messenger.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
  29. #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
  30. #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
  31. #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
  32. #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
  33. #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
  34. /* static tag bytes (protocol control messages) */
  35. static char tag_msg = CEPH_MSGR_TAG_MSG;
  36. static char tag_ack = CEPH_MSGR_TAG_ACK;
  37. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  38. #ifdef CONFIG_LOCKDEP
  39. static struct lock_class_key socket_class;
  40. #endif
  41. /*
  42. * When skipping (ignoring) a block of input we read it into a "skip
  43. * buffer," which is this many bytes in size.
  44. */
  45. #define SKIP_BUF_SIZE 1024
  46. static void queue_con(struct ceph_connection *con);
  47. static void con_work(struct work_struct *);
  48. static void ceph_fault(struct ceph_connection *con);
  49. /*
  50. * Nicely render a sockaddr as a string. An array of formatted
  51. * strings is used, to approximate reentrancy.
  52. */
  53. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  54. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  55. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  56. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  57. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  58. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  59. static struct page *zero_page; /* used in certain error cases */
  60. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  61. {
  62. int i;
  63. char *s;
  64. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  65. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  66. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  67. s = addr_str[i];
  68. switch (ss->ss_family) {
  69. case AF_INET:
  70. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  71. ntohs(in4->sin_port));
  72. break;
  73. case AF_INET6:
  74. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  75. ntohs(in6->sin6_port));
  76. break;
  77. default:
  78. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  79. ss->ss_family);
  80. }
  81. return s;
  82. }
  83. EXPORT_SYMBOL(ceph_pr_addr);
  84. static void encode_my_addr(struct ceph_messenger *msgr)
  85. {
  86. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  87. ceph_encode_addr(&msgr->my_enc_addr);
  88. }
  89. /*
  90. * work queue for all reading and writing to/from the socket.
  91. */
  92. static struct workqueue_struct *ceph_msgr_wq;
  93. void _ceph_msgr_exit(void)
  94. {
  95. if (ceph_msgr_wq) {
  96. destroy_workqueue(ceph_msgr_wq);
  97. ceph_msgr_wq = NULL;
  98. }
  99. BUG_ON(zero_page == NULL);
  100. kunmap(zero_page);
  101. page_cache_release(zero_page);
  102. zero_page = NULL;
  103. }
  104. int ceph_msgr_init(void)
  105. {
  106. BUG_ON(zero_page != NULL);
  107. zero_page = ZERO_PAGE(0);
  108. page_cache_get(zero_page);
  109. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  110. if (ceph_msgr_wq)
  111. return 0;
  112. pr_err("msgr_init failed to create workqueue\n");
  113. _ceph_msgr_exit();
  114. return -ENOMEM;
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_init);
  117. void ceph_msgr_exit(void)
  118. {
  119. BUG_ON(ceph_msgr_wq == NULL);
  120. _ceph_msgr_exit();
  121. }
  122. EXPORT_SYMBOL(ceph_msgr_exit);
  123. void ceph_msgr_flush(void)
  124. {
  125. flush_workqueue(ceph_msgr_wq);
  126. }
  127. EXPORT_SYMBOL(ceph_msgr_flush);
  128. /* Connection socket state transition functions */
  129. static void con_sock_state_init(struct ceph_connection *con)
  130. {
  131. int old_state;
  132. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
  133. if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
  134. printk("%s: unexpected old state %d\n", __func__, old_state);
  135. }
  136. static void con_sock_state_connecting(struct ceph_connection *con)
  137. {
  138. int old_state;
  139. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
  140. if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
  141. printk("%s: unexpected old state %d\n", __func__, old_state);
  142. }
  143. static void con_sock_state_connected(struct ceph_connection *con)
  144. {
  145. int old_state;
  146. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
  147. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
  148. printk("%s: unexpected old state %d\n", __func__, old_state);
  149. }
  150. static void con_sock_state_closing(struct ceph_connection *con)
  151. {
  152. int old_state;
  153. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
  154. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
  155. old_state != CON_SOCK_STATE_CONNECTED &&
  156. old_state != CON_SOCK_STATE_CLOSING))
  157. printk("%s: unexpected old state %d\n", __func__, old_state);
  158. }
  159. static void con_sock_state_closed(struct ceph_connection *con)
  160. {
  161. int old_state;
  162. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
  163. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
  164. old_state != CON_SOCK_STATE_CLOSING))
  165. printk("%s: unexpected old state %d\n", __func__, old_state);
  166. }
  167. /*
  168. * socket callback functions
  169. */
  170. /* data available on socket, or listen socket received a connect */
  171. static void ceph_sock_data_ready(struct sock *sk, int count_unused)
  172. {
  173. struct ceph_connection *con = sk->sk_user_data;
  174. if (sk->sk_state != TCP_CLOSE_WAIT) {
  175. dout("%s on %p state = %lu, queueing work\n", __func__,
  176. con, con->state);
  177. queue_con(con);
  178. }
  179. }
  180. /* socket has buffer space for writing */
  181. static void ceph_sock_write_space(struct sock *sk)
  182. {
  183. struct ceph_connection *con = sk->sk_user_data;
  184. /* only queue to workqueue if there is data we want to write,
  185. * and there is sufficient space in the socket buffer to accept
  186. * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
  187. * doesn't get called again until try_write() fills the socket
  188. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  189. * and net/core/stream.c:sk_stream_write_space().
  190. */
  191. if (test_bit(WRITE_PENDING, &con->flags)) {
  192. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  193. dout("%s %p queueing write work\n", __func__, con);
  194. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  195. queue_con(con);
  196. }
  197. } else {
  198. dout("%s %p nothing to write\n", __func__, con);
  199. }
  200. }
  201. /* socket's state has changed */
  202. static void ceph_sock_state_change(struct sock *sk)
  203. {
  204. struct ceph_connection *con = sk->sk_user_data;
  205. dout("%s %p state = %lu sk_state = %u\n", __func__,
  206. con, con->state, sk->sk_state);
  207. if (test_bit(CLOSED, &con->state))
  208. return;
  209. switch (sk->sk_state) {
  210. case TCP_CLOSE:
  211. dout("%s TCP_CLOSE\n", __func__);
  212. case TCP_CLOSE_WAIT:
  213. dout("%s TCP_CLOSE_WAIT\n", __func__);
  214. con_sock_state_closing(con);
  215. if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
  216. if (test_bit(CONNECTING, &con->state))
  217. con->error_msg = "connection failed";
  218. else
  219. con->error_msg = "socket closed";
  220. queue_con(con);
  221. }
  222. break;
  223. case TCP_ESTABLISHED:
  224. dout("%s TCP_ESTABLISHED\n", __func__);
  225. con_sock_state_connected(con);
  226. queue_con(con);
  227. break;
  228. default: /* Everything else is uninteresting */
  229. break;
  230. }
  231. }
  232. /*
  233. * set up socket callbacks
  234. */
  235. static void set_sock_callbacks(struct socket *sock,
  236. struct ceph_connection *con)
  237. {
  238. struct sock *sk = sock->sk;
  239. sk->sk_user_data = con;
  240. sk->sk_data_ready = ceph_sock_data_ready;
  241. sk->sk_write_space = ceph_sock_write_space;
  242. sk->sk_state_change = ceph_sock_state_change;
  243. }
  244. /*
  245. * socket helpers
  246. */
  247. /*
  248. * initiate connection to a remote socket.
  249. */
  250. static int ceph_tcp_connect(struct ceph_connection *con)
  251. {
  252. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  253. struct socket *sock;
  254. int ret;
  255. BUG_ON(con->sock);
  256. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  257. IPPROTO_TCP, &sock);
  258. if (ret)
  259. return ret;
  260. sock->sk->sk_allocation = GFP_NOFS;
  261. #ifdef CONFIG_LOCKDEP
  262. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  263. #endif
  264. set_sock_callbacks(sock, con);
  265. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  266. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  267. O_NONBLOCK);
  268. if (ret == -EINPROGRESS) {
  269. dout("connect %s EINPROGRESS sk_state = %u\n",
  270. ceph_pr_addr(&con->peer_addr.in_addr),
  271. sock->sk->sk_state);
  272. } else if (ret < 0) {
  273. pr_err("connect %s error %d\n",
  274. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  275. sock_release(sock);
  276. con->error_msg = "connect error";
  277. return ret;
  278. }
  279. con->sock = sock;
  280. con_sock_state_connecting(con);
  281. return 0;
  282. }
  283. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  284. {
  285. struct kvec iov = {buf, len};
  286. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  287. int r;
  288. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  289. if (r == -EAGAIN)
  290. r = 0;
  291. return r;
  292. }
  293. /*
  294. * write something. @more is true if caller will be sending more data
  295. * shortly.
  296. */
  297. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  298. size_t kvlen, size_t len, int more)
  299. {
  300. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  301. int r;
  302. if (more)
  303. msg.msg_flags |= MSG_MORE;
  304. else
  305. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  306. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  307. if (r == -EAGAIN)
  308. r = 0;
  309. return r;
  310. }
  311. static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
  312. int offset, size_t size, int more)
  313. {
  314. int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
  315. int ret;
  316. ret = kernel_sendpage(sock, page, offset, size, flags);
  317. if (ret == -EAGAIN)
  318. ret = 0;
  319. return ret;
  320. }
  321. /*
  322. * Shutdown/close the socket for the given connection.
  323. */
  324. static int con_close_socket(struct ceph_connection *con)
  325. {
  326. int rc;
  327. dout("con_close_socket on %p sock %p\n", con, con->sock);
  328. if (!con->sock)
  329. return 0;
  330. set_bit(SOCK_CLOSED, &con->state);
  331. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  332. sock_release(con->sock);
  333. con->sock = NULL;
  334. clear_bit(SOCK_CLOSED, &con->state);
  335. con_sock_state_closed(con);
  336. return rc;
  337. }
  338. /*
  339. * Reset a connection. Discard all incoming and outgoing messages
  340. * and clear *_seq state.
  341. */
  342. static void ceph_msg_remove(struct ceph_msg *msg)
  343. {
  344. list_del_init(&msg->list_head);
  345. ceph_msg_put(msg);
  346. }
  347. static void ceph_msg_remove_list(struct list_head *head)
  348. {
  349. while (!list_empty(head)) {
  350. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  351. list_head);
  352. ceph_msg_remove(msg);
  353. }
  354. }
  355. static void reset_connection(struct ceph_connection *con)
  356. {
  357. /* reset connection, out_queue, msg_ and connect_seq */
  358. /* discard existing out_queue and msg_seq */
  359. ceph_msg_remove_list(&con->out_queue);
  360. ceph_msg_remove_list(&con->out_sent);
  361. if (con->in_msg) {
  362. ceph_msg_put(con->in_msg);
  363. con->in_msg = NULL;
  364. }
  365. con->connect_seq = 0;
  366. con->out_seq = 0;
  367. if (con->out_msg) {
  368. ceph_msg_put(con->out_msg);
  369. con->out_msg = NULL;
  370. }
  371. con->in_seq = 0;
  372. con->in_seq_acked = 0;
  373. }
  374. /*
  375. * mark a peer down. drop any open connections.
  376. */
  377. void ceph_con_close(struct ceph_connection *con)
  378. {
  379. dout("con_close %p peer %s\n", con,
  380. ceph_pr_addr(&con->peer_addr.in_addr));
  381. set_bit(CLOSED, &con->state); /* in case there's queued work */
  382. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  383. clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
  384. clear_bit(KEEPALIVE_PENDING, &con->flags);
  385. clear_bit(WRITE_PENDING, &con->flags);
  386. mutex_lock(&con->mutex);
  387. reset_connection(con);
  388. con->peer_global_seq = 0;
  389. cancel_delayed_work(&con->work);
  390. mutex_unlock(&con->mutex);
  391. queue_con(con);
  392. }
  393. EXPORT_SYMBOL(ceph_con_close);
  394. /*
  395. * Reopen a closed connection, with a new peer address.
  396. */
  397. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  398. {
  399. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  400. set_bit(OPENING, &con->state);
  401. clear_bit(CLOSED, &con->state);
  402. memcpy(&con->peer_addr, addr, sizeof(*addr));
  403. con->delay = 0; /* reset backoff memory */
  404. queue_con(con);
  405. }
  406. EXPORT_SYMBOL(ceph_con_open);
  407. /*
  408. * return true if this connection ever successfully opened
  409. */
  410. bool ceph_con_opened(struct ceph_connection *con)
  411. {
  412. return con->connect_seq > 0;
  413. }
  414. /*
  415. * generic get/put
  416. */
  417. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  418. {
  419. int nref = __atomic_add_unless(&con->nref, 1, 0);
  420. dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
  421. return nref ? con : NULL;
  422. }
  423. void ceph_con_put(struct ceph_connection *con)
  424. {
  425. int nref = atomic_dec_return(&con->nref);
  426. BUG_ON(nref < 0);
  427. if (nref == 0) {
  428. BUG_ON(con->sock);
  429. kfree(con);
  430. }
  431. dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
  432. }
  433. /*
  434. * initialize a new connection.
  435. */
  436. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  437. {
  438. dout("con_init %p\n", con);
  439. memset(con, 0, sizeof(*con));
  440. atomic_set(&con->nref, 1);
  441. con->msgr = msgr;
  442. con_sock_state_init(con);
  443. mutex_init(&con->mutex);
  444. INIT_LIST_HEAD(&con->out_queue);
  445. INIT_LIST_HEAD(&con->out_sent);
  446. INIT_DELAYED_WORK(&con->work, con_work);
  447. }
  448. EXPORT_SYMBOL(ceph_con_init);
  449. /*
  450. * We maintain a global counter to order connection attempts. Get
  451. * a unique seq greater than @gt.
  452. */
  453. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  454. {
  455. u32 ret;
  456. spin_lock(&msgr->global_seq_lock);
  457. if (msgr->global_seq < gt)
  458. msgr->global_seq = gt;
  459. ret = ++msgr->global_seq;
  460. spin_unlock(&msgr->global_seq_lock);
  461. return ret;
  462. }
  463. static void con_out_kvec_reset(struct ceph_connection *con)
  464. {
  465. con->out_kvec_left = 0;
  466. con->out_kvec_bytes = 0;
  467. con->out_kvec_cur = &con->out_kvec[0];
  468. }
  469. static void con_out_kvec_add(struct ceph_connection *con,
  470. size_t size, void *data)
  471. {
  472. int index;
  473. index = con->out_kvec_left;
  474. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  475. con->out_kvec[index].iov_len = size;
  476. con->out_kvec[index].iov_base = data;
  477. con->out_kvec_left++;
  478. con->out_kvec_bytes += size;
  479. }
  480. /*
  481. * Prepare footer for currently outgoing message, and finish things
  482. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  483. */
  484. static void prepare_write_message_footer(struct ceph_connection *con)
  485. {
  486. struct ceph_msg *m = con->out_msg;
  487. int v = con->out_kvec_left;
  488. dout("prepare_write_message_footer %p\n", con);
  489. con->out_kvec_is_msg = true;
  490. con->out_kvec[v].iov_base = &m->footer;
  491. con->out_kvec[v].iov_len = sizeof(m->footer);
  492. con->out_kvec_bytes += sizeof(m->footer);
  493. con->out_kvec_left++;
  494. con->out_more = m->more_to_follow;
  495. con->out_msg_done = true;
  496. }
  497. /*
  498. * Prepare headers for the next outgoing message.
  499. */
  500. static void prepare_write_message(struct ceph_connection *con)
  501. {
  502. struct ceph_msg *m;
  503. u32 crc;
  504. con_out_kvec_reset(con);
  505. con->out_kvec_is_msg = true;
  506. con->out_msg_done = false;
  507. /* Sneak an ack in there first? If we can get it into the same
  508. * TCP packet that's a good thing. */
  509. if (con->in_seq > con->in_seq_acked) {
  510. con->in_seq_acked = con->in_seq;
  511. con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  512. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  513. con_out_kvec_add(con, sizeof (con->out_temp_ack),
  514. &con->out_temp_ack);
  515. }
  516. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  517. con->out_msg = m;
  518. /* put message on sent list */
  519. ceph_msg_get(m);
  520. list_move_tail(&m->list_head, &con->out_sent);
  521. /*
  522. * only assign outgoing seq # if we haven't sent this message
  523. * yet. if it is requeued, resend with it's original seq.
  524. */
  525. if (m->needs_out_seq) {
  526. m->hdr.seq = cpu_to_le64(++con->out_seq);
  527. m->needs_out_seq = false;
  528. }
  529. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  530. m, con->out_seq, le16_to_cpu(m->hdr.type),
  531. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  532. le32_to_cpu(m->hdr.data_len),
  533. m->nr_pages);
  534. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  535. /* tag + hdr + front + middle */
  536. con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  537. con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  538. con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  539. if (m->middle)
  540. con_out_kvec_add(con, m->middle->vec.iov_len,
  541. m->middle->vec.iov_base);
  542. /* fill in crc (except data pages), footer */
  543. crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
  544. con->out_msg->hdr.crc = cpu_to_le32(crc);
  545. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  546. crc = crc32c(0, m->front.iov_base, m->front.iov_len);
  547. con->out_msg->footer.front_crc = cpu_to_le32(crc);
  548. if (m->middle) {
  549. crc = crc32c(0, m->middle->vec.iov_base,
  550. m->middle->vec.iov_len);
  551. con->out_msg->footer.middle_crc = cpu_to_le32(crc);
  552. } else
  553. con->out_msg->footer.middle_crc = 0;
  554. con->out_msg->footer.data_crc = 0;
  555. dout("prepare_write_message front_crc %u data_crc %u\n",
  556. le32_to_cpu(con->out_msg->footer.front_crc),
  557. le32_to_cpu(con->out_msg->footer.middle_crc));
  558. /* is there a data payload? */
  559. if (le32_to_cpu(m->hdr.data_len) > 0) {
  560. /* initialize page iterator */
  561. con->out_msg_pos.page = 0;
  562. if (m->pages)
  563. con->out_msg_pos.page_pos = m->page_alignment;
  564. else
  565. con->out_msg_pos.page_pos = 0;
  566. con->out_msg_pos.data_pos = 0;
  567. con->out_msg_pos.did_page_crc = false;
  568. con->out_more = 1; /* data + footer will follow */
  569. } else {
  570. /* no, queue up footer too and be done */
  571. prepare_write_message_footer(con);
  572. }
  573. set_bit(WRITE_PENDING, &con->flags);
  574. }
  575. /*
  576. * Prepare an ack.
  577. */
  578. static void prepare_write_ack(struct ceph_connection *con)
  579. {
  580. dout("prepare_write_ack %p %llu -> %llu\n", con,
  581. con->in_seq_acked, con->in_seq);
  582. con->in_seq_acked = con->in_seq;
  583. con_out_kvec_reset(con);
  584. con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  585. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  586. con_out_kvec_add(con, sizeof (con->out_temp_ack),
  587. &con->out_temp_ack);
  588. con->out_more = 1; /* more will follow.. eventually.. */
  589. set_bit(WRITE_PENDING, &con->flags);
  590. }
  591. /*
  592. * Prepare to write keepalive byte.
  593. */
  594. static void prepare_write_keepalive(struct ceph_connection *con)
  595. {
  596. dout("prepare_write_keepalive %p\n", con);
  597. con_out_kvec_reset(con);
  598. con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  599. set_bit(WRITE_PENDING, &con->flags);
  600. }
  601. /*
  602. * Connection negotiation.
  603. */
  604. static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
  605. int *auth_proto)
  606. {
  607. struct ceph_auth_handshake *auth;
  608. if (!con->ops->get_authorizer) {
  609. con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
  610. con->out_connect.authorizer_len = 0;
  611. return NULL;
  612. }
  613. /* Can't hold the mutex while getting authorizer */
  614. mutex_unlock(&con->mutex);
  615. auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
  616. mutex_lock(&con->mutex);
  617. if (IS_ERR(auth))
  618. return auth;
  619. if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
  620. return ERR_PTR(-EAGAIN);
  621. con->auth_reply_buf = auth->authorizer_reply_buf;
  622. con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
  623. return auth;
  624. }
  625. /*
  626. * We connected to a peer and are saying hello.
  627. */
  628. static void prepare_write_banner(struct ceph_connection *con)
  629. {
  630. con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  631. con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
  632. &con->msgr->my_enc_addr);
  633. con->out_more = 0;
  634. set_bit(WRITE_PENDING, &con->flags);
  635. }
  636. static int prepare_write_connect(struct ceph_connection *con)
  637. {
  638. unsigned global_seq = get_global_seq(con->msgr, 0);
  639. int proto;
  640. int auth_proto;
  641. struct ceph_auth_handshake *auth;
  642. switch (con->peer_name.type) {
  643. case CEPH_ENTITY_TYPE_MON:
  644. proto = CEPH_MONC_PROTOCOL;
  645. break;
  646. case CEPH_ENTITY_TYPE_OSD:
  647. proto = CEPH_OSDC_PROTOCOL;
  648. break;
  649. case CEPH_ENTITY_TYPE_MDS:
  650. proto = CEPH_MDSC_PROTOCOL;
  651. break;
  652. default:
  653. BUG();
  654. }
  655. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  656. con->connect_seq, global_seq, proto);
  657. con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
  658. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  659. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  660. con->out_connect.global_seq = cpu_to_le32(global_seq);
  661. con->out_connect.protocol_version = cpu_to_le32(proto);
  662. con->out_connect.flags = 0;
  663. auth_proto = CEPH_AUTH_UNKNOWN;
  664. auth = get_connect_authorizer(con, &auth_proto);
  665. if (IS_ERR(auth))
  666. return PTR_ERR(auth);
  667. con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
  668. con->out_connect.authorizer_len = auth ?
  669. cpu_to_le32(auth->authorizer_buf_len) : 0;
  670. con_out_kvec_add(con, sizeof (con->out_connect),
  671. &con->out_connect);
  672. if (auth && auth->authorizer_buf_len)
  673. con_out_kvec_add(con, auth->authorizer_buf_len,
  674. auth->authorizer_buf);
  675. con->out_more = 0;
  676. set_bit(WRITE_PENDING, &con->flags);
  677. return 0;
  678. }
  679. /*
  680. * write as much of pending kvecs to the socket as we can.
  681. * 1 -> done
  682. * 0 -> socket full, but more to do
  683. * <0 -> error
  684. */
  685. static int write_partial_kvec(struct ceph_connection *con)
  686. {
  687. int ret;
  688. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  689. while (con->out_kvec_bytes > 0) {
  690. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  691. con->out_kvec_left, con->out_kvec_bytes,
  692. con->out_more);
  693. if (ret <= 0)
  694. goto out;
  695. con->out_kvec_bytes -= ret;
  696. if (con->out_kvec_bytes == 0)
  697. break; /* done */
  698. /* account for full iov entries consumed */
  699. while (ret >= con->out_kvec_cur->iov_len) {
  700. BUG_ON(!con->out_kvec_left);
  701. ret -= con->out_kvec_cur->iov_len;
  702. con->out_kvec_cur++;
  703. con->out_kvec_left--;
  704. }
  705. /* and for a partially-consumed entry */
  706. if (ret) {
  707. con->out_kvec_cur->iov_len -= ret;
  708. con->out_kvec_cur->iov_base += ret;
  709. }
  710. }
  711. con->out_kvec_left = 0;
  712. con->out_kvec_is_msg = false;
  713. ret = 1;
  714. out:
  715. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  716. con->out_kvec_bytes, con->out_kvec_left, ret);
  717. return ret; /* done! */
  718. }
  719. #ifdef CONFIG_BLOCK
  720. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  721. {
  722. if (!bio) {
  723. *iter = NULL;
  724. *seg = 0;
  725. return;
  726. }
  727. *iter = bio;
  728. *seg = bio->bi_idx;
  729. }
  730. static void iter_bio_next(struct bio **bio_iter, int *seg)
  731. {
  732. if (*bio_iter == NULL)
  733. return;
  734. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  735. (*seg)++;
  736. if (*seg == (*bio_iter)->bi_vcnt)
  737. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  738. }
  739. #endif
  740. /*
  741. * Write as much message data payload as we can. If we finish, queue
  742. * up the footer.
  743. * 1 -> done, footer is now queued in out_kvec[].
  744. * 0 -> socket full, but more to do
  745. * <0 -> error
  746. */
  747. static int write_partial_msg_pages(struct ceph_connection *con)
  748. {
  749. struct ceph_msg *msg = con->out_msg;
  750. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  751. size_t len;
  752. bool do_datacrc = !con->msgr->nocrc;
  753. int ret;
  754. int total_max_write;
  755. int in_trail = 0;
  756. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  757. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  758. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  759. con->out_msg_pos.page_pos);
  760. #ifdef CONFIG_BLOCK
  761. if (msg->bio && !msg->bio_iter)
  762. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  763. #endif
  764. while (data_len > con->out_msg_pos.data_pos) {
  765. struct page *page = NULL;
  766. int max_write = PAGE_SIZE;
  767. int bio_offset = 0;
  768. total_max_write = data_len - trail_len -
  769. con->out_msg_pos.data_pos;
  770. /*
  771. * if we are calculating the data crc (the default), we need
  772. * to map the page. if our pages[] has been revoked, use the
  773. * zero page.
  774. */
  775. /* have we reached the trail part of the data? */
  776. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  777. in_trail = 1;
  778. total_max_write = data_len - con->out_msg_pos.data_pos;
  779. page = list_first_entry(&msg->trail->head,
  780. struct page, lru);
  781. max_write = PAGE_SIZE;
  782. } else if (msg->pages) {
  783. page = msg->pages[con->out_msg_pos.page];
  784. } else if (msg->pagelist) {
  785. page = list_first_entry(&msg->pagelist->head,
  786. struct page, lru);
  787. #ifdef CONFIG_BLOCK
  788. } else if (msg->bio) {
  789. struct bio_vec *bv;
  790. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  791. page = bv->bv_page;
  792. bio_offset = bv->bv_offset;
  793. max_write = bv->bv_len;
  794. #endif
  795. } else {
  796. page = zero_page;
  797. }
  798. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  799. total_max_write);
  800. if (do_datacrc && !con->out_msg_pos.did_page_crc) {
  801. void *base;
  802. u32 crc;
  803. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  804. char *kaddr;
  805. kaddr = kmap(page);
  806. BUG_ON(kaddr == NULL);
  807. base = kaddr + con->out_msg_pos.page_pos + bio_offset;
  808. crc = crc32c(tmpcrc, base, len);
  809. con->out_msg->footer.data_crc = cpu_to_le32(crc);
  810. con->out_msg_pos.did_page_crc = true;
  811. }
  812. ret = ceph_tcp_sendpage(con->sock, page,
  813. con->out_msg_pos.page_pos + bio_offset,
  814. len, 1);
  815. if (do_datacrc)
  816. kunmap(page);
  817. if (ret <= 0)
  818. goto out;
  819. con->out_msg_pos.data_pos += ret;
  820. con->out_msg_pos.page_pos += ret;
  821. if (ret == len) {
  822. con->out_msg_pos.page_pos = 0;
  823. con->out_msg_pos.page++;
  824. con->out_msg_pos.did_page_crc = false;
  825. if (in_trail)
  826. list_move_tail(&page->lru,
  827. &msg->trail->head);
  828. else if (msg->pagelist)
  829. list_move_tail(&page->lru,
  830. &msg->pagelist->head);
  831. #ifdef CONFIG_BLOCK
  832. else if (msg->bio)
  833. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  834. #endif
  835. }
  836. }
  837. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  838. /* prepare and queue up footer, too */
  839. if (!do_datacrc)
  840. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  841. con_out_kvec_reset(con);
  842. prepare_write_message_footer(con);
  843. ret = 1;
  844. out:
  845. return ret;
  846. }
  847. /*
  848. * write some zeros
  849. */
  850. static int write_partial_skip(struct ceph_connection *con)
  851. {
  852. int ret;
  853. while (con->out_skip > 0) {
  854. size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
  855. ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
  856. if (ret <= 0)
  857. goto out;
  858. con->out_skip -= ret;
  859. }
  860. ret = 1;
  861. out:
  862. return ret;
  863. }
  864. /*
  865. * Prepare to read connection handshake, or an ack.
  866. */
  867. static void prepare_read_banner(struct ceph_connection *con)
  868. {
  869. dout("prepare_read_banner %p\n", con);
  870. con->in_base_pos = 0;
  871. }
  872. static void prepare_read_connect(struct ceph_connection *con)
  873. {
  874. dout("prepare_read_connect %p\n", con);
  875. con->in_base_pos = 0;
  876. }
  877. static void prepare_read_ack(struct ceph_connection *con)
  878. {
  879. dout("prepare_read_ack %p\n", con);
  880. con->in_base_pos = 0;
  881. }
  882. static void prepare_read_tag(struct ceph_connection *con)
  883. {
  884. dout("prepare_read_tag %p\n", con);
  885. con->in_base_pos = 0;
  886. con->in_tag = CEPH_MSGR_TAG_READY;
  887. }
  888. /*
  889. * Prepare to read a message.
  890. */
  891. static int prepare_read_message(struct ceph_connection *con)
  892. {
  893. dout("prepare_read_message %p\n", con);
  894. BUG_ON(con->in_msg != NULL);
  895. con->in_base_pos = 0;
  896. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  897. return 0;
  898. }
  899. static int read_partial(struct ceph_connection *con,
  900. int end, int size, void *object)
  901. {
  902. while (con->in_base_pos < end) {
  903. int left = end - con->in_base_pos;
  904. int have = size - left;
  905. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  906. if (ret <= 0)
  907. return ret;
  908. con->in_base_pos += ret;
  909. }
  910. return 1;
  911. }
  912. /*
  913. * Read all or part of the connect-side handshake on a new connection
  914. */
  915. static int read_partial_banner(struct ceph_connection *con)
  916. {
  917. int size;
  918. int end;
  919. int ret;
  920. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  921. /* peer's banner */
  922. size = strlen(CEPH_BANNER);
  923. end = size;
  924. ret = read_partial(con, end, size, con->in_banner);
  925. if (ret <= 0)
  926. goto out;
  927. size = sizeof (con->actual_peer_addr);
  928. end += size;
  929. ret = read_partial(con, end, size, &con->actual_peer_addr);
  930. if (ret <= 0)
  931. goto out;
  932. size = sizeof (con->peer_addr_for_me);
  933. end += size;
  934. ret = read_partial(con, end, size, &con->peer_addr_for_me);
  935. if (ret <= 0)
  936. goto out;
  937. out:
  938. return ret;
  939. }
  940. static int read_partial_connect(struct ceph_connection *con)
  941. {
  942. int size;
  943. int end;
  944. int ret;
  945. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  946. size = sizeof (con->in_reply);
  947. end = size;
  948. ret = read_partial(con, end, size, &con->in_reply);
  949. if (ret <= 0)
  950. goto out;
  951. size = le32_to_cpu(con->in_reply.authorizer_len);
  952. end += size;
  953. ret = read_partial(con, end, size, con->auth_reply_buf);
  954. if (ret <= 0)
  955. goto out;
  956. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  957. con, (int)con->in_reply.tag,
  958. le32_to_cpu(con->in_reply.connect_seq),
  959. le32_to_cpu(con->in_reply.global_seq));
  960. out:
  961. return ret;
  962. }
  963. /*
  964. * Verify the hello banner looks okay.
  965. */
  966. static int verify_hello(struct ceph_connection *con)
  967. {
  968. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  969. pr_err("connect to %s got bad banner\n",
  970. ceph_pr_addr(&con->peer_addr.in_addr));
  971. con->error_msg = "protocol error, bad banner";
  972. return -1;
  973. }
  974. return 0;
  975. }
  976. static bool addr_is_blank(struct sockaddr_storage *ss)
  977. {
  978. switch (ss->ss_family) {
  979. case AF_INET:
  980. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  981. case AF_INET6:
  982. return
  983. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  984. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  985. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  986. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  987. }
  988. return false;
  989. }
  990. static int addr_port(struct sockaddr_storage *ss)
  991. {
  992. switch (ss->ss_family) {
  993. case AF_INET:
  994. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  995. case AF_INET6:
  996. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  997. }
  998. return 0;
  999. }
  1000. static void addr_set_port(struct sockaddr_storage *ss, int p)
  1001. {
  1002. switch (ss->ss_family) {
  1003. case AF_INET:
  1004. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  1005. break;
  1006. case AF_INET6:
  1007. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  1008. break;
  1009. }
  1010. }
  1011. /*
  1012. * Unlike other *_pton function semantics, zero indicates success.
  1013. */
  1014. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  1015. char delim, const char **ipend)
  1016. {
  1017. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  1018. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  1019. memset(ss, 0, sizeof(*ss));
  1020. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  1021. ss->ss_family = AF_INET;
  1022. return 0;
  1023. }
  1024. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  1025. ss->ss_family = AF_INET6;
  1026. return 0;
  1027. }
  1028. return -EINVAL;
  1029. }
  1030. /*
  1031. * Extract hostname string and resolve using kernel DNS facility.
  1032. */
  1033. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  1034. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  1035. struct sockaddr_storage *ss, char delim, const char **ipend)
  1036. {
  1037. const char *end, *delim_p;
  1038. char *colon_p, *ip_addr = NULL;
  1039. int ip_len, ret;
  1040. /*
  1041. * The end of the hostname occurs immediately preceding the delimiter or
  1042. * the port marker (':') where the delimiter takes precedence.
  1043. */
  1044. delim_p = memchr(name, delim, namelen);
  1045. colon_p = memchr(name, ':', namelen);
  1046. if (delim_p && colon_p)
  1047. end = delim_p < colon_p ? delim_p : colon_p;
  1048. else if (!delim_p && colon_p)
  1049. end = colon_p;
  1050. else {
  1051. end = delim_p;
  1052. if (!end) /* case: hostname:/ */
  1053. end = name + namelen;
  1054. }
  1055. if (end <= name)
  1056. return -EINVAL;
  1057. /* do dns_resolve upcall */
  1058. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1059. if (ip_len > 0)
  1060. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1061. else
  1062. ret = -ESRCH;
  1063. kfree(ip_addr);
  1064. *ipend = end;
  1065. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1066. ret, ret ? "failed" : ceph_pr_addr(ss));
  1067. return ret;
  1068. }
  1069. #else
  1070. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1071. struct sockaddr_storage *ss, char delim, const char **ipend)
  1072. {
  1073. return -EINVAL;
  1074. }
  1075. #endif
  1076. /*
  1077. * Parse a server name (IP or hostname). If a valid IP address is not found
  1078. * then try to extract a hostname to resolve using userspace DNS upcall.
  1079. */
  1080. static int ceph_parse_server_name(const char *name, size_t namelen,
  1081. struct sockaddr_storage *ss, char delim, const char **ipend)
  1082. {
  1083. int ret;
  1084. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1085. if (ret)
  1086. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1087. return ret;
  1088. }
  1089. /*
  1090. * Parse an ip[:port] list into an addr array. Use the default
  1091. * monitor port if a port isn't specified.
  1092. */
  1093. int ceph_parse_ips(const char *c, const char *end,
  1094. struct ceph_entity_addr *addr,
  1095. int max_count, int *count)
  1096. {
  1097. int i, ret = -EINVAL;
  1098. const char *p = c;
  1099. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1100. for (i = 0; i < max_count; i++) {
  1101. const char *ipend;
  1102. struct sockaddr_storage *ss = &addr[i].in_addr;
  1103. int port;
  1104. char delim = ',';
  1105. if (*p == '[') {
  1106. delim = ']';
  1107. p++;
  1108. }
  1109. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1110. if (ret)
  1111. goto bad;
  1112. ret = -EINVAL;
  1113. p = ipend;
  1114. if (delim == ']') {
  1115. if (*p != ']') {
  1116. dout("missing matching ']'\n");
  1117. goto bad;
  1118. }
  1119. p++;
  1120. }
  1121. /* port? */
  1122. if (p < end && *p == ':') {
  1123. port = 0;
  1124. p++;
  1125. while (p < end && *p >= '0' && *p <= '9') {
  1126. port = (port * 10) + (*p - '0');
  1127. p++;
  1128. }
  1129. if (port > 65535 || port == 0)
  1130. goto bad;
  1131. } else {
  1132. port = CEPH_MON_PORT;
  1133. }
  1134. addr_set_port(ss, port);
  1135. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1136. if (p == end)
  1137. break;
  1138. if (*p != ',')
  1139. goto bad;
  1140. p++;
  1141. }
  1142. if (p != end)
  1143. goto bad;
  1144. if (count)
  1145. *count = i + 1;
  1146. return 0;
  1147. bad:
  1148. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1149. return ret;
  1150. }
  1151. EXPORT_SYMBOL(ceph_parse_ips);
  1152. static int process_banner(struct ceph_connection *con)
  1153. {
  1154. dout("process_banner on %p\n", con);
  1155. if (verify_hello(con) < 0)
  1156. return -1;
  1157. ceph_decode_addr(&con->actual_peer_addr);
  1158. ceph_decode_addr(&con->peer_addr_for_me);
  1159. /*
  1160. * Make sure the other end is who we wanted. note that the other
  1161. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1162. * them the benefit of the doubt.
  1163. */
  1164. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1165. sizeof(con->peer_addr)) != 0 &&
  1166. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1167. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1168. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1169. ceph_pr_addr(&con->peer_addr.in_addr),
  1170. (int)le32_to_cpu(con->peer_addr.nonce),
  1171. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1172. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1173. con->error_msg = "wrong peer at address";
  1174. return -1;
  1175. }
  1176. /*
  1177. * did we learn our address?
  1178. */
  1179. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1180. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1181. memcpy(&con->msgr->inst.addr.in_addr,
  1182. &con->peer_addr_for_me.in_addr,
  1183. sizeof(con->peer_addr_for_me.in_addr));
  1184. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1185. encode_my_addr(con->msgr);
  1186. dout("process_banner learned my addr is %s\n",
  1187. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1188. }
  1189. set_bit(NEGOTIATING, &con->state);
  1190. prepare_read_connect(con);
  1191. return 0;
  1192. }
  1193. static void fail_protocol(struct ceph_connection *con)
  1194. {
  1195. reset_connection(con);
  1196. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1197. }
  1198. static int process_connect(struct ceph_connection *con)
  1199. {
  1200. u64 sup_feat = con->msgr->supported_features;
  1201. u64 req_feat = con->msgr->required_features;
  1202. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1203. int ret;
  1204. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1205. switch (con->in_reply.tag) {
  1206. case CEPH_MSGR_TAG_FEATURES:
  1207. pr_err("%s%lld %s feature set mismatch,"
  1208. " my %llx < server's %llx, missing %llx\n",
  1209. ENTITY_NAME(con->peer_name),
  1210. ceph_pr_addr(&con->peer_addr.in_addr),
  1211. sup_feat, server_feat, server_feat & ~sup_feat);
  1212. con->error_msg = "missing required protocol features";
  1213. fail_protocol(con);
  1214. return -1;
  1215. case CEPH_MSGR_TAG_BADPROTOVER:
  1216. pr_err("%s%lld %s protocol version mismatch,"
  1217. " my %d != server's %d\n",
  1218. ENTITY_NAME(con->peer_name),
  1219. ceph_pr_addr(&con->peer_addr.in_addr),
  1220. le32_to_cpu(con->out_connect.protocol_version),
  1221. le32_to_cpu(con->in_reply.protocol_version));
  1222. con->error_msg = "protocol version mismatch";
  1223. fail_protocol(con);
  1224. return -1;
  1225. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1226. con->auth_retry++;
  1227. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1228. con->auth_retry);
  1229. if (con->auth_retry == 2) {
  1230. con->error_msg = "connect authorization failure";
  1231. return -1;
  1232. }
  1233. con->auth_retry = 1;
  1234. con_out_kvec_reset(con);
  1235. ret = prepare_write_connect(con);
  1236. if (ret < 0)
  1237. return ret;
  1238. prepare_read_connect(con);
  1239. break;
  1240. case CEPH_MSGR_TAG_RESETSESSION:
  1241. /*
  1242. * If we connected with a large connect_seq but the peer
  1243. * has no record of a session with us (no connection, or
  1244. * connect_seq == 0), they will send RESETSESION to indicate
  1245. * that they must have reset their session, and may have
  1246. * dropped messages.
  1247. */
  1248. dout("process_connect got RESET peer seq %u\n",
  1249. le32_to_cpu(con->in_connect.connect_seq));
  1250. pr_err("%s%lld %s connection reset\n",
  1251. ENTITY_NAME(con->peer_name),
  1252. ceph_pr_addr(&con->peer_addr.in_addr));
  1253. reset_connection(con);
  1254. con_out_kvec_reset(con);
  1255. ret = prepare_write_connect(con);
  1256. if (ret < 0)
  1257. return ret;
  1258. prepare_read_connect(con);
  1259. /* Tell ceph about it. */
  1260. mutex_unlock(&con->mutex);
  1261. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1262. if (con->ops->peer_reset)
  1263. con->ops->peer_reset(con);
  1264. mutex_lock(&con->mutex);
  1265. if (test_bit(CLOSED, &con->state) ||
  1266. test_bit(OPENING, &con->state))
  1267. return -EAGAIN;
  1268. break;
  1269. case CEPH_MSGR_TAG_RETRY_SESSION:
  1270. /*
  1271. * If we sent a smaller connect_seq than the peer has, try
  1272. * again with a larger value.
  1273. */
  1274. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1275. le32_to_cpu(con->out_connect.connect_seq),
  1276. le32_to_cpu(con->in_connect.connect_seq));
  1277. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1278. con_out_kvec_reset(con);
  1279. ret = prepare_write_connect(con);
  1280. if (ret < 0)
  1281. return ret;
  1282. prepare_read_connect(con);
  1283. break;
  1284. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1285. /*
  1286. * If we sent a smaller global_seq than the peer has, try
  1287. * again with a larger value.
  1288. */
  1289. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1290. con->peer_global_seq,
  1291. le32_to_cpu(con->in_connect.global_seq));
  1292. get_global_seq(con->msgr,
  1293. le32_to_cpu(con->in_connect.global_seq));
  1294. con_out_kvec_reset(con);
  1295. ret = prepare_write_connect(con);
  1296. if (ret < 0)
  1297. return ret;
  1298. prepare_read_connect(con);
  1299. break;
  1300. case CEPH_MSGR_TAG_READY:
  1301. if (req_feat & ~server_feat) {
  1302. pr_err("%s%lld %s protocol feature mismatch,"
  1303. " my required %llx > server's %llx, need %llx\n",
  1304. ENTITY_NAME(con->peer_name),
  1305. ceph_pr_addr(&con->peer_addr.in_addr),
  1306. req_feat, server_feat, req_feat & ~server_feat);
  1307. con->error_msg = "missing required protocol features";
  1308. fail_protocol(con);
  1309. return -1;
  1310. }
  1311. clear_bit(CONNECTING, &con->state);
  1312. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1313. con->connect_seq++;
  1314. con->peer_features = server_feat;
  1315. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1316. con->peer_global_seq,
  1317. le32_to_cpu(con->in_reply.connect_seq),
  1318. con->connect_seq);
  1319. WARN_ON(con->connect_seq !=
  1320. le32_to_cpu(con->in_reply.connect_seq));
  1321. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1322. set_bit(LOSSYTX, &con->flags);
  1323. prepare_read_tag(con);
  1324. break;
  1325. case CEPH_MSGR_TAG_WAIT:
  1326. /*
  1327. * If there is a connection race (we are opening
  1328. * connections to each other), one of us may just have
  1329. * to WAIT. This shouldn't happen if we are the
  1330. * client.
  1331. */
  1332. pr_err("process_connect got WAIT as client\n");
  1333. con->error_msg = "protocol error, got WAIT as client";
  1334. return -1;
  1335. default:
  1336. pr_err("connect protocol error, will retry\n");
  1337. con->error_msg = "protocol error, garbage tag during connect";
  1338. return -1;
  1339. }
  1340. return 0;
  1341. }
  1342. /*
  1343. * read (part of) an ack
  1344. */
  1345. static int read_partial_ack(struct ceph_connection *con)
  1346. {
  1347. int size = sizeof (con->in_temp_ack);
  1348. int end = size;
  1349. return read_partial(con, end, size, &con->in_temp_ack);
  1350. }
  1351. /*
  1352. * We can finally discard anything that's been acked.
  1353. */
  1354. static void process_ack(struct ceph_connection *con)
  1355. {
  1356. struct ceph_msg *m;
  1357. u64 ack = le64_to_cpu(con->in_temp_ack);
  1358. u64 seq;
  1359. while (!list_empty(&con->out_sent)) {
  1360. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1361. list_head);
  1362. seq = le64_to_cpu(m->hdr.seq);
  1363. if (seq > ack)
  1364. break;
  1365. dout("got ack for seq %llu type %d at %p\n", seq,
  1366. le16_to_cpu(m->hdr.type), m);
  1367. m->ack_stamp = jiffies;
  1368. ceph_msg_remove(m);
  1369. }
  1370. prepare_read_tag(con);
  1371. }
  1372. static int read_partial_message_section(struct ceph_connection *con,
  1373. struct kvec *section,
  1374. unsigned int sec_len, u32 *crc)
  1375. {
  1376. int ret, left;
  1377. BUG_ON(!section);
  1378. while (section->iov_len < sec_len) {
  1379. BUG_ON(section->iov_base == NULL);
  1380. left = sec_len - section->iov_len;
  1381. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1382. section->iov_len, left);
  1383. if (ret <= 0)
  1384. return ret;
  1385. section->iov_len += ret;
  1386. }
  1387. if (section->iov_len == sec_len)
  1388. *crc = crc32c(0, section->iov_base, section->iov_len);
  1389. return 1;
  1390. }
  1391. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1392. struct ceph_msg_header *hdr,
  1393. int *skip);
  1394. static int read_partial_message_pages(struct ceph_connection *con,
  1395. struct page **pages,
  1396. unsigned data_len, bool do_datacrc)
  1397. {
  1398. void *p;
  1399. int ret;
  1400. int left;
  1401. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1402. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1403. /* (page) data */
  1404. BUG_ON(pages == NULL);
  1405. p = kmap(pages[con->in_msg_pos.page]);
  1406. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1407. left);
  1408. if (ret > 0 && do_datacrc)
  1409. con->in_data_crc =
  1410. crc32c(con->in_data_crc,
  1411. p + con->in_msg_pos.page_pos, ret);
  1412. kunmap(pages[con->in_msg_pos.page]);
  1413. if (ret <= 0)
  1414. return ret;
  1415. con->in_msg_pos.data_pos += ret;
  1416. con->in_msg_pos.page_pos += ret;
  1417. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1418. con->in_msg_pos.page_pos = 0;
  1419. con->in_msg_pos.page++;
  1420. }
  1421. return ret;
  1422. }
  1423. #ifdef CONFIG_BLOCK
  1424. static int read_partial_message_bio(struct ceph_connection *con,
  1425. struct bio **bio_iter, int *bio_seg,
  1426. unsigned data_len, bool do_datacrc)
  1427. {
  1428. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1429. void *p;
  1430. int ret, left;
  1431. if (IS_ERR(bv))
  1432. return PTR_ERR(bv);
  1433. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1434. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1435. p = kmap(bv->bv_page) + bv->bv_offset;
  1436. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1437. left);
  1438. if (ret > 0 && do_datacrc)
  1439. con->in_data_crc =
  1440. crc32c(con->in_data_crc,
  1441. p + con->in_msg_pos.page_pos, ret);
  1442. kunmap(bv->bv_page);
  1443. if (ret <= 0)
  1444. return ret;
  1445. con->in_msg_pos.data_pos += ret;
  1446. con->in_msg_pos.page_pos += ret;
  1447. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1448. con->in_msg_pos.page_pos = 0;
  1449. iter_bio_next(bio_iter, bio_seg);
  1450. }
  1451. return ret;
  1452. }
  1453. #endif
  1454. /*
  1455. * read (part of) a message.
  1456. */
  1457. static int read_partial_message(struct ceph_connection *con)
  1458. {
  1459. struct ceph_msg *m = con->in_msg;
  1460. int size;
  1461. int end;
  1462. int ret;
  1463. unsigned front_len, middle_len, data_len;
  1464. bool do_datacrc = !con->msgr->nocrc;
  1465. int skip;
  1466. u64 seq;
  1467. u32 crc;
  1468. dout("read_partial_message con %p msg %p\n", con, m);
  1469. /* header */
  1470. size = sizeof (con->in_hdr);
  1471. end = size;
  1472. ret = read_partial(con, end, size, &con->in_hdr);
  1473. if (ret <= 0)
  1474. return ret;
  1475. crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
  1476. if (cpu_to_le32(crc) != con->in_hdr.crc) {
  1477. pr_err("read_partial_message bad hdr "
  1478. " crc %u != expected %u\n",
  1479. crc, con->in_hdr.crc);
  1480. return -EBADMSG;
  1481. }
  1482. front_len = le32_to_cpu(con->in_hdr.front_len);
  1483. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1484. return -EIO;
  1485. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1486. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1487. return -EIO;
  1488. data_len = le32_to_cpu(con->in_hdr.data_len);
  1489. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1490. return -EIO;
  1491. /* verify seq# */
  1492. seq = le64_to_cpu(con->in_hdr.seq);
  1493. if ((s64)seq - (s64)con->in_seq < 1) {
  1494. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1495. ENTITY_NAME(con->peer_name),
  1496. ceph_pr_addr(&con->peer_addr.in_addr),
  1497. seq, con->in_seq + 1);
  1498. con->in_base_pos = -front_len - middle_len - data_len -
  1499. sizeof(m->footer);
  1500. con->in_tag = CEPH_MSGR_TAG_READY;
  1501. return 0;
  1502. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1503. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1504. seq, con->in_seq + 1);
  1505. con->error_msg = "bad message sequence # for incoming message";
  1506. return -EBADMSG;
  1507. }
  1508. /* allocate message? */
  1509. if (!con->in_msg) {
  1510. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1511. con->in_hdr.front_len, con->in_hdr.data_len);
  1512. skip = 0;
  1513. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1514. if (skip) {
  1515. /* skip this message */
  1516. dout("alloc_msg said skip message\n");
  1517. BUG_ON(con->in_msg);
  1518. con->in_base_pos = -front_len - middle_len - data_len -
  1519. sizeof(m->footer);
  1520. con->in_tag = CEPH_MSGR_TAG_READY;
  1521. con->in_seq++;
  1522. return 0;
  1523. }
  1524. if (!con->in_msg) {
  1525. con->error_msg =
  1526. "error allocating memory for incoming message";
  1527. return -ENOMEM;
  1528. }
  1529. m = con->in_msg;
  1530. m->front.iov_len = 0; /* haven't read it yet */
  1531. if (m->middle)
  1532. m->middle->vec.iov_len = 0;
  1533. con->in_msg_pos.page = 0;
  1534. if (m->pages)
  1535. con->in_msg_pos.page_pos = m->page_alignment;
  1536. else
  1537. con->in_msg_pos.page_pos = 0;
  1538. con->in_msg_pos.data_pos = 0;
  1539. }
  1540. /* front */
  1541. ret = read_partial_message_section(con, &m->front, front_len,
  1542. &con->in_front_crc);
  1543. if (ret <= 0)
  1544. return ret;
  1545. /* middle */
  1546. if (m->middle) {
  1547. ret = read_partial_message_section(con, &m->middle->vec,
  1548. middle_len,
  1549. &con->in_middle_crc);
  1550. if (ret <= 0)
  1551. return ret;
  1552. }
  1553. #ifdef CONFIG_BLOCK
  1554. if (m->bio && !m->bio_iter)
  1555. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1556. #endif
  1557. /* (page) data */
  1558. while (con->in_msg_pos.data_pos < data_len) {
  1559. if (m->pages) {
  1560. ret = read_partial_message_pages(con, m->pages,
  1561. data_len, do_datacrc);
  1562. if (ret <= 0)
  1563. return ret;
  1564. #ifdef CONFIG_BLOCK
  1565. } else if (m->bio) {
  1566. ret = read_partial_message_bio(con,
  1567. &m->bio_iter, &m->bio_seg,
  1568. data_len, do_datacrc);
  1569. if (ret <= 0)
  1570. return ret;
  1571. #endif
  1572. } else {
  1573. BUG_ON(1);
  1574. }
  1575. }
  1576. /* footer */
  1577. size = sizeof (m->footer);
  1578. end += size;
  1579. ret = read_partial(con, end, size, &m->footer);
  1580. if (ret <= 0)
  1581. return ret;
  1582. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1583. m, front_len, m->footer.front_crc, middle_len,
  1584. m->footer.middle_crc, data_len, m->footer.data_crc);
  1585. /* crc ok? */
  1586. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1587. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1588. m, con->in_front_crc, m->footer.front_crc);
  1589. return -EBADMSG;
  1590. }
  1591. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1592. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1593. m, con->in_middle_crc, m->footer.middle_crc);
  1594. return -EBADMSG;
  1595. }
  1596. if (do_datacrc &&
  1597. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1598. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1599. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1600. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1601. return -EBADMSG;
  1602. }
  1603. return 1; /* done! */
  1604. }
  1605. /*
  1606. * Process message. This happens in the worker thread. The callback should
  1607. * be careful not to do anything that waits on other incoming messages or it
  1608. * may deadlock.
  1609. */
  1610. static void process_message(struct ceph_connection *con)
  1611. {
  1612. struct ceph_msg *msg;
  1613. msg = con->in_msg;
  1614. con->in_msg = NULL;
  1615. /* if first message, set peer_name */
  1616. if (con->peer_name.type == 0)
  1617. con->peer_name = msg->hdr.src;
  1618. con->in_seq++;
  1619. mutex_unlock(&con->mutex);
  1620. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1621. msg, le64_to_cpu(msg->hdr.seq),
  1622. ENTITY_NAME(msg->hdr.src),
  1623. le16_to_cpu(msg->hdr.type),
  1624. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1625. le32_to_cpu(msg->hdr.front_len),
  1626. le32_to_cpu(msg->hdr.data_len),
  1627. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1628. con->ops->dispatch(con, msg);
  1629. mutex_lock(&con->mutex);
  1630. prepare_read_tag(con);
  1631. }
  1632. /*
  1633. * Write something to the socket. Called in a worker thread when the
  1634. * socket appears to be writeable and we have something ready to send.
  1635. */
  1636. static int try_write(struct ceph_connection *con)
  1637. {
  1638. int ret = 1;
  1639. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1640. atomic_read(&con->nref));
  1641. more:
  1642. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1643. /* open the socket first? */
  1644. if (con->sock == NULL) {
  1645. con_out_kvec_reset(con);
  1646. prepare_write_banner(con);
  1647. ret = prepare_write_connect(con);
  1648. if (ret < 0)
  1649. goto out;
  1650. prepare_read_banner(con);
  1651. set_bit(CONNECTING, &con->state);
  1652. clear_bit(NEGOTIATING, &con->state);
  1653. BUG_ON(con->in_msg);
  1654. con->in_tag = CEPH_MSGR_TAG_READY;
  1655. dout("try_write initiating connect on %p new state %lu\n",
  1656. con, con->state);
  1657. ret = ceph_tcp_connect(con);
  1658. if (ret < 0) {
  1659. con->error_msg = "connect error";
  1660. goto out;
  1661. }
  1662. }
  1663. more_kvec:
  1664. /* kvec data queued? */
  1665. if (con->out_skip) {
  1666. ret = write_partial_skip(con);
  1667. if (ret <= 0)
  1668. goto out;
  1669. }
  1670. if (con->out_kvec_left) {
  1671. ret = write_partial_kvec(con);
  1672. if (ret <= 0)
  1673. goto out;
  1674. }
  1675. /* msg pages? */
  1676. if (con->out_msg) {
  1677. if (con->out_msg_done) {
  1678. ceph_msg_put(con->out_msg);
  1679. con->out_msg = NULL; /* we're done with this one */
  1680. goto do_next;
  1681. }
  1682. ret = write_partial_msg_pages(con);
  1683. if (ret == 1)
  1684. goto more_kvec; /* we need to send the footer, too! */
  1685. if (ret == 0)
  1686. goto out;
  1687. if (ret < 0) {
  1688. dout("try_write write_partial_msg_pages err %d\n",
  1689. ret);
  1690. goto out;
  1691. }
  1692. }
  1693. do_next:
  1694. if (!test_bit(CONNECTING, &con->state)) {
  1695. /* is anything else pending? */
  1696. if (!list_empty(&con->out_queue)) {
  1697. prepare_write_message(con);
  1698. goto more;
  1699. }
  1700. if (con->in_seq > con->in_seq_acked) {
  1701. prepare_write_ack(con);
  1702. goto more;
  1703. }
  1704. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
  1705. prepare_write_keepalive(con);
  1706. goto more;
  1707. }
  1708. }
  1709. /* Nothing to do! */
  1710. clear_bit(WRITE_PENDING, &con->flags);
  1711. dout("try_write nothing else to write.\n");
  1712. ret = 0;
  1713. out:
  1714. dout("try_write done on %p ret %d\n", con, ret);
  1715. return ret;
  1716. }
  1717. /*
  1718. * Read what we can from the socket.
  1719. */
  1720. static int try_read(struct ceph_connection *con)
  1721. {
  1722. int ret = -1;
  1723. if (!con->sock)
  1724. return 0;
  1725. if (test_bit(STANDBY, &con->state))
  1726. return 0;
  1727. dout("try_read start on %p\n", con);
  1728. more:
  1729. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1730. con->in_base_pos);
  1731. /*
  1732. * process_connect and process_message drop and re-take
  1733. * con->mutex. make sure we handle a racing close or reopen.
  1734. */
  1735. if (test_bit(CLOSED, &con->state) ||
  1736. test_bit(OPENING, &con->state)) {
  1737. ret = -EAGAIN;
  1738. goto out;
  1739. }
  1740. if (test_bit(CONNECTING, &con->state)) {
  1741. if (!test_bit(NEGOTIATING, &con->state)) {
  1742. dout("try_read connecting\n");
  1743. ret = read_partial_banner(con);
  1744. if (ret <= 0)
  1745. goto out;
  1746. ret = process_banner(con);
  1747. if (ret < 0)
  1748. goto out;
  1749. }
  1750. ret = read_partial_connect(con);
  1751. if (ret <= 0)
  1752. goto out;
  1753. ret = process_connect(con);
  1754. if (ret < 0)
  1755. goto out;
  1756. goto more;
  1757. }
  1758. if (con->in_base_pos < 0) {
  1759. /*
  1760. * skipping + discarding content.
  1761. *
  1762. * FIXME: there must be a better way to do this!
  1763. */
  1764. static char buf[SKIP_BUF_SIZE];
  1765. int skip = min((int) sizeof (buf), -con->in_base_pos);
  1766. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1767. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1768. if (ret <= 0)
  1769. goto out;
  1770. con->in_base_pos += ret;
  1771. if (con->in_base_pos)
  1772. goto more;
  1773. }
  1774. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1775. /*
  1776. * what's next?
  1777. */
  1778. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1779. if (ret <= 0)
  1780. goto out;
  1781. dout("try_read got tag %d\n", (int)con->in_tag);
  1782. switch (con->in_tag) {
  1783. case CEPH_MSGR_TAG_MSG:
  1784. prepare_read_message(con);
  1785. break;
  1786. case CEPH_MSGR_TAG_ACK:
  1787. prepare_read_ack(con);
  1788. break;
  1789. case CEPH_MSGR_TAG_CLOSE:
  1790. set_bit(CLOSED, &con->state); /* fixme */
  1791. goto out;
  1792. default:
  1793. goto bad_tag;
  1794. }
  1795. }
  1796. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1797. ret = read_partial_message(con);
  1798. if (ret <= 0) {
  1799. switch (ret) {
  1800. case -EBADMSG:
  1801. con->error_msg = "bad crc";
  1802. ret = -EIO;
  1803. break;
  1804. case -EIO:
  1805. con->error_msg = "io error";
  1806. break;
  1807. }
  1808. goto out;
  1809. }
  1810. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1811. goto more;
  1812. process_message(con);
  1813. goto more;
  1814. }
  1815. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1816. ret = read_partial_ack(con);
  1817. if (ret <= 0)
  1818. goto out;
  1819. process_ack(con);
  1820. goto more;
  1821. }
  1822. out:
  1823. dout("try_read done on %p ret %d\n", con, ret);
  1824. return ret;
  1825. bad_tag:
  1826. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1827. con->error_msg = "protocol error, garbage tag";
  1828. ret = -1;
  1829. goto out;
  1830. }
  1831. /*
  1832. * Atomically queue work on a connection. Bump @con reference to
  1833. * avoid races with connection teardown.
  1834. */
  1835. static void queue_con(struct ceph_connection *con)
  1836. {
  1837. if (!con->ops->get(con)) {
  1838. dout("queue_con %p ref count 0\n", con);
  1839. return;
  1840. }
  1841. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1842. dout("queue_con %p - already queued\n", con);
  1843. con->ops->put(con);
  1844. } else {
  1845. dout("queue_con %p\n", con);
  1846. }
  1847. }
  1848. /*
  1849. * Do some work on a connection. Drop a connection ref when we're done.
  1850. */
  1851. static void con_work(struct work_struct *work)
  1852. {
  1853. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1854. work.work);
  1855. int ret;
  1856. mutex_lock(&con->mutex);
  1857. restart:
  1858. if (test_and_clear_bit(BACKOFF, &con->flags)) {
  1859. dout("con_work %p backing off\n", con);
  1860. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1861. round_jiffies_relative(con->delay))) {
  1862. dout("con_work %p backoff %lu\n", con, con->delay);
  1863. mutex_unlock(&con->mutex);
  1864. return;
  1865. } else {
  1866. con->ops->put(con);
  1867. dout("con_work %p FAILED to back off %lu\n", con,
  1868. con->delay);
  1869. }
  1870. }
  1871. if (test_bit(STANDBY, &con->state)) {
  1872. dout("con_work %p STANDBY\n", con);
  1873. goto done;
  1874. }
  1875. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1876. dout("con_work CLOSED\n");
  1877. con_close_socket(con);
  1878. goto done;
  1879. }
  1880. if (test_and_clear_bit(OPENING, &con->state)) {
  1881. /* reopen w/ new peer */
  1882. dout("con_work OPENING\n");
  1883. con_close_socket(con);
  1884. }
  1885. if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
  1886. goto fault;
  1887. ret = try_read(con);
  1888. if (ret == -EAGAIN)
  1889. goto restart;
  1890. if (ret < 0)
  1891. goto fault;
  1892. ret = try_write(con);
  1893. if (ret == -EAGAIN)
  1894. goto restart;
  1895. if (ret < 0)
  1896. goto fault;
  1897. done:
  1898. mutex_unlock(&con->mutex);
  1899. done_unlocked:
  1900. con->ops->put(con);
  1901. return;
  1902. fault:
  1903. mutex_unlock(&con->mutex);
  1904. ceph_fault(con); /* error/fault path */
  1905. goto done_unlocked;
  1906. }
  1907. /*
  1908. * Generic error/fault handler. A retry mechanism is used with
  1909. * exponential backoff
  1910. */
  1911. static void ceph_fault(struct ceph_connection *con)
  1912. {
  1913. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1914. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1915. dout("fault %p state %lu to peer %s\n",
  1916. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1917. if (test_bit(LOSSYTX, &con->flags)) {
  1918. dout("fault on LOSSYTX channel\n");
  1919. goto out;
  1920. }
  1921. mutex_lock(&con->mutex);
  1922. if (test_bit(CLOSED, &con->state))
  1923. goto out_unlock;
  1924. con_close_socket(con);
  1925. if (con->in_msg) {
  1926. ceph_msg_put(con->in_msg);
  1927. con->in_msg = NULL;
  1928. }
  1929. /* Requeue anything that hasn't been acked */
  1930. list_splice_init(&con->out_sent, &con->out_queue);
  1931. /* If there are no messages queued or keepalive pending, place
  1932. * the connection in a STANDBY state */
  1933. if (list_empty(&con->out_queue) &&
  1934. !test_bit(KEEPALIVE_PENDING, &con->flags)) {
  1935. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1936. clear_bit(WRITE_PENDING, &con->flags);
  1937. set_bit(STANDBY, &con->state);
  1938. } else {
  1939. /* retry after a delay. */
  1940. if (con->delay == 0)
  1941. con->delay = BASE_DELAY_INTERVAL;
  1942. else if (con->delay < MAX_DELAY_INTERVAL)
  1943. con->delay *= 2;
  1944. con->ops->get(con);
  1945. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1946. round_jiffies_relative(con->delay))) {
  1947. dout("fault queued %p delay %lu\n", con, con->delay);
  1948. } else {
  1949. con->ops->put(con);
  1950. dout("fault failed to queue %p delay %lu, backoff\n",
  1951. con, con->delay);
  1952. /*
  1953. * In many cases we see a socket state change
  1954. * while con_work is running and end up
  1955. * queuing (non-delayed) work, such that we
  1956. * can't backoff with a delay. Set a flag so
  1957. * that when con_work restarts we schedule the
  1958. * delay then.
  1959. */
  1960. set_bit(BACKOFF, &con->flags);
  1961. }
  1962. }
  1963. out_unlock:
  1964. mutex_unlock(&con->mutex);
  1965. out:
  1966. /*
  1967. * in case we faulted due to authentication, invalidate our
  1968. * current tickets so that we can get new ones.
  1969. */
  1970. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1971. dout("calling invalidate_authorizer()\n");
  1972. con->ops->invalidate_authorizer(con);
  1973. }
  1974. if (con->ops->fault)
  1975. con->ops->fault(con);
  1976. }
  1977. /*
  1978. * initialize a new messenger instance
  1979. */
  1980. void ceph_messenger_init(struct ceph_messenger *msgr,
  1981. struct ceph_entity_addr *myaddr,
  1982. u32 supported_features,
  1983. u32 required_features,
  1984. bool nocrc)
  1985. {
  1986. msgr->supported_features = supported_features;
  1987. msgr->required_features = required_features;
  1988. spin_lock_init(&msgr->global_seq_lock);
  1989. if (myaddr)
  1990. msgr->inst.addr = *myaddr;
  1991. /* select a random nonce */
  1992. msgr->inst.addr.type = 0;
  1993. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1994. encode_my_addr(msgr);
  1995. msgr->nocrc = nocrc;
  1996. dout("%s %p\n", __func__, msgr);
  1997. }
  1998. EXPORT_SYMBOL(ceph_messenger_init);
  1999. static void clear_standby(struct ceph_connection *con)
  2000. {
  2001. /* come back from STANDBY? */
  2002. if (test_and_clear_bit(STANDBY, &con->state)) {
  2003. mutex_lock(&con->mutex);
  2004. dout("clear_standby %p and ++connect_seq\n", con);
  2005. con->connect_seq++;
  2006. WARN_ON(test_bit(WRITE_PENDING, &con->flags));
  2007. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
  2008. mutex_unlock(&con->mutex);
  2009. }
  2010. }
  2011. /*
  2012. * Queue up an outgoing message on the given connection.
  2013. */
  2014. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  2015. {
  2016. if (test_bit(CLOSED, &con->state)) {
  2017. dout("con_send %p closed, dropping %p\n", con, msg);
  2018. ceph_msg_put(msg);
  2019. return;
  2020. }
  2021. /* set src+dst */
  2022. msg->hdr.src = con->msgr->inst.name;
  2023. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  2024. msg->needs_out_seq = true;
  2025. /* queue */
  2026. mutex_lock(&con->mutex);
  2027. BUG_ON(!list_empty(&msg->list_head));
  2028. list_add_tail(&msg->list_head, &con->out_queue);
  2029. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  2030. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  2031. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  2032. le32_to_cpu(msg->hdr.front_len),
  2033. le32_to_cpu(msg->hdr.middle_len),
  2034. le32_to_cpu(msg->hdr.data_len));
  2035. mutex_unlock(&con->mutex);
  2036. /* if there wasn't anything waiting to send before, queue
  2037. * new work */
  2038. clear_standby(con);
  2039. if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
  2040. queue_con(con);
  2041. }
  2042. EXPORT_SYMBOL(ceph_con_send);
  2043. /*
  2044. * Revoke a message that was previously queued for send
  2045. */
  2046. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2047. {
  2048. mutex_lock(&con->mutex);
  2049. if (!list_empty(&msg->list_head)) {
  2050. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2051. list_del_init(&msg->list_head);
  2052. ceph_msg_put(msg);
  2053. msg->hdr.seq = 0;
  2054. }
  2055. if (con->out_msg == msg) {
  2056. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2057. con->out_msg = NULL;
  2058. if (con->out_kvec_is_msg) {
  2059. con->out_skip = con->out_kvec_bytes;
  2060. con->out_kvec_is_msg = false;
  2061. }
  2062. ceph_msg_put(msg);
  2063. msg->hdr.seq = 0;
  2064. }
  2065. mutex_unlock(&con->mutex);
  2066. }
  2067. /*
  2068. * Revoke a message that we may be reading data into
  2069. */
  2070. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2071. {
  2072. mutex_lock(&con->mutex);
  2073. if (con->in_msg && con->in_msg == msg) {
  2074. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2075. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2076. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2077. /* skip rest of message */
  2078. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2079. con->in_base_pos = con->in_base_pos -
  2080. sizeof(struct ceph_msg_header) -
  2081. front_len -
  2082. middle_len -
  2083. data_len -
  2084. sizeof(struct ceph_msg_footer);
  2085. ceph_msg_put(con->in_msg);
  2086. con->in_msg = NULL;
  2087. con->in_tag = CEPH_MSGR_TAG_READY;
  2088. con->in_seq++;
  2089. } else {
  2090. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2091. con, con->in_msg, msg);
  2092. }
  2093. mutex_unlock(&con->mutex);
  2094. }
  2095. /*
  2096. * Queue a keepalive byte to ensure the tcp connection is alive.
  2097. */
  2098. void ceph_con_keepalive(struct ceph_connection *con)
  2099. {
  2100. dout("con_keepalive %p\n", con);
  2101. clear_standby(con);
  2102. if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
  2103. test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
  2104. queue_con(con);
  2105. }
  2106. EXPORT_SYMBOL(ceph_con_keepalive);
  2107. /*
  2108. * construct a new message with given type, size
  2109. * the new msg has a ref count of 1.
  2110. */
  2111. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2112. bool can_fail)
  2113. {
  2114. struct ceph_msg *m;
  2115. m = kmalloc(sizeof(*m), flags);
  2116. if (m == NULL)
  2117. goto out;
  2118. kref_init(&m->kref);
  2119. INIT_LIST_HEAD(&m->list_head);
  2120. m->hdr.tid = 0;
  2121. m->hdr.type = cpu_to_le16(type);
  2122. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2123. m->hdr.version = 0;
  2124. m->hdr.front_len = cpu_to_le32(front_len);
  2125. m->hdr.middle_len = 0;
  2126. m->hdr.data_len = 0;
  2127. m->hdr.data_off = 0;
  2128. m->hdr.reserved = 0;
  2129. m->footer.front_crc = 0;
  2130. m->footer.middle_crc = 0;
  2131. m->footer.data_crc = 0;
  2132. m->footer.flags = 0;
  2133. m->front_max = front_len;
  2134. m->front_is_vmalloc = false;
  2135. m->more_to_follow = false;
  2136. m->ack_stamp = 0;
  2137. m->pool = NULL;
  2138. /* middle */
  2139. m->middle = NULL;
  2140. /* data */
  2141. m->nr_pages = 0;
  2142. m->page_alignment = 0;
  2143. m->pages = NULL;
  2144. m->pagelist = NULL;
  2145. m->bio = NULL;
  2146. m->bio_iter = NULL;
  2147. m->bio_seg = 0;
  2148. m->trail = NULL;
  2149. /* front */
  2150. if (front_len) {
  2151. if (front_len > PAGE_CACHE_SIZE) {
  2152. m->front.iov_base = __vmalloc(front_len, flags,
  2153. PAGE_KERNEL);
  2154. m->front_is_vmalloc = true;
  2155. } else {
  2156. m->front.iov_base = kmalloc(front_len, flags);
  2157. }
  2158. if (m->front.iov_base == NULL) {
  2159. dout("ceph_msg_new can't allocate %d bytes\n",
  2160. front_len);
  2161. goto out2;
  2162. }
  2163. } else {
  2164. m->front.iov_base = NULL;
  2165. }
  2166. m->front.iov_len = front_len;
  2167. dout("ceph_msg_new %p front %d\n", m, front_len);
  2168. return m;
  2169. out2:
  2170. ceph_msg_put(m);
  2171. out:
  2172. if (!can_fail) {
  2173. pr_err("msg_new can't create type %d front %d\n", type,
  2174. front_len);
  2175. WARN_ON(1);
  2176. } else {
  2177. dout("msg_new can't create type %d front %d\n", type,
  2178. front_len);
  2179. }
  2180. return NULL;
  2181. }
  2182. EXPORT_SYMBOL(ceph_msg_new);
  2183. /*
  2184. * Allocate "middle" portion of a message, if it is needed and wasn't
  2185. * allocated by alloc_msg. This allows us to read a small fixed-size
  2186. * per-type header in the front and then gracefully fail (i.e.,
  2187. * propagate the error to the caller based on info in the front) when
  2188. * the middle is too large.
  2189. */
  2190. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2191. {
  2192. int type = le16_to_cpu(msg->hdr.type);
  2193. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2194. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2195. ceph_msg_type_name(type), middle_len);
  2196. BUG_ON(!middle_len);
  2197. BUG_ON(msg->middle);
  2198. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2199. if (!msg->middle)
  2200. return -ENOMEM;
  2201. return 0;
  2202. }
  2203. /*
  2204. * Generic message allocator, for incoming messages.
  2205. */
  2206. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2207. struct ceph_msg_header *hdr,
  2208. int *skip)
  2209. {
  2210. int type = le16_to_cpu(hdr->type);
  2211. int front_len = le32_to_cpu(hdr->front_len);
  2212. int middle_len = le32_to_cpu(hdr->middle_len);
  2213. struct ceph_msg *msg = NULL;
  2214. int ret;
  2215. if (con->ops->alloc_msg) {
  2216. mutex_unlock(&con->mutex);
  2217. msg = con->ops->alloc_msg(con, hdr, skip);
  2218. mutex_lock(&con->mutex);
  2219. if (!msg || *skip)
  2220. return NULL;
  2221. }
  2222. if (!msg) {
  2223. *skip = 0;
  2224. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2225. if (!msg) {
  2226. pr_err("unable to allocate msg type %d len %d\n",
  2227. type, front_len);
  2228. return NULL;
  2229. }
  2230. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2231. }
  2232. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2233. if (middle_len && !msg->middle) {
  2234. ret = ceph_alloc_middle(con, msg);
  2235. if (ret < 0) {
  2236. ceph_msg_put(msg);
  2237. return NULL;
  2238. }
  2239. }
  2240. return msg;
  2241. }
  2242. /*
  2243. * Free a generically kmalloc'd message.
  2244. */
  2245. void ceph_msg_kfree(struct ceph_msg *m)
  2246. {
  2247. dout("msg_kfree %p\n", m);
  2248. if (m->front_is_vmalloc)
  2249. vfree(m->front.iov_base);
  2250. else
  2251. kfree(m->front.iov_base);
  2252. kfree(m);
  2253. }
  2254. /*
  2255. * Drop a msg ref. Destroy as needed.
  2256. */
  2257. void ceph_msg_last_put(struct kref *kref)
  2258. {
  2259. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2260. dout("ceph_msg_put last one on %p\n", m);
  2261. WARN_ON(!list_empty(&m->list_head));
  2262. /* drop middle, data, if any */
  2263. if (m->middle) {
  2264. ceph_buffer_put(m->middle);
  2265. m->middle = NULL;
  2266. }
  2267. m->nr_pages = 0;
  2268. m->pages = NULL;
  2269. if (m->pagelist) {
  2270. ceph_pagelist_release(m->pagelist);
  2271. kfree(m->pagelist);
  2272. m->pagelist = NULL;
  2273. }
  2274. m->trail = NULL;
  2275. if (m->pool)
  2276. ceph_msgpool_put(m->pool, m);
  2277. else
  2278. ceph_msg_kfree(m);
  2279. }
  2280. EXPORT_SYMBOL(ceph_msg_last_put);
  2281. void ceph_msg_dump(struct ceph_msg *msg)
  2282. {
  2283. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2284. msg->front_max, msg->nr_pages);
  2285. print_hex_dump(KERN_DEBUG, "header: ",
  2286. DUMP_PREFIX_OFFSET, 16, 1,
  2287. &msg->hdr, sizeof(msg->hdr), true);
  2288. print_hex_dump(KERN_DEBUG, " front: ",
  2289. DUMP_PREFIX_OFFSET, 16, 1,
  2290. msg->front.iov_base, msg->front.iov_len, true);
  2291. if (msg->middle)
  2292. print_hex_dump(KERN_DEBUG, "middle: ",
  2293. DUMP_PREFIX_OFFSET, 16, 1,
  2294. msg->middle->vec.iov_base,
  2295. msg->middle->vec.iov_len, true);
  2296. print_hex_dump(KERN_DEBUG, "footer: ",
  2297. DUMP_PREFIX_OFFSET, 16, 1,
  2298. &msg->footer, sizeof(msg->footer), true);
  2299. }
  2300. EXPORT_SYMBOL(ceph_msg_dump);