #ifdef CONFIG_SCHEDSTATS
  351. if (se->sleep_start) {
  352. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  353. if ((s64)delta < 0)
  354. delta = 0;
  355. if (unlikely(delta > se->sleep_max))
  356. se->sleep_max = delta;
  357. se->sleep_start = 0;
  358. se->sum_sleep_runtime += delta;
  359. }
  360. if (se->block_start) {
  361. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  362. if ((s64)delta < 0)
  363. delta = 0;
  364. if (unlikely(delta > se->block_max))
  365. se->block_max = delta;
  366. se->block_start = 0;
  367. se->sum_sleep_runtime += delta;
  368. /*
  369. * Blocking time is in units of nanosecs, so shift by 20 to
  370. * get a milliseconds-range estimation of the amount of
  371. * time that the task spent sleeping:
  372. */
  373. if (unlikely(prof_on == SLEEP_PROFILING)) {
  374. struct task_struct *tsk = task_of(se);
  375. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  376. delta >> 20);
  377. }
  378. }
  379. #endif
  380. }
  381. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  382. {
  383. #ifdef CONFIG_SCHED_DEBUG
  384. s64 d = se->vruntime - cfs_rq->min_vruntime;
  385. if (d < 0)
  386. d = -d;
  387. if (d > 3*sysctl_sched_latency)
  388. schedstat_inc(cfs_rq, nr_spread_over);
  389. #endif
  390. }
  391. static void
  392. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  393. {
  394. u64 vruntime;
  395. vruntime = cfs_rq->min_vruntime;
  396. if (sched_feat(TREE_AVG)) {
  397. struct sched_entity *last = __pick_last_entity(cfs_rq);
  398. if (last) {
  399. vruntime += last->vruntime;
  400. vruntime >>= 1;
  401. }
  402. } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
  403. vruntime += sched_vslice(cfs_rq)/2;
  404. if (initial && sched_feat(START_DEBIT))
  405. vruntime += sched_vslice_add(cfs_rq, se);
  406. if (!initial) {
  407. if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
  408. task_of(se)->policy != SCHED_BATCH)
  409. vruntime -= sysctl_sched_latency;
  410. vruntime = max_t(s64, vruntime, se->vruntime);
  411. }
  412. se->vruntime = vruntime;
  413. }
  414. static void
  415. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  416. {
  417. /*
  418. * Update run-time statistics of the 'current'.
  419. */
  420. update_curr(cfs_rq);
  421. if (wakeup) {
  422. place_entity(cfs_rq, se, 0);
  423. enqueue_sleeper(cfs_rq, se);
  424. }
  425. update_stats_enqueue(cfs_rq, se);
  426. check_spread(cfs_rq, se);
  427. if (se != cfs_rq->curr)
  428. __enqueue_entity(cfs_rq, se);
  429. account_entity_enqueue(cfs_rq, se);
  430. }
  431. static void
  432. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  433. {
  434. /*
  435. * Update run-time statistics of the 'current'.
  436. */
  437. update_curr(cfs_rq);
  438. update_stats_dequeue(cfs_rq, se);
  439. if (sleep) {
  440. #ifdef CONFIG_SCHEDSTATS
  441. if (entity_is_task(se)) {
  442. struct task_struct *tsk = task_of(se);
  443. if (tsk->state & TASK_INTERRUPTIBLE)
  444. se->sleep_start = rq_of(cfs_rq)->clock;
  445. if (tsk->state & TASK_UNINTERRUPTIBLE)
  446. se->block_start = rq_of(cfs_rq)->clock;
  447. }
  448. #endif
  449. }
  450. if (se != cfs_rq->curr)
  451. __dequeue_entity(cfs_rq, se);
  452. account_entity_dequeue(cfs_rq, se);
  453. }
  454. /*
  455. * Preempt the current task with a newly woken task if needed:
  456. */
  457. static void
  458. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  459. {
  460. unsigned long ideal_runtime, delta_exec;
  461. ideal_runtime = sched_slice(cfs_rq, curr);
  462. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  463. if (delta_exec > ideal_runtime)
  464. resched_task(rq_of(cfs_rq)->curr);
  465. }
  466. static void
  467. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  468. {
  469. /* 'current' is not kept within the tree. */
  470. if (se->on_rq) {
  471. /*
  472. * Any task has to be enqueued before it get to execute on
  473. * a CPU. So account for the time it spent waiting on the
  474. * runqueue.
  475. */
  476. update_stats_wait_end(cfs_rq, se);
  477. __dequeue_entity(cfs_rq, se);
  478. }
  479. update_stats_curr_start(cfs_rq, se);
  480. cfs_rq->curr = se;
  481. #ifdef CONFIG_SCHEDSTATS
  482. /*
  483. * Track our maximum slice length, if the CPU's load is at
  484. * least twice that of our own weight (i.e. dont track it
  485. * when there are only lesser-weight tasks around):
  486. */
  487. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  488. se->slice_max = max(se->slice_max,
  489. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  490. }
  491. #endif
  492. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  493. }
  494. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  495. {
  496. struct sched_entity *se = NULL;
  497. if (first_fair(cfs_rq)) {
  498. se = __pick_next_entity(cfs_rq);
  499. set_next_entity(cfs_rq, se);
  500. }
  501. return se;
  502. }
  503. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  504. {
  505. /*
  506. * If still on the runqueue then deactivate_task()
  507. * was not called and update_curr() has to be done:
  508. */
  509. if (prev->on_rq)
  510. update_curr(cfs_rq);
  511. update_stats_curr_end(cfs_rq, prev);
  512. check_spread(cfs_rq, prev);
  513. if (prev->on_rq) {
  514. update_stats_wait_start(cfs_rq, prev);
  515. /* Put 'current' back into the tree. */
  516. __enqueue_entity(cfs_rq, prev);
  517. }
  518. cfs_rq->curr = NULL;
  519. }
  520. static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  521. {
  522. /*
  523. * Update run-time statistics of the 'current'.
  524. */
  525. update_curr(cfs_rq);
  526. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  527. check_preempt_tick(cfs_rq, curr);
  528. }
  529. /**************************************************
  530. * CFS operations on tasks:
  531. */
  532. #ifdef CONFIG_FAIR_GROUP_SCHED
  533. /* Walk up scheduling entities hierarchy */
  534. #define for_each_sched_entity(se) \
  535. for (; se; se = se->parent)
  536. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  537. {
  538. return p->se.cfs_rq;
  539. }
  540. /* runqueue on which this entity is (to be) queued */
  541. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  542. {
  543. return se->cfs_rq;
  544. }
  545. /* runqueue "owned" by this group */
  546. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  547. {
  548. return grp->my_q;
  549. }
  550. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  551. * another cpu ('this_cpu')
  552. */
  553. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  554. {
  555. return cfs_rq->tg->cfs_rq[this_cpu];
  556. }
  557. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  558. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  559. list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  560. /* Do the two (enqueued) entities belong to the same group ? */
  561. static inline int
  562. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  563. {
  564. if (se->cfs_rq == pse->cfs_rq)
  565. return 1;
  566. return 0;
  567. }
  568. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  569. {
  570. return se->parent;
  571. }
  572. #else /* CONFIG_FAIR_GROUP_SCHED */
  573. #define for_each_sched_entity(se) \
  574. for (; se; se = NULL)
  575. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  576. {
  577. return &task_rq(p)->cfs;
  578. }
  579. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  580. {
  581. struct task_struct *p = task_of(se);
  582. struct rq *rq = task_rq(p);
  583. return &rq->cfs;
  584. }
  585. /* runqueue "owned" by this group */
  586. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  587. {
  588. return NULL;
  589. }
  590. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  591. {
  592. return &cpu_rq(this_cpu)->cfs;
  593. }
  594. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  595. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  596. static inline int
  597. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  598. {
  599. return 1;
  600. }
  601. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  602. {
  603. return NULL;
  604. }
  605. #endif /* CONFIG_FAIR_GROUP_SCHED */
  606. /*
  607. * The enqueue_task method is called before nr_running is
  608. * increased. Here we update the fair scheduling stats and
  609. * then put the task into the rbtree:
  610. */
  611. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  612. {
  613. struct cfs_rq *cfs_rq;
  614. struct sched_entity *se = &p->se;
  615. for_each_sched_entity(se) {
  616. if (se->on_rq)
  617. break;
  618. cfs_rq = cfs_rq_of(se);
  619. enqueue_entity(cfs_rq, se, wakeup);
  620. wakeup = 1;
  621. }
  622. }
  623. /*
  624. * The dequeue_task method is called before nr_running is
  625. * decreased. We remove the task from the rbtree and
  626. * update the fair scheduling stats:
  627. */
  628. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  629. {
  630. struct cfs_rq *cfs_rq;
  631. struct sched_entity *se = &p->se;
  632. for_each_sched_entity(se) {
  633. cfs_rq = cfs_rq_of(se);
  634. dequeue_entity(cfs_rq, se, sleep);
  635. /* Don't dequeue parent if it has other entities besides us */
  636. if (cfs_rq->load.weight)
  637. break;
  638. sleep = 1;
  639. }
  640. }
  641. /*
  642. * sched_yield() support is very simple - we dequeue and enqueue.
  643. *
  644. * If compat_yield is turned on then we requeue to the end of the tree.
  645. */
  646. static void yield_task_fair(struct rq *rq)
  647. {
  648. struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
  649. struct sched_entity *rightmost, *se = &rq->curr->se;
  650. /*
  651. * Are we the only task in the tree?
  652. */
  653. if (unlikely(cfs_rq->nr_running == 1))
  654. return;
  655. if (likely(!sysctl_sched_compat_yield)) {
  656. __update_rq_clock(rq);
  657. /*
  658. * Update run-time statistics of the 'current'.
  659. */
  660. update_curr(cfs_rq);
  661. return;
  662. }
  663. /*
  664. * Find the rightmost entry in the rbtree:
  665. */
  666. rightmost = __pick_last_entity(cfs_rq);
  667. /*
  668. * Already in the rightmost position?
  669. */
  670. if (unlikely(rightmost->vruntime < se->vruntime))
  671. return;
  672. /*
  673. * Minimally necessary key value to be last in the tree:
  674. * Upon rescheduling, sched_class::put_prev_task() will place
  675. * 'current' within the tree based on its new key value.
  676. */
  677. se->vruntime = rightmost->vruntime + 1;
  678. }
  679. /*
  680. * Preempt the current task with a newly woken task if needed:
  681. */
  682. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  683. {
  684. struct task_struct *curr = rq->curr;
  685. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  686. struct sched_entity *se = &curr->se, *pse = &p->se;
  687. s64 delta, gran;
  688. if (unlikely(rt_prio(p->prio))) {
  689. update_rq_clock(rq);
  690. update_curr(cfs_rq);
  691. resched_task(curr);
  692. return;
  693. }
  694. if (sched_feat(WAKEUP_PREEMPT)) {
  695. while (!is_same_group(se, pse)) {
  696. se = parent_entity(se);
  697. pse = parent_entity(pse);
  698. }
  699. delta = se->vruntime - pse->vruntime;
  700. gran = sysctl_sched_wakeup_granularity;
  701. if (unlikely(se->load.weight != NICE_0_LOAD))
  702. gran = calc_delta_fair(gran, &se->load);
  703. if (delta > gran)
  704. resched_task(curr);
  705. }
  706. }
  707. static struct task_struct *pick_next_task_fair(struct rq *rq)
  708. {
  709. struct cfs_rq *cfs_rq = &rq->cfs;
  710. struct sched_entity *se;
  711. if (unlikely(!cfs_rq->nr_running))
  712. return NULL;
  713. do {
  714. se = pick_next_entity(cfs_rq);
  715. cfs_rq = group_cfs_rq(se);
  716. } while (cfs_rq);
  717. return task_of(se);
  718. }
  719. /*
  720. * Account for a descheduled task:
  721. */
  722. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  723. {
  724. struct sched_entity *se = &prev->se;
  725. struct cfs_rq *cfs_rq;
  726. for_each_sched_entity(se) {
  727. cfs_rq = cfs_rq_of(se);
  728. put_prev_entity(cfs_rq, se);
  729. }
  730. }
  731. /**************************************************
  732. * Fair scheduling class load-balancing methods:
  733. */
  734. /*
  735. * Load-balancing iterator. Note: while the runqueue stays locked
  736. * during the whole iteration, the current task might be
  737. * dequeued so the iterator has to be dequeue-safe. Here we
  738. * achieve that by always pre-iterating before returning
  739. * the current task:
  740. */
  741. static struct task_struct *
  742. __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
  743. {
  744. struct task_struct *p;
  745. if (!curr)
  746. return NULL;
  747. p = rb_entry(curr, struct task_struct, se.run_node);
  748. cfs_rq->rb_load_balance_curr = rb_next(curr);
  749. return p;
  750. }
  751. static struct task_struct *load_balance_start_fair(void *arg)
  752. {
  753. struct cfs_rq *cfs_rq = arg;
  754. return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
  755. }
  756. static struct task_struct *load_balance_next_fair(void *arg)
  757. {
  758. struct cfs_rq *cfs_rq = arg;
  759. return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
  760. }
  761. #ifdef CONFIG_FAIR_GROUP_SCHED
  762. static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
  763. {
  764. struct sched_entity *curr;
  765. struct task_struct *p;
  766. if (!cfs_rq->nr_running)
  767. return MAX_PRIO;
  768. curr = cfs_rq->curr;
  769. if (!curr)
  770. curr = __pick_next_entity(cfs_rq);
  771. p = task_of(curr);
  772. return p->prio;
  773. }
  774. #endif
  775. static unsigned long
  776. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  777. unsigned long max_nr_move, unsigned long max_load_move,
  778. struct sched_domain *sd, enum cpu_idle_type idle,
  779. int *all_pinned, int *this_best_prio)
  780. {
  781. struct cfs_rq *busy_cfs_rq;
  782. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  783. long rem_load_move = max_load_move;
  784. struct rq_iterator cfs_rq_iterator;
  785. cfs_rq_iterator.start = load_balance_start_fair;
  786. cfs_rq_iterator.next = load_balance_next_fair;
  787. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  788. #ifdef CONFIG_FAIR_GROUP_SCHED
  789. struct cfs_rq *this_cfs_rq;
  790. long imbalance;
  791. unsigned long maxload;
  792. this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
  793. imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
  794. /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
  795. if (imbalance <= 0)
  796. continue;
  797. /* Don't pull more than imbalance/2 */
  798. imbalance /= 2;
  799. maxload = min(rem_load_move, imbalance);
  800. *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
  801. #else
  802. # define maxload rem_load_move
  803. #endif
  804. /* pass busy_cfs_rq argument into
  805. * load_balance_[start|next]_fair iterators
  806. */
  807. cfs_rq_iterator.arg = busy_cfs_rq;
  808. nr_moved = balance_tasks(this_rq, this_cpu, busiest,
  809. max_nr_move, maxload, sd, idle, all_pinned,
  810. &load_moved, this_best_prio, &cfs_rq_iterator);
  811. total_nr_moved += nr_moved;
  812. max_nr_move -= nr_moved;
  813. rem_load_move -= load_moved;
  814. if (max_nr_move <= 0 || rem_load_move <= 0)
  815. break;
  816. }
  817. return max_load_move - rem_load_move;
  818. }
  819. /*
  820. * scheduler tick hitting a task of our scheduling class:
  821. */
  822. static void task_tick_fair(struct rq *rq, struct task_struct *curr)
  823. {
  824. struct cfs_rq *cfs_rq;
  825. struct sched_entity *se = &curr->se;
  826. for_each_sched_entity(se) {
  827. cfs_rq = cfs_rq_of(se);
  828. entity_tick(cfs_rq, se);
  829. }
  830. }
  831. #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  832. /*
  833. * Share the fairness runtime between parent and child, thus the
  834. * total amount of pressure for CPU stays equal - new tasks
  835. * get a chance to run but frequent forkers are not allowed to
  836. * monopolize the CPU. Note: the parent runqueue is locked,
  837. * the child is not running yet.
  838. */
  839. static void task_new_fair(struct rq *rq, struct task_struct *p)
  840. {
  841. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  842. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  843. int this_cpu = smp_processor_id();
  844. sched_info_queued(p);
  845. update_curr(cfs_rq);
  846. place_entity(cfs_rq, se, 1);
  847. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  848. curr->vruntime < se->vruntime) {
  849. /*
  850. * Upon rescheduling, sched_class::put_prev_task() will place
  851. * 'current' within the tree based on its new key value.
  852. */
  853. swap(curr->vruntime, se->vruntime);
  854. }
  855. update_stats_enqueue(cfs_rq, se);
  856. check_spread(cfs_rq, se);
  857. check_spread(cfs_rq, curr);
  858. __enqueue_entity(cfs_rq, se);
  859. account_entity_enqueue(cfs_rq, se);
  860. resched_task(rq->curr);
  861. }
  862. /* Account for a task changing its policy or group.
  863. *
  864. * This routine is mostly called to set cfs_rq->curr field when a task
  865. * migrates between groups/classes.
  866. */
  867. static void set_curr_task_fair(struct rq *rq)
  868. {
  869. struct sched_entity *se = &rq->curr->se;
  870. for_each_sched_entity(se)
  871. set_next_entity(cfs_rq_of(se), se);
  872. }
  873. /*
  874. * All the scheduling class methods:
  875. */
  876. static const struct sched_class fair_sched_class = {
  877. .next = &idle_sched_class,
  878. .enqueue_task = enqueue_task_fair,
  879. .dequeue_task = dequeue_task_fair,
  880. .yield_task = yield_task_fair,
  881. .check_preempt_curr = check_preempt_wakeup,
  882. .pick_next_task = pick_next_task_fair,
  883. .put_prev_task = put_prev_task_fair,
  884. .load_balance = load_balance_fair,
  885. .set_curr_task = set_curr_task_fair,
  886. .task_tick = task_tick_fair,
  887. .task_new = task_new_fair,
  888. };
  889. #ifdef CONFIG_SCHED_DEBUG
  890. static void print_cfs_stats(struct seq_file *m, int cpu)
  891. {
  892. struct cfs_rq *cfs_rq;
  893. #ifdef CONFIG_FAIR_GROUP_SCHED
  894. print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
  895. #endif
  896. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  897. print_cfs_rq(m, cpu, cfs_rq);
  898. }
  899. #endif