swiotlb-xen.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
  36. #include <linux/bootmem.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/export.h>
  39. #include <xen/swiotlb-xen.h>
  40. #include <xen/page.h>
  41. #include <xen/xen-ops.h>
  42. #include <xen/hvc-console.h>
  43. #include <trace/events/swiotlb.h>
  44. /*
  45. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  46. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  47. * API.
  48. */
  49. static char *xen_io_tlb_start, *xen_io_tlb_end;
  50. static unsigned long xen_io_tlb_nslabs;
  51. /*
  52. * Quick lookup value of the bus address of the IOTLB.
  53. */
  54. static u64 start_dma_addr;
  55. static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  56. {
  57. return phys_to_machine(XPADDR(paddr)).maddr;
  58. }
  59. static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  60. {
  61. return machine_to_phys(XMADDR(baddr)).paddr;
  62. }
  63. static dma_addr_t xen_virt_to_bus(void *address)
  64. {
  65. return xen_phys_to_bus(virt_to_phys(address));
  66. }
  67. static int check_pages_physically_contiguous(unsigned long pfn,
  68. unsigned int offset,
  69. size_t length)
  70. {
  71. unsigned long next_mfn;
  72. int i;
  73. int nr_pages;
  74. next_mfn = pfn_to_mfn(pfn);
  75. nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  76. for (i = 1; i < nr_pages; i++) {
  77. if (pfn_to_mfn(++pfn) != ++next_mfn)
  78. return 0;
  79. }
  80. return 1;
  81. }
  82. static int range_straddles_page_boundary(phys_addr_t p, size_t size)
  83. {
  84. unsigned long pfn = PFN_DOWN(p);
  85. unsigned int offset = p & ~PAGE_MASK;
  86. if (offset + size <= PAGE_SIZE)
  87. return 0;
  88. if (check_pages_physically_contiguous(pfn, offset, size))
  89. return 0;
  90. return 1;
  91. }
  92. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  93. {
  94. unsigned long mfn = PFN_DOWN(dma_addr);
  95. unsigned long pfn = mfn_to_local_pfn(mfn);
  96. phys_addr_t paddr;
  97. /* If the address is outside our domain, it CAN
  98. * have the same virtual address as another address
  99. * in our domain. Therefore _only_ check address within our domain.
  100. */
  101. if (pfn_valid(pfn)) {
  102. paddr = PFN_PHYS(pfn);
  103. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  104. paddr < virt_to_phys(xen_io_tlb_end);
  105. }
  106. return 0;
  107. }
  108. static int max_dma_bits = 32;
  109. static int
  110. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  111. {
  112. int i, rc;
  113. int dma_bits;
  114. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  115. i = 0;
  116. do {
  117. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  118. do {
  119. rc = xen_create_contiguous_region(
  120. (unsigned long)buf + (i << IO_TLB_SHIFT),
  121. get_order(slabs << IO_TLB_SHIFT),
  122. dma_bits);
  123. } while (rc && dma_bits++ < max_dma_bits);
  124. if (rc)
  125. return rc;
  126. i += slabs;
  127. } while (i < nslabs);
  128. return 0;
  129. }
  130. static unsigned long xen_set_nslabs(unsigned long nr_tbl)
  131. {
  132. if (!nr_tbl) {
  133. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  134. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  135. } else
  136. xen_io_tlb_nslabs = nr_tbl;
  137. return xen_io_tlb_nslabs << IO_TLB_SHIFT;
  138. }
  139. enum xen_swiotlb_err {
  140. XEN_SWIOTLB_UNKNOWN = 0,
  141. XEN_SWIOTLB_ENOMEM,
  142. XEN_SWIOTLB_EFIXUP
  143. };
  144. static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
  145. {
  146. switch (err) {
  147. case XEN_SWIOTLB_ENOMEM:
  148. return "Cannot allocate Xen-SWIOTLB buffer\n";
  149. case XEN_SWIOTLB_EFIXUP:
  150. return "Failed to get contiguous memory for DMA from Xen!\n"\
  151. "You either: don't have the permissions, do not have"\
  152. " enough free memory under 4GB, or the hypervisor memory"\
  153. " is too fragmented!";
  154. default:
  155. break;
  156. }
  157. return "";
  158. }
  159. int __ref xen_swiotlb_init(int verbose, bool early)
  160. {
  161. unsigned long bytes, order;
  162. int rc = -ENOMEM;
  163. enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
  164. unsigned int repeat = 3;
  165. xen_io_tlb_nslabs = swiotlb_nr_tbl();
  166. retry:
  167. bytes = xen_set_nslabs(xen_io_tlb_nslabs);
  168. order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
  169. /*
  170. * Get IO TLB memory from any location.
  171. */
  172. if (early)
  173. xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
  174. else {
  175. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  176. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  177. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  178. xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
  179. if (xen_io_tlb_start)
  180. break;
  181. order--;
  182. }
  183. if (order != get_order(bytes)) {
  184. pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
  185. (PAGE_SIZE << order) >> 20);
  186. xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
  187. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  188. }
  189. }
  190. if (!xen_io_tlb_start) {
  191. m_ret = XEN_SWIOTLB_ENOMEM;
  192. goto error;
  193. }
  194. xen_io_tlb_end = xen_io_tlb_start + bytes;
  195. /*
  196. * And replace that memory with pages under 4GB.
  197. */
  198. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  199. bytes,
  200. xen_io_tlb_nslabs);
  201. if (rc) {
  202. if (early)
  203. free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
  204. else {
  205. free_pages((unsigned long)xen_io_tlb_start, order);
  206. xen_io_tlb_start = NULL;
  207. }
  208. m_ret = XEN_SWIOTLB_EFIXUP;
  209. goto error;
  210. }
  211. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  212. if (early) {
  213. if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
  214. verbose))
  215. panic("Cannot allocate SWIOTLB buffer");
  216. rc = 0;
  217. } else
  218. rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
  219. return rc;
  220. error:
  221. if (repeat--) {
  222. xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
  223. (xen_io_tlb_nslabs >> 1));
  224. pr_info("Lowering to %luMB\n",
  225. (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
  226. goto retry;
  227. }
  228. pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
  229. if (early)
  230. panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
  231. else
  232. free_pages((unsigned long)xen_io_tlb_start, order);
  233. return rc;
  234. }
  235. void *
  236. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  237. dma_addr_t *dma_handle, gfp_t flags,
  238. struct dma_attrs *attrs)
  239. {
  240. void *ret;
  241. int order = get_order(size);
  242. u64 dma_mask = DMA_BIT_MASK(32);
  243. unsigned long vstart;
  244. phys_addr_t phys;
  245. dma_addr_t dev_addr;
  246. /*
  247. * Ignore region specifiers - the kernel's ideas of
  248. * pseudo-phys memory layout has nothing to do with the
  249. * machine physical layout. We can't allocate highmem
  250. * because we can't return a pointer to it.
  251. */
  252. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  253. if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
  254. return ret;
  255. vstart = __get_free_pages(flags, order);
  256. ret = (void *)vstart;
  257. if (!ret)
  258. return ret;
  259. if (hwdev && hwdev->coherent_dma_mask)
  260. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  261. phys = virt_to_phys(ret);
  262. dev_addr = xen_phys_to_bus(phys);
  263. if (((dev_addr + size - 1 <= dma_mask)) &&
  264. !range_straddles_page_boundary(phys, size))
  265. *dma_handle = dev_addr;
  266. else {
  267. if (xen_create_contiguous_region(vstart, order,
  268. fls64(dma_mask)) != 0) {
  269. free_pages(vstart, order);
  270. return NULL;
  271. }
  272. *dma_handle = virt_to_machine(ret).maddr;
  273. }
  274. memset(ret, 0, size);
  275. return ret;
  276. }
  277. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  278. void
  279. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  280. dma_addr_t dev_addr, struct dma_attrs *attrs)
  281. {
  282. int order = get_order(size);
  283. phys_addr_t phys;
  284. u64 dma_mask = DMA_BIT_MASK(32);
  285. if (dma_release_from_coherent(hwdev, order, vaddr))
  286. return;
  287. if (hwdev && hwdev->coherent_dma_mask)
  288. dma_mask = hwdev->coherent_dma_mask;
  289. phys = virt_to_phys(vaddr);
  290. if (((dev_addr + size - 1 > dma_mask)) ||
  291. range_straddles_page_boundary(phys, size))
  292. xen_destroy_contiguous_region((unsigned long)vaddr, order);
  293. free_pages((unsigned long)vaddr, order);
  294. }
  295. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  296. /*
  297. * Map a single buffer of the indicated size for DMA in streaming mode. The
  298. * physical address to use is returned.
  299. *
  300. * Once the device is given the dma address, the device owns this memory until
  301. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  302. */
  303. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  304. unsigned long offset, size_t size,
  305. enum dma_data_direction dir,
  306. struct dma_attrs *attrs)
  307. {
  308. phys_addr_t map, phys = page_to_phys(page) + offset;
  309. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  310. BUG_ON(dir == DMA_NONE);
  311. /*
  312. * If the address happens to be in the device's DMA window,
  313. * we can safely return the device addr and not worry about bounce
  314. * buffering it.
  315. */
  316. if (dma_capable(dev, dev_addr, size) &&
  317. !range_straddles_page_boundary(phys, size) && !swiotlb_force)
  318. return dev_addr;
  319. /*
  320. * Oh well, have to allocate and map a bounce buffer.
  321. */
  322. trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
  323. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  324. if (map == SWIOTLB_MAP_ERROR)
  325. return DMA_ERROR_CODE;
  326. dev_addr = xen_phys_to_bus(map);
  327. /*
  328. * Ensure that the address returned is DMA'ble
  329. */
  330. if (!dma_capable(dev, dev_addr, size)) {
  331. swiotlb_tbl_unmap_single(dev, map, size, dir);
  332. dev_addr = 0;
  333. }
  334. return dev_addr;
  335. }
  336. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  337. /*
  338. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  339. * match what was provided for in a previous xen_swiotlb_map_page call. All
  340. * other usages are undefined.
  341. *
  342. * After this call, reads by the cpu to the buffer are guaranteed to see
  343. * whatever the device wrote there.
  344. */
  345. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  346. size_t size, enum dma_data_direction dir)
  347. {
  348. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  349. BUG_ON(dir == DMA_NONE);
  350. /* NOTE: We use dev_addr here, not paddr! */
  351. if (is_xen_swiotlb_buffer(dev_addr)) {
  352. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  353. return;
  354. }
  355. if (dir != DMA_FROM_DEVICE)
  356. return;
  357. /*
  358. * phys_to_virt doesn't work with hihgmem page but we could
  359. * call dma_mark_clean() with hihgmem page here. However, we
  360. * are fine since dma_mark_clean() is null on POWERPC. We can
  361. * make dma_mark_clean() take a physical address if necessary.
  362. */
  363. dma_mark_clean(phys_to_virt(paddr), size);
  364. }
  365. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  366. size_t size, enum dma_data_direction dir,
  367. struct dma_attrs *attrs)
  368. {
  369. xen_unmap_single(hwdev, dev_addr, size, dir);
  370. }
  371. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  372. /*
  373. * Make physical memory consistent for a single streaming mode DMA translation
  374. * after a transfer.
  375. *
  376. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  377. * using the cpu, yet do not wish to teardown the dma mapping, you must
  378. * call this function before doing so. At the next point you give the dma
  379. * address back to the card, you must first perform a
  380. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  381. */
  382. static void
  383. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  384. size_t size, enum dma_data_direction dir,
  385. enum dma_sync_target target)
  386. {
  387. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  388. BUG_ON(dir == DMA_NONE);
  389. /* NOTE: We use dev_addr here, not paddr! */
  390. if (is_xen_swiotlb_buffer(dev_addr)) {
  391. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  392. return;
  393. }
  394. if (dir != DMA_FROM_DEVICE)
  395. return;
  396. dma_mark_clean(phys_to_virt(paddr), size);
  397. }
  398. void
  399. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  400. size_t size, enum dma_data_direction dir)
  401. {
  402. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  403. }
  404. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  405. void
  406. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  407. size_t size, enum dma_data_direction dir)
  408. {
  409. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  410. }
  411. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  412. /*
  413. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  414. * This is the scatter-gather version of the above xen_swiotlb_map_page
  415. * interface. Here the scatter gather list elements are each tagged with the
  416. * appropriate dma address and length. They are obtained via
  417. * sg_dma_{address,length}(SG).
  418. *
  419. * NOTE: An implementation may be able to use a smaller number of
  420. * DMA address/length pairs than there are SG table elements.
  421. * (for example via virtual mapping capabilities)
  422. * The routine returns the number of addr/length pairs actually
  423. * used, at most nents.
  424. *
  425. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  426. * same here.
  427. */
  428. int
  429. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  430. int nelems, enum dma_data_direction dir,
  431. struct dma_attrs *attrs)
  432. {
  433. struct scatterlist *sg;
  434. int i;
  435. BUG_ON(dir == DMA_NONE);
  436. for_each_sg(sgl, sg, nelems, i) {
  437. phys_addr_t paddr = sg_phys(sg);
  438. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  439. if (swiotlb_force ||
  440. !dma_capable(hwdev, dev_addr, sg->length) ||
  441. range_straddles_page_boundary(paddr, sg->length)) {
  442. phys_addr_t map = swiotlb_tbl_map_single(hwdev,
  443. start_dma_addr,
  444. sg_phys(sg),
  445. sg->length,
  446. dir);
  447. if (map == SWIOTLB_MAP_ERROR) {
  448. /* Don't panic here, we expect map_sg users
  449. to do proper error handling. */
  450. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  451. attrs);
  452. sg_dma_len(sgl) = 0;
  453. return DMA_ERROR_CODE;
  454. }
  455. sg->dma_address = xen_phys_to_bus(map);
  456. } else
  457. sg->dma_address = dev_addr;
  458. sg_dma_len(sg) = sg->length;
  459. }
  460. return nelems;
  461. }
  462. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  463. /*
  464. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  465. * concerning calls here are the same as for swiotlb_unmap_page() above.
  466. */
  467. void
  468. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  469. int nelems, enum dma_data_direction dir,
  470. struct dma_attrs *attrs)
  471. {
  472. struct scatterlist *sg;
  473. int i;
  474. BUG_ON(dir == DMA_NONE);
  475. for_each_sg(sgl, sg, nelems, i)
  476. xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
  477. }
  478. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  479. /*
  480. * Make physical memory consistent for a set of streaming mode DMA translations
  481. * after a transfer.
  482. *
  483. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  484. * and usage.
  485. */
  486. static void
  487. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  488. int nelems, enum dma_data_direction dir,
  489. enum dma_sync_target target)
  490. {
  491. struct scatterlist *sg;
  492. int i;
  493. for_each_sg(sgl, sg, nelems, i)
  494. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  495. sg_dma_len(sg), dir, target);
  496. }
  497. void
  498. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  499. int nelems, enum dma_data_direction dir)
  500. {
  501. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  502. }
  503. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  504. void
  505. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  506. int nelems, enum dma_data_direction dir)
  507. {
  508. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  509. }
  510. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  511. int
  512. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  513. {
  514. return !dma_addr;
  515. }
  516. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  517. /*
  518. * Return whether the given device DMA address mask can be supported
  519. * properly. For example, if your device can only drive the low 24-bits
  520. * during bus mastering, then you would pass 0x00ffffff as the mask to
  521. * this function.
  522. */
  523. int
  524. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  525. {
  526. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  527. }
  528. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);