slub_def.h 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/bug.h>
  11. #include <linux/workqueue.h>
  12. #include <linux/kobject.h>
  13. #include <linux/kmemleak.h>
  14. enum stat_item {
  15. ALLOC_FASTPATH, /* Allocation from cpu slab */
  16. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  17. FREE_FASTPATH, /* Free to cpu slub */
  18. FREE_SLOWPATH, /* Freeing not to cpu slab */
  19. FREE_FROZEN, /* Freeing to frozen slab */
  20. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  21. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  22. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
  23. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  24. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  25. ALLOC_NODE_MISMATCH, /* Switching cpu slab */
  26. FREE_SLAB, /* Slab freed to the page allocator */
  27. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  28. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  29. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  30. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  31. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  32. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  33. DEACTIVATE_BYPASS, /* Implicit deactivation */
  34. ORDER_FALLBACK, /* Number of times fallback was necessary */
  35. CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
  36. CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
  37. CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
  38. CPU_PARTIAL_FREE, /* Refill cpu partial on free */
  39. CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
  40. CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
  41. NR_SLUB_STAT_ITEMS };
  42. struct kmem_cache_cpu {
  43. void **freelist; /* Pointer to next available object */
  44. unsigned long tid; /* Globally unique transaction id */
  45. struct page *page; /* The slab from which we are allocating */
  46. struct page *partial; /* Partially allocated frozen slabs */
  47. #ifdef CONFIG_SLUB_STATS
  48. unsigned stat[NR_SLUB_STAT_ITEMS];
  49. #endif
  50. };
  51. struct kmem_cache_node {
  52. spinlock_t list_lock; /* Protect partial list and nr_partial */
  53. unsigned long nr_partial;
  54. struct list_head partial;
  55. #ifdef CONFIG_SLUB_DEBUG
  56. atomic_long_t nr_slabs;
  57. atomic_long_t total_objects;
  58. struct list_head full;
  59. #endif
  60. };
  61. /*
  62. * Word size structure that can be atomically updated or read and that
  63. * contains both the order and the number of objects that a slab of the
  64. * given order would contain.
  65. */
  66. struct kmem_cache_order_objects {
  67. unsigned long x;
  68. };
  69. /*
  70. * Slab cache management.
  71. */
  72. struct kmem_cache {
  73. struct kmem_cache_cpu __percpu *cpu_slab;
  74. /* Used for retriving partial slabs etc */
  75. unsigned long flags;
  76. unsigned long min_partial;
  77. int size; /* The size of an object including meta data */
  78. int object_size; /* The size of an object without meta data */
  79. int offset; /* Free pointer offset. */
  80. int cpu_partial; /* Number of per cpu partial objects to keep around */
  81. struct kmem_cache_order_objects oo;
  82. /* Allocation and freeing of slabs */
  83. struct kmem_cache_order_objects max;
  84. struct kmem_cache_order_objects min;
  85. gfp_t allocflags; /* gfp flags to use on each alloc */
  86. int refcount; /* Refcount for slab cache destroy */
  87. void (*ctor)(void *);
  88. int inuse; /* Offset to metadata */
  89. int align; /* Alignment */
  90. int reserved; /* Reserved bytes at the end of slabs */
  91. const char *name; /* Name (only for display!) */
  92. struct list_head list; /* List of slab caches */
  93. #ifdef CONFIG_SYSFS
  94. struct kobject kobj; /* For sysfs */
  95. #endif
  96. #ifdef CONFIG_MEMCG_KMEM
  97. struct memcg_cache_params *memcg_params;
  98. int max_attr_size; /* for propagation, maximum size of a stored attr */
  99. #endif
  100. #ifdef CONFIG_NUMA
  101. /*
  102. * Defragmentation by allocating from a remote node.
  103. */
  104. int remote_node_defrag_ratio;
  105. #endif
  106. struct kmem_cache_node *node[MAX_NUMNODES];
  107. };
  108. /*
  109. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  110. * are passed through to the page allocator. The page allocator "fastpath"
  111. * is relatively slow so we need this value sufficiently high so that
  112. * performance critical objects are allocated through the SLUB fastpath.
  113. *
  114. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  115. * "fastpath" becomes competitive with the slab allocator fastpaths.
  116. */
  117. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  118. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  119. #ifdef CONFIG_ZONE_DMA
  120. #define SLUB_DMA __GFP_DMA
  121. #else
  122. /* Disable DMA functionality */
  123. #define SLUB_DMA (__force gfp_t)0
  124. #endif
  125. /*
  126. * We keep the general caches in an array of slab caches that are used for
  127. * 2^x bytes of allocations.
  128. */
  129. extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  130. /*
  131. * Find the slab cache for a given combination of allocation flags and size.
  132. *
  133. * This ought to end up with a global pointer to the right cache
  134. * in kmalloc_caches.
  135. */
  136. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  137. {
  138. int index = kmalloc_index(size);
  139. if (index == 0)
  140. return NULL;
  141. return kmalloc_caches[index];
  142. }
  143. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  144. void *__kmalloc(size_t size, gfp_t flags);
  145. static __always_inline void *
  146. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  147. {
  148. void *ret;
  149. flags |= (__GFP_COMP | __GFP_KMEMCG);
  150. ret = (void *) __get_free_pages(flags, order);
  151. kmemleak_alloc(ret, size, 1, flags);
  152. return ret;
  153. }
  154. /**
  155. * Calling this on allocated memory will check that the memory
  156. * is expected to be in use, and print warnings if not.
  157. */
  158. #ifdef CONFIG_SLUB_DEBUG
  159. extern bool verify_mem_not_deleted(const void *x);
  160. #else
  161. static inline bool verify_mem_not_deleted(const void *x)
  162. {
  163. return true;
  164. }
  165. #endif
  166. #ifdef CONFIG_TRACING
  167. extern void *
  168. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  169. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  170. #else
  171. static __always_inline void *
  172. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  173. {
  174. return kmem_cache_alloc(s, gfpflags);
  175. }
  176. static __always_inline void *
  177. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  178. {
  179. return kmalloc_order(size, flags, order);
  180. }
  181. #endif
  182. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  183. {
  184. unsigned int order = get_order(size);
  185. return kmalloc_order_trace(size, flags, order);
  186. }
  187. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  188. {
  189. if (__builtin_constant_p(size)) {
  190. if (size > SLUB_MAX_SIZE)
  191. return kmalloc_large(size, flags);
  192. if (!(flags & SLUB_DMA)) {
  193. struct kmem_cache *s = kmalloc_slab(size);
  194. if (!s)
  195. return ZERO_SIZE_PTR;
  196. return kmem_cache_alloc_trace(s, flags, size);
  197. }
  198. }
  199. return __kmalloc(size, flags);
  200. }
  201. #ifdef CONFIG_NUMA
  202. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  203. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  204. #ifdef CONFIG_TRACING
  205. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  206. gfp_t gfpflags,
  207. int node, size_t size);
  208. #else
  209. static __always_inline void *
  210. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  211. gfp_t gfpflags,
  212. int node, size_t size)
  213. {
  214. return kmem_cache_alloc_node(s, gfpflags, node);
  215. }
  216. #endif
  217. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  218. {
  219. if (__builtin_constant_p(size) &&
  220. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  221. struct kmem_cache *s = kmalloc_slab(size);
  222. if (!s)
  223. return ZERO_SIZE_PTR;
  224. return kmem_cache_alloc_node_trace(s, flags, node, size);
  225. }
  226. return __kmalloc_node(size, flags, node);
  227. }
  228. #endif
  229. #endif /* _LINUX_SLUB_DEF_H */