mmu.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  233. struct kmem_cache *base_cache, int min)
  234. {
  235. void *obj;
  236. if (cache->nobjs >= min)
  237. return 0;
  238. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  239. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  240. if (!obj)
  241. return -ENOMEM;
  242. cache->objects[cache->nobjs++] = obj;
  243. }
  244. return 0;
  245. }
  246. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  247. struct kmem_cache *cache)
  248. {
  249. while (mc->nobjs)
  250. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  251. }
  252. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  253. int min)
  254. {
  255. struct page *page;
  256. if (cache->nobjs >= min)
  257. return 0;
  258. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  259. page = alloc_page(GFP_KERNEL);
  260. if (!page)
  261. return -ENOMEM;
  262. cache->objects[cache->nobjs++] = page_address(page);
  263. }
  264. return 0;
  265. }
  266. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  267. {
  268. while (mc->nobjs)
  269. free_page((unsigned long)mc->objects[--mc->nobjs]);
  270. }
  271. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  272. {
  273. int r;
  274. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  275. pte_chain_cache, 4);
  276. if (r)
  277. goto out;
  278. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  279. rmap_desc_cache, 4);
  280. if (r)
  281. goto out;
  282. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  283. if (r)
  284. goto out;
  285. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  286. mmu_page_header_cache, 4);
  287. out:
  288. return r;
  289. }
  290. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  291. {
  292. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  293. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  294. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  295. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  296. mmu_page_header_cache);
  297. }
  298. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  299. size_t size)
  300. {
  301. void *p;
  302. BUG_ON(!mc->nobjs);
  303. p = mc->objects[--mc->nobjs];
  304. return p;
  305. }
  306. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  307. {
  308. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  309. sizeof(struct kvm_pte_chain));
  310. }
  311. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  312. {
  313. kmem_cache_free(pte_chain_cache, pc);
  314. }
  315. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  316. {
  317. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  318. sizeof(struct kvm_rmap_desc));
  319. }
  320. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  321. {
  322. kmem_cache_free(rmap_desc_cache, rd);
  323. }
  324. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  325. {
  326. if (!sp->role.direct)
  327. return sp->gfns[index];
  328. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  329. }
  330. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  331. {
  332. if (sp->role.direct)
  333. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  334. else
  335. sp->gfns[index] = gfn;
  336. }
  337. /*
  338. * Return the pointer to the largepage write count for a given
  339. * gfn, handling slots that are not large page aligned.
  340. */
  341. static int *slot_largepage_idx(gfn_t gfn,
  342. struct kvm_memory_slot *slot,
  343. int level)
  344. {
  345. unsigned long idx;
  346. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  347. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  348. return &slot->lpage_info[level - 2][idx].write_count;
  349. }
  350. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  351. {
  352. struct kvm_memory_slot *slot;
  353. int *write_count;
  354. int i;
  355. slot = gfn_to_memslot(kvm, gfn);
  356. for (i = PT_DIRECTORY_LEVEL;
  357. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  358. write_count = slot_largepage_idx(gfn, slot, i);
  359. *write_count += 1;
  360. }
  361. }
  362. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  363. {
  364. struct kvm_memory_slot *slot;
  365. int *write_count;
  366. int i;
  367. slot = gfn_to_memslot(kvm, gfn);
  368. for (i = PT_DIRECTORY_LEVEL;
  369. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  370. write_count = slot_largepage_idx(gfn, slot, i);
  371. *write_count -= 1;
  372. WARN_ON(*write_count < 0);
  373. }
  374. }
  375. static int has_wrprotected_page(struct kvm *kvm,
  376. gfn_t gfn,
  377. int level)
  378. {
  379. struct kvm_memory_slot *slot;
  380. int *largepage_idx;
  381. slot = gfn_to_memslot(kvm, gfn);
  382. if (slot) {
  383. largepage_idx = slot_largepage_idx(gfn, slot, level);
  384. return *largepage_idx;
  385. }
  386. return 1;
  387. }
  388. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  389. {
  390. unsigned long page_size;
  391. int i, ret = 0;
  392. page_size = kvm_host_page_size(kvm, gfn);
  393. for (i = PT_PAGE_TABLE_LEVEL;
  394. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  395. if (page_size >= KVM_HPAGE_SIZE(i))
  396. ret = i;
  397. else
  398. break;
  399. }
  400. return ret;
  401. }
  402. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  403. {
  404. struct kvm_memory_slot *slot;
  405. int host_level, level, max_level;
  406. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  407. if (slot && slot->dirty_bitmap)
  408. return PT_PAGE_TABLE_LEVEL;
  409. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  410. if (host_level == PT_PAGE_TABLE_LEVEL)
  411. return host_level;
  412. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  413. kvm_x86_ops->get_lpage_level() : host_level;
  414. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  415. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  416. break;
  417. return level - 1;
  418. }
  419. /*
  420. * Take gfn and return the reverse mapping to it.
  421. */
  422. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  423. {
  424. struct kvm_memory_slot *slot;
  425. unsigned long idx;
  426. slot = gfn_to_memslot(kvm, gfn);
  427. if (likely(level == PT_PAGE_TABLE_LEVEL))
  428. return &slot->rmap[gfn - slot->base_gfn];
  429. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  430. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  431. return &slot->lpage_info[level - 2][idx].rmap_pde;
  432. }
  433. /*
  434. * Reverse mapping data structures:
  435. *
  436. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  437. * that points to page_address(page).
  438. *
  439. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  440. * containing more mappings.
  441. *
  442. * Returns the number of rmap entries before the spte was added or zero if
  443. * the spte was not added.
  444. *
  445. */
  446. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  447. {
  448. struct kvm_mmu_page *sp;
  449. struct kvm_rmap_desc *desc;
  450. unsigned long *rmapp;
  451. int i, count = 0;
  452. if (!is_rmap_spte(*spte))
  453. return count;
  454. sp = page_header(__pa(spte));
  455. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  456. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  457. if (!*rmapp) {
  458. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  459. *rmapp = (unsigned long)spte;
  460. } else if (!(*rmapp & 1)) {
  461. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  462. desc = mmu_alloc_rmap_desc(vcpu);
  463. desc->sptes[0] = (u64 *)*rmapp;
  464. desc->sptes[1] = spte;
  465. *rmapp = (unsigned long)desc | 1;
  466. } else {
  467. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  468. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  469. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  470. desc = desc->more;
  471. count += RMAP_EXT;
  472. }
  473. if (desc->sptes[RMAP_EXT-1]) {
  474. desc->more = mmu_alloc_rmap_desc(vcpu);
  475. desc = desc->more;
  476. }
  477. for (i = 0; desc->sptes[i]; ++i)
  478. ;
  479. desc->sptes[i] = spte;
  480. }
  481. return count;
  482. }
  483. static void rmap_desc_remove_entry(unsigned long *rmapp,
  484. struct kvm_rmap_desc *desc,
  485. int i,
  486. struct kvm_rmap_desc *prev_desc)
  487. {
  488. int j;
  489. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  490. ;
  491. desc->sptes[i] = desc->sptes[j];
  492. desc->sptes[j] = NULL;
  493. if (j != 0)
  494. return;
  495. if (!prev_desc && !desc->more)
  496. *rmapp = (unsigned long)desc->sptes[0];
  497. else
  498. if (prev_desc)
  499. prev_desc->more = desc->more;
  500. else
  501. *rmapp = (unsigned long)desc->more | 1;
  502. mmu_free_rmap_desc(desc);
  503. }
  504. static void rmap_remove(struct kvm *kvm, u64 *spte)
  505. {
  506. struct kvm_rmap_desc *desc;
  507. struct kvm_rmap_desc *prev_desc;
  508. struct kvm_mmu_page *sp;
  509. gfn_t gfn;
  510. unsigned long *rmapp;
  511. int i;
  512. sp = page_header(__pa(spte));
  513. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  514. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  515. if (!*rmapp) {
  516. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  517. BUG();
  518. } else if (!(*rmapp & 1)) {
  519. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  520. if ((u64 *)*rmapp != spte) {
  521. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  522. spte, *spte);
  523. BUG();
  524. }
  525. *rmapp = 0;
  526. } else {
  527. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  528. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  529. prev_desc = NULL;
  530. while (desc) {
  531. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  532. if (desc->sptes[i] == spte) {
  533. rmap_desc_remove_entry(rmapp,
  534. desc, i,
  535. prev_desc);
  536. return;
  537. }
  538. prev_desc = desc;
  539. desc = desc->more;
  540. }
  541. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  542. BUG();
  543. }
  544. }
  545. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  546. {
  547. pfn_t pfn;
  548. if (!is_rmap_spte(*sptep)) {
  549. __set_spte(sptep, new_spte);
  550. return;
  551. }
  552. pfn = spte_to_pfn(*sptep);
  553. if (*sptep & shadow_accessed_mask)
  554. kvm_set_pfn_accessed(pfn);
  555. if (is_writable_pte(*sptep))
  556. kvm_set_pfn_dirty(pfn);
  557. rmap_remove(kvm, sptep);
  558. __set_spte(sptep, new_spte);
  559. }
  560. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  561. {
  562. struct kvm_rmap_desc *desc;
  563. u64 *prev_spte;
  564. int i;
  565. if (!*rmapp)
  566. return NULL;
  567. else if (!(*rmapp & 1)) {
  568. if (!spte)
  569. return (u64 *)*rmapp;
  570. return NULL;
  571. }
  572. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  573. prev_spte = NULL;
  574. while (desc) {
  575. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  576. if (prev_spte == spte)
  577. return desc->sptes[i];
  578. prev_spte = desc->sptes[i];
  579. }
  580. desc = desc->more;
  581. }
  582. return NULL;
  583. }
  584. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  585. {
  586. unsigned long *rmapp;
  587. u64 *spte;
  588. int i, write_protected = 0;
  589. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  590. spte = rmap_next(kvm, rmapp, NULL);
  591. while (spte) {
  592. BUG_ON(!spte);
  593. BUG_ON(!(*spte & PT_PRESENT_MASK));
  594. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  595. if (is_writable_pte(*spte)) {
  596. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  597. write_protected = 1;
  598. }
  599. spte = rmap_next(kvm, rmapp, spte);
  600. }
  601. if (write_protected) {
  602. pfn_t pfn;
  603. spte = rmap_next(kvm, rmapp, NULL);
  604. pfn = spte_to_pfn(*spte);
  605. kvm_set_pfn_dirty(pfn);
  606. }
  607. /* check for huge page mappings */
  608. for (i = PT_DIRECTORY_LEVEL;
  609. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  610. rmapp = gfn_to_rmap(kvm, gfn, i);
  611. spte = rmap_next(kvm, rmapp, NULL);
  612. while (spte) {
  613. BUG_ON(!spte);
  614. BUG_ON(!(*spte & PT_PRESENT_MASK));
  615. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  616. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  617. if (is_writable_pte(*spte)) {
  618. drop_spte(kvm, spte,
  619. shadow_trap_nonpresent_pte);
  620. --kvm->stat.lpages;
  621. spte = NULL;
  622. write_protected = 1;
  623. }
  624. spte = rmap_next(kvm, rmapp, spte);
  625. }
  626. }
  627. return write_protected;
  628. }
  629. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  630. unsigned long data)
  631. {
  632. u64 *spte;
  633. int need_tlb_flush = 0;
  634. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  635. BUG_ON(!(*spte & PT_PRESENT_MASK));
  636. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  637. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  638. need_tlb_flush = 1;
  639. }
  640. return need_tlb_flush;
  641. }
  642. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  643. unsigned long data)
  644. {
  645. int need_flush = 0;
  646. u64 *spte, new_spte;
  647. pte_t *ptep = (pte_t *)data;
  648. pfn_t new_pfn;
  649. WARN_ON(pte_huge(*ptep));
  650. new_pfn = pte_pfn(*ptep);
  651. spte = rmap_next(kvm, rmapp, NULL);
  652. while (spte) {
  653. BUG_ON(!is_shadow_present_pte(*spte));
  654. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  655. need_flush = 1;
  656. if (pte_write(*ptep)) {
  657. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  658. spte = rmap_next(kvm, rmapp, NULL);
  659. } else {
  660. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  661. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  662. new_spte &= ~PT_WRITABLE_MASK;
  663. new_spte &= ~SPTE_HOST_WRITEABLE;
  664. if (is_writable_pte(*spte))
  665. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  666. __set_spte(spte, new_spte);
  667. spte = rmap_next(kvm, rmapp, spte);
  668. }
  669. }
  670. if (need_flush)
  671. kvm_flush_remote_tlbs(kvm);
  672. return 0;
  673. }
  674. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  675. unsigned long data,
  676. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  677. unsigned long data))
  678. {
  679. int i, j;
  680. int ret;
  681. int retval = 0;
  682. struct kvm_memslots *slots;
  683. slots = kvm_memslots(kvm);
  684. for (i = 0; i < slots->nmemslots; i++) {
  685. struct kvm_memory_slot *memslot = &slots->memslots[i];
  686. unsigned long start = memslot->userspace_addr;
  687. unsigned long end;
  688. end = start + (memslot->npages << PAGE_SHIFT);
  689. if (hva >= start && hva < end) {
  690. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  691. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  692. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  693. int idx = gfn_offset;
  694. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  695. ret |= handler(kvm,
  696. &memslot->lpage_info[j][idx].rmap_pde,
  697. data);
  698. }
  699. trace_kvm_age_page(hva, memslot, ret);
  700. retval |= ret;
  701. }
  702. }
  703. return retval;
  704. }
  705. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  706. {
  707. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  708. }
  709. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  710. {
  711. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  712. }
  713. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  714. unsigned long data)
  715. {
  716. u64 *spte;
  717. int young = 0;
  718. /*
  719. * Emulate the accessed bit for EPT, by checking if this page has
  720. * an EPT mapping, and clearing it if it does. On the next access,
  721. * a new EPT mapping will be established.
  722. * This has some overhead, but not as much as the cost of swapping
  723. * out actively used pages or breaking up actively used hugepages.
  724. */
  725. if (!shadow_accessed_mask)
  726. return kvm_unmap_rmapp(kvm, rmapp, data);
  727. spte = rmap_next(kvm, rmapp, NULL);
  728. while (spte) {
  729. int _young;
  730. u64 _spte = *spte;
  731. BUG_ON(!(_spte & PT_PRESENT_MASK));
  732. _young = _spte & PT_ACCESSED_MASK;
  733. if (_young) {
  734. young = 1;
  735. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  736. }
  737. spte = rmap_next(kvm, rmapp, spte);
  738. }
  739. return young;
  740. }
  741. #define RMAP_RECYCLE_THRESHOLD 1000
  742. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  743. {
  744. unsigned long *rmapp;
  745. struct kvm_mmu_page *sp;
  746. sp = page_header(__pa(spte));
  747. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  748. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  749. kvm_flush_remote_tlbs(vcpu->kvm);
  750. }
  751. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  752. {
  753. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  754. }
  755. #ifdef MMU_DEBUG
  756. static int is_empty_shadow_page(u64 *spt)
  757. {
  758. u64 *pos;
  759. u64 *end;
  760. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  761. if (is_shadow_present_pte(*pos)) {
  762. printk(KERN_ERR "%s: %p %llx\n", __func__,
  763. pos, *pos);
  764. return 0;
  765. }
  766. return 1;
  767. }
  768. #endif
  769. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  770. {
  771. ASSERT(is_empty_shadow_page(sp->spt));
  772. hlist_del(&sp->hash_link);
  773. list_del(&sp->link);
  774. __free_page(virt_to_page(sp->spt));
  775. if (!sp->role.direct)
  776. __free_page(virt_to_page(sp->gfns));
  777. kmem_cache_free(mmu_page_header_cache, sp);
  778. ++kvm->arch.n_free_mmu_pages;
  779. }
  780. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  781. {
  782. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  783. }
  784. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  785. u64 *parent_pte, int direct)
  786. {
  787. struct kvm_mmu_page *sp;
  788. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  789. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  790. if (!direct)
  791. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  792. PAGE_SIZE);
  793. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  794. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  795. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  796. sp->multimapped = 0;
  797. sp->parent_pte = parent_pte;
  798. --vcpu->kvm->arch.n_free_mmu_pages;
  799. return sp;
  800. }
  801. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  802. struct kvm_mmu_page *sp, u64 *parent_pte)
  803. {
  804. struct kvm_pte_chain *pte_chain;
  805. struct hlist_node *node;
  806. int i;
  807. if (!parent_pte)
  808. return;
  809. if (!sp->multimapped) {
  810. u64 *old = sp->parent_pte;
  811. if (!old) {
  812. sp->parent_pte = parent_pte;
  813. return;
  814. }
  815. sp->multimapped = 1;
  816. pte_chain = mmu_alloc_pte_chain(vcpu);
  817. INIT_HLIST_HEAD(&sp->parent_ptes);
  818. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  819. pte_chain->parent_ptes[0] = old;
  820. }
  821. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  822. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  823. continue;
  824. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  825. if (!pte_chain->parent_ptes[i]) {
  826. pte_chain->parent_ptes[i] = parent_pte;
  827. return;
  828. }
  829. }
  830. pte_chain = mmu_alloc_pte_chain(vcpu);
  831. BUG_ON(!pte_chain);
  832. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  833. pte_chain->parent_ptes[0] = parent_pte;
  834. }
  835. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  836. u64 *parent_pte)
  837. {
  838. struct kvm_pte_chain *pte_chain;
  839. struct hlist_node *node;
  840. int i;
  841. if (!sp->multimapped) {
  842. BUG_ON(sp->parent_pte != parent_pte);
  843. sp->parent_pte = NULL;
  844. return;
  845. }
  846. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  847. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  848. if (!pte_chain->parent_ptes[i])
  849. break;
  850. if (pte_chain->parent_ptes[i] != parent_pte)
  851. continue;
  852. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  853. && pte_chain->parent_ptes[i + 1]) {
  854. pte_chain->parent_ptes[i]
  855. = pte_chain->parent_ptes[i + 1];
  856. ++i;
  857. }
  858. pte_chain->parent_ptes[i] = NULL;
  859. if (i == 0) {
  860. hlist_del(&pte_chain->link);
  861. mmu_free_pte_chain(pte_chain);
  862. if (hlist_empty(&sp->parent_ptes)) {
  863. sp->multimapped = 0;
  864. sp->parent_pte = NULL;
  865. }
  866. }
  867. return;
  868. }
  869. BUG();
  870. }
  871. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  872. {
  873. struct kvm_pte_chain *pte_chain;
  874. struct hlist_node *node;
  875. struct kvm_mmu_page *parent_sp;
  876. int i;
  877. if (!sp->multimapped && sp->parent_pte) {
  878. parent_sp = page_header(__pa(sp->parent_pte));
  879. fn(parent_sp, sp->parent_pte);
  880. return;
  881. }
  882. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  883. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  884. u64 *spte = pte_chain->parent_ptes[i];
  885. if (!spte)
  886. break;
  887. parent_sp = page_header(__pa(spte));
  888. fn(parent_sp, spte);
  889. }
  890. }
  891. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  892. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  893. {
  894. mmu_parent_walk(sp, mark_unsync);
  895. }
  896. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  897. {
  898. unsigned int index;
  899. index = spte - sp->spt;
  900. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  901. return;
  902. if (sp->unsync_children++)
  903. return;
  904. kvm_mmu_mark_parents_unsync(sp);
  905. }
  906. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  907. struct kvm_mmu_page *sp)
  908. {
  909. int i;
  910. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  911. sp->spt[i] = shadow_trap_nonpresent_pte;
  912. }
  913. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  914. struct kvm_mmu_page *sp, bool clear_unsync)
  915. {
  916. return 1;
  917. }
  918. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  919. {
  920. }
  921. #define KVM_PAGE_ARRAY_NR 16
  922. struct kvm_mmu_pages {
  923. struct mmu_page_and_offset {
  924. struct kvm_mmu_page *sp;
  925. unsigned int idx;
  926. } page[KVM_PAGE_ARRAY_NR];
  927. unsigned int nr;
  928. };
  929. #define for_each_unsync_children(bitmap, idx) \
  930. for (idx = find_first_bit(bitmap, 512); \
  931. idx < 512; \
  932. idx = find_next_bit(bitmap, 512, idx+1))
  933. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  934. int idx)
  935. {
  936. int i;
  937. if (sp->unsync)
  938. for (i=0; i < pvec->nr; i++)
  939. if (pvec->page[i].sp == sp)
  940. return 0;
  941. pvec->page[pvec->nr].sp = sp;
  942. pvec->page[pvec->nr].idx = idx;
  943. pvec->nr++;
  944. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  945. }
  946. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  947. struct kvm_mmu_pages *pvec)
  948. {
  949. int i, ret, nr_unsync_leaf = 0;
  950. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  951. struct kvm_mmu_page *child;
  952. u64 ent = sp->spt[i];
  953. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  954. goto clear_child_bitmap;
  955. child = page_header(ent & PT64_BASE_ADDR_MASK);
  956. if (child->unsync_children) {
  957. if (mmu_pages_add(pvec, child, i))
  958. return -ENOSPC;
  959. ret = __mmu_unsync_walk(child, pvec);
  960. if (!ret)
  961. goto clear_child_bitmap;
  962. else if (ret > 0)
  963. nr_unsync_leaf += ret;
  964. else
  965. return ret;
  966. } else if (child->unsync) {
  967. nr_unsync_leaf++;
  968. if (mmu_pages_add(pvec, child, i))
  969. return -ENOSPC;
  970. } else
  971. goto clear_child_bitmap;
  972. continue;
  973. clear_child_bitmap:
  974. __clear_bit(i, sp->unsync_child_bitmap);
  975. sp->unsync_children--;
  976. WARN_ON((int)sp->unsync_children < 0);
  977. }
  978. return nr_unsync_leaf;
  979. }
  980. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  981. struct kvm_mmu_pages *pvec)
  982. {
  983. if (!sp->unsync_children)
  984. return 0;
  985. mmu_pages_add(pvec, sp, 0);
  986. return __mmu_unsync_walk(sp, pvec);
  987. }
  988. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  989. {
  990. WARN_ON(!sp->unsync);
  991. trace_kvm_mmu_sync_page(sp);
  992. sp->unsync = 0;
  993. --kvm->stat.mmu_unsync;
  994. }
  995. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  996. struct list_head *invalid_list);
  997. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  998. struct list_head *invalid_list);
  999. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1000. hlist_for_each_entry(sp, pos, \
  1001. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1002. if ((sp)->gfn != (gfn)) {} else
  1003. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1004. hlist_for_each_entry(sp, pos, \
  1005. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1006. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1007. (sp)->role.invalid) {} else
  1008. /* @sp->gfn should be write-protected at the call site */
  1009. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1010. struct list_head *invalid_list, bool clear_unsync)
  1011. {
  1012. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1013. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1014. return 1;
  1015. }
  1016. if (clear_unsync)
  1017. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1018. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1019. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1020. return 1;
  1021. }
  1022. kvm_mmu_flush_tlb(vcpu);
  1023. return 0;
  1024. }
  1025. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1026. struct kvm_mmu_page *sp)
  1027. {
  1028. LIST_HEAD(invalid_list);
  1029. int ret;
  1030. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1031. if (ret)
  1032. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1033. return ret;
  1034. }
  1035. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1036. struct list_head *invalid_list)
  1037. {
  1038. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1039. }
  1040. /* @gfn should be write-protected at the call site */
  1041. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1042. {
  1043. struct kvm_mmu_page *s;
  1044. struct hlist_node *node;
  1045. LIST_HEAD(invalid_list);
  1046. bool flush = false;
  1047. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1048. if (!s->unsync)
  1049. continue;
  1050. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1051. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1052. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1053. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1054. continue;
  1055. }
  1056. kvm_unlink_unsync_page(vcpu->kvm, s);
  1057. flush = true;
  1058. }
  1059. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1060. if (flush)
  1061. kvm_mmu_flush_tlb(vcpu);
  1062. }
  1063. struct mmu_page_path {
  1064. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1065. unsigned int idx[PT64_ROOT_LEVEL-1];
  1066. };
  1067. #define for_each_sp(pvec, sp, parents, i) \
  1068. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1069. sp = pvec.page[i].sp; \
  1070. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1071. i = mmu_pages_next(&pvec, &parents, i))
  1072. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1073. struct mmu_page_path *parents,
  1074. int i)
  1075. {
  1076. int n;
  1077. for (n = i+1; n < pvec->nr; n++) {
  1078. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1079. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1080. parents->idx[0] = pvec->page[n].idx;
  1081. return n;
  1082. }
  1083. parents->parent[sp->role.level-2] = sp;
  1084. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1085. }
  1086. return n;
  1087. }
  1088. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1089. {
  1090. struct kvm_mmu_page *sp;
  1091. unsigned int level = 0;
  1092. do {
  1093. unsigned int idx = parents->idx[level];
  1094. sp = parents->parent[level];
  1095. if (!sp)
  1096. return;
  1097. --sp->unsync_children;
  1098. WARN_ON((int)sp->unsync_children < 0);
  1099. __clear_bit(idx, sp->unsync_child_bitmap);
  1100. level++;
  1101. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1102. }
  1103. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1104. struct mmu_page_path *parents,
  1105. struct kvm_mmu_pages *pvec)
  1106. {
  1107. parents->parent[parent->role.level-1] = NULL;
  1108. pvec->nr = 0;
  1109. }
  1110. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1111. struct kvm_mmu_page *parent)
  1112. {
  1113. int i;
  1114. struct kvm_mmu_page *sp;
  1115. struct mmu_page_path parents;
  1116. struct kvm_mmu_pages pages;
  1117. LIST_HEAD(invalid_list);
  1118. kvm_mmu_pages_init(parent, &parents, &pages);
  1119. while (mmu_unsync_walk(parent, &pages)) {
  1120. int protected = 0;
  1121. for_each_sp(pages, sp, parents, i)
  1122. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1123. if (protected)
  1124. kvm_flush_remote_tlbs(vcpu->kvm);
  1125. for_each_sp(pages, sp, parents, i) {
  1126. kvm_sync_page(vcpu, sp, &invalid_list);
  1127. mmu_pages_clear_parents(&parents);
  1128. }
  1129. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1130. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1131. kvm_mmu_pages_init(parent, &parents, &pages);
  1132. }
  1133. }
  1134. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1135. gfn_t gfn,
  1136. gva_t gaddr,
  1137. unsigned level,
  1138. int direct,
  1139. unsigned access,
  1140. u64 *parent_pte)
  1141. {
  1142. union kvm_mmu_page_role role;
  1143. unsigned quadrant;
  1144. struct kvm_mmu_page *sp;
  1145. struct hlist_node *node;
  1146. bool need_sync = false;
  1147. role = vcpu->arch.mmu.base_role;
  1148. role.level = level;
  1149. role.direct = direct;
  1150. if (role.direct)
  1151. role.cr4_pae = 0;
  1152. role.access = access;
  1153. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1154. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1155. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1156. role.quadrant = quadrant;
  1157. }
  1158. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1159. if (!need_sync && sp->unsync)
  1160. need_sync = true;
  1161. if (sp->role.word != role.word)
  1162. continue;
  1163. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1164. break;
  1165. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1166. if (sp->unsync_children) {
  1167. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1168. kvm_mmu_mark_parents_unsync(sp);
  1169. } else if (sp->unsync)
  1170. kvm_mmu_mark_parents_unsync(sp);
  1171. trace_kvm_mmu_get_page(sp, false);
  1172. return sp;
  1173. }
  1174. ++vcpu->kvm->stat.mmu_cache_miss;
  1175. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1176. if (!sp)
  1177. return sp;
  1178. sp->gfn = gfn;
  1179. sp->role = role;
  1180. hlist_add_head(&sp->hash_link,
  1181. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1182. if (!direct) {
  1183. if (rmap_write_protect(vcpu->kvm, gfn))
  1184. kvm_flush_remote_tlbs(vcpu->kvm);
  1185. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1186. kvm_sync_pages(vcpu, gfn);
  1187. account_shadowed(vcpu->kvm, gfn);
  1188. }
  1189. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1190. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1191. else
  1192. nonpaging_prefetch_page(vcpu, sp);
  1193. trace_kvm_mmu_get_page(sp, true);
  1194. return sp;
  1195. }
  1196. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1197. struct kvm_vcpu *vcpu, u64 addr)
  1198. {
  1199. iterator->addr = addr;
  1200. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1201. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1202. if (iterator->level == PT32E_ROOT_LEVEL) {
  1203. iterator->shadow_addr
  1204. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1205. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1206. --iterator->level;
  1207. if (!iterator->shadow_addr)
  1208. iterator->level = 0;
  1209. }
  1210. }
  1211. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1212. {
  1213. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1214. return false;
  1215. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1216. if (is_large_pte(*iterator->sptep))
  1217. return false;
  1218. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1219. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1220. return true;
  1221. }
  1222. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1223. {
  1224. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1225. --iterator->level;
  1226. }
  1227. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1228. struct kvm_mmu_page *sp)
  1229. {
  1230. unsigned i;
  1231. u64 *pt;
  1232. u64 ent;
  1233. pt = sp->spt;
  1234. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1235. ent = pt[i];
  1236. if (is_shadow_present_pte(ent)) {
  1237. if (!is_last_spte(ent, sp->role.level)) {
  1238. ent &= PT64_BASE_ADDR_MASK;
  1239. mmu_page_remove_parent_pte(page_header(ent),
  1240. &pt[i]);
  1241. } else {
  1242. if (is_large_pte(ent))
  1243. --kvm->stat.lpages;
  1244. drop_spte(kvm, &pt[i],
  1245. shadow_trap_nonpresent_pte);
  1246. }
  1247. }
  1248. pt[i] = shadow_trap_nonpresent_pte;
  1249. }
  1250. }
  1251. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1252. {
  1253. mmu_page_remove_parent_pte(sp, parent_pte);
  1254. }
  1255. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1256. {
  1257. int i;
  1258. struct kvm_vcpu *vcpu;
  1259. kvm_for_each_vcpu(i, vcpu, kvm)
  1260. vcpu->arch.last_pte_updated = NULL;
  1261. }
  1262. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1263. {
  1264. u64 *parent_pte;
  1265. while (sp->multimapped || sp->parent_pte) {
  1266. if (!sp->multimapped)
  1267. parent_pte = sp->parent_pte;
  1268. else {
  1269. struct kvm_pte_chain *chain;
  1270. chain = container_of(sp->parent_ptes.first,
  1271. struct kvm_pte_chain, link);
  1272. parent_pte = chain->parent_ptes[0];
  1273. }
  1274. BUG_ON(!parent_pte);
  1275. kvm_mmu_put_page(sp, parent_pte);
  1276. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1277. }
  1278. }
  1279. static int mmu_zap_unsync_children(struct kvm *kvm,
  1280. struct kvm_mmu_page *parent,
  1281. struct list_head *invalid_list)
  1282. {
  1283. int i, zapped = 0;
  1284. struct mmu_page_path parents;
  1285. struct kvm_mmu_pages pages;
  1286. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1287. return 0;
  1288. kvm_mmu_pages_init(parent, &parents, &pages);
  1289. while (mmu_unsync_walk(parent, &pages)) {
  1290. struct kvm_mmu_page *sp;
  1291. for_each_sp(pages, sp, parents, i) {
  1292. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1293. mmu_pages_clear_parents(&parents);
  1294. zapped++;
  1295. }
  1296. kvm_mmu_pages_init(parent, &parents, &pages);
  1297. }
  1298. return zapped;
  1299. }
  1300. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1301. struct list_head *invalid_list)
  1302. {
  1303. int ret;
  1304. trace_kvm_mmu_prepare_zap_page(sp);
  1305. ++kvm->stat.mmu_shadow_zapped;
  1306. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1307. kvm_mmu_page_unlink_children(kvm, sp);
  1308. kvm_mmu_unlink_parents(kvm, sp);
  1309. if (!sp->role.invalid && !sp->role.direct)
  1310. unaccount_shadowed(kvm, sp->gfn);
  1311. if (sp->unsync)
  1312. kvm_unlink_unsync_page(kvm, sp);
  1313. if (!sp->root_count) {
  1314. /* Count self */
  1315. ret++;
  1316. list_move(&sp->link, invalid_list);
  1317. } else {
  1318. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1319. kvm_reload_remote_mmus(kvm);
  1320. }
  1321. sp->role.invalid = 1;
  1322. kvm_mmu_reset_last_pte_updated(kvm);
  1323. return ret;
  1324. }
  1325. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1326. struct list_head *invalid_list)
  1327. {
  1328. struct kvm_mmu_page *sp;
  1329. if (list_empty(invalid_list))
  1330. return;
  1331. kvm_flush_remote_tlbs(kvm);
  1332. do {
  1333. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1334. WARN_ON(!sp->role.invalid || sp->root_count);
  1335. kvm_mmu_free_page(kvm, sp);
  1336. } while (!list_empty(invalid_list));
  1337. }
  1338. /*
  1339. * Changing the number of mmu pages allocated to the vm
  1340. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1341. */
  1342. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1343. {
  1344. int used_pages;
  1345. LIST_HEAD(invalid_list);
  1346. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1347. used_pages = max(0, used_pages);
  1348. /*
  1349. * If we set the number of mmu pages to be smaller be than the
  1350. * number of actived pages , we must to free some mmu pages before we
  1351. * change the value
  1352. */
  1353. if (used_pages > kvm_nr_mmu_pages) {
  1354. while (used_pages > kvm_nr_mmu_pages &&
  1355. !list_empty(&kvm->arch.active_mmu_pages)) {
  1356. struct kvm_mmu_page *page;
  1357. page = container_of(kvm->arch.active_mmu_pages.prev,
  1358. struct kvm_mmu_page, link);
  1359. used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
  1360. &invalid_list);
  1361. }
  1362. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1363. kvm_nr_mmu_pages = used_pages;
  1364. kvm->arch.n_free_mmu_pages = 0;
  1365. }
  1366. else
  1367. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1368. - kvm->arch.n_alloc_mmu_pages;
  1369. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1370. }
  1371. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1372. {
  1373. struct kvm_mmu_page *sp;
  1374. struct hlist_node *node;
  1375. LIST_HEAD(invalid_list);
  1376. int r;
  1377. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1378. r = 0;
  1379. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1380. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1381. sp->role.word);
  1382. r = 1;
  1383. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1384. }
  1385. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1386. return r;
  1387. }
  1388. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1389. {
  1390. struct kvm_mmu_page *sp;
  1391. struct hlist_node *node;
  1392. LIST_HEAD(invalid_list);
  1393. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1394. pgprintk("%s: zap %lx %x\n",
  1395. __func__, gfn, sp->role.word);
  1396. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1397. }
  1398. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1399. }
  1400. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1401. {
  1402. int slot = memslot_id(kvm, gfn);
  1403. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1404. __set_bit(slot, sp->slot_bitmap);
  1405. }
  1406. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1407. {
  1408. int i;
  1409. u64 *pt = sp->spt;
  1410. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1411. return;
  1412. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1413. if (pt[i] == shadow_notrap_nonpresent_pte)
  1414. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1415. }
  1416. }
  1417. /*
  1418. * The function is based on mtrr_type_lookup() in
  1419. * arch/x86/kernel/cpu/mtrr/generic.c
  1420. */
  1421. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1422. u64 start, u64 end)
  1423. {
  1424. int i;
  1425. u64 base, mask;
  1426. u8 prev_match, curr_match;
  1427. int num_var_ranges = KVM_NR_VAR_MTRR;
  1428. if (!mtrr_state->enabled)
  1429. return 0xFF;
  1430. /* Make end inclusive end, instead of exclusive */
  1431. end--;
  1432. /* Look in fixed ranges. Just return the type as per start */
  1433. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1434. int idx;
  1435. if (start < 0x80000) {
  1436. idx = 0;
  1437. idx += (start >> 16);
  1438. return mtrr_state->fixed_ranges[idx];
  1439. } else if (start < 0xC0000) {
  1440. idx = 1 * 8;
  1441. idx += ((start - 0x80000) >> 14);
  1442. return mtrr_state->fixed_ranges[idx];
  1443. } else if (start < 0x1000000) {
  1444. idx = 3 * 8;
  1445. idx += ((start - 0xC0000) >> 12);
  1446. return mtrr_state->fixed_ranges[idx];
  1447. }
  1448. }
  1449. /*
  1450. * Look in variable ranges
  1451. * Look of multiple ranges matching this address and pick type
  1452. * as per MTRR precedence
  1453. */
  1454. if (!(mtrr_state->enabled & 2))
  1455. return mtrr_state->def_type;
  1456. prev_match = 0xFF;
  1457. for (i = 0; i < num_var_ranges; ++i) {
  1458. unsigned short start_state, end_state;
  1459. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1460. continue;
  1461. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1462. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1463. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1464. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1465. start_state = ((start & mask) == (base & mask));
  1466. end_state = ((end & mask) == (base & mask));
  1467. if (start_state != end_state)
  1468. return 0xFE;
  1469. if ((start & mask) != (base & mask))
  1470. continue;
  1471. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1472. if (prev_match == 0xFF) {
  1473. prev_match = curr_match;
  1474. continue;
  1475. }
  1476. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1477. curr_match == MTRR_TYPE_UNCACHABLE)
  1478. return MTRR_TYPE_UNCACHABLE;
  1479. if ((prev_match == MTRR_TYPE_WRBACK &&
  1480. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1481. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1482. curr_match == MTRR_TYPE_WRBACK)) {
  1483. prev_match = MTRR_TYPE_WRTHROUGH;
  1484. curr_match = MTRR_TYPE_WRTHROUGH;
  1485. }
  1486. if (prev_match != curr_match)
  1487. return MTRR_TYPE_UNCACHABLE;
  1488. }
  1489. if (prev_match != 0xFF)
  1490. return prev_match;
  1491. return mtrr_state->def_type;
  1492. }
  1493. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1494. {
  1495. u8 mtrr;
  1496. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1497. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1498. if (mtrr == 0xfe || mtrr == 0xff)
  1499. mtrr = MTRR_TYPE_WRBACK;
  1500. return mtrr;
  1501. }
  1502. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1503. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1504. {
  1505. trace_kvm_mmu_unsync_page(sp);
  1506. ++vcpu->kvm->stat.mmu_unsync;
  1507. sp->unsync = 1;
  1508. kvm_mmu_mark_parents_unsync(sp);
  1509. mmu_convert_notrap(sp);
  1510. }
  1511. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1512. {
  1513. struct kvm_mmu_page *s;
  1514. struct hlist_node *node;
  1515. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1516. if (s->unsync)
  1517. continue;
  1518. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1519. __kvm_unsync_page(vcpu, s);
  1520. }
  1521. }
  1522. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1523. bool can_unsync)
  1524. {
  1525. struct kvm_mmu_page *s;
  1526. struct hlist_node *node;
  1527. bool need_unsync = false;
  1528. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1529. if (!can_unsync)
  1530. return 1;
  1531. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1532. return 1;
  1533. if (!need_unsync && !s->unsync) {
  1534. if (!oos_shadow)
  1535. return 1;
  1536. need_unsync = true;
  1537. }
  1538. }
  1539. if (need_unsync)
  1540. kvm_unsync_pages(vcpu, gfn);
  1541. return 0;
  1542. }
  1543. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1544. unsigned pte_access, int user_fault,
  1545. int write_fault, int dirty, int level,
  1546. gfn_t gfn, pfn_t pfn, bool speculative,
  1547. bool can_unsync, bool reset_host_protection)
  1548. {
  1549. u64 spte;
  1550. int ret = 0;
  1551. /*
  1552. * We don't set the accessed bit, since we sometimes want to see
  1553. * whether the guest actually used the pte (in order to detect
  1554. * demand paging).
  1555. */
  1556. spte = shadow_base_present_pte | shadow_dirty_mask;
  1557. if (!speculative)
  1558. spte |= shadow_accessed_mask;
  1559. if (!dirty)
  1560. pte_access &= ~ACC_WRITE_MASK;
  1561. if (pte_access & ACC_EXEC_MASK)
  1562. spte |= shadow_x_mask;
  1563. else
  1564. spte |= shadow_nx_mask;
  1565. if (pte_access & ACC_USER_MASK)
  1566. spte |= shadow_user_mask;
  1567. if (level > PT_PAGE_TABLE_LEVEL)
  1568. spte |= PT_PAGE_SIZE_MASK;
  1569. if (tdp_enabled)
  1570. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1571. kvm_is_mmio_pfn(pfn));
  1572. if (reset_host_protection)
  1573. spte |= SPTE_HOST_WRITEABLE;
  1574. spte |= (u64)pfn << PAGE_SHIFT;
  1575. if ((pte_access & ACC_WRITE_MASK)
  1576. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1577. && !user_fault)) {
  1578. if (level > PT_PAGE_TABLE_LEVEL &&
  1579. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1580. ret = 1;
  1581. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1582. goto done;
  1583. }
  1584. spte |= PT_WRITABLE_MASK;
  1585. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1586. spte &= ~PT_USER_MASK;
  1587. /*
  1588. * Optimization: for pte sync, if spte was writable the hash
  1589. * lookup is unnecessary (and expensive). Write protection
  1590. * is responsibility of mmu_get_page / kvm_sync_page.
  1591. * Same reasoning can be applied to dirty page accounting.
  1592. */
  1593. if (!can_unsync && is_writable_pte(*sptep))
  1594. goto set_pte;
  1595. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1596. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1597. __func__, gfn);
  1598. ret = 1;
  1599. pte_access &= ~ACC_WRITE_MASK;
  1600. if (is_writable_pte(spte))
  1601. spte &= ~PT_WRITABLE_MASK;
  1602. }
  1603. }
  1604. if (pte_access & ACC_WRITE_MASK)
  1605. mark_page_dirty(vcpu->kvm, gfn);
  1606. set_pte:
  1607. __set_spte(sptep, spte);
  1608. done:
  1609. return ret;
  1610. }
  1611. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1612. unsigned pt_access, unsigned pte_access,
  1613. int user_fault, int write_fault, int dirty,
  1614. int *ptwrite, int level, gfn_t gfn,
  1615. pfn_t pfn, bool speculative,
  1616. bool reset_host_protection)
  1617. {
  1618. int was_rmapped = 0;
  1619. int was_writable = is_writable_pte(*sptep);
  1620. int rmap_count;
  1621. pgprintk("%s: spte %llx access %x write_fault %d"
  1622. " user_fault %d gfn %lx\n",
  1623. __func__, *sptep, pt_access,
  1624. write_fault, user_fault, gfn);
  1625. if (is_rmap_spte(*sptep)) {
  1626. /*
  1627. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1628. * the parent of the now unreachable PTE.
  1629. */
  1630. if (level > PT_PAGE_TABLE_LEVEL &&
  1631. !is_large_pte(*sptep)) {
  1632. struct kvm_mmu_page *child;
  1633. u64 pte = *sptep;
  1634. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1635. mmu_page_remove_parent_pte(child, sptep);
  1636. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1637. kvm_flush_remote_tlbs(vcpu->kvm);
  1638. } else if (pfn != spte_to_pfn(*sptep)) {
  1639. pgprintk("hfn old %lx new %lx\n",
  1640. spte_to_pfn(*sptep), pfn);
  1641. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1642. kvm_flush_remote_tlbs(vcpu->kvm);
  1643. } else
  1644. was_rmapped = 1;
  1645. }
  1646. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1647. dirty, level, gfn, pfn, speculative, true,
  1648. reset_host_protection)) {
  1649. if (write_fault)
  1650. *ptwrite = 1;
  1651. kvm_mmu_flush_tlb(vcpu);
  1652. }
  1653. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1654. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1655. is_large_pte(*sptep)? "2MB" : "4kB",
  1656. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1657. *sptep, sptep);
  1658. if (!was_rmapped && is_large_pte(*sptep))
  1659. ++vcpu->kvm->stat.lpages;
  1660. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1661. if (!was_rmapped) {
  1662. rmap_count = rmap_add(vcpu, sptep, gfn);
  1663. kvm_release_pfn_clean(pfn);
  1664. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1665. rmap_recycle(vcpu, sptep, gfn);
  1666. } else {
  1667. if (was_writable)
  1668. kvm_release_pfn_dirty(pfn);
  1669. else
  1670. kvm_release_pfn_clean(pfn);
  1671. }
  1672. if (speculative) {
  1673. vcpu->arch.last_pte_updated = sptep;
  1674. vcpu->arch.last_pte_gfn = gfn;
  1675. }
  1676. }
  1677. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1678. {
  1679. }
  1680. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1681. int level, gfn_t gfn, pfn_t pfn)
  1682. {
  1683. struct kvm_shadow_walk_iterator iterator;
  1684. struct kvm_mmu_page *sp;
  1685. int pt_write = 0;
  1686. gfn_t pseudo_gfn;
  1687. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1688. if (iterator.level == level) {
  1689. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1690. 0, write, 1, &pt_write,
  1691. level, gfn, pfn, false, true);
  1692. ++vcpu->stat.pf_fixed;
  1693. break;
  1694. }
  1695. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1696. u64 base_addr = iterator.addr;
  1697. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1698. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1699. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1700. iterator.level - 1,
  1701. 1, ACC_ALL, iterator.sptep);
  1702. if (!sp) {
  1703. pgprintk("nonpaging_map: ENOMEM\n");
  1704. kvm_release_pfn_clean(pfn);
  1705. return -ENOMEM;
  1706. }
  1707. __set_spte(iterator.sptep,
  1708. __pa(sp->spt)
  1709. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1710. | shadow_user_mask | shadow_x_mask);
  1711. }
  1712. }
  1713. return pt_write;
  1714. }
  1715. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1716. {
  1717. char buf[1];
  1718. void __user *hva;
  1719. int r;
  1720. /* Touch the page, so send SIGBUS */
  1721. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1722. r = copy_from_user(buf, hva, 1);
  1723. }
  1724. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1725. {
  1726. kvm_release_pfn_clean(pfn);
  1727. if (is_hwpoison_pfn(pfn)) {
  1728. kvm_send_hwpoison_signal(kvm, gfn);
  1729. return 0;
  1730. }
  1731. return 1;
  1732. }
  1733. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1734. {
  1735. int r;
  1736. int level;
  1737. pfn_t pfn;
  1738. unsigned long mmu_seq;
  1739. level = mapping_level(vcpu, gfn);
  1740. /*
  1741. * This path builds a PAE pagetable - so we can map 2mb pages at
  1742. * maximum. Therefore check if the level is larger than that.
  1743. */
  1744. if (level > PT_DIRECTORY_LEVEL)
  1745. level = PT_DIRECTORY_LEVEL;
  1746. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1747. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1748. smp_rmb();
  1749. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1750. /* mmio */
  1751. if (is_error_pfn(pfn))
  1752. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1753. spin_lock(&vcpu->kvm->mmu_lock);
  1754. if (mmu_notifier_retry(vcpu, mmu_seq))
  1755. goto out_unlock;
  1756. kvm_mmu_free_some_pages(vcpu);
  1757. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1758. spin_unlock(&vcpu->kvm->mmu_lock);
  1759. return r;
  1760. out_unlock:
  1761. spin_unlock(&vcpu->kvm->mmu_lock);
  1762. kvm_release_pfn_clean(pfn);
  1763. return 0;
  1764. }
  1765. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1766. {
  1767. int i;
  1768. struct kvm_mmu_page *sp;
  1769. LIST_HEAD(invalid_list);
  1770. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1771. return;
  1772. spin_lock(&vcpu->kvm->mmu_lock);
  1773. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1774. hpa_t root = vcpu->arch.mmu.root_hpa;
  1775. sp = page_header(root);
  1776. --sp->root_count;
  1777. if (!sp->root_count && sp->role.invalid) {
  1778. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1779. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1780. }
  1781. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1782. spin_unlock(&vcpu->kvm->mmu_lock);
  1783. return;
  1784. }
  1785. for (i = 0; i < 4; ++i) {
  1786. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1787. if (root) {
  1788. root &= PT64_BASE_ADDR_MASK;
  1789. sp = page_header(root);
  1790. --sp->root_count;
  1791. if (!sp->root_count && sp->role.invalid)
  1792. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1793. &invalid_list);
  1794. }
  1795. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1796. }
  1797. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1798. spin_unlock(&vcpu->kvm->mmu_lock);
  1799. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1800. }
  1801. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1802. {
  1803. int ret = 0;
  1804. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1805. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1806. ret = 1;
  1807. }
  1808. return ret;
  1809. }
  1810. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1811. {
  1812. int i;
  1813. gfn_t root_gfn;
  1814. struct kvm_mmu_page *sp;
  1815. int direct = 0;
  1816. u64 pdptr;
  1817. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1818. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1819. hpa_t root = vcpu->arch.mmu.root_hpa;
  1820. ASSERT(!VALID_PAGE(root));
  1821. if (mmu_check_root(vcpu, root_gfn))
  1822. return 1;
  1823. if (tdp_enabled) {
  1824. direct = 1;
  1825. root_gfn = 0;
  1826. }
  1827. spin_lock(&vcpu->kvm->mmu_lock);
  1828. kvm_mmu_free_some_pages(vcpu);
  1829. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1830. PT64_ROOT_LEVEL, direct,
  1831. ACC_ALL, NULL);
  1832. root = __pa(sp->spt);
  1833. ++sp->root_count;
  1834. spin_unlock(&vcpu->kvm->mmu_lock);
  1835. vcpu->arch.mmu.root_hpa = root;
  1836. return 0;
  1837. }
  1838. direct = !is_paging(vcpu);
  1839. for (i = 0; i < 4; ++i) {
  1840. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1841. ASSERT(!VALID_PAGE(root));
  1842. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1843. pdptr = kvm_pdptr_read(vcpu, i);
  1844. if (!is_present_gpte(pdptr)) {
  1845. vcpu->arch.mmu.pae_root[i] = 0;
  1846. continue;
  1847. }
  1848. root_gfn = pdptr >> PAGE_SHIFT;
  1849. } else if (vcpu->arch.mmu.root_level == 0)
  1850. root_gfn = 0;
  1851. if (mmu_check_root(vcpu, root_gfn))
  1852. return 1;
  1853. if (tdp_enabled) {
  1854. direct = 1;
  1855. root_gfn = i << 30;
  1856. }
  1857. spin_lock(&vcpu->kvm->mmu_lock);
  1858. kvm_mmu_free_some_pages(vcpu);
  1859. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1860. PT32_ROOT_LEVEL, direct,
  1861. ACC_ALL, NULL);
  1862. root = __pa(sp->spt);
  1863. ++sp->root_count;
  1864. spin_unlock(&vcpu->kvm->mmu_lock);
  1865. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1866. }
  1867. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1868. return 0;
  1869. }
  1870. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1871. {
  1872. int i;
  1873. struct kvm_mmu_page *sp;
  1874. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1875. return;
  1876. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1877. hpa_t root = vcpu->arch.mmu.root_hpa;
  1878. sp = page_header(root);
  1879. mmu_sync_children(vcpu, sp);
  1880. return;
  1881. }
  1882. for (i = 0; i < 4; ++i) {
  1883. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1884. if (root && VALID_PAGE(root)) {
  1885. root &= PT64_BASE_ADDR_MASK;
  1886. sp = page_header(root);
  1887. mmu_sync_children(vcpu, sp);
  1888. }
  1889. }
  1890. }
  1891. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1892. {
  1893. spin_lock(&vcpu->kvm->mmu_lock);
  1894. mmu_sync_roots(vcpu);
  1895. spin_unlock(&vcpu->kvm->mmu_lock);
  1896. }
  1897. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1898. u32 access, u32 *error)
  1899. {
  1900. if (error)
  1901. *error = 0;
  1902. return vaddr;
  1903. }
  1904. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1905. u32 error_code)
  1906. {
  1907. gfn_t gfn;
  1908. int r;
  1909. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1910. r = mmu_topup_memory_caches(vcpu);
  1911. if (r)
  1912. return r;
  1913. ASSERT(vcpu);
  1914. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1915. gfn = gva >> PAGE_SHIFT;
  1916. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1917. error_code & PFERR_WRITE_MASK, gfn);
  1918. }
  1919. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1920. u32 error_code)
  1921. {
  1922. pfn_t pfn;
  1923. int r;
  1924. int level;
  1925. gfn_t gfn = gpa >> PAGE_SHIFT;
  1926. unsigned long mmu_seq;
  1927. ASSERT(vcpu);
  1928. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1929. r = mmu_topup_memory_caches(vcpu);
  1930. if (r)
  1931. return r;
  1932. level = mapping_level(vcpu, gfn);
  1933. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1934. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1935. smp_rmb();
  1936. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1937. if (is_error_pfn(pfn))
  1938. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1939. spin_lock(&vcpu->kvm->mmu_lock);
  1940. if (mmu_notifier_retry(vcpu, mmu_seq))
  1941. goto out_unlock;
  1942. kvm_mmu_free_some_pages(vcpu);
  1943. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1944. level, gfn, pfn);
  1945. spin_unlock(&vcpu->kvm->mmu_lock);
  1946. return r;
  1947. out_unlock:
  1948. spin_unlock(&vcpu->kvm->mmu_lock);
  1949. kvm_release_pfn_clean(pfn);
  1950. return 0;
  1951. }
  1952. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1953. {
  1954. mmu_free_roots(vcpu);
  1955. }
  1956. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1957. {
  1958. struct kvm_mmu *context = &vcpu->arch.mmu;
  1959. context->new_cr3 = nonpaging_new_cr3;
  1960. context->page_fault = nonpaging_page_fault;
  1961. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1962. context->free = nonpaging_free;
  1963. context->prefetch_page = nonpaging_prefetch_page;
  1964. context->sync_page = nonpaging_sync_page;
  1965. context->invlpg = nonpaging_invlpg;
  1966. context->root_level = 0;
  1967. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1968. context->root_hpa = INVALID_PAGE;
  1969. return 0;
  1970. }
  1971. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1972. {
  1973. ++vcpu->stat.tlb_flush;
  1974. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1975. }
  1976. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1977. {
  1978. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1979. mmu_free_roots(vcpu);
  1980. }
  1981. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1982. u64 addr,
  1983. u32 err_code)
  1984. {
  1985. kvm_inject_page_fault(vcpu, addr, err_code);
  1986. }
  1987. static void paging_free(struct kvm_vcpu *vcpu)
  1988. {
  1989. nonpaging_free(vcpu);
  1990. }
  1991. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1992. {
  1993. int bit7;
  1994. bit7 = (gpte >> 7) & 1;
  1995. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1996. }
  1997. #define PTTYPE 64
  1998. #include "paging_tmpl.h"
  1999. #undef PTTYPE
  2000. #define PTTYPE 32
  2001. #include "paging_tmpl.h"
  2002. #undef PTTYPE
  2003. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2004. {
  2005. struct kvm_mmu *context = &vcpu->arch.mmu;
  2006. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2007. u64 exb_bit_rsvd = 0;
  2008. if (!is_nx(vcpu))
  2009. exb_bit_rsvd = rsvd_bits(63, 63);
  2010. switch (level) {
  2011. case PT32_ROOT_LEVEL:
  2012. /* no rsvd bits for 2 level 4K page table entries */
  2013. context->rsvd_bits_mask[0][1] = 0;
  2014. context->rsvd_bits_mask[0][0] = 0;
  2015. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2016. if (!is_pse(vcpu)) {
  2017. context->rsvd_bits_mask[1][1] = 0;
  2018. break;
  2019. }
  2020. if (is_cpuid_PSE36())
  2021. /* 36bits PSE 4MB page */
  2022. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2023. else
  2024. /* 32 bits PSE 4MB page */
  2025. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2026. break;
  2027. case PT32E_ROOT_LEVEL:
  2028. context->rsvd_bits_mask[0][2] =
  2029. rsvd_bits(maxphyaddr, 63) |
  2030. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2031. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2032. rsvd_bits(maxphyaddr, 62); /* PDE */
  2033. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2034. rsvd_bits(maxphyaddr, 62); /* PTE */
  2035. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2036. rsvd_bits(maxphyaddr, 62) |
  2037. rsvd_bits(13, 20); /* large page */
  2038. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2039. break;
  2040. case PT64_ROOT_LEVEL:
  2041. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2042. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2043. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2044. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2045. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2046. rsvd_bits(maxphyaddr, 51);
  2047. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2048. rsvd_bits(maxphyaddr, 51);
  2049. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2050. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2051. rsvd_bits(maxphyaddr, 51) |
  2052. rsvd_bits(13, 29);
  2053. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2054. rsvd_bits(maxphyaddr, 51) |
  2055. rsvd_bits(13, 20); /* large page */
  2056. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2057. break;
  2058. }
  2059. }
  2060. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2061. {
  2062. struct kvm_mmu *context = &vcpu->arch.mmu;
  2063. ASSERT(is_pae(vcpu));
  2064. context->new_cr3 = paging_new_cr3;
  2065. context->page_fault = paging64_page_fault;
  2066. context->gva_to_gpa = paging64_gva_to_gpa;
  2067. context->prefetch_page = paging64_prefetch_page;
  2068. context->sync_page = paging64_sync_page;
  2069. context->invlpg = paging64_invlpg;
  2070. context->free = paging_free;
  2071. context->root_level = level;
  2072. context->shadow_root_level = level;
  2073. context->root_hpa = INVALID_PAGE;
  2074. return 0;
  2075. }
  2076. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2077. {
  2078. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2079. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2080. }
  2081. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2082. {
  2083. struct kvm_mmu *context = &vcpu->arch.mmu;
  2084. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2085. context->new_cr3 = paging_new_cr3;
  2086. context->page_fault = paging32_page_fault;
  2087. context->gva_to_gpa = paging32_gva_to_gpa;
  2088. context->free = paging_free;
  2089. context->prefetch_page = paging32_prefetch_page;
  2090. context->sync_page = paging32_sync_page;
  2091. context->invlpg = paging32_invlpg;
  2092. context->root_level = PT32_ROOT_LEVEL;
  2093. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2094. context->root_hpa = INVALID_PAGE;
  2095. return 0;
  2096. }
  2097. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2098. {
  2099. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2100. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2101. }
  2102. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2103. {
  2104. struct kvm_mmu *context = &vcpu->arch.mmu;
  2105. context->new_cr3 = nonpaging_new_cr3;
  2106. context->page_fault = tdp_page_fault;
  2107. context->free = nonpaging_free;
  2108. context->prefetch_page = nonpaging_prefetch_page;
  2109. context->sync_page = nonpaging_sync_page;
  2110. context->invlpg = nonpaging_invlpg;
  2111. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2112. context->root_hpa = INVALID_PAGE;
  2113. if (!is_paging(vcpu)) {
  2114. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2115. context->root_level = 0;
  2116. } else if (is_long_mode(vcpu)) {
  2117. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2118. context->gva_to_gpa = paging64_gva_to_gpa;
  2119. context->root_level = PT64_ROOT_LEVEL;
  2120. } else if (is_pae(vcpu)) {
  2121. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2122. context->gva_to_gpa = paging64_gva_to_gpa;
  2123. context->root_level = PT32E_ROOT_LEVEL;
  2124. } else {
  2125. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2126. context->gva_to_gpa = paging32_gva_to_gpa;
  2127. context->root_level = PT32_ROOT_LEVEL;
  2128. }
  2129. return 0;
  2130. }
  2131. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2132. {
  2133. int r;
  2134. ASSERT(vcpu);
  2135. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2136. if (!is_paging(vcpu))
  2137. r = nonpaging_init_context(vcpu);
  2138. else if (is_long_mode(vcpu))
  2139. r = paging64_init_context(vcpu);
  2140. else if (is_pae(vcpu))
  2141. r = paging32E_init_context(vcpu);
  2142. else
  2143. r = paging32_init_context(vcpu);
  2144. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2145. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2146. return r;
  2147. }
  2148. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2149. {
  2150. vcpu->arch.update_pte.pfn = bad_pfn;
  2151. if (tdp_enabled)
  2152. return init_kvm_tdp_mmu(vcpu);
  2153. else
  2154. return init_kvm_softmmu(vcpu);
  2155. }
  2156. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2157. {
  2158. ASSERT(vcpu);
  2159. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2160. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2161. vcpu->arch.mmu.free(vcpu);
  2162. }
  2163. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2164. {
  2165. destroy_kvm_mmu(vcpu);
  2166. return init_kvm_mmu(vcpu);
  2167. }
  2168. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2169. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2170. {
  2171. int r;
  2172. r = mmu_topup_memory_caches(vcpu);
  2173. if (r)
  2174. goto out;
  2175. r = mmu_alloc_roots(vcpu);
  2176. spin_lock(&vcpu->kvm->mmu_lock);
  2177. mmu_sync_roots(vcpu);
  2178. spin_unlock(&vcpu->kvm->mmu_lock);
  2179. if (r)
  2180. goto out;
  2181. /* set_cr3() should ensure TLB has been flushed */
  2182. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2183. out:
  2184. return r;
  2185. }
  2186. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2187. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2188. {
  2189. mmu_free_roots(vcpu);
  2190. }
  2191. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2192. struct kvm_mmu_page *sp,
  2193. u64 *spte)
  2194. {
  2195. u64 pte;
  2196. struct kvm_mmu_page *child;
  2197. pte = *spte;
  2198. if (is_shadow_present_pte(pte)) {
  2199. if (is_last_spte(pte, sp->role.level))
  2200. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2201. else {
  2202. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2203. mmu_page_remove_parent_pte(child, spte);
  2204. }
  2205. }
  2206. __set_spte(spte, shadow_trap_nonpresent_pte);
  2207. if (is_large_pte(pte))
  2208. --vcpu->kvm->stat.lpages;
  2209. }
  2210. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2211. struct kvm_mmu_page *sp,
  2212. u64 *spte,
  2213. const void *new)
  2214. {
  2215. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2216. ++vcpu->kvm->stat.mmu_pde_zapped;
  2217. return;
  2218. }
  2219. ++vcpu->kvm->stat.mmu_pte_updated;
  2220. if (!sp->role.cr4_pae)
  2221. paging32_update_pte(vcpu, sp, spte, new);
  2222. else
  2223. paging64_update_pte(vcpu, sp, spte, new);
  2224. }
  2225. static bool need_remote_flush(u64 old, u64 new)
  2226. {
  2227. if (!is_shadow_present_pte(old))
  2228. return false;
  2229. if (!is_shadow_present_pte(new))
  2230. return true;
  2231. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2232. return true;
  2233. old ^= PT64_NX_MASK;
  2234. new ^= PT64_NX_MASK;
  2235. return (old & ~new & PT64_PERM_MASK) != 0;
  2236. }
  2237. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2238. bool remote_flush, bool local_flush)
  2239. {
  2240. if (zap_page)
  2241. return;
  2242. if (remote_flush)
  2243. kvm_flush_remote_tlbs(vcpu->kvm);
  2244. else if (local_flush)
  2245. kvm_mmu_flush_tlb(vcpu);
  2246. }
  2247. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2248. {
  2249. u64 *spte = vcpu->arch.last_pte_updated;
  2250. return !!(spte && (*spte & shadow_accessed_mask));
  2251. }
  2252. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2253. u64 gpte)
  2254. {
  2255. gfn_t gfn;
  2256. pfn_t pfn;
  2257. if (!is_present_gpte(gpte))
  2258. return;
  2259. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2260. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2261. smp_rmb();
  2262. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2263. if (is_error_pfn(pfn)) {
  2264. kvm_release_pfn_clean(pfn);
  2265. return;
  2266. }
  2267. vcpu->arch.update_pte.gfn = gfn;
  2268. vcpu->arch.update_pte.pfn = pfn;
  2269. }
  2270. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2271. {
  2272. u64 *spte = vcpu->arch.last_pte_updated;
  2273. if (spte
  2274. && vcpu->arch.last_pte_gfn == gfn
  2275. && shadow_accessed_mask
  2276. && !(*spte & shadow_accessed_mask)
  2277. && is_shadow_present_pte(*spte))
  2278. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2279. }
  2280. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2281. const u8 *new, int bytes,
  2282. bool guest_initiated)
  2283. {
  2284. gfn_t gfn = gpa >> PAGE_SHIFT;
  2285. struct kvm_mmu_page *sp;
  2286. struct hlist_node *node;
  2287. LIST_HEAD(invalid_list);
  2288. u64 entry, gentry;
  2289. u64 *spte;
  2290. unsigned offset = offset_in_page(gpa);
  2291. unsigned pte_size;
  2292. unsigned page_offset;
  2293. unsigned misaligned;
  2294. unsigned quadrant;
  2295. int level;
  2296. int flooded = 0;
  2297. int npte;
  2298. int r;
  2299. int invlpg_counter;
  2300. bool remote_flush, local_flush, zap_page;
  2301. zap_page = remote_flush = local_flush = false;
  2302. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2303. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2304. /*
  2305. * Assume that the pte write on a page table of the same type
  2306. * as the current vcpu paging mode. This is nearly always true
  2307. * (might be false while changing modes). Note it is verified later
  2308. * by update_pte().
  2309. */
  2310. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2311. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2312. if (is_pae(vcpu)) {
  2313. gpa &= ~(gpa_t)7;
  2314. bytes = 8;
  2315. }
  2316. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2317. if (r)
  2318. gentry = 0;
  2319. new = (const u8 *)&gentry;
  2320. }
  2321. switch (bytes) {
  2322. case 4:
  2323. gentry = *(const u32 *)new;
  2324. break;
  2325. case 8:
  2326. gentry = *(const u64 *)new;
  2327. break;
  2328. default:
  2329. gentry = 0;
  2330. break;
  2331. }
  2332. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2333. spin_lock(&vcpu->kvm->mmu_lock);
  2334. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2335. gentry = 0;
  2336. kvm_mmu_access_page(vcpu, gfn);
  2337. kvm_mmu_free_some_pages(vcpu);
  2338. ++vcpu->kvm->stat.mmu_pte_write;
  2339. kvm_mmu_audit(vcpu, "pre pte write");
  2340. if (guest_initiated) {
  2341. if (gfn == vcpu->arch.last_pt_write_gfn
  2342. && !last_updated_pte_accessed(vcpu)) {
  2343. ++vcpu->arch.last_pt_write_count;
  2344. if (vcpu->arch.last_pt_write_count >= 3)
  2345. flooded = 1;
  2346. } else {
  2347. vcpu->arch.last_pt_write_gfn = gfn;
  2348. vcpu->arch.last_pt_write_count = 1;
  2349. vcpu->arch.last_pte_updated = NULL;
  2350. }
  2351. }
  2352. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2353. pte_size = sp->role.cr4_pae ? 8 : 4;
  2354. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2355. misaligned |= bytes < 4;
  2356. if (misaligned || flooded) {
  2357. /*
  2358. * Misaligned accesses are too much trouble to fix
  2359. * up; also, they usually indicate a page is not used
  2360. * as a page table.
  2361. *
  2362. * If we're seeing too many writes to a page,
  2363. * it may no longer be a page table, or we may be
  2364. * forking, in which case it is better to unmap the
  2365. * page.
  2366. */
  2367. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2368. gpa, bytes, sp->role.word);
  2369. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2370. &invalid_list);
  2371. ++vcpu->kvm->stat.mmu_flooded;
  2372. continue;
  2373. }
  2374. page_offset = offset;
  2375. level = sp->role.level;
  2376. npte = 1;
  2377. if (!sp->role.cr4_pae) {
  2378. page_offset <<= 1; /* 32->64 */
  2379. /*
  2380. * A 32-bit pde maps 4MB while the shadow pdes map
  2381. * only 2MB. So we need to double the offset again
  2382. * and zap two pdes instead of one.
  2383. */
  2384. if (level == PT32_ROOT_LEVEL) {
  2385. page_offset &= ~7; /* kill rounding error */
  2386. page_offset <<= 1;
  2387. npte = 2;
  2388. }
  2389. quadrant = page_offset >> PAGE_SHIFT;
  2390. page_offset &= ~PAGE_MASK;
  2391. if (quadrant != sp->role.quadrant)
  2392. continue;
  2393. }
  2394. local_flush = true;
  2395. spte = &sp->spt[page_offset / sizeof(*spte)];
  2396. while (npte--) {
  2397. entry = *spte;
  2398. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2399. if (gentry)
  2400. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2401. if (!remote_flush && need_remote_flush(entry, *spte))
  2402. remote_flush = true;
  2403. ++spte;
  2404. }
  2405. }
  2406. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2407. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2408. kvm_mmu_audit(vcpu, "post pte write");
  2409. spin_unlock(&vcpu->kvm->mmu_lock);
  2410. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2411. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2412. vcpu->arch.update_pte.pfn = bad_pfn;
  2413. }
  2414. }
  2415. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2416. {
  2417. gpa_t gpa;
  2418. int r;
  2419. if (tdp_enabled)
  2420. return 0;
  2421. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2422. spin_lock(&vcpu->kvm->mmu_lock);
  2423. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2424. spin_unlock(&vcpu->kvm->mmu_lock);
  2425. return r;
  2426. }
  2427. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2428. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2429. {
  2430. int free_pages;
  2431. LIST_HEAD(invalid_list);
  2432. free_pages = vcpu->kvm->arch.n_free_mmu_pages;
  2433. while (free_pages < KVM_REFILL_PAGES &&
  2434. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2435. struct kvm_mmu_page *sp;
  2436. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2437. struct kvm_mmu_page, link);
  2438. free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2439. &invalid_list);
  2440. ++vcpu->kvm->stat.mmu_recycled;
  2441. }
  2442. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2443. }
  2444. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2445. {
  2446. int r;
  2447. enum emulation_result er;
  2448. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2449. if (r < 0)
  2450. goto out;
  2451. if (!r) {
  2452. r = 1;
  2453. goto out;
  2454. }
  2455. r = mmu_topup_memory_caches(vcpu);
  2456. if (r)
  2457. goto out;
  2458. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2459. switch (er) {
  2460. case EMULATE_DONE:
  2461. return 1;
  2462. case EMULATE_DO_MMIO:
  2463. ++vcpu->stat.mmio_exits;
  2464. /* fall through */
  2465. case EMULATE_FAIL:
  2466. return 0;
  2467. default:
  2468. BUG();
  2469. }
  2470. out:
  2471. return r;
  2472. }
  2473. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2474. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2475. {
  2476. vcpu->arch.mmu.invlpg(vcpu, gva);
  2477. kvm_mmu_flush_tlb(vcpu);
  2478. ++vcpu->stat.invlpg;
  2479. }
  2480. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2481. void kvm_enable_tdp(void)
  2482. {
  2483. tdp_enabled = true;
  2484. }
  2485. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2486. void kvm_disable_tdp(void)
  2487. {
  2488. tdp_enabled = false;
  2489. }
  2490. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2491. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2492. {
  2493. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2494. }
  2495. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2496. {
  2497. struct page *page;
  2498. int i;
  2499. ASSERT(vcpu);
  2500. /*
  2501. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2502. * Therefore we need to allocate shadow page tables in the first
  2503. * 4GB of memory, which happens to fit the DMA32 zone.
  2504. */
  2505. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2506. if (!page)
  2507. return -ENOMEM;
  2508. vcpu->arch.mmu.pae_root = page_address(page);
  2509. for (i = 0; i < 4; ++i)
  2510. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2511. return 0;
  2512. }
  2513. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2514. {
  2515. ASSERT(vcpu);
  2516. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2517. return alloc_mmu_pages(vcpu);
  2518. }
  2519. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2520. {
  2521. ASSERT(vcpu);
  2522. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2523. return init_kvm_mmu(vcpu);
  2524. }
  2525. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2526. {
  2527. ASSERT(vcpu);
  2528. destroy_kvm_mmu(vcpu);
  2529. free_mmu_pages(vcpu);
  2530. mmu_free_memory_caches(vcpu);
  2531. }
  2532. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2533. {
  2534. struct kvm_mmu_page *sp;
  2535. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2536. int i;
  2537. u64 *pt;
  2538. if (!test_bit(slot, sp->slot_bitmap))
  2539. continue;
  2540. pt = sp->spt;
  2541. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2542. /* avoid RMW */
  2543. if (is_writable_pte(pt[i]))
  2544. pt[i] &= ~PT_WRITABLE_MASK;
  2545. }
  2546. kvm_flush_remote_tlbs(kvm);
  2547. }
  2548. void kvm_mmu_zap_all(struct kvm *kvm)
  2549. {
  2550. struct kvm_mmu_page *sp, *node;
  2551. LIST_HEAD(invalid_list);
  2552. spin_lock(&kvm->mmu_lock);
  2553. restart:
  2554. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2555. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2556. goto restart;
  2557. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2558. spin_unlock(&kvm->mmu_lock);
  2559. }
  2560. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2561. struct list_head *invalid_list)
  2562. {
  2563. struct kvm_mmu_page *page;
  2564. page = container_of(kvm->arch.active_mmu_pages.prev,
  2565. struct kvm_mmu_page, link);
  2566. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2567. }
  2568. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2569. {
  2570. struct kvm *kvm;
  2571. struct kvm *kvm_freed = NULL;
  2572. int cache_count = 0;
  2573. spin_lock(&kvm_lock);
  2574. list_for_each_entry(kvm, &vm_list, vm_list) {
  2575. int npages, idx, freed_pages;
  2576. LIST_HEAD(invalid_list);
  2577. idx = srcu_read_lock(&kvm->srcu);
  2578. spin_lock(&kvm->mmu_lock);
  2579. npages = kvm->arch.n_alloc_mmu_pages -
  2580. kvm->arch.n_free_mmu_pages;
  2581. cache_count += npages;
  2582. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2583. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2584. &invalid_list);
  2585. cache_count -= freed_pages;
  2586. kvm_freed = kvm;
  2587. }
  2588. nr_to_scan--;
  2589. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2590. spin_unlock(&kvm->mmu_lock);
  2591. srcu_read_unlock(&kvm->srcu, idx);
  2592. }
  2593. if (kvm_freed)
  2594. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2595. spin_unlock(&kvm_lock);
  2596. return cache_count;
  2597. }
  2598. static struct shrinker mmu_shrinker = {
  2599. .shrink = mmu_shrink,
  2600. .seeks = DEFAULT_SEEKS * 10,
  2601. };
  2602. static void mmu_destroy_caches(void)
  2603. {
  2604. if (pte_chain_cache)
  2605. kmem_cache_destroy(pte_chain_cache);
  2606. if (rmap_desc_cache)
  2607. kmem_cache_destroy(rmap_desc_cache);
  2608. if (mmu_page_header_cache)
  2609. kmem_cache_destroy(mmu_page_header_cache);
  2610. }
  2611. void kvm_mmu_module_exit(void)
  2612. {
  2613. mmu_destroy_caches();
  2614. unregister_shrinker(&mmu_shrinker);
  2615. }
  2616. int kvm_mmu_module_init(void)
  2617. {
  2618. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2619. sizeof(struct kvm_pte_chain),
  2620. 0, 0, NULL);
  2621. if (!pte_chain_cache)
  2622. goto nomem;
  2623. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2624. sizeof(struct kvm_rmap_desc),
  2625. 0, 0, NULL);
  2626. if (!rmap_desc_cache)
  2627. goto nomem;
  2628. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2629. sizeof(struct kvm_mmu_page),
  2630. 0, 0, NULL);
  2631. if (!mmu_page_header_cache)
  2632. goto nomem;
  2633. register_shrinker(&mmu_shrinker);
  2634. return 0;
  2635. nomem:
  2636. mmu_destroy_caches();
  2637. return -ENOMEM;
  2638. }
  2639. /*
  2640. * Caculate mmu pages needed for kvm.
  2641. */
  2642. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2643. {
  2644. int i;
  2645. unsigned int nr_mmu_pages;
  2646. unsigned int nr_pages = 0;
  2647. struct kvm_memslots *slots;
  2648. slots = kvm_memslots(kvm);
  2649. for (i = 0; i < slots->nmemslots; i++)
  2650. nr_pages += slots->memslots[i].npages;
  2651. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2652. nr_mmu_pages = max(nr_mmu_pages,
  2653. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2654. return nr_mmu_pages;
  2655. }
  2656. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2657. unsigned len)
  2658. {
  2659. if (len > buffer->len)
  2660. return NULL;
  2661. return buffer->ptr;
  2662. }
  2663. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2664. unsigned len)
  2665. {
  2666. void *ret;
  2667. ret = pv_mmu_peek_buffer(buffer, len);
  2668. if (!ret)
  2669. return ret;
  2670. buffer->ptr += len;
  2671. buffer->len -= len;
  2672. buffer->processed += len;
  2673. return ret;
  2674. }
  2675. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2676. gpa_t addr, gpa_t value)
  2677. {
  2678. int bytes = 8;
  2679. int r;
  2680. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2681. bytes = 4;
  2682. r = mmu_topup_memory_caches(vcpu);
  2683. if (r)
  2684. return r;
  2685. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2686. return -EFAULT;
  2687. return 1;
  2688. }
  2689. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2690. {
  2691. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2692. return 1;
  2693. }
  2694. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2695. {
  2696. spin_lock(&vcpu->kvm->mmu_lock);
  2697. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2698. spin_unlock(&vcpu->kvm->mmu_lock);
  2699. return 1;
  2700. }
  2701. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2702. struct kvm_pv_mmu_op_buffer *buffer)
  2703. {
  2704. struct kvm_mmu_op_header *header;
  2705. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2706. if (!header)
  2707. return 0;
  2708. switch (header->op) {
  2709. case KVM_MMU_OP_WRITE_PTE: {
  2710. struct kvm_mmu_op_write_pte *wpte;
  2711. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2712. if (!wpte)
  2713. return 0;
  2714. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2715. wpte->pte_val);
  2716. }
  2717. case KVM_MMU_OP_FLUSH_TLB: {
  2718. struct kvm_mmu_op_flush_tlb *ftlb;
  2719. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2720. if (!ftlb)
  2721. return 0;
  2722. return kvm_pv_mmu_flush_tlb(vcpu);
  2723. }
  2724. case KVM_MMU_OP_RELEASE_PT: {
  2725. struct kvm_mmu_op_release_pt *rpt;
  2726. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2727. if (!rpt)
  2728. return 0;
  2729. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2730. }
  2731. default: return 0;
  2732. }
  2733. }
  2734. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2735. gpa_t addr, unsigned long *ret)
  2736. {
  2737. int r;
  2738. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2739. buffer->ptr = buffer->buf;
  2740. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2741. buffer->processed = 0;
  2742. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2743. if (r)
  2744. goto out;
  2745. while (buffer->len) {
  2746. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2747. if (r < 0)
  2748. goto out;
  2749. if (r == 0)
  2750. break;
  2751. }
  2752. r = 1;
  2753. out:
  2754. *ret = buffer->processed;
  2755. return r;
  2756. }
  2757. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2758. {
  2759. struct kvm_shadow_walk_iterator iterator;
  2760. int nr_sptes = 0;
  2761. spin_lock(&vcpu->kvm->mmu_lock);
  2762. for_each_shadow_entry(vcpu, addr, iterator) {
  2763. sptes[iterator.level-1] = *iterator.sptep;
  2764. nr_sptes++;
  2765. if (!is_shadow_present_pte(*iterator.sptep))
  2766. break;
  2767. }
  2768. spin_unlock(&vcpu->kvm->mmu_lock);
  2769. return nr_sptes;
  2770. }
  2771. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2772. #ifdef AUDIT
  2773. static const char *audit_msg;
  2774. static gva_t canonicalize(gva_t gva)
  2775. {
  2776. #ifdef CONFIG_X86_64
  2777. gva = (long long)(gva << 16) >> 16;
  2778. #endif
  2779. return gva;
  2780. }
  2781. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2782. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2783. inspect_spte_fn fn)
  2784. {
  2785. int i;
  2786. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2787. u64 ent = sp->spt[i];
  2788. if (is_shadow_present_pte(ent)) {
  2789. if (!is_last_spte(ent, sp->role.level)) {
  2790. struct kvm_mmu_page *child;
  2791. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2792. __mmu_spte_walk(kvm, child, fn);
  2793. } else
  2794. fn(kvm, &sp->spt[i]);
  2795. }
  2796. }
  2797. }
  2798. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2799. {
  2800. int i;
  2801. struct kvm_mmu_page *sp;
  2802. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2803. return;
  2804. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2805. hpa_t root = vcpu->arch.mmu.root_hpa;
  2806. sp = page_header(root);
  2807. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2808. return;
  2809. }
  2810. for (i = 0; i < 4; ++i) {
  2811. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2812. if (root && VALID_PAGE(root)) {
  2813. root &= PT64_BASE_ADDR_MASK;
  2814. sp = page_header(root);
  2815. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2816. }
  2817. }
  2818. return;
  2819. }
  2820. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2821. gva_t va, int level)
  2822. {
  2823. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2824. int i;
  2825. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2826. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2827. u64 ent = pt[i];
  2828. if (ent == shadow_trap_nonpresent_pte)
  2829. continue;
  2830. va = canonicalize(va);
  2831. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2832. audit_mappings_page(vcpu, ent, va, level - 1);
  2833. else {
  2834. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2835. gfn_t gfn = gpa >> PAGE_SHIFT;
  2836. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2837. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2838. if (is_error_pfn(pfn)) {
  2839. kvm_release_pfn_clean(pfn);
  2840. continue;
  2841. }
  2842. if (is_shadow_present_pte(ent)
  2843. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2844. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2845. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2846. audit_msg, vcpu->arch.mmu.root_level,
  2847. va, gpa, hpa, ent,
  2848. is_shadow_present_pte(ent));
  2849. else if (ent == shadow_notrap_nonpresent_pte
  2850. && !is_error_hpa(hpa))
  2851. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2852. " valid guest gva %lx\n", audit_msg, va);
  2853. kvm_release_pfn_clean(pfn);
  2854. }
  2855. }
  2856. }
  2857. static void audit_mappings(struct kvm_vcpu *vcpu)
  2858. {
  2859. unsigned i;
  2860. if (vcpu->arch.mmu.root_level == 4)
  2861. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2862. else
  2863. for (i = 0; i < 4; ++i)
  2864. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2865. audit_mappings_page(vcpu,
  2866. vcpu->arch.mmu.pae_root[i],
  2867. i << 30,
  2868. 2);
  2869. }
  2870. static int count_rmaps(struct kvm_vcpu *vcpu)
  2871. {
  2872. struct kvm *kvm = vcpu->kvm;
  2873. struct kvm_memslots *slots;
  2874. int nmaps = 0;
  2875. int i, j, k, idx;
  2876. idx = srcu_read_lock(&kvm->srcu);
  2877. slots = kvm_memslots(kvm);
  2878. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2879. struct kvm_memory_slot *m = &slots->memslots[i];
  2880. struct kvm_rmap_desc *d;
  2881. for (j = 0; j < m->npages; ++j) {
  2882. unsigned long *rmapp = &m->rmap[j];
  2883. if (!*rmapp)
  2884. continue;
  2885. if (!(*rmapp & 1)) {
  2886. ++nmaps;
  2887. continue;
  2888. }
  2889. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2890. while (d) {
  2891. for (k = 0; k < RMAP_EXT; ++k)
  2892. if (d->sptes[k])
  2893. ++nmaps;
  2894. else
  2895. break;
  2896. d = d->more;
  2897. }
  2898. }
  2899. }
  2900. srcu_read_unlock(&kvm->srcu, idx);
  2901. return nmaps;
  2902. }
  2903. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2904. {
  2905. unsigned long *rmapp;
  2906. struct kvm_mmu_page *rev_sp;
  2907. gfn_t gfn;
  2908. if (is_writable_pte(*sptep)) {
  2909. rev_sp = page_header(__pa(sptep));
  2910. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2911. if (!gfn_to_memslot(kvm, gfn)) {
  2912. if (!printk_ratelimit())
  2913. return;
  2914. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2915. audit_msg, gfn);
  2916. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2917. audit_msg, (long int)(sptep - rev_sp->spt),
  2918. rev_sp->gfn);
  2919. dump_stack();
  2920. return;
  2921. }
  2922. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2923. if (!*rmapp) {
  2924. if (!printk_ratelimit())
  2925. return;
  2926. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2927. audit_msg, *sptep);
  2928. dump_stack();
  2929. }
  2930. }
  2931. }
  2932. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2933. {
  2934. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2935. }
  2936. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2937. {
  2938. struct kvm_mmu_page *sp;
  2939. int i;
  2940. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2941. u64 *pt = sp->spt;
  2942. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2943. continue;
  2944. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2945. u64 ent = pt[i];
  2946. if (!(ent & PT_PRESENT_MASK))
  2947. continue;
  2948. if (!is_writable_pte(ent))
  2949. continue;
  2950. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2951. }
  2952. }
  2953. return;
  2954. }
  2955. static void audit_rmap(struct kvm_vcpu *vcpu)
  2956. {
  2957. check_writable_mappings_rmap(vcpu);
  2958. count_rmaps(vcpu);
  2959. }
  2960. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2961. {
  2962. struct kvm_mmu_page *sp;
  2963. struct kvm_memory_slot *slot;
  2964. unsigned long *rmapp;
  2965. u64 *spte;
  2966. gfn_t gfn;
  2967. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2968. if (sp->role.direct)
  2969. continue;
  2970. if (sp->unsync)
  2971. continue;
  2972. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2973. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2974. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2975. while (spte) {
  2976. if (is_writable_pte(*spte))
  2977. printk(KERN_ERR "%s: (%s) shadow page has "
  2978. "writable mappings: gfn %lx role %x\n",
  2979. __func__, audit_msg, sp->gfn,
  2980. sp->role.word);
  2981. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2982. }
  2983. }
  2984. }
  2985. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2986. {
  2987. int olddbg = dbg;
  2988. dbg = 0;
  2989. audit_msg = msg;
  2990. audit_rmap(vcpu);
  2991. audit_write_protection(vcpu);
  2992. if (strcmp("pre pte write", audit_msg) != 0)
  2993. audit_mappings(vcpu);
  2994. audit_writable_sptes_have_rmaps(vcpu);
  2995. dbg = olddbg;
  2996. }
  2997. #endif