atl1c_hw.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795
  1. /*
  2. * Copyright(c) 2007 Atheros Corporation. All rights reserved.
  3. *
  4. * Derived from Intel e1000 driver
  5. * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the Free
  9. * Software Foundation; either version 2 of the License, or (at your option)
  10. * any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59
  19. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20. */
  21. #include <linux/pci.h>
  22. #include <linux/delay.h>
  23. #include <linux/mii.h>
  24. #include <linux/crc32.h>
  25. #include "atl1c.h"
  26. /*
  27. * check_eeprom_exist
  28. * return 1 if eeprom exist
  29. */
  30. int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
  31. {
  32. u32 data;
  33. AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
  34. if (data & TWSI_DEBUG_DEV_EXIST)
  35. return 1;
  36. AT_READ_REG(hw, REG_MASTER_CTRL, &data);
  37. if (data & MASTER_CTRL_OTP_SEL)
  38. return 1;
  39. return 0;
  40. }
  41. void atl1c_hw_set_mac_addr(struct atl1c_hw *hw)
  42. {
  43. u32 value;
  44. /*
  45. * 00-0B-6A-F6-00-DC
  46. * 0: 6AF600DC 1: 000B
  47. * low dword
  48. */
  49. value = (((u32)hw->mac_addr[2]) << 24) |
  50. (((u32)hw->mac_addr[3]) << 16) |
  51. (((u32)hw->mac_addr[4]) << 8) |
  52. (((u32)hw->mac_addr[5])) ;
  53. AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
  54. /* hight dword */
  55. value = (((u32)hw->mac_addr[0]) << 8) |
  56. (((u32)hw->mac_addr[1])) ;
  57. AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
  58. }
  59. /*
  60. * atl1c_get_permanent_address
  61. * return 0 if get valid mac address,
  62. */
  63. static int atl1c_get_permanent_address(struct atl1c_hw *hw)
  64. {
  65. u32 addr[2];
  66. u32 i;
  67. u32 otp_ctrl_data;
  68. u32 twsi_ctrl_data;
  69. u32 ltssm_ctrl_data;
  70. u32 wol_data;
  71. u8 eth_addr[ETH_ALEN];
  72. u16 phy_data;
  73. bool raise_vol = false;
  74. /* init */
  75. addr[0] = addr[1] = 0;
  76. AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
  77. if (atl1c_check_eeprom_exist(hw)) {
  78. if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
  79. /* Enable OTP CLK */
  80. if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
  81. otp_ctrl_data |= OTP_CTRL_CLK_EN;
  82. AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
  83. AT_WRITE_FLUSH(hw);
  84. msleep(1);
  85. }
  86. }
  87. if (hw->nic_type == athr_l2c_b ||
  88. hw->nic_type == athr_l2c_b2 ||
  89. hw->nic_type == athr_l1d) {
  90. atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
  91. if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
  92. goto out;
  93. phy_data &= 0xFF7F;
  94. atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  95. atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
  96. if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
  97. goto out;
  98. phy_data |= 0x8;
  99. atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  100. udelay(20);
  101. raise_vol = true;
  102. }
  103. /* close open bit of ReadOnly*/
  104. AT_READ_REG(hw, REG_LTSSM_ID_CTRL, &ltssm_ctrl_data);
  105. ltssm_ctrl_data &= ~LTSSM_ID_EN_WRO;
  106. AT_WRITE_REG(hw, REG_LTSSM_ID_CTRL, ltssm_ctrl_data);
  107. /* clear any WOL settings */
  108. AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
  109. AT_READ_REG(hw, REG_WOL_CTRL, &wol_data);
  110. AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
  111. twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
  112. AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
  113. for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
  114. msleep(10);
  115. AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
  116. if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
  117. break;
  118. }
  119. if (i >= AT_TWSI_EEPROM_TIMEOUT)
  120. return -1;
  121. }
  122. /* Disable OTP_CLK */
  123. if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
  124. otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
  125. AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
  126. msleep(1);
  127. }
  128. if (raise_vol) {
  129. if (hw->nic_type == athr_l2c_b ||
  130. hw->nic_type == athr_l2c_b2 ||
  131. hw->nic_type == athr_l1d ||
  132. hw->nic_type == athr_l1d_2) {
  133. atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
  134. if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
  135. goto out;
  136. phy_data |= 0x80;
  137. atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  138. atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
  139. if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
  140. goto out;
  141. phy_data &= 0xFFF7;
  142. atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  143. udelay(20);
  144. }
  145. }
  146. /* maybe MAC-address is from BIOS */
  147. AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
  148. AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
  149. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  150. *(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
  151. if (is_valid_ether_addr(eth_addr)) {
  152. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  153. return 0;
  154. }
  155. out:
  156. return -1;
  157. }
  158. bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
  159. {
  160. int i;
  161. int ret = false;
  162. u32 otp_ctrl_data;
  163. u32 control;
  164. u32 data;
  165. if (offset & 3)
  166. return ret; /* address do not align */
  167. AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
  168. if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
  169. AT_WRITE_REG(hw, REG_OTP_CTRL,
  170. (otp_ctrl_data | OTP_CTRL_CLK_EN));
  171. AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
  172. control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
  173. AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
  174. for (i = 0; i < 10; i++) {
  175. udelay(100);
  176. AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
  177. if (control & EEPROM_CTRL_RW)
  178. break;
  179. }
  180. if (control & EEPROM_CTRL_RW) {
  181. AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
  182. AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
  183. data = data & 0xFFFF;
  184. *p_value = swab32((data << 16) | (*p_value >> 16));
  185. ret = true;
  186. }
  187. if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
  188. AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
  189. return ret;
  190. }
  191. /*
  192. * Reads the adapter's MAC address from the EEPROM
  193. *
  194. * hw - Struct containing variables accessed by shared code
  195. */
  196. int atl1c_read_mac_addr(struct atl1c_hw *hw)
  197. {
  198. int err = 0;
  199. err = atl1c_get_permanent_address(hw);
  200. if (err)
  201. random_ether_addr(hw->perm_mac_addr);
  202. memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
  203. return err;
  204. }
  205. /*
  206. * atl1c_hash_mc_addr
  207. * purpose
  208. * set hash value for a multicast address
  209. * hash calcu processing :
  210. * 1. calcu 32bit CRC for multicast address
  211. * 2. reverse crc with MSB to LSB
  212. */
  213. u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
  214. {
  215. u32 crc32;
  216. u32 value = 0;
  217. int i;
  218. crc32 = ether_crc_le(6, mc_addr);
  219. for (i = 0; i < 32; i++)
  220. value |= (((crc32 >> i) & 1) << (31 - i));
  221. return value;
  222. }
  223. /*
  224. * Sets the bit in the multicast table corresponding to the hash value.
  225. * hw - Struct containing variables accessed by shared code
  226. * hash_value - Multicast address hash value
  227. */
  228. void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
  229. {
  230. u32 hash_bit, hash_reg;
  231. u32 mta;
  232. /*
  233. * The HASH Table is a register array of 2 32-bit registers.
  234. * It is treated like an array of 64 bits. We want to set
  235. * bit BitArray[hash_value]. So we figure out what register
  236. * the bit is in, read it, OR in the new bit, then write
  237. * back the new value. The register is determined by the
  238. * upper bit of the hash value and the bit within that
  239. * register are determined by the lower 5 bits of the value.
  240. */
  241. hash_reg = (hash_value >> 31) & 0x1;
  242. hash_bit = (hash_value >> 26) & 0x1F;
  243. mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
  244. mta |= (1 << hash_bit);
  245. AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
  246. }
  247. /*
  248. * wait mdio module be idle
  249. * return true: idle
  250. * false: still busy
  251. */
  252. bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
  253. {
  254. u32 val;
  255. int i;
  256. for (i = 0; i < MDIO_MAX_AC_TO; i++) {
  257. AT_READ_REG(hw, REG_MDIO_CTRL, &val);
  258. if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
  259. break;
  260. udelay(10);
  261. }
  262. return i != MDIO_MAX_AC_TO;
  263. }
  264. void atl1c_stop_phy_polling(struct atl1c_hw *hw)
  265. {
  266. if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
  267. return;
  268. AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
  269. atl1c_wait_mdio_idle(hw);
  270. }
  271. void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
  272. {
  273. u32 val;
  274. if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
  275. return;
  276. val = MDIO_CTRL_SPRES_PRMBL |
  277. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  278. FIELDX(MDIO_CTRL_REG, 1) |
  279. MDIO_CTRL_START |
  280. MDIO_CTRL_OP_READ;
  281. AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
  282. atl1c_wait_mdio_idle(hw);
  283. val |= MDIO_CTRL_AP_EN;
  284. val &= ~MDIO_CTRL_START;
  285. AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
  286. udelay(30);
  287. }
  288. /*
  289. * atl1c_read_phy_core
  290. * core funtion to read register in PHY via MDIO control regsiter.
  291. * ext: extension register (see IEEE 802.3)
  292. * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
  293. * reg: reg to read
  294. */
  295. int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
  296. u16 reg, u16 *phy_data)
  297. {
  298. u32 val;
  299. u16 clk_sel = MDIO_CTRL_CLK_25_4;
  300. atl1c_stop_phy_polling(hw);
  301. *phy_data = 0;
  302. /* only l2c_b2 & l1d_2 could use slow clock */
  303. if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
  304. hw->hibernate)
  305. clk_sel = MDIO_CTRL_CLK_25_128;
  306. if (ext) {
  307. val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
  308. AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
  309. val = MDIO_CTRL_SPRES_PRMBL |
  310. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  311. MDIO_CTRL_START |
  312. MDIO_CTRL_MODE_EXT |
  313. MDIO_CTRL_OP_READ;
  314. } else {
  315. val = MDIO_CTRL_SPRES_PRMBL |
  316. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  317. FIELDX(MDIO_CTRL_REG, reg) |
  318. MDIO_CTRL_START |
  319. MDIO_CTRL_OP_READ;
  320. }
  321. AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
  322. if (!atl1c_wait_mdio_idle(hw))
  323. return -1;
  324. AT_READ_REG(hw, REG_MDIO_CTRL, &val);
  325. *phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);
  326. atl1c_start_phy_polling(hw, clk_sel);
  327. return 0;
  328. }
  329. /*
  330. * atl1c_write_phy_core
  331. * core funtion to write to register in PHY via MDIO control regsiter.
  332. * ext: extension register (see IEEE 802.3)
  333. * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
  334. * reg: reg to write
  335. */
  336. int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
  337. u16 reg, u16 phy_data)
  338. {
  339. u32 val;
  340. u16 clk_sel = MDIO_CTRL_CLK_25_4;
  341. atl1c_stop_phy_polling(hw);
  342. /* only l2c_b2 & l1d_2 could use slow clock */
  343. if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
  344. hw->hibernate)
  345. clk_sel = MDIO_CTRL_CLK_25_128;
  346. if (ext) {
  347. val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
  348. AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
  349. val = MDIO_CTRL_SPRES_PRMBL |
  350. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  351. FIELDX(MDIO_CTRL_DATA, phy_data) |
  352. MDIO_CTRL_START |
  353. MDIO_CTRL_MODE_EXT;
  354. } else {
  355. val = MDIO_CTRL_SPRES_PRMBL |
  356. FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
  357. FIELDX(MDIO_CTRL_DATA, phy_data) |
  358. FIELDX(MDIO_CTRL_REG, reg) |
  359. MDIO_CTRL_START;
  360. }
  361. AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
  362. if (!atl1c_wait_mdio_idle(hw))
  363. return -1;
  364. atl1c_start_phy_polling(hw, clk_sel);
  365. return 0;
  366. }
  367. /*
  368. * Reads the value from a PHY register
  369. * hw - Struct containing variables accessed by shared code
  370. * reg_addr - address of the PHY register to read
  371. */
  372. int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
  373. {
  374. return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data);
  375. }
  376. /*
  377. * Writes a value to a PHY register
  378. * hw - Struct containing variables accessed by shared code
  379. * reg_addr - address of the PHY register to write
  380. * data - data to write to the PHY
  381. */
  382. int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
  383. {
  384. return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data);
  385. }
  386. /* read from PHY extension register */
  387. int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
  388. u16 reg_addr, u16 *phy_data)
  389. {
  390. return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data);
  391. }
  392. /* write to PHY extension register */
  393. int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
  394. u16 reg_addr, u16 phy_data)
  395. {
  396. return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data);
  397. }
  398. int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
  399. {
  400. int err;
  401. err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
  402. if (unlikely(err))
  403. return err;
  404. else
  405. err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data);
  406. return err;
  407. }
  408. int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data)
  409. {
  410. int err;
  411. err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
  412. if (unlikely(err))
  413. return err;
  414. else
  415. err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
  416. return err;
  417. }
  418. /*
  419. * Configures PHY autoneg and flow control advertisement settings
  420. *
  421. * hw - Struct containing variables accessed by shared code
  422. */
  423. static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
  424. {
  425. u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
  426. u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
  427. ~GIGA_CR_1000T_SPEED_MASK;
  428. if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
  429. mii_adv_data |= ADVERTISE_10HALF;
  430. if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
  431. mii_adv_data |= ADVERTISE_10FULL;
  432. if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
  433. mii_adv_data |= ADVERTISE_100HALF;
  434. if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
  435. mii_adv_data |= ADVERTISE_100FULL;
  436. if (hw->autoneg_advertised & ADVERTISED_Autoneg)
  437. mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
  438. ADVERTISE_100HALF | ADVERTISE_100FULL;
  439. if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
  440. if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
  441. mii_giga_ctrl_data |= ADVERTISE_1000HALF;
  442. if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
  443. mii_giga_ctrl_data |= ADVERTISE_1000FULL;
  444. if (hw->autoneg_advertised & ADVERTISED_Autoneg)
  445. mii_giga_ctrl_data |= ADVERTISE_1000HALF |
  446. ADVERTISE_1000FULL;
  447. }
  448. if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
  449. atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0)
  450. return -1;
  451. return 0;
  452. }
  453. void atl1c_phy_disable(struct atl1c_hw *hw)
  454. {
  455. u32 phy_ctrl_data;
  456. AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
  457. phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS);
  458. phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE |
  459. GPHY_CTRL_HIB_EN | GPHY_CTRL_PHY_IDDQ |
  460. GPHY_CTRL_PWDOWN_HW;
  461. AT_WRITE_REGW(hw, REG_GPHY_CTRL, phy_ctrl_data);
  462. }
  463. int atl1c_phy_reset(struct atl1c_hw *hw)
  464. {
  465. struct atl1c_adapter *adapter = hw->adapter;
  466. struct pci_dev *pdev = adapter->pdev;
  467. u16 phy_data;
  468. u32 phy_ctrl_data, lpi_ctrl;
  469. int err;
  470. /* reset PHY core */
  471. AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
  472. phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ |
  473. GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS);
  474. phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST;
  475. if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE))
  476. phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
  477. else
  478. phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
  479. AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
  480. AT_WRITE_FLUSH(hw);
  481. udelay(10);
  482. AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET);
  483. AT_WRITE_FLUSH(hw);
  484. udelay(10 * GPHY_CTRL_EXT_RST_TO); /* delay 800us */
  485. /* switch clock */
  486. if (hw->nic_type == athr_l2c_b) {
  487. atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data);
  488. atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD,
  489. phy_data & ~CFGLPSPD_RSTCNT_CLK125SW);
  490. }
  491. /* tx-half amplitude issue fix */
  492. if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
  493. atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data);
  494. phy_data |= CABLE1TH_DET_EN;
  495. atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data);
  496. }
  497. /* clear bit3 of dbgport 3B to lower voltage */
  498. if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) {
  499. if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
  500. atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
  501. phy_data &= ~VOLT_CTRL_SWLOWEST;
  502. atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
  503. }
  504. /* power saving config */
  505. phy_data =
  506. hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ?
  507. L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF;
  508. atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data);
  509. /* hib */
  510. atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
  511. SYSMODCTRL_IECHOADJ_DEF);
  512. } else {
  513. /* disable pws */
  514. atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data);
  515. atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS,
  516. phy_data & ~LEGCYPS_EN);
  517. /* disable hibernate */
  518. atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data);
  519. atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG,
  520. phy_data & HIBNEG_PSHIB_EN);
  521. }
  522. /* disable AZ(EEE) by default */
  523. if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ||
  524. hw->nic_type == athr_l2c_b2) {
  525. AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl);
  526. AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN);
  527. atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0);
  528. atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3,
  529. L2CB_CLDCTRL3);
  530. }
  531. /* other debug port to set */
  532. atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF);
  533. atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF);
  534. atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF);
  535. /* UNH-IOL test issue, set bit7 */
  536. atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG,
  537. TST100BTCFG_DEF | TST100BTCFG_LITCH_EN);
  538. /* set phy interrupt mask */
  539. phy_data = IER_LINK_UP | IER_LINK_DOWN;
  540. err = atl1c_write_phy_reg(hw, MII_IER, phy_data);
  541. if (err) {
  542. if (netif_msg_hw(adapter))
  543. dev_err(&pdev->dev,
  544. "Error enable PHY linkChange Interrupt\n");
  545. return err;
  546. }
  547. return 0;
  548. }
  549. int atl1c_phy_init(struct atl1c_hw *hw)
  550. {
  551. struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
  552. struct pci_dev *pdev = adapter->pdev;
  553. int ret_val;
  554. u16 mii_bmcr_data = BMCR_RESET;
  555. if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
  556. (atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
  557. dev_err(&pdev->dev, "Error get phy ID\n");
  558. return -1;
  559. }
  560. switch (hw->media_type) {
  561. case MEDIA_TYPE_AUTO_SENSOR:
  562. ret_val = atl1c_phy_setup_adv(hw);
  563. if (ret_val) {
  564. if (netif_msg_link(adapter))
  565. dev_err(&pdev->dev,
  566. "Error Setting up Auto-Negotiation\n");
  567. return ret_val;
  568. }
  569. mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
  570. break;
  571. case MEDIA_TYPE_100M_FULL:
  572. mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
  573. break;
  574. case MEDIA_TYPE_100M_HALF:
  575. mii_bmcr_data |= BMCR_SPEED100;
  576. break;
  577. case MEDIA_TYPE_10M_FULL:
  578. mii_bmcr_data |= BMCR_FULLDPLX;
  579. break;
  580. case MEDIA_TYPE_10M_HALF:
  581. break;
  582. default:
  583. if (netif_msg_link(adapter))
  584. dev_err(&pdev->dev, "Wrong Media type %d\n",
  585. hw->media_type);
  586. return -1;
  587. break;
  588. }
  589. ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
  590. if (ret_val)
  591. return ret_val;
  592. hw->phy_configured = true;
  593. return 0;
  594. }
  595. /*
  596. * Detects the current speed and duplex settings of the hardware.
  597. *
  598. * hw - Struct containing variables accessed by shared code
  599. * speed - Speed of the connection
  600. * duplex - Duplex setting of the connection
  601. */
  602. int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
  603. {
  604. int err;
  605. u16 phy_data;
  606. /* Read PHY Specific Status Register (17) */
  607. err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
  608. if (err)
  609. return err;
  610. if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
  611. return -1;
  612. switch (phy_data & GIGA_PSSR_SPEED) {
  613. case GIGA_PSSR_1000MBS:
  614. *speed = SPEED_1000;
  615. break;
  616. case GIGA_PSSR_100MBS:
  617. *speed = SPEED_100;
  618. break;
  619. case GIGA_PSSR_10MBS:
  620. *speed = SPEED_10;
  621. break;
  622. default:
  623. return -1;
  624. break;
  625. }
  626. if (phy_data & GIGA_PSSR_DPLX)
  627. *duplex = FULL_DUPLEX;
  628. else
  629. *duplex = HALF_DUPLEX;
  630. return 0;
  631. }
  632. int atl1c_phy_power_saving(struct atl1c_hw *hw)
  633. {
  634. struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
  635. struct pci_dev *pdev = adapter->pdev;
  636. int ret = 0;
  637. u16 autoneg_advertised = ADVERTISED_10baseT_Half;
  638. u16 save_autoneg_advertised;
  639. u16 phy_data;
  640. u16 mii_lpa_data;
  641. u16 speed = SPEED_0;
  642. u16 duplex = FULL_DUPLEX;
  643. int i;
  644. atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
  645. atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
  646. if (phy_data & BMSR_LSTATUS) {
  647. atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
  648. if (mii_lpa_data & LPA_10FULL)
  649. autoneg_advertised = ADVERTISED_10baseT_Full;
  650. else if (mii_lpa_data & LPA_10HALF)
  651. autoneg_advertised = ADVERTISED_10baseT_Half;
  652. else if (mii_lpa_data & LPA_100HALF)
  653. autoneg_advertised = ADVERTISED_100baseT_Half;
  654. else if (mii_lpa_data & LPA_100FULL)
  655. autoneg_advertised = ADVERTISED_100baseT_Full;
  656. save_autoneg_advertised = hw->autoneg_advertised;
  657. hw->phy_configured = false;
  658. hw->autoneg_advertised = autoneg_advertised;
  659. if (atl1c_restart_autoneg(hw) != 0) {
  660. dev_dbg(&pdev->dev, "phy autoneg failed\n");
  661. ret = -1;
  662. }
  663. hw->autoneg_advertised = save_autoneg_advertised;
  664. if (mii_lpa_data) {
  665. for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
  666. mdelay(100);
  667. atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
  668. atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
  669. if (phy_data & BMSR_LSTATUS) {
  670. if (atl1c_get_speed_and_duplex(hw, &speed,
  671. &duplex) != 0)
  672. dev_dbg(&pdev->dev,
  673. "get speed and duplex failed\n");
  674. break;
  675. }
  676. }
  677. }
  678. } else {
  679. speed = SPEED_10;
  680. duplex = HALF_DUPLEX;
  681. }
  682. adapter->link_speed = speed;
  683. adapter->link_duplex = duplex;
  684. return ret;
  685. }
  686. int atl1c_restart_autoneg(struct atl1c_hw *hw)
  687. {
  688. int err = 0;
  689. u16 mii_bmcr_data = BMCR_RESET;
  690. err = atl1c_phy_setup_adv(hw);
  691. if (err)
  692. return err;
  693. mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
  694. return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
  695. }