rmap.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->mutex
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. struct anon_vma *anon_vma;
  64. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. if (anon_vma) {
  66. atomic_set(&anon_vma->refcount, 1);
  67. /*
  68. * Initialise the anon_vma root to point to itself. If called
  69. * from fork, the root will be reset to the parents anon_vma.
  70. */
  71. anon_vma->root = anon_vma;
  72. }
  73. return anon_vma;
  74. }
  75. static inline void anon_vma_free(struct anon_vma *anon_vma)
  76. {
  77. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  78. /*
  79. * Synchronize against page_lock_anon_vma() such that
  80. * we can safely hold the lock without the anon_vma getting
  81. * freed.
  82. *
  83. * Relies on the full mb implied by the atomic_dec_and_test() from
  84. * put_anon_vma() against the acquire barrier implied by
  85. * mutex_trylock() from page_lock_anon_vma(). This orders:
  86. *
  87. * page_lock_anon_vma() VS put_anon_vma()
  88. * mutex_trylock() atomic_dec_and_test()
  89. * LOCK MB
  90. * atomic_read() mutex_is_locked()
  91. *
  92. * LOCK should suffice since the actual taking of the lock must
  93. * happen _before_ what follows.
  94. */
  95. if (mutex_is_locked(&anon_vma->root->mutex)) {
  96. anon_vma_lock(anon_vma);
  97. anon_vma_unlock(anon_vma);
  98. }
  99. kmem_cache_free(anon_vma_cachep, anon_vma);
  100. }
  101. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  102. {
  103. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  104. }
  105. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  106. {
  107. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  108. }
  109. /**
  110. * anon_vma_prepare - attach an anon_vma to a memory region
  111. * @vma: the memory region in question
  112. *
  113. * This makes sure the memory mapping described by 'vma' has
  114. * an 'anon_vma' attached to it, so that we can associate the
  115. * anonymous pages mapped into it with that anon_vma.
  116. *
  117. * The common case will be that we already have one, but if
  118. * not we either need to find an adjacent mapping that we
  119. * can re-use the anon_vma from (very common when the only
  120. * reason for splitting a vma has been mprotect()), or we
  121. * allocate a new one.
  122. *
  123. * Anon-vma allocations are very subtle, because we may have
  124. * optimistically looked up an anon_vma in page_lock_anon_vma()
  125. * and that may actually touch the spinlock even in the newly
  126. * allocated vma (it depends on RCU to make sure that the
  127. * anon_vma isn't actually destroyed).
  128. *
  129. * As a result, we need to do proper anon_vma locking even
  130. * for the new allocation. At the same time, we do not want
  131. * to do any locking for the common case of already having
  132. * an anon_vma.
  133. *
  134. * This must be called with the mmap_sem held for reading.
  135. */
  136. int anon_vma_prepare(struct vm_area_struct *vma)
  137. {
  138. struct anon_vma *anon_vma = vma->anon_vma;
  139. struct anon_vma_chain *avc;
  140. might_sleep();
  141. if (unlikely(!anon_vma)) {
  142. struct mm_struct *mm = vma->vm_mm;
  143. struct anon_vma *allocated;
  144. avc = anon_vma_chain_alloc(GFP_KERNEL);
  145. if (!avc)
  146. goto out_enomem;
  147. anon_vma = find_mergeable_anon_vma(vma);
  148. allocated = NULL;
  149. if (!anon_vma) {
  150. anon_vma = anon_vma_alloc();
  151. if (unlikely(!anon_vma))
  152. goto out_enomem_free_avc;
  153. allocated = anon_vma;
  154. }
  155. anon_vma_lock(anon_vma);
  156. /* page_table_lock to protect against threads */
  157. spin_lock(&mm->page_table_lock);
  158. if (likely(!vma->anon_vma)) {
  159. vma->anon_vma = anon_vma;
  160. avc->anon_vma = anon_vma;
  161. avc->vma = vma;
  162. list_add(&avc->same_vma, &vma->anon_vma_chain);
  163. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  164. allocated = NULL;
  165. avc = NULL;
  166. }
  167. spin_unlock(&mm->page_table_lock);
  168. anon_vma_unlock(anon_vma);
  169. if (unlikely(allocated))
  170. put_anon_vma(allocated);
  171. if (unlikely(avc))
  172. anon_vma_chain_free(avc);
  173. }
  174. return 0;
  175. out_enomem_free_avc:
  176. anon_vma_chain_free(avc);
  177. out_enomem:
  178. return -ENOMEM;
  179. }
  180. /*
  181. * This is a useful helper function for locking the anon_vma root as
  182. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  183. * have the same vma.
  184. *
  185. * Such anon_vma's should have the same root, so you'd expect to see
  186. * just a single mutex_lock for the whole traversal.
  187. */
  188. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  189. {
  190. struct anon_vma *new_root = anon_vma->root;
  191. if (new_root != root) {
  192. if (WARN_ON_ONCE(root))
  193. mutex_unlock(&root->mutex);
  194. root = new_root;
  195. mutex_lock(&root->mutex);
  196. }
  197. return root;
  198. }
  199. static inline void unlock_anon_vma_root(struct anon_vma *root)
  200. {
  201. if (root)
  202. mutex_unlock(&root->mutex);
  203. }
  204. static void anon_vma_chain_link(struct vm_area_struct *vma,
  205. struct anon_vma_chain *avc,
  206. struct anon_vma *anon_vma)
  207. {
  208. avc->vma = vma;
  209. avc->anon_vma = anon_vma;
  210. list_add(&avc->same_vma, &vma->anon_vma_chain);
  211. /*
  212. * It's critical to add new vmas to the tail of the anon_vma,
  213. * see comment in huge_memory.c:__split_huge_page().
  214. */
  215. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  216. }
  217. /*
  218. * Attach the anon_vmas from src to dst.
  219. * Returns 0 on success, -ENOMEM on failure.
  220. */
  221. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  222. {
  223. struct anon_vma_chain *avc, *pavc;
  224. struct anon_vma *root = NULL;
  225. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  226. struct anon_vma *anon_vma;
  227. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  228. if (unlikely(!avc)) {
  229. unlock_anon_vma_root(root);
  230. root = NULL;
  231. avc = anon_vma_chain_alloc(GFP_KERNEL);
  232. if (!avc)
  233. goto enomem_failure;
  234. }
  235. anon_vma = pavc->anon_vma;
  236. root = lock_anon_vma_root(root, anon_vma);
  237. anon_vma_chain_link(dst, avc, anon_vma);
  238. }
  239. unlock_anon_vma_root(root);
  240. return 0;
  241. enomem_failure:
  242. unlink_anon_vmas(dst);
  243. return -ENOMEM;
  244. }
  245. /*
  246. * Some rmap walk that needs to find all ptes/hugepmds without false
  247. * negatives (like migrate and split_huge_page) running concurrent
  248. * with operations that copy or move pagetables (like mremap() and
  249. * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
  250. * list to be in a certain order: the dst_vma must be placed after the
  251. * src_vma in the list. This is always guaranteed by fork() but
  252. * mremap() needs to call this function to enforce it in case the
  253. * dst_vma isn't newly allocated and chained with the anon_vma_clone()
  254. * function but just an extension of a pre-existing vma through
  255. * vma_merge.
  256. *
  257. * NOTE: the same_anon_vma list can still be changed by other
  258. * processes while mremap runs because mremap doesn't hold the
  259. * anon_vma mutex to prevent modifications to the list while it
  260. * runs. All we need to enforce is that the relative order of this
  261. * process vmas isn't changing (we don't care about other vmas
  262. * order). Each vma corresponds to an anon_vma_chain structure so
  263. * there's no risk that other processes calling anon_vma_moveto_tail()
  264. * and changing the same_anon_vma list under mremap() will screw with
  265. * the relative order of this process vmas in the list, because we
  266. * they can't alter the order of any vma that belongs to this
  267. * process. And there can't be another anon_vma_moveto_tail() running
  268. * concurrently with mremap() coming from this process because we hold
  269. * the mmap_sem for the whole mremap(). fork() ordering dependency
  270. * also shouldn't be affected because fork() only cares that the
  271. * parent vmas are placed in the list before the child vmas and
  272. * anon_vma_moveto_tail() won't reorder vmas from either the fork()
  273. * parent or child.
  274. */
  275. void anon_vma_moveto_tail(struct vm_area_struct *dst)
  276. {
  277. struct anon_vma_chain *pavc;
  278. struct anon_vma *root = NULL;
  279. list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
  280. struct anon_vma *anon_vma = pavc->anon_vma;
  281. VM_BUG_ON(pavc->vma != dst);
  282. root = lock_anon_vma_root(root, anon_vma);
  283. list_del(&pavc->same_anon_vma);
  284. list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
  285. }
  286. unlock_anon_vma_root(root);
  287. }
  288. /*
  289. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  290. * the corresponding VMA in the parent process is attached to.
  291. * Returns 0 on success, non-zero on failure.
  292. */
  293. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  294. {
  295. struct anon_vma_chain *avc;
  296. struct anon_vma *anon_vma;
  297. /* Don't bother if the parent process has no anon_vma here. */
  298. if (!pvma->anon_vma)
  299. return 0;
  300. /*
  301. * First, attach the new VMA to the parent VMA's anon_vmas,
  302. * so rmap can find non-COWed pages in child processes.
  303. */
  304. if (anon_vma_clone(vma, pvma))
  305. return -ENOMEM;
  306. /* Then add our own anon_vma. */
  307. anon_vma = anon_vma_alloc();
  308. if (!anon_vma)
  309. goto out_error;
  310. avc = anon_vma_chain_alloc(GFP_KERNEL);
  311. if (!avc)
  312. goto out_error_free_anon_vma;
  313. /*
  314. * The root anon_vma's spinlock is the lock actually used when we
  315. * lock any of the anon_vmas in this anon_vma tree.
  316. */
  317. anon_vma->root = pvma->anon_vma->root;
  318. /*
  319. * With refcounts, an anon_vma can stay around longer than the
  320. * process it belongs to. The root anon_vma needs to be pinned until
  321. * this anon_vma is freed, because the lock lives in the root.
  322. */
  323. get_anon_vma(anon_vma->root);
  324. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  325. vma->anon_vma = anon_vma;
  326. anon_vma_lock(anon_vma);
  327. anon_vma_chain_link(vma, avc, anon_vma);
  328. anon_vma_unlock(anon_vma);
  329. return 0;
  330. out_error_free_anon_vma:
  331. put_anon_vma(anon_vma);
  332. out_error:
  333. unlink_anon_vmas(vma);
  334. return -ENOMEM;
  335. }
  336. void unlink_anon_vmas(struct vm_area_struct *vma)
  337. {
  338. struct anon_vma_chain *avc, *next;
  339. struct anon_vma *root = NULL;
  340. /*
  341. * Unlink each anon_vma chained to the VMA. This list is ordered
  342. * from newest to oldest, ensuring the root anon_vma gets freed last.
  343. */
  344. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  345. struct anon_vma *anon_vma = avc->anon_vma;
  346. root = lock_anon_vma_root(root, anon_vma);
  347. list_del(&avc->same_anon_vma);
  348. /*
  349. * Leave empty anon_vmas on the list - we'll need
  350. * to free them outside the lock.
  351. */
  352. if (list_empty(&anon_vma->head))
  353. continue;
  354. list_del(&avc->same_vma);
  355. anon_vma_chain_free(avc);
  356. }
  357. unlock_anon_vma_root(root);
  358. /*
  359. * Iterate the list once more, it now only contains empty and unlinked
  360. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  361. * needing to acquire the anon_vma->root->mutex.
  362. */
  363. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  364. struct anon_vma *anon_vma = avc->anon_vma;
  365. put_anon_vma(anon_vma);
  366. list_del(&avc->same_vma);
  367. anon_vma_chain_free(avc);
  368. }
  369. }
  370. static void anon_vma_ctor(void *data)
  371. {
  372. struct anon_vma *anon_vma = data;
  373. mutex_init(&anon_vma->mutex);
  374. atomic_set(&anon_vma->refcount, 0);
  375. INIT_LIST_HEAD(&anon_vma->head);
  376. }
  377. void __init anon_vma_init(void)
  378. {
  379. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  380. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  381. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  382. }
  383. /*
  384. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  385. *
  386. * Since there is no serialization what so ever against page_remove_rmap()
  387. * the best this function can do is return a locked anon_vma that might
  388. * have been relevant to this page.
  389. *
  390. * The page might have been remapped to a different anon_vma or the anon_vma
  391. * returned may already be freed (and even reused).
  392. *
  393. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  394. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  395. * ensure that any anon_vma obtained from the page will still be valid for as
  396. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  397. *
  398. * All users of this function must be very careful when walking the anon_vma
  399. * chain and verify that the page in question is indeed mapped in it
  400. * [ something equivalent to page_mapped_in_vma() ].
  401. *
  402. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  403. * that the anon_vma pointer from page->mapping is valid if there is a
  404. * mapcount, we can dereference the anon_vma after observing those.
  405. */
  406. struct anon_vma *page_get_anon_vma(struct page *page)
  407. {
  408. struct anon_vma *anon_vma = NULL;
  409. unsigned long anon_mapping;
  410. rcu_read_lock();
  411. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  412. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  413. goto out;
  414. if (!page_mapped(page))
  415. goto out;
  416. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  417. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  418. anon_vma = NULL;
  419. goto out;
  420. }
  421. /*
  422. * If this page is still mapped, then its anon_vma cannot have been
  423. * freed. But if it has been unmapped, we have no security against the
  424. * anon_vma structure being freed and reused (for another anon_vma:
  425. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  426. * above cannot corrupt).
  427. */
  428. if (!page_mapped(page)) {
  429. put_anon_vma(anon_vma);
  430. anon_vma = NULL;
  431. }
  432. out:
  433. rcu_read_unlock();
  434. return anon_vma;
  435. }
  436. /*
  437. * Similar to page_get_anon_vma() except it locks the anon_vma.
  438. *
  439. * Its a little more complex as it tries to keep the fast path to a single
  440. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  441. * reference like with page_get_anon_vma() and then block on the mutex.
  442. */
  443. struct anon_vma *page_lock_anon_vma(struct page *page)
  444. {
  445. struct anon_vma *anon_vma = NULL;
  446. struct anon_vma *root_anon_vma;
  447. unsigned long anon_mapping;
  448. rcu_read_lock();
  449. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  450. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  451. goto out;
  452. if (!page_mapped(page))
  453. goto out;
  454. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  455. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  456. if (mutex_trylock(&root_anon_vma->mutex)) {
  457. /*
  458. * If the page is still mapped, then this anon_vma is still
  459. * its anon_vma, and holding the mutex ensures that it will
  460. * not go away, see anon_vma_free().
  461. */
  462. if (!page_mapped(page)) {
  463. mutex_unlock(&root_anon_vma->mutex);
  464. anon_vma = NULL;
  465. }
  466. goto out;
  467. }
  468. /* trylock failed, we got to sleep */
  469. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  470. anon_vma = NULL;
  471. goto out;
  472. }
  473. if (!page_mapped(page)) {
  474. put_anon_vma(anon_vma);
  475. anon_vma = NULL;
  476. goto out;
  477. }
  478. /* we pinned the anon_vma, its safe to sleep */
  479. rcu_read_unlock();
  480. anon_vma_lock(anon_vma);
  481. if (atomic_dec_and_test(&anon_vma->refcount)) {
  482. /*
  483. * Oops, we held the last refcount, release the lock
  484. * and bail -- can't simply use put_anon_vma() because
  485. * we'll deadlock on the anon_vma_lock() recursion.
  486. */
  487. anon_vma_unlock(anon_vma);
  488. __put_anon_vma(anon_vma);
  489. anon_vma = NULL;
  490. }
  491. return anon_vma;
  492. out:
  493. rcu_read_unlock();
  494. return anon_vma;
  495. }
  496. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  497. {
  498. anon_vma_unlock(anon_vma);
  499. }
  500. /*
  501. * At what user virtual address is page expected in @vma?
  502. * Returns virtual address or -EFAULT if page's index/offset is not
  503. * within the range mapped the @vma.
  504. */
  505. inline unsigned long
  506. vma_address(struct page *page, struct vm_area_struct *vma)
  507. {
  508. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  509. unsigned long address;
  510. if (unlikely(is_vm_hugetlb_page(vma)))
  511. pgoff = page->index << huge_page_order(page_hstate(page));
  512. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  513. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  514. /* page should be within @vma mapping range */
  515. return -EFAULT;
  516. }
  517. return address;
  518. }
  519. /*
  520. * At what user virtual address is page expected in vma?
  521. * Caller should check the page is actually part of the vma.
  522. */
  523. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  524. {
  525. if (PageAnon(page)) {
  526. struct anon_vma *page__anon_vma = page_anon_vma(page);
  527. /*
  528. * Note: swapoff's unuse_vma() is more efficient with this
  529. * check, and needs it to match anon_vma when KSM is active.
  530. */
  531. if (!vma->anon_vma || !page__anon_vma ||
  532. vma->anon_vma->root != page__anon_vma->root)
  533. return -EFAULT;
  534. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  535. if (!vma->vm_file ||
  536. vma->vm_file->f_mapping != page->mapping)
  537. return -EFAULT;
  538. } else
  539. return -EFAULT;
  540. return vma_address(page, vma);
  541. }
  542. /*
  543. * Check that @page is mapped at @address into @mm.
  544. *
  545. * If @sync is false, page_check_address may perform a racy check to avoid
  546. * the page table lock when the pte is not present (helpful when reclaiming
  547. * highly shared pages).
  548. *
  549. * On success returns with pte mapped and locked.
  550. */
  551. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  552. unsigned long address, spinlock_t **ptlp, int sync)
  553. {
  554. pgd_t *pgd;
  555. pud_t *pud;
  556. pmd_t *pmd;
  557. pte_t *pte;
  558. spinlock_t *ptl;
  559. if (unlikely(PageHuge(page))) {
  560. pte = huge_pte_offset(mm, address);
  561. ptl = &mm->page_table_lock;
  562. goto check;
  563. }
  564. pgd = pgd_offset(mm, address);
  565. if (!pgd_present(*pgd))
  566. return NULL;
  567. pud = pud_offset(pgd, address);
  568. if (!pud_present(*pud))
  569. return NULL;
  570. pmd = pmd_offset(pud, address);
  571. if (!pmd_present(*pmd))
  572. return NULL;
  573. if (pmd_trans_huge(*pmd))
  574. return NULL;
  575. pte = pte_offset_map(pmd, address);
  576. /* Make a quick check before getting the lock */
  577. if (!sync && !pte_present(*pte)) {
  578. pte_unmap(pte);
  579. return NULL;
  580. }
  581. ptl = pte_lockptr(mm, pmd);
  582. check:
  583. spin_lock(ptl);
  584. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  585. *ptlp = ptl;
  586. return pte;
  587. }
  588. pte_unmap_unlock(pte, ptl);
  589. return NULL;
  590. }
  591. /**
  592. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  593. * @page: the page to test
  594. * @vma: the VMA to test
  595. *
  596. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  597. * if the page is not mapped into the page tables of this VMA. Only
  598. * valid for normal file or anonymous VMAs.
  599. */
  600. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  601. {
  602. unsigned long address;
  603. pte_t *pte;
  604. spinlock_t *ptl;
  605. address = vma_address(page, vma);
  606. if (address == -EFAULT) /* out of vma range */
  607. return 0;
  608. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  609. if (!pte) /* the page is not in this mm */
  610. return 0;
  611. pte_unmap_unlock(pte, ptl);
  612. return 1;
  613. }
  614. /*
  615. * Subfunctions of page_referenced: page_referenced_one called
  616. * repeatedly from either page_referenced_anon or page_referenced_file.
  617. */
  618. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  619. unsigned long address, unsigned int *mapcount,
  620. unsigned long *vm_flags)
  621. {
  622. struct mm_struct *mm = vma->vm_mm;
  623. int referenced = 0;
  624. if (unlikely(PageTransHuge(page))) {
  625. pmd_t *pmd;
  626. spin_lock(&mm->page_table_lock);
  627. /*
  628. * rmap might return false positives; we must filter
  629. * these out using page_check_address_pmd().
  630. */
  631. pmd = page_check_address_pmd(page, mm, address,
  632. PAGE_CHECK_ADDRESS_PMD_FLAG);
  633. if (!pmd) {
  634. spin_unlock(&mm->page_table_lock);
  635. goto out;
  636. }
  637. if (vma->vm_flags & VM_LOCKED) {
  638. spin_unlock(&mm->page_table_lock);
  639. *mapcount = 0; /* break early from loop */
  640. *vm_flags |= VM_LOCKED;
  641. goto out;
  642. }
  643. /* go ahead even if the pmd is pmd_trans_splitting() */
  644. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  645. referenced++;
  646. spin_unlock(&mm->page_table_lock);
  647. } else {
  648. pte_t *pte;
  649. spinlock_t *ptl;
  650. /*
  651. * rmap might return false positives; we must filter
  652. * these out using page_check_address().
  653. */
  654. pte = page_check_address(page, mm, address, &ptl, 0);
  655. if (!pte)
  656. goto out;
  657. if (vma->vm_flags & VM_LOCKED) {
  658. pte_unmap_unlock(pte, ptl);
  659. *mapcount = 0; /* break early from loop */
  660. *vm_flags |= VM_LOCKED;
  661. goto out;
  662. }
  663. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  664. /*
  665. * Don't treat a reference through a sequentially read
  666. * mapping as such. If the page has been used in
  667. * another mapping, we will catch it; if this other
  668. * mapping is already gone, the unmap path will have
  669. * set PG_referenced or activated the page.
  670. */
  671. if (likely(!VM_SequentialReadHint(vma)))
  672. referenced++;
  673. }
  674. pte_unmap_unlock(pte, ptl);
  675. }
  676. /* Pretend the page is referenced if the task has the
  677. swap token and is in the middle of a page fault. */
  678. if (mm != current->mm && has_swap_token(mm) &&
  679. rwsem_is_locked(&mm->mmap_sem))
  680. referenced++;
  681. (*mapcount)--;
  682. if (referenced)
  683. *vm_flags |= vma->vm_flags;
  684. out:
  685. return referenced;
  686. }
  687. static int page_referenced_anon(struct page *page,
  688. struct mem_cgroup *memcg,
  689. unsigned long *vm_flags)
  690. {
  691. unsigned int mapcount;
  692. struct anon_vma *anon_vma;
  693. struct anon_vma_chain *avc;
  694. int referenced = 0;
  695. anon_vma = page_lock_anon_vma(page);
  696. if (!anon_vma)
  697. return referenced;
  698. mapcount = page_mapcount(page);
  699. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  700. struct vm_area_struct *vma = avc->vma;
  701. unsigned long address = vma_address(page, vma);
  702. if (address == -EFAULT)
  703. continue;
  704. /*
  705. * If we are reclaiming on behalf of a cgroup, skip
  706. * counting on behalf of references from different
  707. * cgroups
  708. */
  709. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  710. continue;
  711. referenced += page_referenced_one(page, vma, address,
  712. &mapcount, vm_flags);
  713. if (!mapcount)
  714. break;
  715. }
  716. page_unlock_anon_vma(anon_vma);
  717. return referenced;
  718. }
  719. /**
  720. * page_referenced_file - referenced check for object-based rmap
  721. * @page: the page we're checking references on.
  722. * @memcg: target memory control group
  723. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  724. *
  725. * For an object-based mapped page, find all the places it is mapped and
  726. * check/clear the referenced flag. This is done by following the page->mapping
  727. * pointer, then walking the chain of vmas it holds. It returns the number
  728. * of references it found.
  729. *
  730. * This function is only called from page_referenced for object-based pages.
  731. */
  732. static int page_referenced_file(struct page *page,
  733. struct mem_cgroup *memcg,
  734. unsigned long *vm_flags)
  735. {
  736. unsigned int mapcount;
  737. struct address_space *mapping = page->mapping;
  738. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  739. struct vm_area_struct *vma;
  740. struct prio_tree_iter iter;
  741. int referenced = 0;
  742. /*
  743. * The caller's checks on page->mapping and !PageAnon have made
  744. * sure that this is a file page: the check for page->mapping
  745. * excludes the case just before it gets set on an anon page.
  746. */
  747. BUG_ON(PageAnon(page));
  748. /*
  749. * The page lock not only makes sure that page->mapping cannot
  750. * suddenly be NULLified by truncation, it makes sure that the
  751. * structure at mapping cannot be freed and reused yet,
  752. * so we can safely take mapping->i_mmap_mutex.
  753. */
  754. BUG_ON(!PageLocked(page));
  755. mutex_lock(&mapping->i_mmap_mutex);
  756. /*
  757. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  758. * is more likely to be accurate if we note it after spinning.
  759. */
  760. mapcount = page_mapcount(page);
  761. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  762. unsigned long address = vma_address(page, vma);
  763. if (address == -EFAULT)
  764. continue;
  765. /*
  766. * If we are reclaiming on behalf of a cgroup, skip
  767. * counting on behalf of references from different
  768. * cgroups
  769. */
  770. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  771. continue;
  772. referenced += page_referenced_one(page, vma, address,
  773. &mapcount, vm_flags);
  774. if (!mapcount)
  775. break;
  776. }
  777. mutex_unlock(&mapping->i_mmap_mutex);
  778. return referenced;
  779. }
  780. /**
  781. * page_referenced - test if the page was referenced
  782. * @page: the page to test
  783. * @is_locked: caller holds lock on the page
  784. * @memcg: target memory cgroup
  785. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  786. *
  787. * Quick test_and_clear_referenced for all mappings to a page,
  788. * returns the number of ptes which referenced the page.
  789. */
  790. int page_referenced(struct page *page,
  791. int is_locked,
  792. struct mem_cgroup *memcg,
  793. unsigned long *vm_flags)
  794. {
  795. int referenced = 0;
  796. int we_locked = 0;
  797. *vm_flags = 0;
  798. if (page_mapped(page) && page_rmapping(page)) {
  799. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  800. we_locked = trylock_page(page);
  801. if (!we_locked) {
  802. referenced++;
  803. goto out;
  804. }
  805. }
  806. if (unlikely(PageKsm(page)))
  807. referenced += page_referenced_ksm(page, memcg,
  808. vm_flags);
  809. else if (PageAnon(page))
  810. referenced += page_referenced_anon(page, memcg,
  811. vm_flags);
  812. else if (page->mapping)
  813. referenced += page_referenced_file(page, memcg,
  814. vm_flags);
  815. if (we_locked)
  816. unlock_page(page);
  817. if (page_test_and_clear_young(page_to_pfn(page)))
  818. referenced++;
  819. }
  820. out:
  821. return referenced;
  822. }
  823. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  824. unsigned long address)
  825. {
  826. struct mm_struct *mm = vma->vm_mm;
  827. pte_t *pte;
  828. spinlock_t *ptl;
  829. int ret = 0;
  830. pte = page_check_address(page, mm, address, &ptl, 1);
  831. if (!pte)
  832. goto out;
  833. if (pte_dirty(*pte) || pte_write(*pte)) {
  834. pte_t entry;
  835. flush_cache_page(vma, address, pte_pfn(*pte));
  836. entry = ptep_clear_flush_notify(vma, address, pte);
  837. entry = pte_wrprotect(entry);
  838. entry = pte_mkclean(entry);
  839. set_pte_at(mm, address, pte, entry);
  840. ret = 1;
  841. }
  842. pte_unmap_unlock(pte, ptl);
  843. out:
  844. return ret;
  845. }
  846. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  847. {
  848. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  849. struct vm_area_struct *vma;
  850. struct prio_tree_iter iter;
  851. int ret = 0;
  852. BUG_ON(PageAnon(page));
  853. mutex_lock(&mapping->i_mmap_mutex);
  854. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  855. if (vma->vm_flags & VM_SHARED) {
  856. unsigned long address = vma_address(page, vma);
  857. if (address == -EFAULT)
  858. continue;
  859. ret += page_mkclean_one(page, vma, address);
  860. }
  861. }
  862. mutex_unlock(&mapping->i_mmap_mutex);
  863. return ret;
  864. }
  865. int page_mkclean(struct page *page)
  866. {
  867. int ret = 0;
  868. BUG_ON(!PageLocked(page));
  869. if (page_mapped(page)) {
  870. struct address_space *mapping = page_mapping(page);
  871. if (mapping) {
  872. ret = page_mkclean_file(mapping, page);
  873. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  874. ret = 1;
  875. }
  876. }
  877. return ret;
  878. }
  879. EXPORT_SYMBOL_GPL(page_mkclean);
  880. /**
  881. * page_move_anon_rmap - move a page to our anon_vma
  882. * @page: the page to move to our anon_vma
  883. * @vma: the vma the page belongs to
  884. * @address: the user virtual address mapped
  885. *
  886. * When a page belongs exclusively to one process after a COW event,
  887. * that page can be moved into the anon_vma that belongs to just that
  888. * process, so the rmap code will not search the parent or sibling
  889. * processes.
  890. */
  891. void page_move_anon_rmap(struct page *page,
  892. struct vm_area_struct *vma, unsigned long address)
  893. {
  894. struct anon_vma *anon_vma = vma->anon_vma;
  895. VM_BUG_ON(!PageLocked(page));
  896. VM_BUG_ON(!anon_vma);
  897. VM_BUG_ON(page->index != linear_page_index(vma, address));
  898. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  899. page->mapping = (struct address_space *) anon_vma;
  900. }
  901. /**
  902. * __page_set_anon_rmap - set up new anonymous rmap
  903. * @page: Page to add to rmap
  904. * @vma: VM area to add page to.
  905. * @address: User virtual address of the mapping
  906. * @exclusive: the page is exclusively owned by the current process
  907. */
  908. static void __page_set_anon_rmap(struct page *page,
  909. struct vm_area_struct *vma, unsigned long address, int exclusive)
  910. {
  911. struct anon_vma *anon_vma = vma->anon_vma;
  912. BUG_ON(!anon_vma);
  913. if (PageAnon(page))
  914. return;
  915. /*
  916. * If the page isn't exclusively mapped into this vma,
  917. * we must use the _oldest_ possible anon_vma for the
  918. * page mapping!
  919. */
  920. if (!exclusive)
  921. anon_vma = anon_vma->root;
  922. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  923. page->mapping = (struct address_space *) anon_vma;
  924. page->index = linear_page_index(vma, address);
  925. }
  926. /**
  927. * __page_check_anon_rmap - sanity check anonymous rmap addition
  928. * @page: the page to add the mapping to
  929. * @vma: the vm area in which the mapping is added
  930. * @address: the user virtual address mapped
  931. */
  932. static void __page_check_anon_rmap(struct page *page,
  933. struct vm_area_struct *vma, unsigned long address)
  934. {
  935. #ifdef CONFIG_DEBUG_VM
  936. /*
  937. * The page's anon-rmap details (mapping and index) are guaranteed to
  938. * be set up correctly at this point.
  939. *
  940. * We have exclusion against page_add_anon_rmap because the caller
  941. * always holds the page locked, except if called from page_dup_rmap,
  942. * in which case the page is already known to be setup.
  943. *
  944. * We have exclusion against page_add_new_anon_rmap because those pages
  945. * are initially only visible via the pagetables, and the pte is locked
  946. * over the call to page_add_new_anon_rmap.
  947. */
  948. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  949. BUG_ON(page->index != linear_page_index(vma, address));
  950. #endif
  951. }
  952. /**
  953. * page_add_anon_rmap - add pte mapping to an anonymous page
  954. * @page: the page to add the mapping to
  955. * @vma: the vm area in which the mapping is added
  956. * @address: the user virtual address mapped
  957. *
  958. * The caller needs to hold the pte lock, and the page must be locked in
  959. * the anon_vma case: to serialize mapping,index checking after setting,
  960. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  961. * (but PageKsm is never downgraded to PageAnon).
  962. */
  963. void page_add_anon_rmap(struct page *page,
  964. struct vm_area_struct *vma, unsigned long address)
  965. {
  966. do_page_add_anon_rmap(page, vma, address, 0);
  967. }
  968. /*
  969. * Special version of the above for do_swap_page, which often runs
  970. * into pages that are exclusively owned by the current process.
  971. * Everybody else should continue to use page_add_anon_rmap above.
  972. */
  973. void do_page_add_anon_rmap(struct page *page,
  974. struct vm_area_struct *vma, unsigned long address, int exclusive)
  975. {
  976. int first = atomic_inc_and_test(&page->_mapcount);
  977. if (first) {
  978. if (!PageTransHuge(page))
  979. __inc_zone_page_state(page, NR_ANON_PAGES);
  980. else
  981. __inc_zone_page_state(page,
  982. NR_ANON_TRANSPARENT_HUGEPAGES);
  983. }
  984. if (unlikely(PageKsm(page)))
  985. return;
  986. VM_BUG_ON(!PageLocked(page));
  987. /* address might be in next vma when migration races vma_adjust */
  988. if (first)
  989. __page_set_anon_rmap(page, vma, address, exclusive);
  990. else
  991. __page_check_anon_rmap(page, vma, address);
  992. }
  993. /**
  994. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  995. * @page: the page to add the mapping to
  996. * @vma: the vm area in which the mapping is added
  997. * @address: the user virtual address mapped
  998. *
  999. * Same as page_add_anon_rmap but must only be called on *new* pages.
  1000. * This means the inc-and-test can be bypassed.
  1001. * Page does not have to be locked.
  1002. */
  1003. void page_add_new_anon_rmap(struct page *page,
  1004. struct vm_area_struct *vma, unsigned long address)
  1005. {
  1006. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1007. SetPageSwapBacked(page);
  1008. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  1009. if (!PageTransHuge(page))
  1010. __inc_zone_page_state(page, NR_ANON_PAGES);
  1011. else
  1012. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1013. __page_set_anon_rmap(page, vma, address, 1);
  1014. if (page_evictable(page, vma))
  1015. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  1016. else
  1017. add_page_to_unevictable_list(page);
  1018. }
  1019. /**
  1020. * page_add_file_rmap - add pte mapping to a file page
  1021. * @page: the page to add the mapping to
  1022. *
  1023. * The caller needs to hold the pte lock.
  1024. */
  1025. void page_add_file_rmap(struct page *page)
  1026. {
  1027. if (atomic_inc_and_test(&page->_mapcount)) {
  1028. __inc_zone_page_state(page, NR_FILE_MAPPED);
  1029. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1030. }
  1031. }
  1032. /**
  1033. * page_remove_rmap - take down pte mapping from a page
  1034. * @page: page to remove mapping from
  1035. *
  1036. * The caller needs to hold the pte lock.
  1037. */
  1038. void page_remove_rmap(struct page *page)
  1039. {
  1040. /* page still mapped by someone else? */
  1041. if (!atomic_add_negative(-1, &page->_mapcount))
  1042. return;
  1043. /*
  1044. * Now that the last pte has gone, s390 must transfer dirty
  1045. * flag from storage key to struct page. We can usually skip
  1046. * this if the page is anon, so about to be freed; but perhaps
  1047. * not if it's in swapcache - there might be another pte slot
  1048. * containing the swap entry, but page not yet written to swap.
  1049. */
  1050. if ((!PageAnon(page) || PageSwapCache(page)) &&
  1051. page_test_and_clear_dirty(page_to_pfn(page), 1))
  1052. set_page_dirty(page);
  1053. /*
  1054. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  1055. * and not charged by memcg for now.
  1056. */
  1057. if (unlikely(PageHuge(page)))
  1058. return;
  1059. if (PageAnon(page)) {
  1060. mem_cgroup_uncharge_page(page);
  1061. if (!PageTransHuge(page))
  1062. __dec_zone_page_state(page, NR_ANON_PAGES);
  1063. else
  1064. __dec_zone_page_state(page,
  1065. NR_ANON_TRANSPARENT_HUGEPAGES);
  1066. } else {
  1067. __dec_zone_page_state(page, NR_FILE_MAPPED);
  1068. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1069. }
  1070. /*
  1071. * It would be tidy to reset the PageAnon mapping here,
  1072. * but that might overwrite a racing page_add_anon_rmap
  1073. * which increments mapcount after us but sets mapping
  1074. * before us: so leave the reset to free_hot_cold_page,
  1075. * and remember that it's only reliable while mapped.
  1076. * Leaving it set also helps swapoff to reinstate ptes
  1077. * faster for those pages still in swapcache.
  1078. */
  1079. }
  1080. /*
  1081. * Subfunctions of try_to_unmap: try_to_unmap_one called
  1082. * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
  1083. */
  1084. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1085. unsigned long address, enum ttu_flags flags)
  1086. {
  1087. struct mm_struct *mm = vma->vm_mm;
  1088. pte_t *pte;
  1089. pte_t pteval;
  1090. spinlock_t *ptl;
  1091. int ret = SWAP_AGAIN;
  1092. pte = page_check_address(page, mm, address, &ptl, 0);
  1093. if (!pte)
  1094. goto out;
  1095. /*
  1096. * If the page is mlock()d, we cannot swap it out.
  1097. * If it's recently referenced (perhaps page_referenced
  1098. * skipped over this mm) then we should reactivate it.
  1099. */
  1100. if (!(flags & TTU_IGNORE_MLOCK)) {
  1101. if (vma->vm_flags & VM_LOCKED)
  1102. goto out_mlock;
  1103. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1104. goto out_unmap;
  1105. }
  1106. if (!(flags & TTU_IGNORE_ACCESS)) {
  1107. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1108. ret = SWAP_FAIL;
  1109. goto out_unmap;
  1110. }
  1111. }
  1112. /* Nuke the page table entry. */
  1113. flush_cache_page(vma, address, page_to_pfn(page));
  1114. pteval = ptep_clear_flush_notify(vma, address, pte);
  1115. /* Move the dirty bit to the physical page now the pte is gone. */
  1116. if (pte_dirty(pteval))
  1117. set_page_dirty(page);
  1118. /* Update high watermark before we lower rss */
  1119. update_hiwater_rss(mm);
  1120. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1121. if (PageAnon(page))
  1122. dec_mm_counter(mm, MM_ANONPAGES);
  1123. else
  1124. dec_mm_counter(mm, MM_FILEPAGES);
  1125. set_pte_at(mm, address, pte,
  1126. swp_entry_to_pte(make_hwpoison_entry(page)));
  1127. } else if (PageAnon(page)) {
  1128. swp_entry_t entry = { .val = page_private(page) };
  1129. if (PageSwapCache(page)) {
  1130. /*
  1131. * Store the swap location in the pte.
  1132. * See handle_pte_fault() ...
  1133. */
  1134. if (swap_duplicate(entry) < 0) {
  1135. set_pte_at(mm, address, pte, pteval);
  1136. ret = SWAP_FAIL;
  1137. goto out_unmap;
  1138. }
  1139. if (list_empty(&mm->mmlist)) {
  1140. spin_lock(&mmlist_lock);
  1141. if (list_empty(&mm->mmlist))
  1142. list_add(&mm->mmlist, &init_mm.mmlist);
  1143. spin_unlock(&mmlist_lock);
  1144. }
  1145. dec_mm_counter(mm, MM_ANONPAGES);
  1146. inc_mm_counter(mm, MM_SWAPENTS);
  1147. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1148. /*
  1149. * Store the pfn of the page in a special migration
  1150. * pte. do_swap_page() will wait until the migration
  1151. * pte is removed and then restart fault handling.
  1152. */
  1153. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1154. entry = make_migration_entry(page, pte_write(pteval));
  1155. }
  1156. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1157. BUG_ON(pte_file(*pte));
  1158. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1159. (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1160. /* Establish migration entry for a file page */
  1161. swp_entry_t entry;
  1162. entry = make_migration_entry(page, pte_write(pteval));
  1163. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1164. } else
  1165. dec_mm_counter(mm, MM_FILEPAGES);
  1166. page_remove_rmap(page);
  1167. page_cache_release(page);
  1168. out_unmap:
  1169. pte_unmap_unlock(pte, ptl);
  1170. out:
  1171. return ret;
  1172. out_mlock:
  1173. pte_unmap_unlock(pte, ptl);
  1174. /*
  1175. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1176. * unstable result and race. Plus, We can't wait here because
  1177. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1178. * if trylock failed, the page remain in evictable lru and later
  1179. * vmscan could retry to move the page to unevictable lru if the
  1180. * page is actually mlocked.
  1181. */
  1182. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1183. if (vma->vm_flags & VM_LOCKED) {
  1184. mlock_vma_page(page);
  1185. ret = SWAP_MLOCK;
  1186. }
  1187. up_read(&vma->vm_mm->mmap_sem);
  1188. }
  1189. return ret;
  1190. }
  1191. /*
  1192. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1193. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1194. * Consequently, given a particular page and its ->index, we cannot locate the
  1195. * ptes which are mapping that page without an exhaustive linear search.
  1196. *
  1197. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1198. * maps the file to which the target page belongs. The ->vm_private_data field
  1199. * holds the current cursor into that scan. Successive searches will circulate
  1200. * around the vma's virtual address space.
  1201. *
  1202. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1203. * more scanning pressure is placed against them as well. Eventually pages
  1204. * will become fully unmapped and are eligible for eviction.
  1205. *
  1206. * For very sparsely populated VMAs this is a little inefficient - chances are
  1207. * there there won't be many ptes located within the scan cluster. In this case
  1208. * maybe we could scan further - to the end of the pte page, perhaps.
  1209. *
  1210. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1211. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1212. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1213. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1214. */
  1215. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1216. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1217. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1218. struct vm_area_struct *vma, struct page *check_page)
  1219. {
  1220. struct mm_struct *mm = vma->vm_mm;
  1221. pgd_t *pgd;
  1222. pud_t *pud;
  1223. pmd_t *pmd;
  1224. pte_t *pte;
  1225. pte_t pteval;
  1226. spinlock_t *ptl;
  1227. struct page *page;
  1228. unsigned long address;
  1229. unsigned long end;
  1230. int ret = SWAP_AGAIN;
  1231. int locked_vma = 0;
  1232. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1233. end = address + CLUSTER_SIZE;
  1234. if (address < vma->vm_start)
  1235. address = vma->vm_start;
  1236. if (end > vma->vm_end)
  1237. end = vma->vm_end;
  1238. pgd = pgd_offset(mm, address);
  1239. if (!pgd_present(*pgd))
  1240. return ret;
  1241. pud = pud_offset(pgd, address);
  1242. if (!pud_present(*pud))
  1243. return ret;
  1244. pmd = pmd_offset(pud, address);
  1245. if (!pmd_present(*pmd))
  1246. return ret;
  1247. /*
  1248. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1249. * keep the sem while scanning the cluster for mlocking pages.
  1250. */
  1251. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1252. locked_vma = (vma->vm_flags & VM_LOCKED);
  1253. if (!locked_vma)
  1254. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1255. }
  1256. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1257. /* Update high watermark before we lower rss */
  1258. update_hiwater_rss(mm);
  1259. for (; address < end; pte++, address += PAGE_SIZE) {
  1260. if (!pte_present(*pte))
  1261. continue;
  1262. page = vm_normal_page(vma, address, *pte);
  1263. BUG_ON(!page || PageAnon(page));
  1264. if (locked_vma) {
  1265. mlock_vma_page(page); /* no-op if already mlocked */
  1266. if (page == check_page)
  1267. ret = SWAP_MLOCK;
  1268. continue; /* don't unmap */
  1269. }
  1270. if (ptep_clear_flush_young_notify(vma, address, pte))
  1271. continue;
  1272. /* Nuke the page table entry. */
  1273. flush_cache_page(vma, address, pte_pfn(*pte));
  1274. pteval = ptep_clear_flush_notify(vma, address, pte);
  1275. /* If nonlinear, store the file page offset in the pte. */
  1276. if (page->index != linear_page_index(vma, address))
  1277. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1278. /* Move the dirty bit to the physical page now the pte is gone. */
  1279. if (pte_dirty(pteval))
  1280. set_page_dirty(page);
  1281. page_remove_rmap(page);
  1282. page_cache_release(page);
  1283. dec_mm_counter(mm, MM_FILEPAGES);
  1284. (*mapcount)--;
  1285. }
  1286. pte_unmap_unlock(pte - 1, ptl);
  1287. if (locked_vma)
  1288. up_read(&vma->vm_mm->mmap_sem);
  1289. return ret;
  1290. }
  1291. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1292. {
  1293. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1294. if (!maybe_stack)
  1295. return false;
  1296. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1297. VM_STACK_INCOMPLETE_SETUP)
  1298. return true;
  1299. return false;
  1300. }
  1301. /**
  1302. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1303. * rmap method
  1304. * @page: the page to unmap/unlock
  1305. * @flags: action and flags
  1306. *
  1307. * Find all the mappings of a page using the mapping pointer and the vma chains
  1308. * contained in the anon_vma struct it points to.
  1309. *
  1310. * This function is only called from try_to_unmap/try_to_munlock for
  1311. * anonymous pages.
  1312. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1313. * where the page was found will be held for write. So, we won't recheck
  1314. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1315. * 'LOCKED.
  1316. */
  1317. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1318. {
  1319. struct anon_vma *anon_vma;
  1320. struct anon_vma_chain *avc;
  1321. int ret = SWAP_AGAIN;
  1322. anon_vma = page_lock_anon_vma(page);
  1323. if (!anon_vma)
  1324. return ret;
  1325. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1326. struct vm_area_struct *vma = avc->vma;
  1327. unsigned long address;
  1328. /*
  1329. * During exec, a temporary VMA is setup and later moved.
  1330. * The VMA is moved under the anon_vma lock but not the
  1331. * page tables leading to a race where migration cannot
  1332. * find the migration ptes. Rather than increasing the
  1333. * locking requirements of exec(), migration skips
  1334. * temporary VMAs until after exec() completes.
  1335. */
  1336. if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
  1337. is_vma_temporary_stack(vma))
  1338. continue;
  1339. address = vma_address(page, vma);
  1340. if (address == -EFAULT)
  1341. continue;
  1342. ret = try_to_unmap_one(page, vma, address, flags);
  1343. if (ret != SWAP_AGAIN || !page_mapped(page))
  1344. break;
  1345. }
  1346. page_unlock_anon_vma(anon_vma);
  1347. return ret;
  1348. }
  1349. /**
  1350. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1351. * @page: the page to unmap/unlock
  1352. * @flags: action and flags
  1353. *
  1354. * Find all the mappings of a page using the mapping pointer and the vma chains
  1355. * contained in the address_space struct it points to.
  1356. *
  1357. * This function is only called from try_to_unmap/try_to_munlock for
  1358. * object-based pages.
  1359. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1360. * where the page was found will be held for write. So, we won't recheck
  1361. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1362. * 'LOCKED.
  1363. */
  1364. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1365. {
  1366. struct address_space *mapping = page->mapping;
  1367. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1368. struct vm_area_struct *vma;
  1369. struct prio_tree_iter iter;
  1370. int ret = SWAP_AGAIN;
  1371. unsigned long cursor;
  1372. unsigned long max_nl_cursor = 0;
  1373. unsigned long max_nl_size = 0;
  1374. unsigned int mapcount;
  1375. mutex_lock(&mapping->i_mmap_mutex);
  1376. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1377. unsigned long address = vma_address(page, vma);
  1378. if (address == -EFAULT)
  1379. continue;
  1380. ret = try_to_unmap_one(page, vma, address, flags);
  1381. if (ret != SWAP_AGAIN || !page_mapped(page))
  1382. goto out;
  1383. }
  1384. if (list_empty(&mapping->i_mmap_nonlinear))
  1385. goto out;
  1386. /*
  1387. * We don't bother to try to find the munlocked page in nonlinears.
  1388. * It's costly. Instead, later, page reclaim logic may call
  1389. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1390. */
  1391. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1392. goto out;
  1393. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1394. shared.vm_set.list) {
  1395. cursor = (unsigned long) vma->vm_private_data;
  1396. if (cursor > max_nl_cursor)
  1397. max_nl_cursor = cursor;
  1398. cursor = vma->vm_end - vma->vm_start;
  1399. if (cursor > max_nl_size)
  1400. max_nl_size = cursor;
  1401. }
  1402. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1403. ret = SWAP_FAIL;
  1404. goto out;
  1405. }
  1406. /*
  1407. * We don't try to search for this page in the nonlinear vmas,
  1408. * and page_referenced wouldn't have found it anyway. Instead
  1409. * just walk the nonlinear vmas trying to age and unmap some.
  1410. * The mapcount of the page we came in with is irrelevant,
  1411. * but even so use it as a guide to how hard we should try?
  1412. */
  1413. mapcount = page_mapcount(page);
  1414. if (!mapcount)
  1415. goto out;
  1416. cond_resched();
  1417. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1418. if (max_nl_cursor == 0)
  1419. max_nl_cursor = CLUSTER_SIZE;
  1420. do {
  1421. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1422. shared.vm_set.list) {
  1423. cursor = (unsigned long) vma->vm_private_data;
  1424. while ( cursor < max_nl_cursor &&
  1425. cursor < vma->vm_end - vma->vm_start) {
  1426. if (try_to_unmap_cluster(cursor, &mapcount,
  1427. vma, page) == SWAP_MLOCK)
  1428. ret = SWAP_MLOCK;
  1429. cursor += CLUSTER_SIZE;
  1430. vma->vm_private_data = (void *) cursor;
  1431. if ((int)mapcount <= 0)
  1432. goto out;
  1433. }
  1434. vma->vm_private_data = (void *) max_nl_cursor;
  1435. }
  1436. cond_resched();
  1437. max_nl_cursor += CLUSTER_SIZE;
  1438. } while (max_nl_cursor <= max_nl_size);
  1439. /*
  1440. * Don't loop forever (perhaps all the remaining pages are
  1441. * in locked vmas). Reset cursor on all unreserved nonlinear
  1442. * vmas, now forgetting on which ones it had fallen behind.
  1443. */
  1444. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1445. vma->vm_private_data = NULL;
  1446. out:
  1447. mutex_unlock(&mapping->i_mmap_mutex);
  1448. return ret;
  1449. }
  1450. /**
  1451. * try_to_unmap - try to remove all page table mappings to a page
  1452. * @page: the page to get unmapped
  1453. * @flags: action and flags
  1454. *
  1455. * Tries to remove all the page table entries which are mapping this
  1456. * page, used in the pageout path. Caller must hold the page lock.
  1457. * Return values are:
  1458. *
  1459. * SWAP_SUCCESS - we succeeded in removing all mappings
  1460. * SWAP_AGAIN - we missed a mapping, try again later
  1461. * SWAP_FAIL - the page is unswappable
  1462. * SWAP_MLOCK - page is mlocked.
  1463. */
  1464. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1465. {
  1466. int ret;
  1467. BUG_ON(!PageLocked(page));
  1468. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1469. if (unlikely(PageKsm(page)))
  1470. ret = try_to_unmap_ksm(page, flags);
  1471. else if (PageAnon(page))
  1472. ret = try_to_unmap_anon(page, flags);
  1473. else
  1474. ret = try_to_unmap_file(page, flags);
  1475. if (ret != SWAP_MLOCK && !page_mapped(page))
  1476. ret = SWAP_SUCCESS;
  1477. return ret;
  1478. }
  1479. /**
  1480. * try_to_munlock - try to munlock a page
  1481. * @page: the page to be munlocked
  1482. *
  1483. * Called from munlock code. Checks all of the VMAs mapping the page
  1484. * to make sure nobody else has this page mlocked. The page will be
  1485. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1486. *
  1487. * Return values are:
  1488. *
  1489. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1490. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1491. * SWAP_FAIL - page cannot be located at present
  1492. * SWAP_MLOCK - page is now mlocked.
  1493. */
  1494. int try_to_munlock(struct page *page)
  1495. {
  1496. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1497. if (unlikely(PageKsm(page)))
  1498. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1499. else if (PageAnon(page))
  1500. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1501. else
  1502. return try_to_unmap_file(page, TTU_MUNLOCK);
  1503. }
  1504. void __put_anon_vma(struct anon_vma *anon_vma)
  1505. {
  1506. struct anon_vma *root = anon_vma->root;
  1507. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1508. anon_vma_free(root);
  1509. anon_vma_free(anon_vma);
  1510. }
  1511. #ifdef CONFIG_MIGRATION
  1512. /*
  1513. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1514. * Called by migrate.c to remove migration ptes, but might be used more later.
  1515. */
  1516. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1517. struct vm_area_struct *, unsigned long, void *), void *arg)
  1518. {
  1519. struct anon_vma *anon_vma;
  1520. struct anon_vma_chain *avc;
  1521. int ret = SWAP_AGAIN;
  1522. /*
  1523. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1524. * because that depends on page_mapped(); but not all its usages
  1525. * are holding mmap_sem. Users without mmap_sem are required to
  1526. * take a reference count to prevent the anon_vma disappearing
  1527. */
  1528. anon_vma = page_anon_vma(page);
  1529. if (!anon_vma)
  1530. return ret;
  1531. anon_vma_lock(anon_vma);
  1532. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1533. struct vm_area_struct *vma = avc->vma;
  1534. unsigned long address = vma_address(page, vma);
  1535. if (address == -EFAULT)
  1536. continue;
  1537. ret = rmap_one(page, vma, address, arg);
  1538. if (ret != SWAP_AGAIN)
  1539. break;
  1540. }
  1541. anon_vma_unlock(anon_vma);
  1542. return ret;
  1543. }
  1544. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1545. struct vm_area_struct *, unsigned long, void *), void *arg)
  1546. {
  1547. struct address_space *mapping = page->mapping;
  1548. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1549. struct vm_area_struct *vma;
  1550. struct prio_tree_iter iter;
  1551. int ret = SWAP_AGAIN;
  1552. if (!mapping)
  1553. return ret;
  1554. mutex_lock(&mapping->i_mmap_mutex);
  1555. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1556. unsigned long address = vma_address(page, vma);
  1557. if (address == -EFAULT)
  1558. continue;
  1559. ret = rmap_one(page, vma, address, arg);
  1560. if (ret != SWAP_AGAIN)
  1561. break;
  1562. }
  1563. /*
  1564. * No nonlinear handling: being always shared, nonlinear vmas
  1565. * never contain migration ptes. Decide what to do about this
  1566. * limitation to linear when we need rmap_walk() on nonlinear.
  1567. */
  1568. mutex_unlock(&mapping->i_mmap_mutex);
  1569. return ret;
  1570. }
  1571. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1572. struct vm_area_struct *, unsigned long, void *), void *arg)
  1573. {
  1574. VM_BUG_ON(!PageLocked(page));
  1575. if (unlikely(PageKsm(page)))
  1576. return rmap_walk_ksm(page, rmap_one, arg);
  1577. else if (PageAnon(page))
  1578. return rmap_walk_anon(page, rmap_one, arg);
  1579. else
  1580. return rmap_walk_file(page, rmap_one, arg);
  1581. }
  1582. #endif /* CONFIG_MIGRATION */
  1583. #ifdef CONFIG_HUGETLB_PAGE
  1584. /*
  1585. * The following three functions are for anonymous (private mapped) hugepages.
  1586. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1587. * and no lru code, because we handle hugepages differently from common pages.
  1588. */
  1589. static void __hugepage_set_anon_rmap(struct page *page,
  1590. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1591. {
  1592. struct anon_vma *anon_vma = vma->anon_vma;
  1593. BUG_ON(!anon_vma);
  1594. if (PageAnon(page))
  1595. return;
  1596. if (!exclusive)
  1597. anon_vma = anon_vma->root;
  1598. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1599. page->mapping = (struct address_space *) anon_vma;
  1600. page->index = linear_page_index(vma, address);
  1601. }
  1602. void hugepage_add_anon_rmap(struct page *page,
  1603. struct vm_area_struct *vma, unsigned long address)
  1604. {
  1605. struct anon_vma *anon_vma = vma->anon_vma;
  1606. int first;
  1607. BUG_ON(!PageLocked(page));
  1608. BUG_ON(!anon_vma);
  1609. /* address might be in next vma when migration races vma_adjust */
  1610. first = atomic_inc_and_test(&page->_mapcount);
  1611. if (first)
  1612. __hugepage_set_anon_rmap(page, vma, address, 0);
  1613. }
  1614. void hugepage_add_new_anon_rmap(struct page *page,
  1615. struct vm_area_struct *vma, unsigned long address)
  1616. {
  1617. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1618. atomic_set(&page->_mapcount, 0);
  1619. __hugepage_set_anon_rmap(page, vma, address, 1);
  1620. }
  1621. #endif /* CONFIG_HUGETLB_PAGE */