ste_dma40.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917
  1. /*
  2. * Copyright (C) ST-Ericsson SA 2007-2010
  3. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  4. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  5. * License terms: GNU General Public License (GPL) version 2
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <linux/err.h>
  14. #include <plat/ste_dma40.h>
  15. #include "ste_dma40_ll.h"
  16. #define D40_NAME "dma40"
  17. #define D40_PHY_CHAN -1
  18. /* For masking out/in 2 bit channel positions */
  19. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  20. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  21. /* Maximum iterations taken before giving up suspending a channel */
  22. #define D40_SUSPEND_MAX_IT 500
  23. /* Hardware requirement on LCLA alignment */
  24. #define LCLA_ALIGNMENT 0x40000
  25. /* Max number of links per event group */
  26. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  27. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  28. /* Attempts before giving up to trying to get pages that are aligned */
  29. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  30. /* Bit markings for allocation map */
  31. #define D40_ALLOC_FREE (1 << 31)
  32. #define D40_ALLOC_PHY (1 << 30)
  33. #define D40_ALLOC_LOG_FREE 0
  34. /* Hardware designer of the block */
  35. #define D40_HW_DESIGNER 0x8
  36. /**
  37. * enum 40_command - The different commands and/or statuses.
  38. *
  39. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  40. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  41. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  42. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  43. */
  44. enum d40_command {
  45. D40_DMA_STOP = 0,
  46. D40_DMA_RUN = 1,
  47. D40_DMA_SUSPEND_REQ = 2,
  48. D40_DMA_SUSPENDED = 3
  49. };
  50. /**
  51. * struct d40_lli_pool - Structure for keeping LLIs in memory
  52. *
  53. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  54. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  55. * pre_alloc_lli is used.
  56. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  57. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  58. * one buffer to one buffer.
  59. */
  60. struct d40_lli_pool {
  61. void *base;
  62. int size;
  63. /* Space for dst and src, plus an extra for padding */
  64. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  65. };
  66. /**
  67. * struct d40_desc - A descriptor is one DMA job.
  68. *
  69. * @lli_phy: LLI settings for physical channel. Both src and dst=
  70. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  71. * lli_len equals one.
  72. * @lli_log: Same as above but for logical channels.
  73. * @lli_pool: The pool with two entries pre-allocated.
  74. * @lli_len: Number of llis of current descriptor.
  75. * @lli_current: Number of transfered llis.
  76. * @lcla_alloc: Number of LCLA entries allocated.
  77. * @txd: DMA engine struct. Used for among other things for communication
  78. * during a transfer.
  79. * @node: List entry.
  80. * @is_in_client_list: true if the client owns this descriptor.
  81. * @is_hw_linked: true if this job will automatically be continued for
  82. * the previous one.
  83. *
  84. * This descriptor is used for both logical and physical transfers.
  85. */
  86. struct d40_desc {
  87. /* LLI physical */
  88. struct d40_phy_lli_bidir lli_phy;
  89. /* LLI logical */
  90. struct d40_log_lli_bidir lli_log;
  91. struct d40_lli_pool lli_pool;
  92. int lli_len;
  93. int lli_current;
  94. int lcla_alloc;
  95. struct dma_async_tx_descriptor txd;
  96. struct list_head node;
  97. bool is_in_client_list;
  98. bool is_hw_linked;
  99. };
  100. /**
  101. * struct d40_lcla_pool - LCLA pool settings and data.
  102. *
  103. * @base: The virtual address of LCLA. 18 bit aligned.
  104. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  105. * This pointer is only there for clean-up on error.
  106. * @pages: The number of pages needed for all physical channels.
  107. * Only used later for clean-up on error
  108. * @lock: Lock to protect the content in this struct.
  109. * @alloc_map: big map over which LCLA entry is own by which job.
  110. */
  111. struct d40_lcla_pool {
  112. void *base;
  113. void *base_unaligned;
  114. int pages;
  115. spinlock_t lock;
  116. struct d40_desc **alloc_map;
  117. };
  118. /**
  119. * struct d40_phy_res - struct for handling eventlines mapped to physical
  120. * channels.
  121. *
  122. * @lock: A lock protection this entity.
  123. * @num: The physical channel number of this entity.
  124. * @allocated_src: Bit mapped to show which src event line's are mapped to
  125. * this physical channel. Can also be free or physically allocated.
  126. * @allocated_dst: Same as for src but is dst.
  127. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  128. * event line number.
  129. */
  130. struct d40_phy_res {
  131. spinlock_t lock;
  132. int num;
  133. u32 allocated_src;
  134. u32 allocated_dst;
  135. };
  136. struct d40_base;
  137. /**
  138. * struct d40_chan - Struct that describes a channel.
  139. *
  140. * @lock: A spinlock to protect this struct.
  141. * @log_num: The logical number, if any of this channel.
  142. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  143. * current cookie.
  144. * @pending_tx: The number of pending transfers. Used between interrupt handler
  145. * and tasklet.
  146. * @busy: Set to true when transfer is ongoing on this channel.
  147. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  148. * point is NULL, then the channel is not allocated.
  149. * @chan: DMA engine handle.
  150. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  151. * transfer and call client callback.
  152. * @client: Cliented owned descriptor list.
  153. * @active: Active descriptor.
  154. * @queue: Queued jobs.
  155. * @dma_cfg: The client configuration of this dma channel.
  156. * @configured: whether the dma_cfg configuration is valid
  157. * @base: Pointer to the device instance struct.
  158. * @src_def_cfg: Default cfg register setting for src.
  159. * @dst_def_cfg: Default cfg register setting for dst.
  160. * @log_def: Default logical channel settings.
  161. * @lcla: Space for one dst src pair for logical channel transfers.
  162. * @lcpa: Pointer to dst and src lcpa settings.
  163. *
  164. * This struct can either "be" a logical or a physical channel.
  165. */
  166. struct d40_chan {
  167. spinlock_t lock;
  168. int log_num;
  169. /* ID of the most recent completed transfer */
  170. int completed;
  171. int pending_tx;
  172. bool busy;
  173. struct d40_phy_res *phy_chan;
  174. struct dma_chan chan;
  175. struct tasklet_struct tasklet;
  176. struct list_head client;
  177. struct list_head active;
  178. struct list_head queue;
  179. struct stedma40_chan_cfg dma_cfg;
  180. bool configured;
  181. struct d40_base *base;
  182. /* Default register configurations */
  183. u32 src_def_cfg;
  184. u32 dst_def_cfg;
  185. struct d40_def_lcsp log_def;
  186. struct d40_log_lli_full *lcpa;
  187. /* Runtime reconfiguration */
  188. dma_addr_t runtime_addr;
  189. enum dma_data_direction runtime_direction;
  190. };
  191. /**
  192. * struct d40_base - The big global struct, one for each probe'd instance.
  193. *
  194. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  195. * @execmd_lock: Lock for execute command usage since several channels share
  196. * the same physical register.
  197. * @dev: The device structure.
  198. * @virtbase: The virtual base address of the DMA's register.
  199. * @rev: silicon revision detected.
  200. * @clk: Pointer to the DMA clock structure.
  201. * @phy_start: Physical memory start of the DMA registers.
  202. * @phy_size: Size of the DMA register map.
  203. * @irq: The IRQ number.
  204. * @num_phy_chans: The number of physical channels. Read from HW. This
  205. * is the number of available channels for this driver, not counting "Secure
  206. * mode" allocated physical channels.
  207. * @num_log_chans: The number of logical channels. Calculated from
  208. * num_phy_chans.
  209. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  210. * @dma_slave: dma_device channels that can do only do slave transfers.
  211. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  212. * @log_chans: Room for all possible logical channels in system.
  213. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  214. * to log_chans entries.
  215. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  216. * to phy_chans entries.
  217. * @plat_data: Pointer to provided platform_data which is the driver
  218. * configuration.
  219. * @phy_res: Vector containing all physical channels.
  220. * @lcla_pool: lcla pool settings and data.
  221. * @lcpa_base: The virtual mapped address of LCPA.
  222. * @phy_lcpa: The physical address of the LCPA.
  223. * @lcpa_size: The size of the LCPA area.
  224. * @desc_slab: cache for descriptors.
  225. */
  226. struct d40_base {
  227. spinlock_t interrupt_lock;
  228. spinlock_t execmd_lock;
  229. struct device *dev;
  230. void __iomem *virtbase;
  231. u8 rev:4;
  232. struct clk *clk;
  233. phys_addr_t phy_start;
  234. resource_size_t phy_size;
  235. int irq;
  236. int num_phy_chans;
  237. int num_log_chans;
  238. struct dma_device dma_both;
  239. struct dma_device dma_slave;
  240. struct dma_device dma_memcpy;
  241. struct d40_chan *phy_chans;
  242. struct d40_chan *log_chans;
  243. struct d40_chan **lookup_log_chans;
  244. struct d40_chan **lookup_phy_chans;
  245. struct stedma40_platform_data *plat_data;
  246. /* Physical half channels */
  247. struct d40_phy_res *phy_res;
  248. struct d40_lcla_pool lcla_pool;
  249. void *lcpa_base;
  250. dma_addr_t phy_lcpa;
  251. resource_size_t lcpa_size;
  252. struct kmem_cache *desc_slab;
  253. };
  254. /**
  255. * struct d40_interrupt_lookup - lookup table for interrupt handler
  256. *
  257. * @src: Interrupt mask register.
  258. * @clr: Interrupt clear register.
  259. * @is_error: true if this is an error interrupt.
  260. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  261. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  262. */
  263. struct d40_interrupt_lookup {
  264. u32 src;
  265. u32 clr;
  266. bool is_error;
  267. int offset;
  268. };
  269. /**
  270. * struct d40_reg_val - simple lookup struct
  271. *
  272. * @reg: The register.
  273. * @val: The value that belongs to the register in reg.
  274. */
  275. struct d40_reg_val {
  276. unsigned int reg;
  277. unsigned int val;
  278. };
  279. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  280. int lli_len, bool is_log)
  281. {
  282. u32 align;
  283. void *base;
  284. if (is_log)
  285. align = sizeof(struct d40_log_lli);
  286. else
  287. align = sizeof(struct d40_phy_lli);
  288. if (lli_len == 1) {
  289. base = d40d->lli_pool.pre_alloc_lli;
  290. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  291. d40d->lli_pool.base = NULL;
  292. } else {
  293. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  294. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  295. d40d->lli_pool.base = base;
  296. if (d40d->lli_pool.base == NULL)
  297. return -ENOMEM;
  298. }
  299. if (is_log) {
  300. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  301. align);
  302. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  303. align);
  304. } else {
  305. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  306. align);
  307. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  308. align);
  309. }
  310. return 0;
  311. }
  312. static void d40_pool_lli_free(struct d40_desc *d40d)
  313. {
  314. kfree(d40d->lli_pool.base);
  315. d40d->lli_pool.base = NULL;
  316. d40d->lli_pool.size = 0;
  317. d40d->lli_log.src = NULL;
  318. d40d->lli_log.dst = NULL;
  319. d40d->lli_phy.src = NULL;
  320. d40d->lli_phy.dst = NULL;
  321. }
  322. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  323. struct d40_desc *d40d)
  324. {
  325. unsigned long flags;
  326. int i;
  327. int ret = -EINVAL;
  328. int p;
  329. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  330. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  331. /*
  332. * Allocate both src and dst at the same time, therefore the half
  333. * start on 1 since 0 can't be used since zero is used as end marker.
  334. */
  335. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  336. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  337. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  338. d40d->lcla_alloc++;
  339. ret = i;
  340. break;
  341. }
  342. }
  343. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  344. return ret;
  345. }
  346. static int d40_lcla_free_all(struct d40_chan *d40c,
  347. struct d40_desc *d40d)
  348. {
  349. unsigned long flags;
  350. int i;
  351. int ret = -EINVAL;
  352. if (d40c->log_num == D40_PHY_CHAN)
  353. return 0;
  354. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  355. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  356. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  357. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  358. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  359. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  360. d40d->lcla_alloc--;
  361. if (d40d->lcla_alloc == 0) {
  362. ret = 0;
  363. break;
  364. }
  365. }
  366. }
  367. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  368. return ret;
  369. }
  370. static void d40_desc_remove(struct d40_desc *d40d)
  371. {
  372. list_del(&d40d->node);
  373. }
  374. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  375. {
  376. struct d40_desc *desc = NULL;
  377. if (!list_empty(&d40c->client)) {
  378. struct d40_desc *d;
  379. struct d40_desc *_d;
  380. list_for_each_entry_safe(d, _d, &d40c->client, node)
  381. if (async_tx_test_ack(&d->txd)) {
  382. d40_pool_lli_free(d);
  383. d40_desc_remove(d);
  384. desc = d;
  385. memset(desc, 0, sizeof(*desc));
  386. break;
  387. }
  388. }
  389. if (!desc)
  390. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  391. if (desc)
  392. INIT_LIST_HEAD(&desc->node);
  393. return desc;
  394. }
  395. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  396. {
  397. d40_lcla_free_all(d40c, d40d);
  398. kmem_cache_free(d40c->base->desc_slab, d40d);
  399. }
  400. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  401. {
  402. list_add_tail(&desc->node, &d40c->active);
  403. }
  404. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  405. {
  406. int curr_lcla = -EINVAL, next_lcla;
  407. if (d40c->log_num == D40_PHY_CHAN) {
  408. d40_phy_lli_write(d40c->base->virtbase,
  409. d40c->phy_chan->num,
  410. d40d->lli_phy.dst,
  411. d40d->lli_phy.src);
  412. d40d->lli_current = d40d->lli_len;
  413. } else {
  414. if ((d40d->lli_len - d40d->lli_current) > 1)
  415. curr_lcla = d40_lcla_alloc_one(d40c, d40d);
  416. d40_log_lli_lcpa_write(d40c->lcpa,
  417. &d40d->lli_log.dst[d40d->lli_current],
  418. &d40d->lli_log.src[d40d->lli_current],
  419. curr_lcla);
  420. d40d->lli_current++;
  421. for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
  422. struct d40_log_lli *lcla;
  423. if (d40d->lli_current + 1 < d40d->lli_len)
  424. next_lcla = d40_lcla_alloc_one(d40c, d40d);
  425. else
  426. next_lcla = -EINVAL;
  427. lcla = d40c->base->lcla_pool.base +
  428. d40c->phy_chan->num * 1024 +
  429. 8 * curr_lcla * 2;
  430. d40_log_lli_lcla_write(lcla,
  431. &d40d->lli_log.dst[d40d->lli_current],
  432. &d40d->lli_log.src[d40d->lli_current],
  433. next_lcla);
  434. (void) dma_map_single(d40c->base->dev, lcla,
  435. 2 * sizeof(struct d40_log_lli),
  436. DMA_TO_DEVICE);
  437. curr_lcla = next_lcla;
  438. if (curr_lcla == -EINVAL) {
  439. d40d->lli_current++;
  440. break;
  441. }
  442. }
  443. }
  444. }
  445. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  446. {
  447. struct d40_desc *d;
  448. if (list_empty(&d40c->active))
  449. return NULL;
  450. d = list_first_entry(&d40c->active,
  451. struct d40_desc,
  452. node);
  453. return d;
  454. }
  455. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  456. {
  457. list_add_tail(&desc->node, &d40c->queue);
  458. }
  459. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  460. {
  461. struct d40_desc *d;
  462. if (list_empty(&d40c->queue))
  463. return NULL;
  464. d = list_first_entry(&d40c->queue,
  465. struct d40_desc,
  466. node);
  467. return d;
  468. }
  469. static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
  470. {
  471. struct d40_desc *d;
  472. if (list_empty(&d40c->queue))
  473. return NULL;
  474. list_for_each_entry(d, &d40c->queue, node)
  475. if (list_is_last(&d->node, &d40c->queue))
  476. break;
  477. return d;
  478. }
  479. /* Support functions for logical channels */
  480. static int d40_channel_execute_command(struct d40_chan *d40c,
  481. enum d40_command command)
  482. {
  483. u32 status;
  484. int i;
  485. void __iomem *active_reg;
  486. int ret = 0;
  487. unsigned long flags;
  488. u32 wmask;
  489. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  490. if (d40c->phy_chan->num % 2 == 0)
  491. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  492. else
  493. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  494. if (command == D40_DMA_SUSPEND_REQ) {
  495. status = (readl(active_reg) &
  496. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  497. D40_CHAN_POS(d40c->phy_chan->num);
  498. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  499. goto done;
  500. }
  501. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  502. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  503. active_reg);
  504. if (command == D40_DMA_SUSPEND_REQ) {
  505. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  506. status = (readl(active_reg) &
  507. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  508. D40_CHAN_POS(d40c->phy_chan->num);
  509. cpu_relax();
  510. /*
  511. * Reduce the number of bus accesses while
  512. * waiting for the DMA to suspend.
  513. */
  514. udelay(3);
  515. if (status == D40_DMA_STOP ||
  516. status == D40_DMA_SUSPENDED)
  517. break;
  518. }
  519. if (i == D40_SUSPEND_MAX_IT) {
  520. dev_err(&d40c->chan.dev->device,
  521. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  522. __func__, d40c->phy_chan->num, d40c->log_num,
  523. status);
  524. dump_stack();
  525. ret = -EBUSY;
  526. }
  527. }
  528. done:
  529. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  530. return ret;
  531. }
  532. static void d40_term_all(struct d40_chan *d40c)
  533. {
  534. struct d40_desc *d40d;
  535. /* Release active descriptors */
  536. while ((d40d = d40_first_active_get(d40c))) {
  537. d40_desc_remove(d40d);
  538. d40_desc_free(d40c, d40d);
  539. }
  540. /* Release queued descriptors waiting for transfer */
  541. while ((d40d = d40_first_queued(d40c))) {
  542. d40_desc_remove(d40d);
  543. d40_desc_free(d40c, d40d);
  544. }
  545. d40c->pending_tx = 0;
  546. d40c->busy = false;
  547. }
  548. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  549. {
  550. u32 val;
  551. unsigned long flags;
  552. /* Notice, that disable requires the physical channel to be stopped */
  553. if (do_enable)
  554. val = D40_ACTIVATE_EVENTLINE;
  555. else
  556. val = D40_DEACTIVATE_EVENTLINE;
  557. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  558. /* Enable event line connected to device (or memcpy) */
  559. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  560. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  561. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  562. writel((val << D40_EVENTLINE_POS(event)) |
  563. ~D40_EVENTLINE_MASK(event),
  564. d40c->base->virtbase + D40_DREG_PCBASE +
  565. d40c->phy_chan->num * D40_DREG_PCDELTA +
  566. D40_CHAN_REG_SSLNK);
  567. }
  568. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  569. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  570. writel((val << D40_EVENTLINE_POS(event)) |
  571. ~D40_EVENTLINE_MASK(event),
  572. d40c->base->virtbase + D40_DREG_PCBASE +
  573. d40c->phy_chan->num * D40_DREG_PCDELTA +
  574. D40_CHAN_REG_SDLNK);
  575. }
  576. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  577. }
  578. static u32 d40_chan_has_events(struct d40_chan *d40c)
  579. {
  580. u32 val;
  581. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  582. d40c->phy_chan->num * D40_DREG_PCDELTA +
  583. D40_CHAN_REG_SSLNK);
  584. val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
  585. d40c->phy_chan->num * D40_DREG_PCDELTA +
  586. D40_CHAN_REG_SDLNK);
  587. return val;
  588. }
  589. static void d40_config_write(struct d40_chan *d40c)
  590. {
  591. u32 addr_base;
  592. u32 var;
  593. /* Odd addresses are even addresses + 4 */
  594. addr_base = (d40c->phy_chan->num % 2) * 4;
  595. /* Setup channel mode to logical or physical */
  596. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  597. D40_CHAN_POS(d40c->phy_chan->num);
  598. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  599. /* Setup operational mode option register */
  600. var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
  601. 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
  602. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  603. if (d40c->log_num != D40_PHY_CHAN) {
  604. /* Set default config for CFG reg */
  605. writel(d40c->src_def_cfg,
  606. d40c->base->virtbase + D40_DREG_PCBASE +
  607. d40c->phy_chan->num * D40_DREG_PCDELTA +
  608. D40_CHAN_REG_SSCFG);
  609. writel(d40c->dst_def_cfg,
  610. d40c->base->virtbase + D40_DREG_PCBASE +
  611. d40c->phy_chan->num * D40_DREG_PCDELTA +
  612. D40_CHAN_REG_SDCFG);
  613. /* Set LIDX for lcla */
  614. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  615. D40_SREG_ELEM_LOG_LIDX_MASK,
  616. d40c->base->virtbase + D40_DREG_PCBASE +
  617. d40c->phy_chan->num * D40_DREG_PCDELTA +
  618. D40_CHAN_REG_SDELT);
  619. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  620. D40_SREG_ELEM_LOG_LIDX_MASK,
  621. d40c->base->virtbase + D40_DREG_PCBASE +
  622. d40c->phy_chan->num * D40_DREG_PCDELTA +
  623. D40_CHAN_REG_SSELT);
  624. }
  625. }
  626. static u32 d40_residue(struct d40_chan *d40c)
  627. {
  628. u32 num_elt;
  629. if (d40c->log_num != D40_PHY_CHAN)
  630. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  631. >> D40_MEM_LCSP2_ECNT_POS;
  632. else
  633. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  634. d40c->phy_chan->num * D40_DREG_PCDELTA +
  635. D40_CHAN_REG_SDELT) &
  636. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  637. D40_SREG_ELEM_PHY_ECNT_POS;
  638. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  639. }
  640. static bool d40_tx_is_linked(struct d40_chan *d40c)
  641. {
  642. bool is_link;
  643. if (d40c->log_num != D40_PHY_CHAN)
  644. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  645. else
  646. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  647. d40c->phy_chan->num * D40_DREG_PCDELTA +
  648. D40_CHAN_REG_SDLNK) &
  649. D40_SREG_LNK_PHYS_LNK_MASK;
  650. return is_link;
  651. }
  652. static int d40_pause(struct dma_chan *chan)
  653. {
  654. struct d40_chan *d40c =
  655. container_of(chan, struct d40_chan, chan);
  656. int res = 0;
  657. unsigned long flags;
  658. if (!d40c->busy)
  659. return 0;
  660. spin_lock_irqsave(&d40c->lock, flags);
  661. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  662. if (res == 0) {
  663. if (d40c->log_num != D40_PHY_CHAN) {
  664. d40_config_set_event(d40c, false);
  665. /* Resume the other logical channels if any */
  666. if (d40_chan_has_events(d40c))
  667. res = d40_channel_execute_command(d40c,
  668. D40_DMA_RUN);
  669. }
  670. }
  671. spin_unlock_irqrestore(&d40c->lock, flags);
  672. return res;
  673. }
  674. static int d40_resume(struct dma_chan *chan)
  675. {
  676. struct d40_chan *d40c =
  677. container_of(chan, struct d40_chan, chan);
  678. int res = 0;
  679. unsigned long flags;
  680. if (!d40c->busy)
  681. return 0;
  682. spin_lock_irqsave(&d40c->lock, flags);
  683. if (d40c->base->rev == 0)
  684. if (d40c->log_num != D40_PHY_CHAN) {
  685. res = d40_channel_execute_command(d40c,
  686. D40_DMA_SUSPEND_REQ);
  687. goto no_suspend;
  688. }
  689. /* If bytes left to transfer or linked tx resume job */
  690. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  691. if (d40c->log_num != D40_PHY_CHAN)
  692. d40_config_set_event(d40c, true);
  693. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  694. }
  695. no_suspend:
  696. spin_unlock_irqrestore(&d40c->lock, flags);
  697. return res;
  698. }
  699. static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
  700. {
  701. /* TODO: Write */
  702. }
  703. static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
  704. {
  705. struct d40_desc *d40d_prev = NULL;
  706. int i;
  707. u32 val;
  708. if (!list_empty(&d40c->queue))
  709. d40d_prev = d40_last_queued(d40c);
  710. else if (!list_empty(&d40c->active))
  711. d40d_prev = d40_first_active_get(d40c);
  712. if (!d40d_prev)
  713. return;
  714. /* Here we try to join this job with previous jobs */
  715. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  716. d40c->phy_chan->num * D40_DREG_PCDELTA +
  717. D40_CHAN_REG_SSLNK);
  718. /* Figure out which link we're currently transmitting */
  719. for (i = 0; i < d40d_prev->lli_len; i++)
  720. if (val == d40d_prev->lli_phy.src[i].reg_lnk)
  721. break;
  722. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  723. d40c->phy_chan->num * D40_DREG_PCDELTA +
  724. D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
  725. if (i == (d40d_prev->lli_len - 1) && val > 0) {
  726. /* Change the current one */
  727. writel(virt_to_phys(d40d->lli_phy.src),
  728. d40c->base->virtbase + D40_DREG_PCBASE +
  729. d40c->phy_chan->num * D40_DREG_PCDELTA +
  730. D40_CHAN_REG_SSLNK);
  731. writel(virt_to_phys(d40d->lli_phy.dst),
  732. d40c->base->virtbase + D40_DREG_PCBASE +
  733. d40c->phy_chan->num * D40_DREG_PCDELTA +
  734. D40_CHAN_REG_SDLNK);
  735. d40d->is_hw_linked = true;
  736. } else if (i < d40d_prev->lli_len) {
  737. (void) dma_unmap_single(d40c->base->dev,
  738. virt_to_phys(d40d_prev->lli_phy.src),
  739. d40d_prev->lli_pool.size,
  740. DMA_TO_DEVICE);
  741. /* Keep the settings */
  742. val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
  743. ~D40_SREG_LNK_PHYS_LNK_MASK;
  744. d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
  745. val | virt_to_phys(d40d->lli_phy.src);
  746. val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
  747. ~D40_SREG_LNK_PHYS_LNK_MASK;
  748. d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
  749. val | virt_to_phys(d40d->lli_phy.dst);
  750. (void) dma_map_single(d40c->base->dev,
  751. d40d_prev->lli_phy.src,
  752. d40d_prev->lli_pool.size,
  753. DMA_TO_DEVICE);
  754. d40d->is_hw_linked = true;
  755. }
  756. }
  757. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  758. {
  759. struct d40_chan *d40c = container_of(tx->chan,
  760. struct d40_chan,
  761. chan);
  762. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  763. unsigned long flags;
  764. (void) d40_pause(&d40c->chan);
  765. spin_lock_irqsave(&d40c->lock, flags);
  766. d40c->chan.cookie++;
  767. if (d40c->chan.cookie < 0)
  768. d40c->chan.cookie = 1;
  769. d40d->txd.cookie = d40c->chan.cookie;
  770. if (d40c->log_num == D40_PHY_CHAN)
  771. d40_tx_submit_phy(d40c, d40d);
  772. else
  773. d40_tx_submit_log(d40c, d40d);
  774. d40_desc_queue(d40c, d40d);
  775. spin_unlock_irqrestore(&d40c->lock, flags);
  776. (void) d40_resume(&d40c->chan);
  777. return tx->cookie;
  778. }
  779. static int d40_start(struct d40_chan *d40c)
  780. {
  781. if (d40c->base->rev == 0) {
  782. int err;
  783. if (d40c->log_num != D40_PHY_CHAN) {
  784. err = d40_channel_execute_command(d40c,
  785. D40_DMA_SUSPEND_REQ);
  786. if (err)
  787. return err;
  788. }
  789. }
  790. if (d40c->log_num != D40_PHY_CHAN)
  791. d40_config_set_event(d40c, true);
  792. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  793. }
  794. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  795. {
  796. struct d40_desc *d40d;
  797. int err;
  798. /* Start queued jobs, if any */
  799. d40d = d40_first_queued(d40c);
  800. if (d40d != NULL) {
  801. d40c->busy = true;
  802. /* Remove from queue */
  803. d40_desc_remove(d40d);
  804. /* Add to active queue */
  805. d40_desc_submit(d40c, d40d);
  806. /*
  807. * If this job is already linked in hw,
  808. * do not submit it.
  809. */
  810. if (!d40d->is_hw_linked) {
  811. /* Initiate DMA job */
  812. d40_desc_load(d40c, d40d);
  813. /* Start dma job */
  814. err = d40_start(d40c);
  815. if (err)
  816. return NULL;
  817. }
  818. }
  819. return d40d;
  820. }
  821. /* called from interrupt context */
  822. static void dma_tc_handle(struct d40_chan *d40c)
  823. {
  824. struct d40_desc *d40d;
  825. /* Get first active entry from list */
  826. d40d = d40_first_active_get(d40c);
  827. if (d40d == NULL)
  828. return;
  829. d40_lcla_free_all(d40c, d40d);
  830. if (d40d->lli_current < d40d->lli_len) {
  831. d40_desc_load(d40c, d40d);
  832. /* Start dma job */
  833. (void) d40_start(d40c);
  834. return;
  835. }
  836. if (d40_queue_start(d40c) == NULL)
  837. d40c->busy = false;
  838. d40c->pending_tx++;
  839. tasklet_schedule(&d40c->tasklet);
  840. }
  841. static void dma_tasklet(unsigned long data)
  842. {
  843. struct d40_chan *d40c = (struct d40_chan *) data;
  844. struct d40_desc *d40d;
  845. unsigned long flags;
  846. dma_async_tx_callback callback;
  847. void *callback_param;
  848. spin_lock_irqsave(&d40c->lock, flags);
  849. /* Get first active entry from list */
  850. d40d = d40_first_active_get(d40c);
  851. if (d40d == NULL)
  852. goto err;
  853. d40c->completed = d40d->txd.cookie;
  854. /*
  855. * If terminating a channel pending_tx is set to zero.
  856. * This prevents any finished active jobs to return to the client.
  857. */
  858. if (d40c->pending_tx == 0) {
  859. spin_unlock_irqrestore(&d40c->lock, flags);
  860. return;
  861. }
  862. /* Callback to client */
  863. callback = d40d->txd.callback;
  864. callback_param = d40d->txd.callback_param;
  865. if (async_tx_test_ack(&d40d->txd)) {
  866. d40_pool_lli_free(d40d);
  867. d40_desc_remove(d40d);
  868. d40_desc_free(d40c, d40d);
  869. } else {
  870. if (!d40d->is_in_client_list) {
  871. d40_desc_remove(d40d);
  872. d40_lcla_free_all(d40c, d40d);
  873. list_add_tail(&d40d->node, &d40c->client);
  874. d40d->is_in_client_list = true;
  875. }
  876. }
  877. d40c->pending_tx--;
  878. if (d40c->pending_tx)
  879. tasklet_schedule(&d40c->tasklet);
  880. spin_unlock_irqrestore(&d40c->lock, flags);
  881. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  882. callback(callback_param);
  883. return;
  884. err:
  885. /* Rescue manouver if receiving double interrupts */
  886. if (d40c->pending_tx > 0)
  887. d40c->pending_tx--;
  888. spin_unlock_irqrestore(&d40c->lock, flags);
  889. }
  890. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  891. {
  892. static const struct d40_interrupt_lookup il[] = {
  893. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  894. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  895. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  896. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  897. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  898. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  899. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  900. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  901. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  902. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  903. };
  904. int i;
  905. u32 regs[ARRAY_SIZE(il)];
  906. u32 idx;
  907. u32 row;
  908. long chan = -1;
  909. struct d40_chan *d40c;
  910. unsigned long flags;
  911. struct d40_base *base = data;
  912. spin_lock_irqsave(&base->interrupt_lock, flags);
  913. /* Read interrupt status of both logical and physical channels */
  914. for (i = 0; i < ARRAY_SIZE(il); i++)
  915. regs[i] = readl(base->virtbase + il[i].src);
  916. for (;;) {
  917. chan = find_next_bit((unsigned long *)regs,
  918. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  919. /* No more set bits found? */
  920. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  921. break;
  922. row = chan / BITS_PER_LONG;
  923. idx = chan & (BITS_PER_LONG - 1);
  924. /* ACK interrupt */
  925. writel(1 << idx, base->virtbase + il[row].clr);
  926. if (il[row].offset == D40_PHY_CHAN)
  927. d40c = base->lookup_phy_chans[idx];
  928. else
  929. d40c = base->lookup_log_chans[il[row].offset + idx];
  930. spin_lock(&d40c->lock);
  931. if (!il[row].is_error)
  932. dma_tc_handle(d40c);
  933. else
  934. dev_err(base->dev,
  935. "[%s] IRQ chan: %ld offset %d idx %d\n",
  936. __func__, chan, il[row].offset, idx);
  937. spin_unlock(&d40c->lock);
  938. }
  939. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  940. return IRQ_HANDLED;
  941. }
  942. static int d40_validate_conf(struct d40_chan *d40c,
  943. struct stedma40_chan_cfg *conf)
  944. {
  945. int res = 0;
  946. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  947. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  948. bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
  949. == STEDMA40_CHANNEL_IN_LOG_MODE;
  950. if (!conf->dir) {
  951. dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
  952. __func__);
  953. res = -EINVAL;
  954. }
  955. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  956. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  957. d40c->runtime_addr == 0) {
  958. dev_err(&d40c->chan.dev->device,
  959. "[%s] Invalid TX channel address (%d)\n",
  960. __func__, conf->dst_dev_type);
  961. res = -EINVAL;
  962. }
  963. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  964. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  965. d40c->runtime_addr == 0) {
  966. dev_err(&d40c->chan.dev->device,
  967. "[%s] Invalid RX channel address (%d)\n",
  968. __func__, conf->src_dev_type);
  969. res = -EINVAL;
  970. }
  971. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  972. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  973. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  974. __func__);
  975. res = -EINVAL;
  976. }
  977. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  978. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  979. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  980. __func__);
  981. res = -EINVAL;
  982. }
  983. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  984. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  985. dev_err(&d40c->chan.dev->device,
  986. "[%s] No event line\n", __func__);
  987. res = -EINVAL;
  988. }
  989. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  990. (src_event_group != dst_event_group)) {
  991. dev_err(&d40c->chan.dev->device,
  992. "[%s] Invalid event group\n", __func__);
  993. res = -EINVAL;
  994. }
  995. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  996. /*
  997. * DMAC HW supports it. Will be added to this driver,
  998. * in case any dma client requires it.
  999. */
  1000. dev_err(&d40c->chan.dev->device,
  1001. "[%s] periph to periph not supported\n",
  1002. __func__);
  1003. res = -EINVAL;
  1004. }
  1005. return res;
  1006. }
  1007. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1008. int log_event_line, bool is_log)
  1009. {
  1010. unsigned long flags;
  1011. spin_lock_irqsave(&phy->lock, flags);
  1012. if (!is_log) {
  1013. /* Physical interrupts are masked per physical full channel */
  1014. if (phy->allocated_src == D40_ALLOC_FREE &&
  1015. phy->allocated_dst == D40_ALLOC_FREE) {
  1016. phy->allocated_dst = D40_ALLOC_PHY;
  1017. phy->allocated_src = D40_ALLOC_PHY;
  1018. goto found;
  1019. } else
  1020. goto not_found;
  1021. }
  1022. /* Logical channel */
  1023. if (is_src) {
  1024. if (phy->allocated_src == D40_ALLOC_PHY)
  1025. goto not_found;
  1026. if (phy->allocated_src == D40_ALLOC_FREE)
  1027. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1028. if (!(phy->allocated_src & (1 << log_event_line))) {
  1029. phy->allocated_src |= 1 << log_event_line;
  1030. goto found;
  1031. } else
  1032. goto not_found;
  1033. } else {
  1034. if (phy->allocated_dst == D40_ALLOC_PHY)
  1035. goto not_found;
  1036. if (phy->allocated_dst == D40_ALLOC_FREE)
  1037. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1038. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1039. phy->allocated_dst |= 1 << log_event_line;
  1040. goto found;
  1041. } else
  1042. goto not_found;
  1043. }
  1044. not_found:
  1045. spin_unlock_irqrestore(&phy->lock, flags);
  1046. return false;
  1047. found:
  1048. spin_unlock_irqrestore(&phy->lock, flags);
  1049. return true;
  1050. }
  1051. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1052. int log_event_line)
  1053. {
  1054. unsigned long flags;
  1055. bool is_free = false;
  1056. spin_lock_irqsave(&phy->lock, flags);
  1057. if (!log_event_line) {
  1058. phy->allocated_dst = D40_ALLOC_FREE;
  1059. phy->allocated_src = D40_ALLOC_FREE;
  1060. is_free = true;
  1061. goto out;
  1062. }
  1063. /* Logical channel */
  1064. if (is_src) {
  1065. phy->allocated_src &= ~(1 << log_event_line);
  1066. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1067. phy->allocated_src = D40_ALLOC_FREE;
  1068. } else {
  1069. phy->allocated_dst &= ~(1 << log_event_line);
  1070. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1071. phy->allocated_dst = D40_ALLOC_FREE;
  1072. }
  1073. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1074. D40_ALLOC_FREE);
  1075. out:
  1076. spin_unlock_irqrestore(&phy->lock, flags);
  1077. return is_free;
  1078. }
  1079. static int d40_allocate_channel(struct d40_chan *d40c)
  1080. {
  1081. int dev_type;
  1082. int event_group;
  1083. int event_line;
  1084. struct d40_phy_res *phys;
  1085. int i;
  1086. int j;
  1087. int log_num;
  1088. bool is_src;
  1089. bool is_log = (d40c->dma_cfg.channel_type &
  1090. STEDMA40_CHANNEL_IN_OPER_MODE)
  1091. == STEDMA40_CHANNEL_IN_LOG_MODE;
  1092. phys = d40c->base->phy_res;
  1093. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1094. dev_type = d40c->dma_cfg.src_dev_type;
  1095. log_num = 2 * dev_type;
  1096. is_src = true;
  1097. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1098. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1099. /* dst event lines are used for logical memcpy */
  1100. dev_type = d40c->dma_cfg.dst_dev_type;
  1101. log_num = 2 * dev_type + 1;
  1102. is_src = false;
  1103. } else
  1104. return -EINVAL;
  1105. event_group = D40_TYPE_TO_GROUP(dev_type);
  1106. event_line = D40_TYPE_TO_EVENT(dev_type);
  1107. if (!is_log) {
  1108. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1109. /* Find physical half channel */
  1110. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1111. if (d40_alloc_mask_set(&phys[i], is_src,
  1112. 0, is_log))
  1113. goto found_phy;
  1114. }
  1115. } else
  1116. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1117. int phy_num = j + event_group * 2;
  1118. for (i = phy_num; i < phy_num + 2; i++) {
  1119. if (d40_alloc_mask_set(&phys[i],
  1120. is_src,
  1121. 0,
  1122. is_log))
  1123. goto found_phy;
  1124. }
  1125. }
  1126. return -EINVAL;
  1127. found_phy:
  1128. d40c->phy_chan = &phys[i];
  1129. d40c->log_num = D40_PHY_CHAN;
  1130. goto out;
  1131. }
  1132. if (dev_type == -1)
  1133. return -EINVAL;
  1134. /* Find logical channel */
  1135. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1136. int phy_num = j + event_group * 2;
  1137. /*
  1138. * Spread logical channels across all available physical rather
  1139. * than pack every logical channel at the first available phy
  1140. * channels.
  1141. */
  1142. if (is_src) {
  1143. for (i = phy_num; i < phy_num + 2; i++) {
  1144. if (d40_alloc_mask_set(&phys[i], is_src,
  1145. event_line, is_log))
  1146. goto found_log;
  1147. }
  1148. } else {
  1149. for (i = phy_num + 1; i >= phy_num; i--) {
  1150. if (d40_alloc_mask_set(&phys[i], is_src,
  1151. event_line, is_log))
  1152. goto found_log;
  1153. }
  1154. }
  1155. }
  1156. return -EINVAL;
  1157. found_log:
  1158. d40c->phy_chan = &phys[i];
  1159. d40c->log_num = log_num;
  1160. out:
  1161. if (is_log)
  1162. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1163. else
  1164. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1165. return 0;
  1166. }
  1167. static int d40_config_memcpy(struct d40_chan *d40c)
  1168. {
  1169. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1170. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1171. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1172. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1173. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1174. memcpy[d40c->chan.chan_id];
  1175. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1176. dma_has_cap(DMA_SLAVE, cap)) {
  1177. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1178. } else {
  1179. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1180. __func__);
  1181. return -EINVAL;
  1182. }
  1183. return 0;
  1184. }
  1185. static int d40_free_dma(struct d40_chan *d40c)
  1186. {
  1187. int res = 0;
  1188. u32 event;
  1189. struct d40_phy_res *phy = d40c->phy_chan;
  1190. bool is_src;
  1191. struct d40_desc *d;
  1192. struct d40_desc *_d;
  1193. /* Terminate all queued and active transfers */
  1194. d40_term_all(d40c);
  1195. /* Release client owned descriptors */
  1196. if (!list_empty(&d40c->client))
  1197. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1198. d40_pool_lli_free(d);
  1199. d40_desc_remove(d);
  1200. d40_desc_free(d40c, d);
  1201. }
  1202. if (phy == NULL) {
  1203. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1204. __func__);
  1205. return -EINVAL;
  1206. }
  1207. if (phy->allocated_src == D40_ALLOC_FREE &&
  1208. phy->allocated_dst == D40_ALLOC_FREE) {
  1209. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1210. __func__);
  1211. return -EINVAL;
  1212. }
  1213. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1214. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1215. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1216. is_src = false;
  1217. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1218. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1219. is_src = true;
  1220. } else {
  1221. dev_err(&d40c->chan.dev->device,
  1222. "[%s] Unknown direction\n", __func__);
  1223. return -EINVAL;
  1224. }
  1225. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1226. if (res) {
  1227. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1228. __func__);
  1229. return res;
  1230. }
  1231. if (d40c->log_num != D40_PHY_CHAN) {
  1232. /* Release logical channel, deactivate the event line */
  1233. d40_config_set_event(d40c, false);
  1234. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1235. /*
  1236. * Check if there are more logical allocation
  1237. * on this phy channel.
  1238. */
  1239. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1240. /* Resume the other logical channels if any */
  1241. if (d40_chan_has_events(d40c)) {
  1242. res = d40_channel_execute_command(d40c,
  1243. D40_DMA_RUN);
  1244. if (res) {
  1245. dev_err(&d40c->chan.dev->device,
  1246. "[%s] Executing RUN command\n",
  1247. __func__);
  1248. return res;
  1249. }
  1250. }
  1251. return 0;
  1252. }
  1253. } else {
  1254. (void) d40_alloc_mask_free(phy, is_src, 0);
  1255. }
  1256. /* Release physical channel */
  1257. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1258. if (res) {
  1259. dev_err(&d40c->chan.dev->device,
  1260. "[%s] Failed to stop channel\n", __func__);
  1261. return res;
  1262. }
  1263. d40c->phy_chan = NULL;
  1264. d40c->configured = false;
  1265. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1266. return 0;
  1267. }
  1268. static bool d40_is_paused(struct d40_chan *d40c)
  1269. {
  1270. bool is_paused = false;
  1271. unsigned long flags;
  1272. void __iomem *active_reg;
  1273. u32 status;
  1274. u32 event;
  1275. spin_lock_irqsave(&d40c->lock, flags);
  1276. if (d40c->log_num == D40_PHY_CHAN) {
  1277. if (d40c->phy_chan->num % 2 == 0)
  1278. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1279. else
  1280. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1281. status = (readl(active_reg) &
  1282. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1283. D40_CHAN_POS(d40c->phy_chan->num);
  1284. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1285. is_paused = true;
  1286. goto _exit;
  1287. }
  1288. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1289. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1290. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1291. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1292. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1293. D40_CHAN_REG_SDLNK);
  1294. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1295. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1296. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1297. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1298. D40_CHAN_REG_SSLNK);
  1299. } else {
  1300. dev_err(&d40c->chan.dev->device,
  1301. "[%s] Unknown direction\n", __func__);
  1302. goto _exit;
  1303. }
  1304. status = (status & D40_EVENTLINE_MASK(event)) >>
  1305. D40_EVENTLINE_POS(event);
  1306. if (status != D40_DMA_RUN)
  1307. is_paused = true;
  1308. _exit:
  1309. spin_unlock_irqrestore(&d40c->lock, flags);
  1310. return is_paused;
  1311. }
  1312. static u32 stedma40_residue(struct dma_chan *chan)
  1313. {
  1314. struct d40_chan *d40c =
  1315. container_of(chan, struct d40_chan, chan);
  1316. u32 bytes_left;
  1317. unsigned long flags;
  1318. spin_lock_irqsave(&d40c->lock, flags);
  1319. bytes_left = d40_residue(d40c);
  1320. spin_unlock_irqrestore(&d40c->lock, flags);
  1321. return bytes_left;
  1322. }
  1323. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1324. struct scatterlist *sgl_dst,
  1325. struct scatterlist *sgl_src,
  1326. unsigned int sgl_len,
  1327. unsigned long dma_flags)
  1328. {
  1329. int res;
  1330. struct d40_desc *d40d;
  1331. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1332. chan);
  1333. unsigned long flags;
  1334. if (d40c->phy_chan == NULL) {
  1335. dev_err(&d40c->chan.dev->device,
  1336. "[%s] Unallocated channel.\n", __func__);
  1337. return ERR_PTR(-EINVAL);
  1338. }
  1339. spin_lock_irqsave(&d40c->lock, flags);
  1340. d40d = d40_desc_get(d40c);
  1341. if (d40d == NULL)
  1342. goto err;
  1343. d40d->lli_len = sgl_len;
  1344. d40d->lli_current = 0;
  1345. d40d->txd.flags = dma_flags;
  1346. if (d40c->log_num != D40_PHY_CHAN) {
  1347. if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
  1348. dev_err(&d40c->chan.dev->device,
  1349. "[%s] Out of memory\n", __func__);
  1350. goto err;
  1351. }
  1352. (void) d40_log_sg_to_lli(sgl_src,
  1353. sgl_len,
  1354. d40d->lli_log.src,
  1355. d40c->log_def.lcsp1,
  1356. d40c->dma_cfg.src_info.data_width);
  1357. (void) d40_log_sg_to_lli(sgl_dst,
  1358. sgl_len,
  1359. d40d->lli_log.dst,
  1360. d40c->log_def.lcsp3,
  1361. d40c->dma_cfg.dst_info.data_width);
  1362. } else {
  1363. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1364. dev_err(&d40c->chan.dev->device,
  1365. "[%s] Out of memory\n", __func__);
  1366. goto err;
  1367. }
  1368. res = d40_phy_sg_to_lli(sgl_src,
  1369. sgl_len,
  1370. 0,
  1371. d40d->lli_phy.src,
  1372. virt_to_phys(d40d->lli_phy.src),
  1373. d40c->src_def_cfg,
  1374. d40c->dma_cfg.src_info.data_width,
  1375. d40c->dma_cfg.src_info.psize);
  1376. if (res < 0)
  1377. goto err;
  1378. res = d40_phy_sg_to_lli(sgl_dst,
  1379. sgl_len,
  1380. 0,
  1381. d40d->lli_phy.dst,
  1382. virt_to_phys(d40d->lli_phy.dst),
  1383. d40c->dst_def_cfg,
  1384. d40c->dma_cfg.dst_info.data_width,
  1385. d40c->dma_cfg.dst_info.psize);
  1386. if (res < 0)
  1387. goto err;
  1388. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1389. d40d->lli_pool.size, DMA_TO_DEVICE);
  1390. }
  1391. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1392. d40d->txd.tx_submit = d40_tx_submit;
  1393. spin_unlock_irqrestore(&d40c->lock, flags);
  1394. return &d40d->txd;
  1395. err:
  1396. if (d40d)
  1397. d40_desc_free(d40c, d40d);
  1398. spin_unlock_irqrestore(&d40c->lock, flags);
  1399. return NULL;
  1400. }
  1401. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1402. bool stedma40_filter(struct dma_chan *chan, void *data)
  1403. {
  1404. struct stedma40_chan_cfg *info = data;
  1405. struct d40_chan *d40c =
  1406. container_of(chan, struct d40_chan, chan);
  1407. int err;
  1408. if (data) {
  1409. err = d40_validate_conf(d40c, info);
  1410. if (!err)
  1411. d40c->dma_cfg = *info;
  1412. } else
  1413. err = d40_config_memcpy(d40c);
  1414. if (!err)
  1415. d40c->configured = true;
  1416. return err == 0;
  1417. }
  1418. EXPORT_SYMBOL(stedma40_filter);
  1419. /* DMA ENGINE functions */
  1420. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1421. {
  1422. int err;
  1423. unsigned long flags;
  1424. struct d40_chan *d40c =
  1425. container_of(chan, struct d40_chan, chan);
  1426. bool is_free_phy;
  1427. spin_lock_irqsave(&d40c->lock, flags);
  1428. d40c->completed = chan->cookie = 1;
  1429. /* If no dma configuration is set use default configuration (memcpy) */
  1430. if (!d40c->configured) {
  1431. err = d40_config_memcpy(d40c);
  1432. if (err) {
  1433. dev_err(&d40c->chan.dev->device,
  1434. "[%s] Failed to configure memcpy channel\n",
  1435. __func__);
  1436. goto fail;
  1437. }
  1438. }
  1439. is_free_phy = (d40c->phy_chan == NULL);
  1440. err = d40_allocate_channel(d40c);
  1441. if (err) {
  1442. dev_err(&d40c->chan.dev->device,
  1443. "[%s] Failed to allocate channel\n", __func__);
  1444. goto fail;
  1445. }
  1446. /* Fill in basic CFG register values */
  1447. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1448. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1449. if (d40c->log_num != D40_PHY_CHAN) {
  1450. d40_log_cfg(&d40c->dma_cfg,
  1451. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1452. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1453. d40c->lcpa = d40c->base->lcpa_base +
  1454. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1455. else
  1456. d40c->lcpa = d40c->base->lcpa_base +
  1457. d40c->dma_cfg.dst_dev_type *
  1458. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1459. }
  1460. /*
  1461. * Only write channel configuration to the DMA if the physical
  1462. * resource is free. In case of multiple logical channels
  1463. * on the same physical resource, only the first write is necessary.
  1464. */
  1465. if (is_free_phy)
  1466. d40_config_write(d40c);
  1467. fail:
  1468. spin_unlock_irqrestore(&d40c->lock, flags);
  1469. return err;
  1470. }
  1471. static void d40_free_chan_resources(struct dma_chan *chan)
  1472. {
  1473. struct d40_chan *d40c =
  1474. container_of(chan, struct d40_chan, chan);
  1475. int err;
  1476. unsigned long flags;
  1477. if (d40c->phy_chan == NULL) {
  1478. dev_err(&d40c->chan.dev->device,
  1479. "[%s] Cannot free unallocated channel\n", __func__);
  1480. return;
  1481. }
  1482. spin_lock_irqsave(&d40c->lock, flags);
  1483. err = d40_free_dma(d40c);
  1484. if (err)
  1485. dev_err(&d40c->chan.dev->device,
  1486. "[%s] Failed to free channel\n", __func__);
  1487. spin_unlock_irqrestore(&d40c->lock, flags);
  1488. }
  1489. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1490. dma_addr_t dst,
  1491. dma_addr_t src,
  1492. size_t size,
  1493. unsigned long dma_flags)
  1494. {
  1495. struct d40_desc *d40d;
  1496. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1497. chan);
  1498. unsigned long flags;
  1499. int err = 0;
  1500. if (d40c->phy_chan == NULL) {
  1501. dev_err(&d40c->chan.dev->device,
  1502. "[%s] Channel is not allocated.\n", __func__);
  1503. return ERR_PTR(-EINVAL);
  1504. }
  1505. spin_lock_irqsave(&d40c->lock, flags);
  1506. d40d = d40_desc_get(d40c);
  1507. if (d40d == NULL) {
  1508. dev_err(&d40c->chan.dev->device,
  1509. "[%s] Descriptor is NULL\n", __func__);
  1510. goto err;
  1511. }
  1512. d40d->txd.flags = dma_flags;
  1513. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1514. d40d->txd.tx_submit = d40_tx_submit;
  1515. if (d40c->log_num != D40_PHY_CHAN) {
  1516. if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
  1517. dev_err(&d40c->chan.dev->device,
  1518. "[%s] Out of memory\n", __func__);
  1519. goto err;
  1520. }
  1521. d40d->lli_len = 1;
  1522. d40d->lli_current = 0;
  1523. d40_log_fill_lli(d40d->lli_log.src,
  1524. src,
  1525. size,
  1526. d40c->log_def.lcsp1,
  1527. d40c->dma_cfg.src_info.data_width,
  1528. true);
  1529. d40_log_fill_lli(d40d->lli_log.dst,
  1530. dst,
  1531. size,
  1532. d40c->log_def.lcsp3,
  1533. d40c->dma_cfg.dst_info.data_width,
  1534. true);
  1535. } else {
  1536. if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
  1537. dev_err(&d40c->chan.dev->device,
  1538. "[%s] Out of memory\n", __func__);
  1539. goto err;
  1540. }
  1541. err = d40_phy_fill_lli(d40d->lli_phy.src,
  1542. src,
  1543. size,
  1544. d40c->dma_cfg.src_info.psize,
  1545. 0,
  1546. d40c->src_def_cfg,
  1547. true,
  1548. d40c->dma_cfg.src_info.data_width,
  1549. false);
  1550. if (err)
  1551. goto err_fill_lli;
  1552. err = d40_phy_fill_lli(d40d->lli_phy.dst,
  1553. dst,
  1554. size,
  1555. d40c->dma_cfg.dst_info.psize,
  1556. 0,
  1557. d40c->dst_def_cfg,
  1558. true,
  1559. d40c->dma_cfg.dst_info.data_width,
  1560. false);
  1561. if (err)
  1562. goto err_fill_lli;
  1563. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1564. d40d->lli_pool.size, DMA_TO_DEVICE);
  1565. }
  1566. spin_unlock_irqrestore(&d40c->lock, flags);
  1567. return &d40d->txd;
  1568. err_fill_lli:
  1569. dev_err(&d40c->chan.dev->device,
  1570. "[%s] Failed filling in PHY LLI\n", __func__);
  1571. err:
  1572. if (d40d)
  1573. d40_desc_free(d40c, d40d);
  1574. spin_unlock_irqrestore(&d40c->lock, flags);
  1575. return NULL;
  1576. }
  1577. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1578. struct d40_chan *d40c,
  1579. struct scatterlist *sgl,
  1580. unsigned int sg_len,
  1581. enum dma_data_direction direction,
  1582. unsigned long dma_flags)
  1583. {
  1584. dma_addr_t dev_addr = 0;
  1585. int total_size;
  1586. if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
  1587. dev_err(&d40c->chan.dev->device,
  1588. "[%s] Out of memory\n", __func__);
  1589. return -ENOMEM;
  1590. }
  1591. d40d->lli_len = sg_len;
  1592. d40d->lli_current = 0;
  1593. if (direction == DMA_FROM_DEVICE)
  1594. if (d40c->runtime_addr)
  1595. dev_addr = d40c->runtime_addr;
  1596. else
  1597. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1598. else if (direction == DMA_TO_DEVICE)
  1599. if (d40c->runtime_addr)
  1600. dev_addr = d40c->runtime_addr;
  1601. else
  1602. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1603. else
  1604. return -EINVAL;
  1605. total_size = d40_log_sg_to_dev(sgl, sg_len,
  1606. &d40d->lli_log,
  1607. &d40c->log_def,
  1608. d40c->dma_cfg.src_info.data_width,
  1609. d40c->dma_cfg.dst_info.data_width,
  1610. direction,
  1611. dev_addr);
  1612. if (total_size < 0)
  1613. return -EINVAL;
  1614. return 0;
  1615. }
  1616. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1617. struct d40_chan *d40c,
  1618. struct scatterlist *sgl,
  1619. unsigned int sgl_len,
  1620. enum dma_data_direction direction,
  1621. unsigned long dma_flags)
  1622. {
  1623. dma_addr_t src_dev_addr;
  1624. dma_addr_t dst_dev_addr;
  1625. int res;
  1626. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1627. dev_err(&d40c->chan.dev->device,
  1628. "[%s] Out of memory\n", __func__);
  1629. return -ENOMEM;
  1630. }
  1631. d40d->lli_len = sgl_len;
  1632. d40d->lli_current = 0;
  1633. if (direction == DMA_FROM_DEVICE) {
  1634. dst_dev_addr = 0;
  1635. if (d40c->runtime_addr)
  1636. src_dev_addr = d40c->runtime_addr;
  1637. else
  1638. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1639. } else if (direction == DMA_TO_DEVICE) {
  1640. if (d40c->runtime_addr)
  1641. dst_dev_addr = d40c->runtime_addr;
  1642. else
  1643. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1644. src_dev_addr = 0;
  1645. } else
  1646. return -EINVAL;
  1647. res = d40_phy_sg_to_lli(sgl,
  1648. sgl_len,
  1649. src_dev_addr,
  1650. d40d->lli_phy.src,
  1651. virt_to_phys(d40d->lli_phy.src),
  1652. d40c->src_def_cfg,
  1653. d40c->dma_cfg.src_info.data_width,
  1654. d40c->dma_cfg.src_info.psize);
  1655. if (res < 0)
  1656. return res;
  1657. res = d40_phy_sg_to_lli(sgl,
  1658. sgl_len,
  1659. dst_dev_addr,
  1660. d40d->lli_phy.dst,
  1661. virt_to_phys(d40d->lli_phy.dst),
  1662. d40c->dst_def_cfg,
  1663. d40c->dma_cfg.dst_info.data_width,
  1664. d40c->dma_cfg.dst_info.psize);
  1665. if (res < 0)
  1666. return res;
  1667. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1668. d40d->lli_pool.size, DMA_TO_DEVICE);
  1669. return 0;
  1670. }
  1671. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1672. struct scatterlist *sgl,
  1673. unsigned int sg_len,
  1674. enum dma_data_direction direction,
  1675. unsigned long dma_flags)
  1676. {
  1677. struct d40_desc *d40d;
  1678. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1679. chan);
  1680. unsigned long flags;
  1681. int err;
  1682. if (d40c->phy_chan == NULL) {
  1683. dev_err(&d40c->chan.dev->device,
  1684. "[%s] Cannot prepare unallocated channel\n", __func__);
  1685. return ERR_PTR(-EINVAL);
  1686. }
  1687. spin_lock_irqsave(&d40c->lock, flags);
  1688. d40d = d40_desc_get(d40c);
  1689. if (d40d == NULL)
  1690. goto err;
  1691. if (d40c->log_num != D40_PHY_CHAN)
  1692. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1693. direction, dma_flags);
  1694. else
  1695. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1696. direction, dma_flags);
  1697. if (err) {
  1698. dev_err(&d40c->chan.dev->device,
  1699. "[%s] Failed to prepare %s slave sg job: %d\n",
  1700. __func__,
  1701. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1702. goto err;
  1703. }
  1704. d40d->txd.flags = dma_flags;
  1705. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1706. d40d->txd.tx_submit = d40_tx_submit;
  1707. spin_unlock_irqrestore(&d40c->lock, flags);
  1708. return &d40d->txd;
  1709. err:
  1710. if (d40d)
  1711. d40_desc_free(d40c, d40d);
  1712. spin_unlock_irqrestore(&d40c->lock, flags);
  1713. return NULL;
  1714. }
  1715. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1716. dma_cookie_t cookie,
  1717. struct dma_tx_state *txstate)
  1718. {
  1719. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1720. dma_cookie_t last_used;
  1721. dma_cookie_t last_complete;
  1722. int ret;
  1723. if (d40c->phy_chan == NULL) {
  1724. dev_err(&d40c->chan.dev->device,
  1725. "[%s] Cannot read status of unallocated channel\n",
  1726. __func__);
  1727. return -EINVAL;
  1728. }
  1729. last_complete = d40c->completed;
  1730. last_used = chan->cookie;
  1731. if (d40_is_paused(d40c))
  1732. ret = DMA_PAUSED;
  1733. else
  1734. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1735. dma_set_tx_state(txstate, last_complete, last_used,
  1736. stedma40_residue(chan));
  1737. return ret;
  1738. }
  1739. static void d40_issue_pending(struct dma_chan *chan)
  1740. {
  1741. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1742. unsigned long flags;
  1743. if (d40c->phy_chan == NULL) {
  1744. dev_err(&d40c->chan.dev->device,
  1745. "[%s] Channel is not allocated!\n", __func__);
  1746. return;
  1747. }
  1748. spin_lock_irqsave(&d40c->lock, flags);
  1749. /* Busy means that pending jobs are already being processed */
  1750. if (!d40c->busy)
  1751. (void) d40_queue_start(d40c);
  1752. spin_unlock_irqrestore(&d40c->lock, flags);
  1753. }
  1754. /* Runtime reconfiguration extension */
  1755. static void d40_set_runtime_config(struct dma_chan *chan,
  1756. struct dma_slave_config *config)
  1757. {
  1758. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1759. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1760. enum dma_slave_buswidth config_addr_width;
  1761. dma_addr_t config_addr;
  1762. u32 config_maxburst;
  1763. enum stedma40_periph_data_width addr_width;
  1764. int psize;
  1765. if (config->direction == DMA_FROM_DEVICE) {
  1766. dma_addr_t dev_addr_rx =
  1767. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1768. config_addr = config->src_addr;
  1769. if (dev_addr_rx)
  1770. dev_dbg(d40c->base->dev,
  1771. "channel has a pre-wired RX address %08x "
  1772. "overriding with %08x\n",
  1773. dev_addr_rx, config_addr);
  1774. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1775. dev_dbg(d40c->base->dev,
  1776. "channel was not configured for peripheral "
  1777. "to memory transfer (%d) overriding\n",
  1778. cfg->dir);
  1779. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1780. config_addr_width = config->src_addr_width;
  1781. config_maxburst = config->src_maxburst;
  1782. } else if (config->direction == DMA_TO_DEVICE) {
  1783. dma_addr_t dev_addr_tx =
  1784. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1785. config_addr = config->dst_addr;
  1786. if (dev_addr_tx)
  1787. dev_dbg(d40c->base->dev,
  1788. "channel has a pre-wired TX address %08x "
  1789. "overriding with %08x\n",
  1790. dev_addr_tx, config_addr);
  1791. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1792. dev_dbg(d40c->base->dev,
  1793. "channel was not configured for memory "
  1794. "to peripheral transfer (%d) overriding\n",
  1795. cfg->dir);
  1796. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1797. config_addr_width = config->dst_addr_width;
  1798. config_maxburst = config->dst_maxburst;
  1799. } else {
  1800. dev_err(d40c->base->dev,
  1801. "unrecognized channel direction %d\n",
  1802. config->direction);
  1803. return;
  1804. }
  1805. switch (config_addr_width) {
  1806. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1807. addr_width = STEDMA40_BYTE_WIDTH;
  1808. break;
  1809. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1810. addr_width = STEDMA40_HALFWORD_WIDTH;
  1811. break;
  1812. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1813. addr_width = STEDMA40_WORD_WIDTH;
  1814. break;
  1815. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1816. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1817. break;
  1818. default:
  1819. dev_err(d40c->base->dev,
  1820. "illegal peripheral address width "
  1821. "requested (%d)\n",
  1822. config->src_addr_width);
  1823. return;
  1824. }
  1825. if (d40c->log_num != D40_PHY_CHAN) {
  1826. if (config_maxburst >= 16)
  1827. psize = STEDMA40_PSIZE_LOG_16;
  1828. else if (config_maxburst >= 8)
  1829. psize = STEDMA40_PSIZE_LOG_8;
  1830. else if (config_maxburst >= 4)
  1831. psize = STEDMA40_PSIZE_LOG_4;
  1832. else
  1833. psize = STEDMA40_PSIZE_LOG_1;
  1834. } else {
  1835. if (config_maxburst >= 16)
  1836. psize = STEDMA40_PSIZE_PHY_16;
  1837. else if (config_maxburst >= 8)
  1838. psize = STEDMA40_PSIZE_PHY_8;
  1839. else if (config_maxburst >= 4)
  1840. psize = STEDMA40_PSIZE_PHY_4;
  1841. else
  1842. psize = STEDMA40_PSIZE_PHY_1;
  1843. }
  1844. /* Set up all the endpoint configs */
  1845. cfg->src_info.data_width = addr_width;
  1846. cfg->src_info.psize = psize;
  1847. cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1848. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1849. cfg->dst_info.data_width = addr_width;
  1850. cfg->dst_info.psize = psize;
  1851. cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1852. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1853. /* Fill in register values */
  1854. if (d40c->log_num != D40_PHY_CHAN)
  1855. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1856. else
  1857. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1858. &d40c->dst_def_cfg, false);
  1859. /* These settings will take precedence later */
  1860. d40c->runtime_addr = config_addr;
  1861. d40c->runtime_direction = config->direction;
  1862. dev_dbg(d40c->base->dev,
  1863. "configured channel %s for %s, data width %d, "
  1864. "maxburst %d bytes, LE, no flow control\n",
  1865. dma_chan_name(chan),
  1866. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1867. config_addr_width,
  1868. config_maxburst);
  1869. }
  1870. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1871. unsigned long arg)
  1872. {
  1873. unsigned long flags;
  1874. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1875. if (d40c->phy_chan == NULL) {
  1876. dev_err(&d40c->chan.dev->device,
  1877. "[%s] Channel is not allocated!\n", __func__);
  1878. return -EINVAL;
  1879. }
  1880. switch (cmd) {
  1881. case DMA_TERMINATE_ALL:
  1882. spin_lock_irqsave(&d40c->lock, flags);
  1883. d40_term_all(d40c);
  1884. spin_unlock_irqrestore(&d40c->lock, flags);
  1885. return 0;
  1886. case DMA_PAUSE:
  1887. return d40_pause(chan);
  1888. case DMA_RESUME:
  1889. return d40_resume(chan);
  1890. case DMA_SLAVE_CONFIG:
  1891. d40_set_runtime_config(chan,
  1892. (struct dma_slave_config *) arg);
  1893. return 0;
  1894. default:
  1895. break;
  1896. }
  1897. /* Other commands are unimplemented */
  1898. return -ENXIO;
  1899. }
  1900. /* Initialization functions */
  1901. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1902. struct d40_chan *chans, int offset,
  1903. int num_chans)
  1904. {
  1905. int i = 0;
  1906. struct d40_chan *d40c;
  1907. INIT_LIST_HEAD(&dma->channels);
  1908. for (i = offset; i < offset + num_chans; i++) {
  1909. d40c = &chans[i];
  1910. d40c->base = base;
  1911. d40c->chan.device = dma;
  1912. spin_lock_init(&d40c->lock);
  1913. d40c->log_num = D40_PHY_CHAN;
  1914. INIT_LIST_HEAD(&d40c->active);
  1915. INIT_LIST_HEAD(&d40c->queue);
  1916. INIT_LIST_HEAD(&d40c->client);
  1917. tasklet_init(&d40c->tasklet, dma_tasklet,
  1918. (unsigned long) d40c);
  1919. list_add_tail(&d40c->chan.device_node,
  1920. &dma->channels);
  1921. }
  1922. }
  1923. static int __init d40_dmaengine_init(struct d40_base *base,
  1924. int num_reserved_chans)
  1925. {
  1926. int err ;
  1927. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1928. 0, base->num_log_chans);
  1929. dma_cap_zero(base->dma_slave.cap_mask);
  1930. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1931. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1932. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1933. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1934. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1935. base->dma_slave.device_tx_status = d40_tx_status;
  1936. base->dma_slave.device_issue_pending = d40_issue_pending;
  1937. base->dma_slave.device_control = d40_control;
  1938. base->dma_slave.dev = base->dev;
  1939. err = dma_async_device_register(&base->dma_slave);
  1940. if (err) {
  1941. dev_err(base->dev,
  1942. "[%s] Failed to register slave channels\n",
  1943. __func__);
  1944. goto failure1;
  1945. }
  1946. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1947. base->num_log_chans, base->plat_data->memcpy_len);
  1948. dma_cap_zero(base->dma_memcpy.cap_mask);
  1949. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1950. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1951. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1952. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1953. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1954. base->dma_memcpy.device_tx_status = d40_tx_status;
  1955. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1956. base->dma_memcpy.device_control = d40_control;
  1957. base->dma_memcpy.dev = base->dev;
  1958. /*
  1959. * This controller can only access address at even
  1960. * 32bit boundaries, i.e. 2^2
  1961. */
  1962. base->dma_memcpy.copy_align = 2;
  1963. err = dma_async_device_register(&base->dma_memcpy);
  1964. if (err) {
  1965. dev_err(base->dev,
  1966. "[%s] Failed to regsiter memcpy only channels\n",
  1967. __func__);
  1968. goto failure2;
  1969. }
  1970. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1971. 0, num_reserved_chans);
  1972. dma_cap_zero(base->dma_both.cap_mask);
  1973. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1974. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  1975. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  1976. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  1977. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  1978. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  1979. base->dma_both.device_tx_status = d40_tx_status;
  1980. base->dma_both.device_issue_pending = d40_issue_pending;
  1981. base->dma_both.device_control = d40_control;
  1982. base->dma_both.dev = base->dev;
  1983. base->dma_both.copy_align = 2;
  1984. err = dma_async_device_register(&base->dma_both);
  1985. if (err) {
  1986. dev_err(base->dev,
  1987. "[%s] Failed to register logical and physical capable channels\n",
  1988. __func__);
  1989. goto failure3;
  1990. }
  1991. return 0;
  1992. failure3:
  1993. dma_async_device_unregister(&base->dma_memcpy);
  1994. failure2:
  1995. dma_async_device_unregister(&base->dma_slave);
  1996. failure1:
  1997. return err;
  1998. }
  1999. /* Initialization functions. */
  2000. static int __init d40_phy_res_init(struct d40_base *base)
  2001. {
  2002. int i;
  2003. int num_phy_chans_avail = 0;
  2004. u32 val[2];
  2005. int odd_even_bit = -2;
  2006. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2007. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2008. for (i = 0; i < base->num_phy_chans; i++) {
  2009. base->phy_res[i].num = i;
  2010. odd_even_bit += 2 * ((i % 2) == 0);
  2011. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2012. /* Mark security only channels as occupied */
  2013. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2014. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2015. } else {
  2016. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2017. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2018. num_phy_chans_avail++;
  2019. }
  2020. spin_lock_init(&base->phy_res[i].lock);
  2021. }
  2022. /* Mark disabled channels as occupied */
  2023. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2024. int chan = base->plat_data->disabled_channels[i];
  2025. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2026. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2027. num_phy_chans_avail--;
  2028. }
  2029. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2030. num_phy_chans_avail, base->num_phy_chans);
  2031. /* Verify settings extended vs standard */
  2032. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2033. for (i = 0; i < base->num_phy_chans; i++) {
  2034. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2035. (val[0] & 0x3) != 1)
  2036. dev_info(base->dev,
  2037. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2038. __func__, i, val[0] & 0x3);
  2039. val[0] = val[0] >> 2;
  2040. }
  2041. return num_phy_chans_avail;
  2042. }
  2043. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2044. {
  2045. static const struct d40_reg_val dma_id_regs[] = {
  2046. /* Peripheral Id */
  2047. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2048. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2049. /*
  2050. * D40_DREG_PERIPHID2 Depends on HW revision:
  2051. * MOP500/HREF ED has 0x0008,
  2052. * ? has 0x0018,
  2053. * HREF V1 has 0x0028
  2054. */
  2055. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2056. /* PCell Id */
  2057. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2058. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2059. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2060. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2061. };
  2062. struct stedma40_platform_data *plat_data;
  2063. struct clk *clk = NULL;
  2064. void __iomem *virtbase = NULL;
  2065. struct resource *res = NULL;
  2066. struct d40_base *base = NULL;
  2067. int num_log_chans = 0;
  2068. int num_phy_chans;
  2069. int i;
  2070. u32 val;
  2071. u32 rev;
  2072. clk = clk_get(&pdev->dev, NULL);
  2073. if (IS_ERR(clk)) {
  2074. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2075. __func__);
  2076. goto failure;
  2077. }
  2078. clk_enable(clk);
  2079. /* Get IO for DMAC base address */
  2080. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2081. if (!res)
  2082. goto failure;
  2083. if (request_mem_region(res->start, resource_size(res),
  2084. D40_NAME " I/O base") == NULL)
  2085. goto failure;
  2086. virtbase = ioremap(res->start, resource_size(res));
  2087. if (!virtbase)
  2088. goto failure;
  2089. /* HW version check */
  2090. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2091. if (dma_id_regs[i].val !=
  2092. readl(virtbase + dma_id_regs[i].reg)) {
  2093. dev_err(&pdev->dev,
  2094. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2095. __func__,
  2096. dma_id_regs[i].val,
  2097. dma_id_regs[i].reg,
  2098. readl(virtbase + dma_id_regs[i].reg));
  2099. goto failure;
  2100. }
  2101. }
  2102. /* Get silicon revision and designer */
  2103. val = readl(virtbase + D40_DREG_PERIPHID2);
  2104. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2105. D40_HW_DESIGNER) {
  2106. dev_err(&pdev->dev,
  2107. "[%s] Unknown designer! Got %x wanted %x\n",
  2108. __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2109. D40_HW_DESIGNER);
  2110. goto failure;
  2111. }
  2112. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2113. D40_DREG_PERIPHID2_REV_POS;
  2114. /* The number of physical channels on this HW */
  2115. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2116. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2117. rev, res->start);
  2118. plat_data = pdev->dev.platform_data;
  2119. /* Count the number of logical channels in use */
  2120. for (i = 0; i < plat_data->dev_len; i++)
  2121. if (plat_data->dev_rx[i] != 0)
  2122. num_log_chans++;
  2123. for (i = 0; i < plat_data->dev_len; i++)
  2124. if (plat_data->dev_tx[i] != 0)
  2125. num_log_chans++;
  2126. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2127. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2128. sizeof(struct d40_chan), GFP_KERNEL);
  2129. if (base == NULL) {
  2130. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2131. goto failure;
  2132. }
  2133. base->rev = rev;
  2134. base->clk = clk;
  2135. base->num_phy_chans = num_phy_chans;
  2136. base->num_log_chans = num_log_chans;
  2137. base->phy_start = res->start;
  2138. base->phy_size = resource_size(res);
  2139. base->virtbase = virtbase;
  2140. base->plat_data = plat_data;
  2141. base->dev = &pdev->dev;
  2142. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2143. base->log_chans = &base->phy_chans[num_phy_chans];
  2144. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2145. GFP_KERNEL);
  2146. if (!base->phy_res)
  2147. goto failure;
  2148. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2149. sizeof(struct d40_chan *),
  2150. GFP_KERNEL);
  2151. if (!base->lookup_phy_chans)
  2152. goto failure;
  2153. if (num_log_chans + plat_data->memcpy_len) {
  2154. /*
  2155. * The max number of logical channels are event lines for all
  2156. * src devices and dst devices
  2157. */
  2158. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2159. sizeof(struct d40_chan *),
  2160. GFP_KERNEL);
  2161. if (!base->lookup_log_chans)
  2162. goto failure;
  2163. }
  2164. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2165. sizeof(struct d40_desc *) *
  2166. D40_LCLA_LINK_PER_EVENT_GRP,
  2167. GFP_KERNEL);
  2168. if (!base->lcla_pool.alloc_map)
  2169. goto failure;
  2170. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2171. 0, SLAB_HWCACHE_ALIGN,
  2172. NULL);
  2173. if (base->desc_slab == NULL)
  2174. goto failure;
  2175. return base;
  2176. failure:
  2177. if (!IS_ERR(clk)) {
  2178. clk_disable(clk);
  2179. clk_put(clk);
  2180. }
  2181. if (virtbase)
  2182. iounmap(virtbase);
  2183. if (res)
  2184. release_mem_region(res->start,
  2185. resource_size(res));
  2186. if (virtbase)
  2187. iounmap(virtbase);
  2188. if (base) {
  2189. kfree(base->lcla_pool.alloc_map);
  2190. kfree(base->lookup_log_chans);
  2191. kfree(base->lookup_phy_chans);
  2192. kfree(base->phy_res);
  2193. kfree(base);
  2194. }
  2195. return NULL;
  2196. }
  2197. static void __init d40_hw_init(struct d40_base *base)
  2198. {
  2199. static const struct d40_reg_val dma_init_reg[] = {
  2200. /* Clock every part of the DMA block from start */
  2201. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2202. /* Interrupts on all logical channels */
  2203. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2204. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2205. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2206. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2207. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2208. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2209. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2210. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2211. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2212. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2213. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2214. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2215. };
  2216. int i;
  2217. u32 prmseo[2] = {0, 0};
  2218. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2219. u32 pcmis = 0;
  2220. u32 pcicr = 0;
  2221. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2222. writel(dma_init_reg[i].val,
  2223. base->virtbase + dma_init_reg[i].reg);
  2224. /* Configure all our dma channels to default settings */
  2225. for (i = 0; i < base->num_phy_chans; i++) {
  2226. activeo[i % 2] = activeo[i % 2] << 2;
  2227. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2228. == D40_ALLOC_PHY) {
  2229. activeo[i % 2] |= 3;
  2230. continue;
  2231. }
  2232. /* Enable interrupt # */
  2233. pcmis = (pcmis << 1) | 1;
  2234. /* Clear interrupt # */
  2235. pcicr = (pcicr << 1) | 1;
  2236. /* Set channel to physical mode */
  2237. prmseo[i % 2] = prmseo[i % 2] << 2;
  2238. prmseo[i % 2] |= 1;
  2239. }
  2240. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2241. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2242. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2243. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2244. /* Write which interrupt to enable */
  2245. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2246. /* Write which interrupt to clear */
  2247. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2248. }
  2249. static int __init d40_lcla_allocate(struct d40_base *base)
  2250. {
  2251. unsigned long *page_list;
  2252. int i, j;
  2253. int ret = 0;
  2254. /*
  2255. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2256. * To full fill this hardware requirement without wasting 256 kb
  2257. * we allocate pages until we get an aligned one.
  2258. */
  2259. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2260. GFP_KERNEL);
  2261. if (!page_list) {
  2262. ret = -ENOMEM;
  2263. goto failure;
  2264. }
  2265. /* Calculating how many pages that are required */
  2266. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2267. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2268. page_list[i] = __get_free_pages(GFP_KERNEL,
  2269. base->lcla_pool.pages);
  2270. if (!page_list[i]) {
  2271. dev_err(base->dev,
  2272. "[%s] Failed to allocate %d pages.\n",
  2273. __func__, base->lcla_pool.pages);
  2274. for (j = 0; j < i; j++)
  2275. free_pages(page_list[j], base->lcla_pool.pages);
  2276. goto failure;
  2277. }
  2278. if ((virt_to_phys((void *)page_list[i]) &
  2279. (LCLA_ALIGNMENT - 1)) == 0)
  2280. break;
  2281. }
  2282. for (j = 0; j < i; j++)
  2283. free_pages(page_list[j], base->lcla_pool.pages);
  2284. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2285. base->lcla_pool.base = (void *)page_list[i];
  2286. } else {
  2287. /*
  2288. * After many attempts and no succees with finding the correct
  2289. * alignment, try with allocating a big buffer.
  2290. */
  2291. dev_warn(base->dev,
  2292. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2293. __func__, base->lcla_pool.pages);
  2294. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2295. base->num_phy_chans +
  2296. LCLA_ALIGNMENT,
  2297. GFP_KERNEL);
  2298. if (!base->lcla_pool.base_unaligned) {
  2299. ret = -ENOMEM;
  2300. goto failure;
  2301. }
  2302. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2303. LCLA_ALIGNMENT);
  2304. }
  2305. writel(virt_to_phys(base->lcla_pool.base),
  2306. base->virtbase + D40_DREG_LCLA);
  2307. failure:
  2308. kfree(page_list);
  2309. return ret;
  2310. }
  2311. static int __init d40_probe(struct platform_device *pdev)
  2312. {
  2313. int err;
  2314. int ret = -ENOENT;
  2315. struct d40_base *base;
  2316. struct resource *res = NULL;
  2317. int num_reserved_chans;
  2318. u32 val;
  2319. base = d40_hw_detect_init(pdev);
  2320. if (!base)
  2321. goto failure;
  2322. num_reserved_chans = d40_phy_res_init(base);
  2323. platform_set_drvdata(pdev, base);
  2324. spin_lock_init(&base->interrupt_lock);
  2325. spin_lock_init(&base->execmd_lock);
  2326. /* Get IO for logical channel parameter address */
  2327. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2328. if (!res) {
  2329. ret = -ENOENT;
  2330. dev_err(&pdev->dev,
  2331. "[%s] No \"lcpa\" memory resource\n",
  2332. __func__);
  2333. goto failure;
  2334. }
  2335. base->lcpa_size = resource_size(res);
  2336. base->phy_lcpa = res->start;
  2337. if (request_mem_region(res->start, resource_size(res),
  2338. D40_NAME " I/O lcpa") == NULL) {
  2339. ret = -EBUSY;
  2340. dev_err(&pdev->dev,
  2341. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2342. __func__, res->start, res->end);
  2343. goto failure;
  2344. }
  2345. /* We make use of ESRAM memory for this. */
  2346. val = readl(base->virtbase + D40_DREG_LCPA);
  2347. if (res->start != val && val != 0) {
  2348. dev_warn(&pdev->dev,
  2349. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2350. __func__, val, res->start);
  2351. } else
  2352. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2353. base->lcpa_base = ioremap(res->start, resource_size(res));
  2354. if (!base->lcpa_base) {
  2355. ret = -ENOMEM;
  2356. dev_err(&pdev->dev,
  2357. "[%s] Failed to ioremap LCPA region\n",
  2358. __func__);
  2359. goto failure;
  2360. }
  2361. ret = d40_lcla_allocate(base);
  2362. if (ret) {
  2363. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2364. __func__);
  2365. goto failure;
  2366. }
  2367. spin_lock_init(&base->lcla_pool.lock);
  2368. base->irq = platform_get_irq(pdev, 0);
  2369. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2370. if (ret) {
  2371. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2372. goto failure;
  2373. }
  2374. err = d40_dmaengine_init(base, num_reserved_chans);
  2375. if (err)
  2376. goto failure;
  2377. d40_hw_init(base);
  2378. dev_info(base->dev, "initialized\n");
  2379. return 0;
  2380. failure:
  2381. if (base) {
  2382. if (base->desc_slab)
  2383. kmem_cache_destroy(base->desc_slab);
  2384. if (base->virtbase)
  2385. iounmap(base->virtbase);
  2386. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2387. free_pages((unsigned long)base->lcla_pool.base,
  2388. base->lcla_pool.pages);
  2389. kfree(base->lcla_pool.base_unaligned);
  2390. if (base->phy_lcpa)
  2391. release_mem_region(base->phy_lcpa,
  2392. base->lcpa_size);
  2393. if (base->phy_start)
  2394. release_mem_region(base->phy_start,
  2395. base->phy_size);
  2396. if (base->clk) {
  2397. clk_disable(base->clk);
  2398. clk_put(base->clk);
  2399. }
  2400. kfree(base->lcla_pool.alloc_map);
  2401. kfree(base->lookup_log_chans);
  2402. kfree(base->lookup_phy_chans);
  2403. kfree(base->phy_res);
  2404. kfree(base);
  2405. }
  2406. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2407. return ret;
  2408. }
  2409. static struct platform_driver d40_driver = {
  2410. .driver = {
  2411. .owner = THIS_MODULE,
  2412. .name = D40_NAME,
  2413. },
  2414. };
  2415. int __init stedma40_init(void)
  2416. {
  2417. return platform_driver_probe(&d40_driver, d40_probe);
  2418. }
  2419. arch_initcall(stedma40_init);