af_key.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_portid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. };
  61. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  62. {
  63. return (struct pfkey_sock *)sk;
  64. }
  65. static int pfkey_can_dump(const struct sock *sk)
  66. {
  67. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  68. return 1;
  69. return 0;
  70. }
  71. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  72. {
  73. if (pfk->dump.dump) {
  74. if (pfk->dump.skb) {
  75. kfree_skb(pfk->dump.skb);
  76. pfk->dump.skb = NULL;
  77. }
  78. pfk->dump.done(pfk);
  79. pfk->dump.dump = NULL;
  80. pfk->dump.done = NULL;
  81. }
  82. }
  83. static void pfkey_sock_destruct(struct sock *sk)
  84. {
  85. struct net *net = sock_net(sk);
  86. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  87. pfkey_terminate_dump(pfkey_sk(sk));
  88. skb_queue_purge(&sk->sk_receive_queue);
  89. if (!sock_flag(sk, SOCK_DEAD)) {
  90. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  91. return;
  92. }
  93. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  94. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  95. atomic_dec(&net_pfkey->socks_nr);
  96. }
  97. static const struct proto_ops pfkey_ops;
  98. static void pfkey_insert(struct sock *sk)
  99. {
  100. struct net *net = sock_net(sk);
  101. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  102. mutex_lock(&pfkey_mutex);
  103. sk_add_node_rcu(sk, &net_pfkey->table);
  104. mutex_unlock(&pfkey_mutex);
  105. }
  106. static void pfkey_remove(struct sock *sk)
  107. {
  108. mutex_lock(&pfkey_mutex);
  109. sk_del_node_init_rcu(sk);
  110. mutex_unlock(&pfkey_mutex);
  111. }
  112. static struct proto key_proto = {
  113. .name = "KEY",
  114. .owner = THIS_MODULE,
  115. .obj_size = sizeof(struct pfkey_sock),
  116. };
  117. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  118. int kern)
  119. {
  120. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  121. struct sock *sk;
  122. int err;
  123. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  124. return -EPERM;
  125. if (sock->type != SOCK_RAW)
  126. return -ESOCKTNOSUPPORT;
  127. if (protocol != PF_KEY_V2)
  128. return -EPROTONOSUPPORT;
  129. err = -ENOMEM;
  130. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  131. if (sk == NULL)
  132. goto out;
  133. sock->ops = &pfkey_ops;
  134. sock_init_data(sock, sk);
  135. sk->sk_family = PF_KEY;
  136. sk->sk_destruct = pfkey_sock_destruct;
  137. atomic_inc(&net_pfkey->socks_nr);
  138. pfkey_insert(sk);
  139. return 0;
  140. out:
  141. return err;
  142. }
  143. static int pfkey_release(struct socket *sock)
  144. {
  145. struct sock *sk = sock->sk;
  146. if (!sk)
  147. return 0;
  148. pfkey_remove(sk);
  149. sock_orphan(sk);
  150. sock->sk = NULL;
  151. skb_queue_purge(&sk->sk_write_queue);
  152. synchronize_rcu();
  153. sock_put(sk);
  154. return 0;
  155. }
  156. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  157. gfp_t allocation, struct sock *sk)
  158. {
  159. int err = -ENOBUFS;
  160. sock_hold(sk);
  161. if (*skb2 == NULL) {
  162. if (atomic_read(&skb->users) != 1) {
  163. *skb2 = skb_clone(skb, allocation);
  164. } else {
  165. *skb2 = skb;
  166. atomic_inc(&skb->users);
  167. }
  168. }
  169. if (*skb2 != NULL) {
  170. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  171. skb_set_owner_r(*skb2, sk);
  172. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  173. sk->sk_data_ready(sk, (*skb2)->len);
  174. *skb2 = NULL;
  175. err = 0;
  176. }
  177. }
  178. sock_put(sk);
  179. return err;
  180. }
  181. /* Send SKB to all pfkey sockets matching selected criteria. */
  182. #define BROADCAST_ALL 0
  183. #define BROADCAST_ONE 1
  184. #define BROADCAST_REGISTERED 2
  185. #define BROADCAST_PROMISC_ONLY 4
  186. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  187. int broadcast_flags, struct sock *one_sk,
  188. struct net *net)
  189. {
  190. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  191. struct sock *sk;
  192. struct hlist_node *node;
  193. struct sk_buff *skb2 = NULL;
  194. int err = -ESRCH;
  195. /* XXX Do we need something like netlink_overrun? I think
  196. * XXX PF_KEY socket apps will not mind current behavior.
  197. */
  198. if (!skb)
  199. return -ENOMEM;
  200. rcu_read_lock();
  201. sk_for_each_rcu(sk, node, &net_pfkey->table) {
  202. struct pfkey_sock *pfk = pfkey_sk(sk);
  203. int err2;
  204. /* Yes, it means that if you are meant to receive this
  205. * pfkey message you receive it twice as promiscuous
  206. * socket.
  207. */
  208. if (pfk->promisc)
  209. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  210. /* the exact target will be processed later */
  211. if (sk == one_sk)
  212. continue;
  213. if (broadcast_flags != BROADCAST_ALL) {
  214. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  215. continue;
  216. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  217. !pfk->registered)
  218. continue;
  219. if (broadcast_flags & BROADCAST_ONE)
  220. continue;
  221. }
  222. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  223. /* Error is cleare after succecful sending to at least one
  224. * registered KM */
  225. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  226. err = err2;
  227. }
  228. rcu_read_unlock();
  229. if (one_sk != NULL)
  230. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  231. kfree_skb(skb2);
  232. kfree_skb(skb);
  233. return err;
  234. }
  235. static int pfkey_do_dump(struct pfkey_sock *pfk)
  236. {
  237. struct sadb_msg *hdr;
  238. int rc;
  239. rc = pfk->dump.dump(pfk);
  240. if (rc == -ENOBUFS)
  241. return 0;
  242. if (pfk->dump.skb) {
  243. if (!pfkey_can_dump(&pfk->sk))
  244. return 0;
  245. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  246. hdr->sadb_msg_seq = 0;
  247. hdr->sadb_msg_errno = rc;
  248. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  249. &pfk->sk, sock_net(&pfk->sk));
  250. pfk->dump.skb = NULL;
  251. }
  252. pfkey_terminate_dump(pfk);
  253. return rc;
  254. }
  255. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  256. const struct sadb_msg *orig)
  257. {
  258. *new = *orig;
  259. }
  260. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  261. {
  262. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  263. struct sadb_msg *hdr;
  264. if (!skb)
  265. return -ENOBUFS;
  266. /* Woe be to the platform trying to support PFKEY yet
  267. * having normal errnos outside the 1-255 range, inclusive.
  268. */
  269. err = -err;
  270. if (err == ERESTARTSYS ||
  271. err == ERESTARTNOHAND ||
  272. err == ERESTARTNOINTR)
  273. err = EINTR;
  274. if (err >= 512)
  275. err = EINVAL;
  276. BUG_ON(err <= 0 || err >= 256);
  277. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  278. pfkey_hdr_dup(hdr, orig);
  279. hdr->sadb_msg_errno = (uint8_t) err;
  280. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  281. sizeof(uint64_t));
  282. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  283. return 0;
  284. }
  285. static u8 sadb_ext_min_len[] = {
  286. [SADB_EXT_RESERVED] = (u8) 0,
  287. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  288. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  289. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  292. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  295. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  297. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  299. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  300. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  301. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  303. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  304. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  305. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  306. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  307. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  308. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  310. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  311. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  312. };
  313. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  314. static int verify_address_len(const void *p)
  315. {
  316. const struct sadb_address *sp = p;
  317. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  318. const struct sockaddr_in *sin;
  319. #if IS_ENABLED(CONFIG_IPV6)
  320. const struct sockaddr_in6 *sin6;
  321. #endif
  322. int len;
  323. switch (addr->sa_family) {
  324. case AF_INET:
  325. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  326. if (sp->sadb_address_len != len ||
  327. sp->sadb_address_prefixlen > 32)
  328. return -EINVAL;
  329. break;
  330. #if IS_ENABLED(CONFIG_IPV6)
  331. case AF_INET6:
  332. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  333. if (sp->sadb_address_len != len ||
  334. sp->sadb_address_prefixlen > 128)
  335. return -EINVAL;
  336. break;
  337. #endif
  338. default:
  339. /* It is user using kernel to keep track of security
  340. * associations for another protocol, such as
  341. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  342. * lengths.
  343. *
  344. * XXX Actually, association/policy database is not yet
  345. * XXX able to cope with arbitrary sockaddr families.
  346. * XXX When it can, remove this -EINVAL. -DaveM
  347. */
  348. return -EINVAL;
  349. break;
  350. }
  351. return 0;
  352. }
  353. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  354. {
  355. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  356. sec_ctx->sadb_x_ctx_len,
  357. sizeof(uint64_t));
  358. }
  359. static inline int verify_sec_ctx_len(const void *p)
  360. {
  361. const struct sadb_x_sec_ctx *sec_ctx = p;
  362. int len = sec_ctx->sadb_x_ctx_len;
  363. if (len > PAGE_SIZE)
  364. return -EINVAL;
  365. len = pfkey_sec_ctx_len(sec_ctx);
  366. if (sec_ctx->sadb_x_sec_len != len)
  367. return -EINVAL;
  368. return 0;
  369. }
  370. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. struct xfrm_user_sec_ctx *uctx = NULL;
  373. int ctx_size = sec_ctx->sadb_x_ctx_len;
  374. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  375. if (!uctx)
  376. return NULL;
  377. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  378. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  379. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  380. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  381. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  382. memcpy(uctx + 1, sec_ctx + 1,
  383. uctx->ctx_len);
  384. return uctx;
  385. }
  386. static int present_and_same_family(const struct sadb_address *src,
  387. const struct sadb_address *dst)
  388. {
  389. const struct sockaddr *s_addr, *d_addr;
  390. if (!src || !dst)
  391. return 0;
  392. s_addr = (const struct sockaddr *)(src + 1);
  393. d_addr = (const struct sockaddr *)(dst + 1);
  394. if (s_addr->sa_family != d_addr->sa_family)
  395. return 0;
  396. if (s_addr->sa_family != AF_INET
  397. #if IS_ENABLED(CONFIG_IPV6)
  398. && s_addr->sa_family != AF_INET6
  399. #endif
  400. )
  401. return 0;
  402. return 1;
  403. }
  404. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  405. {
  406. const char *p = (char *) hdr;
  407. int len = skb->len;
  408. len -= sizeof(*hdr);
  409. p += sizeof(*hdr);
  410. while (len > 0) {
  411. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  412. uint16_t ext_type;
  413. int ext_len;
  414. ext_len = ehdr->sadb_ext_len;
  415. ext_len *= sizeof(uint64_t);
  416. ext_type = ehdr->sadb_ext_type;
  417. if (ext_len < sizeof(uint64_t) ||
  418. ext_len > len ||
  419. ext_type == SADB_EXT_RESERVED)
  420. return -EINVAL;
  421. if (ext_type <= SADB_EXT_MAX) {
  422. int min = (int) sadb_ext_min_len[ext_type];
  423. if (ext_len < min)
  424. return -EINVAL;
  425. if (ext_hdrs[ext_type-1] != NULL)
  426. return -EINVAL;
  427. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  428. ext_type == SADB_EXT_ADDRESS_DST ||
  429. ext_type == SADB_EXT_ADDRESS_PROXY ||
  430. ext_type == SADB_X_EXT_NAT_T_OA) {
  431. if (verify_address_len(p))
  432. return -EINVAL;
  433. }
  434. if (ext_type == SADB_X_EXT_SEC_CTX) {
  435. if (verify_sec_ctx_len(p))
  436. return -EINVAL;
  437. }
  438. ext_hdrs[ext_type-1] = (void *) p;
  439. }
  440. p += ext_len;
  441. len -= ext_len;
  442. }
  443. return 0;
  444. }
  445. static uint16_t
  446. pfkey_satype2proto(uint8_t satype)
  447. {
  448. switch (satype) {
  449. case SADB_SATYPE_UNSPEC:
  450. return IPSEC_PROTO_ANY;
  451. case SADB_SATYPE_AH:
  452. return IPPROTO_AH;
  453. case SADB_SATYPE_ESP:
  454. return IPPROTO_ESP;
  455. case SADB_X_SATYPE_IPCOMP:
  456. return IPPROTO_COMP;
  457. break;
  458. default:
  459. return 0;
  460. }
  461. /* NOTREACHED */
  462. }
  463. static uint8_t
  464. pfkey_proto2satype(uint16_t proto)
  465. {
  466. switch (proto) {
  467. case IPPROTO_AH:
  468. return SADB_SATYPE_AH;
  469. case IPPROTO_ESP:
  470. return SADB_SATYPE_ESP;
  471. case IPPROTO_COMP:
  472. return SADB_X_SATYPE_IPCOMP;
  473. break;
  474. default:
  475. return 0;
  476. }
  477. /* NOTREACHED */
  478. }
  479. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  480. * say specifically 'just raw sockets' as we encode them as 255.
  481. */
  482. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  483. {
  484. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  485. }
  486. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  487. {
  488. return proto ? proto : IPSEC_PROTO_ANY;
  489. }
  490. static inline int pfkey_sockaddr_len(sa_family_t family)
  491. {
  492. switch (family) {
  493. case AF_INET:
  494. return sizeof(struct sockaddr_in);
  495. #if IS_ENABLED(CONFIG_IPV6)
  496. case AF_INET6:
  497. return sizeof(struct sockaddr_in6);
  498. #endif
  499. }
  500. return 0;
  501. }
  502. static
  503. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  504. {
  505. switch (sa->sa_family) {
  506. case AF_INET:
  507. xaddr->a4 =
  508. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  509. return AF_INET;
  510. #if IS_ENABLED(CONFIG_IPV6)
  511. case AF_INET6:
  512. memcpy(xaddr->a6,
  513. &((struct sockaddr_in6 *)sa)->sin6_addr,
  514. sizeof(struct in6_addr));
  515. return AF_INET6;
  516. #endif
  517. }
  518. return 0;
  519. }
  520. static
  521. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  522. {
  523. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  524. xaddr);
  525. }
  526. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  527. {
  528. const struct sadb_sa *sa;
  529. const struct sadb_address *addr;
  530. uint16_t proto;
  531. unsigned short family;
  532. xfrm_address_t *xaddr;
  533. sa = ext_hdrs[SADB_EXT_SA - 1];
  534. if (sa == NULL)
  535. return NULL;
  536. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  537. if (proto == 0)
  538. return NULL;
  539. /* sadb_address_len should be checked by caller */
  540. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  541. if (addr == NULL)
  542. return NULL;
  543. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  544. switch (family) {
  545. case AF_INET:
  546. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  547. break;
  548. #if IS_ENABLED(CONFIG_IPV6)
  549. case AF_INET6:
  550. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  551. break;
  552. #endif
  553. default:
  554. xaddr = NULL;
  555. }
  556. if (!xaddr)
  557. return NULL;
  558. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  559. }
  560. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  561. static int
  562. pfkey_sockaddr_size(sa_family_t family)
  563. {
  564. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  565. }
  566. static inline int pfkey_mode_from_xfrm(int mode)
  567. {
  568. switch(mode) {
  569. case XFRM_MODE_TRANSPORT:
  570. return IPSEC_MODE_TRANSPORT;
  571. case XFRM_MODE_TUNNEL:
  572. return IPSEC_MODE_TUNNEL;
  573. case XFRM_MODE_BEET:
  574. return IPSEC_MODE_BEET;
  575. default:
  576. return -1;
  577. }
  578. }
  579. static inline int pfkey_mode_to_xfrm(int mode)
  580. {
  581. switch(mode) {
  582. case IPSEC_MODE_ANY: /*XXX*/
  583. case IPSEC_MODE_TRANSPORT:
  584. return XFRM_MODE_TRANSPORT;
  585. case IPSEC_MODE_TUNNEL:
  586. return XFRM_MODE_TUNNEL;
  587. case IPSEC_MODE_BEET:
  588. return XFRM_MODE_BEET;
  589. default:
  590. return -1;
  591. }
  592. }
  593. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  594. struct sockaddr *sa,
  595. unsigned short family)
  596. {
  597. switch (family) {
  598. case AF_INET:
  599. {
  600. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  601. sin->sin_family = AF_INET;
  602. sin->sin_port = port;
  603. sin->sin_addr.s_addr = xaddr->a4;
  604. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  605. return 32;
  606. }
  607. #if IS_ENABLED(CONFIG_IPV6)
  608. case AF_INET6:
  609. {
  610. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  611. sin6->sin6_family = AF_INET6;
  612. sin6->sin6_port = port;
  613. sin6->sin6_flowinfo = 0;
  614. sin6->sin6_addr = *(struct in6_addr *)xaddr->a6;
  615. sin6->sin6_scope_id = 0;
  616. return 128;
  617. }
  618. #endif
  619. }
  620. return 0;
  621. }
  622. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  623. int add_keys, int hsc)
  624. {
  625. struct sk_buff *skb;
  626. struct sadb_msg *hdr;
  627. struct sadb_sa *sa;
  628. struct sadb_lifetime *lifetime;
  629. struct sadb_address *addr;
  630. struct sadb_key *key;
  631. struct sadb_x_sa2 *sa2;
  632. struct sadb_x_sec_ctx *sec_ctx;
  633. struct xfrm_sec_ctx *xfrm_ctx;
  634. int ctx_size = 0;
  635. int size;
  636. int auth_key_size = 0;
  637. int encrypt_key_size = 0;
  638. int sockaddr_size;
  639. struct xfrm_encap_tmpl *natt = NULL;
  640. int mode;
  641. /* address family check */
  642. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  643. if (!sockaddr_size)
  644. return ERR_PTR(-EINVAL);
  645. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  646. key(AE), (identity(SD),) (sensitivity)> */
  647. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  648. sizeof(struct sadb_lifetime) +
  649. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  650. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  651. sizeof(struct sadb_address)*2 +
  652. sockaddr_size*2 +
  653. sizeof(struct sadb_x_sa2);
  654. if ((xfrm_ctx = x->security)) {
  655. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  656. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  657. }
  658. /* identity & sensitivity */
  659. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  660. size += sizeof(struct sadb_address) + sockaddr_size;
  661. if (add_keys) {
  662. if (x->aalg && x->aalg->alg_key_len) {
  663. auth_key_size =
  664. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  665. size += sizeof(struct sadb_key) + auth_key_size;
  666. }
  667. if (x->ealg && x->ealg->alg_key_len) {
  668. encrypt_key_size =
  669. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  670. size += sizeof(struct sadb_key) + encrypt_key_size;
  671. }
  672. }
  673. if (x->encap)
  674. natt = x->encap;
  675. if (natt && natt->encap_type) {
  676. size += sizeof(struct sadb_x_nat_t_type);
  677. size += sizeof(struct sadb_x_nat_t_port);
  678. size += sizeof(struct sadb_x_nat_t_port);
  679. }
  680. skb = alloc_skb(size + 16, GFP_ATOMIC);
  681. if (skb == NULL)
  682. return ERR_PTR(-ENOBUFS);
  683. /* call should fill header later */
  684. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  685. memset(hdr, 0, size); /* XXX do we need this ? */
  686. hdr->sadb_msg_len = size / sizeof(uint64_t);
  687. /* sa */
  688. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  689. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  690. sa->sadb_sa_exttype = SADB_EXT_SA;
  691. sa->sadb_sa_spi = x->id.spi;
  692. sa->sadb_sa_replay = x->props.replay_window;
  693. switch (x->km.state) {
  694. case XFRM_STATE_VALID:
  695. sa->sadb_sa_state = x->km.dying ?
  696. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  697. break;
  698. case XFRM_STATE_ACQ:
  699. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  700. break;
  701. default:
  702. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  703. break;
  704. }
  705. sa->sadb_sa_auth = 0;
  706. if (x->aalg) {
  707. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  708. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  709. }
  710. sa->sadb_sa_encrypt = 0;
  711. BUG_ON(x->ealg && x->calg);
  712. if (x->ealg) {
  713. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  714. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  715. }
  716. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  717. if (x->calg) {
  718. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  719. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  720. }
  721. sa->sadb_sa_flags = 0;
  722. if (x->props.flags & XFRM_STATE_NOECN)
  723. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  724. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  725. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  726. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  727. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  728. /* hard time */
  729. if (hsc & 2) {
  730. lifetime = (struct sadb_lifetime *) skb_put(skb,
  731. sizeof(struct sadb_lifetime));
  732. lifetime->sadb_lifetime_len =
  733. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  734. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  735. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  736. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  737. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  738. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  739. }
  740. /* soft time */
  741. if (hsc & 1) {
  742. lifetime = (struct sadb_lifetime *) skb_put(skb,
  743. sizeof(struct sadb_lifetime));
  744. lifetime->sadb_lifetime_len =
  745. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  746. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  747. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  748. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  749. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  750. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  751. }
  752. /* current time */
  753. lifetime = (struct sadb_lifetime *) skb_put(skb,
  754. sizeof(struct sadb_lifetime));
  755. lifetime->sadb_lifetime_len =
  756. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  757. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  758. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  759. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  760. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  761. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  762. /* src address */
  763. addr = (struct sadb_address*) skb_put(skb,
  764. sizeof(struct sadb_address)+sockaddr_size);
  765. addr->sadb_address_len =
  766. (sizeof(struct sadb_address)+sockaddr_size)/
  767. sizeof(uint64_t);
  768. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  769. /* "if the ports are non-zero, then the sadb_address_proto field,
  770. normally zero, MUST be filled in with the transport
  771. protocol's number." - RFC2367 */
  772. addr->sadb_address_proto = 0;
  773. addr->sadb_address_reserved = 0;
  774. addr->sadb_address_prefixlen =
  775. pfkey_sockaddr_fill(&x->props.saddr, 0,
  776. (struct sockaddr *) (addr + 1),
  777. x->props.family);
  778. if (!addr->sadb_address_prefixlen)
  779. BUG();
  780. /* dst address */
  781. addr = (struct sadb_address*) skb_put(skb,
  782. sizeof(struct sadb_address)+sockaddr_size);
  783. addr->sadb_address_len =
  784. (sizeof(struct sadb_address)+sockaddr_size)/
  785. sizeof(uint64_t);
  786. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  787. addr->sadb_address_proto = 0;
  788. addr->sadb_address_reserved = 0;
  789. addr->sadb_address_prefixlen =
  790. pfkey_sockaddr_fill(&x->id.daddr, 0,
  791. (struct sockaddr *) (addr + 1),
  792. x->props.family);
  793. if (!addr->sadb_address_prefixlen)
  794. BUG();
  795. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  796. x->props.family)) {
  797. addr = (struct sadb_address*) skb_put(skb,
  798. sizeof(struct sadb_address)+sockaddr_size);
  799. addr->sadb_address_len =
  800. (sizeof(struct sadb_address)+sockaddr_size)/
  801. sizeof(uint64_t);
  802. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  803. addr->sadb_address_proto =
  804. pfkey_proto_from_xfrm(x->sel.proto);
  805. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  806. addr->sadb_address_reserved = 0;
  807. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  808. (struct sockaddr *) (addr + 1),
  809. x->props.family);
  810. }
  811. /* auth key */
  812. if (add_keys && auth_key_size) {
  813. key = (struct sadb_key *) skb_put(skb,
  814. sizeof(struct sadb_key)+auth_key_size);
  815. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  816. sizeof(uint64_t);
  817. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  818. key->sadb_key_bits = x->aalg->alg_key_len;
  819. key->sadb_key_reserved = 0;
  820. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  821. }
  822. /* encrypt key */
  823. if (add_keys && encrypt_key_size) {
  824. key = (struct sadb_key *) skb_put(skb,
  825. sizeof(struct sadb_key)+encrypt_key_size);
  826. key->sadb_key_len = (sizeof(struct sadb_key) +
  827. encrypt_key_size) / sizeof(uint64_t);
  828. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  829. key->sadb_key_bits = x->ealg->alg_key_len;
  830. key->sadb_key_reserved = 0;
  831. memcpy(key + 1, x->ealg->alg_key,
  832. (x->ealg->alg_key_len+7)/8);
  833. }
  834. /* sa */
  835. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  836. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  837. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  838. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  839. kfree_skb(skb);
  840. return ERR_PTR(-EINVAL);
  841. }
  842. sa2->sadb_x_sa2_mode = mode;
  843. sa2->sadb_x_sa2_reserved1 = 0;
  844. sa2->sadb_x_sa2_reserved2 = 0;
  845. sa2->sadb_x_sa2_sequence = 0;
  846. sa2->sadb_x_sa2_reqid = x->props.reqid;
  847. if (natt && natt->encap_type) {
  848. struct sadb_x_nat_t_type *n_type;
  849. struct sadb_x_nat_t_port *n_port;
  850. /* type */
  851. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  852. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  853. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  854. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  855. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  856. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  857. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  858. /* source port */
  859. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  860. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  861. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  862. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  863. n_port->sadb_x_nat_t_port_reserved = 0;
  864. /* dest port */
  865. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  866. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  867. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  868. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  869. n_port->sadb_x_nat_t_port_reserved = 0;
  870. }
  871. /* security context */
  872. if (xfrm_ctx) {
  873. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  874. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  875. sec_ctx->sadb_x_sec_len =
  876. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  877. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  878. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  879. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  880. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  881. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  882. xfrm_ctx->ctx_len);
  883. }
  884. return skb;
  885. }
  886. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  887. {
  888. struct sk_buff *skb;
  889. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  890. return skb;
  891. }
  892. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  893. int hsc)
  894. {
  895. return __pfkey_xfrm_state2msg(x, 0, hsc);
  896. }
  897. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  898. const struct sadb_msg *hdr,
  899. void * const *ext_hdrs)
  900. {
  901. struct xfrm_state *x;
  902. const struct sadb_lifetime *lifetime;
  903. const struct sadb_sa *sa;
  904. const struct sadb_key *key;
  905. const struct sadb_x_sec_ctx *sec_ctx;
  906. uint16_t proto;
  907. int err;
  908. sa = ext_hdrs[SADB_EXT_SA - 1];
  909. if (!sa ||
  910. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  911. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  912. return ERR_PTR(-EINVAL);
  913. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  914. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  915. return ERR_PTR(-EINVAL);
  916. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  917. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  918. return ERR_PTR(-EINVAL);
  919. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  920. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  921. return ERR_PTR(-EINVAL);
  922. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  923. if (proto == 0)
  924. return ERR_PTR(-EINVAL);
  925. /* default error is no buffer space */
  926. err = -ENOBUFS;
  927. /* RFC2367:
  928. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  929. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  930. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  931. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  932. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  933. not true.
  934. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  935. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  936. */
  937. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  938. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  939. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  940. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  941. return ERR_PTR(-EINVAL);
  942. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  943. if (key != NULL &&
  944. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  945. ((key->sadb_key_bits+7) / 8 == 0 ||
  946. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  947. return ERR_PTR(-EINVAL);
  948. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  949. if (key != NULL &&
  950. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  951. ((key->sadb_key_bits+7) / 8 == 0 ||
  952. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  953. return ERR_PTR(-EINVAL);
  954. x = xfrm_state_alloc(net);
  955. if (x == NULL)
  956. return ERR_PTR(-ENOBUFS);
  957. x->id.proto = proto;
  958. x->id.spi = sa->sadb_sa_spi;
  959. x->props.replay_window = sa->sadb_sa_replay;
  960. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  961. x->props.flags |= XFRM_STATE_NOECN;
  962. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  963. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  964. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  965. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  966. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  967. if (lifetime != NULL) {
  968. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  969. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  970. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  971. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  972. }
  973. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  974. if (lifetime != NULL) {
  975. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  976. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  977. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  978. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  979. }
  980. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  981. if (sec_ctx != NULL) {
  982. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  983. if (!uctx)
  984. goto out;
  985. err = security_xfrm_state_alloc(x, uctx);
  986. kfree(uctx);
  987. if (err)
  988. goto out;
  989. }
  990. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  991. if (sa->sadb_sa_auth) {
  992. int keysize = 0;
  993. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  994. if (!a) {
  995. err = -ENOSYS;
  996. goto out;
  997. }
  998. if (key)
  999. keysize = (key->sadb_key_bits + 7) / 8;
  1000. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1001. if (!x->aalg)
  1002. goto out;
  1003. strcpy(x->aalg->alg_name, a->name);
  1004. x->aalg->alg_key_len = 0;
  1005. if (key) {
  1006. x->aalg->alg_key_len = key->sadb_key_bits;
  1007. memcpy(x->aalg->alg_key, key+1, keysize);
  1008. }
  1009. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1010. x->props.aalgo = sa->sadb_sa_auth;
  1011. /* x->algo.flags = sa->sadb_sa_flags; */
  1012. }
  1013. if (sa->sadb_sa_encrypt) {
  1014. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1015. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1016. if (!a) {
  1017. err = -ENOSYS;
  1018. goto out;
  1019. }
  1020. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1021. if (!x->calg)
  1022. goto out;
  1023. strcpy(x->calg->alg_name, a->name);
  1024. x->props.calgo = sa->sadb_sa_encrypt;
  1025. } else {
  1026. int keysize = 0;
  1027. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1028. if (!a) {
  1029. err = -ENOSYS;
  1030. goto out;
  1031. }
  1032. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1033. if (key)
  1034. keysize = (key->sadb_key_bits + 7) / 8;
  1035. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1036. if (!x->ealg)
  1037. goto out;
  1038. strcpy(x->ealg->alg_name, a->name);
  1039. x->ealg->alg_key_len = 0;
  1040. if (key) {
  1041. x->ealg->alg_key_len = key->sadb_key_bits;
  1042. memcpy(x->ealg->alg_key, key+1, keysize);
  1043. }
  1044. x->props.ealgo = sa->sadb_sa_encrypt;
  1045. }
  1046. }
  1047. /* x->algo.flags = sa->sadb_sa_flags; */
  1048. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1049. &x->props.saddr);
  1050. if (!x->props.family) {
  1051. err = -EAFNOSUPPORT;
  1052. goto out;
  1053. }
  1054. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1055. &x->id.daddr);
  1056. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1057. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1058. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1059. if (mode < 0) {
  1060. err = -EINVAL;
  1061. goto out;
  1062. }
  1063. x->props.mode = mode;
  1064. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1065. }
  1066. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1067. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1068. /* Nobody uses this, but we try. */
  1069. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1070. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1071. }
  1072. if (!x->sel.family)
  1073. x->sel.family = x->props.family;
  1074. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1075. const struct sadb_x_nat_t_type* n_type;
  1076. struct xfrm_encap_tmpl *natt;
  1077. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1078. if (!x->encap)
  1079. goto out;
  1080. natt = x->encap;
  1081. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1082. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1083. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1084. const struct sadb_x_nat_t_port *n_port =
  1085. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1086. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1087. }
  1088. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1089. const struct sadb_x_nat_t_port *n_port =
  1090. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1091. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1092. }
  1093. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1094. }
  1095. err = xfrm_init_state(x);
  1096. if (err)
  1097. goto out;
  1098. x->km.seq = hdr->sadb_msg_seq;
  1099. return x;
  1100. out:
  1101. x->km.state = XFRM_STATE_DEAD;
  1102. xfrm_state_put(x);
  1103. return ERR_PTR(err);
  1104. }
  1105. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1106. {
  1107. return -EOPNOTSUPP;
  1108. }
  1109. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1110. {
  1111. struct net *net = sock_net(sk);
  1112. struct sk_buff *resp_skb;
  1113. struct sadb_x_sa2 *sa2;
  1114. struct sadb_address *saddr, *daddr;
  1115. struct sadb_msg *out_hdr;
  1116. struct sadb_spirange *range;
  1117. struct xfrm_state *x = NULL;
  1118. int mode;
  1119. int err;
  1120. u32 min_spi, max_spi;
  1121. u32 reqid;
  1122. u8 proto;
  1123. unsigned short family;
  1124. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1125. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1126. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1127. return -EINVAL;
  1128. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1129. if (proto == 0)
  1130. return -EINVAL;
  1131. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1132. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1133. if (mode < 0)
  1134. return -EINVAL;
  1135. reqid = sa2->sadb_x_sa2_reqid;
  1136. } else {
  1137. mode = 0;
  1138. reqid = 0;
  1139. }
  1140. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1141. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1142. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1143. switch (family) {
  1144. case AF_INET:
  1145. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1146. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1147. break;
  1148. #if IS_ENABLED(CONFIG_IPV6)
  1149. case AF_INET6:
  1150. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1151. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1152. break;
  1153. #endif
  1154. }
  1155. if (hdr->sadb_msg_seq) {
  1156. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1157. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1158. xfrm_state_put(x);
  1159. x = NULL;
  1160. }
  1161. }
  1162. if (!x)
  1163. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1164. if (x == NULL)
  1165. return -ENOENT;
  1166. min_spi = 0x100;
  1167. max_spi = 0x0fffffff;
  1168. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1169. if (range) {
  1170. min_spi = range->sadb_spirange_min;
  1171. max_spi = range->sadb_spirange_max;
  1172. }
  1173. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1174. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1175. if (IS_ERR(resp_skb)) {
  1176. xfrm_state_put(x);
  1177. return PTR_ERR(resp_skb);
  1178. }
  1179. out_hdr = (struct sadb_msg *) resp_skb->data;
  1180. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1181. out_hdr->sadb_msg_type = SADB_GETSPI;
  1182. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1183. out_hdr->sadb_msg_errno = 0;
  1184. out_hdr->sadb_msg_reserved = 0;
  1185. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1186. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1187. xfrm_state_put(x);
  1188. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1189. return 0;
  1190. }
  1191. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1192. {
  1193. struct net *net = sock_net(sk);
  1194. struct xfrm_state *x;
  1195. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1196. return -EOPNOTSUPP;
  1197. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1198. return 0;
  1199. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1200. if (x == NULL)
  1201. return 0;
  1202. spin_lock_bh(&x->lock);
  1203. if (x->km.state == XFRM_STATE_ACQ) {
  1204. x->km.state = XFRM_STATE_ERROR;
  1205. wake_up(&net->xfrm.km_waitq);
  1206. }
  1207. spin_unlock_bh(&x->lock);
  1208. xfrm_state_put(x);
  1209. return 0;
  1210. }
  1211. static inline int event2poltype(int event)
  1212. {
  1213. switch (event) {
  1214. case XFRM_MSG_DELPOLICY:
  1215. return SADB_X_SPDDELETE;
  1216. case XFRM_MSG_NEWPOLICY:
  1217. return SADB_X_SPDADD;
  1218. case XFRM_MSG_UPDPOLICY:
  1219. return SADB_X_SPDUPDATE;
  1220. case XFRM_MSG_POLEXPIRE:
  1221. // return SADB_X_SPDEXPIRE;
  1222. default:
  1223. pr_err("pfkey: Unknown policy event %d\n", event);
  1224. break;
  1225. }
  1226. return 0;
  1227. }
  1228. static inline int event2keytype(int event)
  1229. {
  1230. switch (event) {
  1231. case XFRM_MSG_DELSA:
  1232. return SADB_DELETE;
  1233. case XFRM_MSG_NEWSA:
  1234. return SADB_ADD;
  1235. case XFRM_MSG_UPDSA:
  1236. return SADB_UPDATE;
  1237. case XFRM_MSG_EXPIRE:
  1238. return SADB_EXPIRE;
  1239. default:
  1240. pr_err("pfkey: Unknown SA event %d\n", event);
  1241. break;
  1242. }
  1243. return 0;
  1244. }
  1245. /* ADD/UPD/DEL */
  1246. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1247. {
  1248. struct sk_buff *skb;
  1249. struct sadb_msg *hdr;
  1250. skb = pfkey_xfrm_state2msg(x);
  1251. if (IS_ERR(skb))
  1252. return PTR_ERR(skb);
  1253. hdr = (struct sadb_msg *) skb->data;
  1254. hdr->sadb_msg_version = PF_KEY_V2;
  1255. hdr->sadb_msg_type = event2keytype(c->event);
  1256. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1257. hdr->sadb_msg_errno = 0;
  1258. hdr->sadb_msg_reserved = 0;
  1259. hdr->sadb_msg_seq = c->seq;
  1260. hdr->sadb_msg_pid = c->portid;
  1261. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1262. return 0;
  1263. }
  1264. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1265. {
  1266. struct net *net = sock_net(sk);
  1267. struct xfrm_state *x;
  1268. int err;
  1269. struct km_event c;
  1270. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1271. if (IS_ERR(x))
  1272. return PTR_ERR(x);
  1273. xfrm_state_hold(x);
  1274. if (hdr->sadb_msg_type == SADB_ADD)
  1275. err = xfrm_state_add(x);
  1276. else
  1277. err = xfrm_state_update(x);
  1278. xfrm_audit_state_add(x, err ? 0 : 1,
  1279. audit_get_loginuid(current),
  1280. audit_get_sessionid(current), 0);
  1281. if (err < 0) {
  1282. x->km.state = XFRM_STATE_DEAD;
  1283. __xfrm_state_put(x);
  1284. goto out;
  1285. }
  1286. if (hdr->sadb_msg_type == SADB_ADD)
  1287. c.event = XFRM_MSG_NEWSA;
  1288. else
  1289. c.event = XFRM_MSG_UPDSA;
  1290. c.seq = hdr->sadb_msg_seq;
  1291. c.portid = hdr->sadb_msg_pid;
  1292. km_state_notify(x, &c);
  1293. out:
  1294. xfrm_state_put(x);
  1295. return err;
  1296. }
  1297. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1298. {
  1299. struct net *net = sock_net(sk);
  1300. struct xfrm_state *x;
  1301. struct km_event c;
  1302. int err;
  1303. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1304. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1305. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1306. return -EINVAL;
  1307. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1308. if (x == NULL)
  1309. return -ESRCH;
  1310. if ((err = security_xfrm_state_delete(x)))
  1311. goto out;
  1312. if (xfrm_state_kern(x)) {
  1313. err = -EPERM;
  1314. goto out;
  1315. }
  1316. err = xfrm_state_delete(x);
  1317. if (err < 0)
  1318. goto out;
  1319. c.seq = hdr->sadb_msg_seq;
  1320. c.portid = hdr->sadb_msg_pid;
  1321. c.event = XFRM_MSG_DELSA;
  1322. km_state_notify(x, &c);
  1323. out:
  1324. xfrm_audit_state_delete(x, err ? 0 : 1,
  1325. audit_get_loginuid(current),
  1326. audit_get_sessionid(current), 0);
  1327. xfrm_state_put(x);
  1328. return err;
  1329. }
  1330. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1331. {
  1332. struct net *net = sock_net(sk);
  1333. __u8 proto;
  1334. struct sk_buff *out_skb;
  1335. struct sadb_msg *out_hdr;
  1336. struct xfrm_state *x;
  1337. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1338. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1339. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1340. return -EINVAL;
  1341. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1342. if (x == NULL)
  1343. return -ESRCH;
  1344. out_skb = pfkey_xfrm_state2msg(x);
  1345. proto = x->id.proto;
  1346. xfrm_state_put(x);
  1347. if (IS_ERR(out_skb))
  1348. return PTR_ERR(out_skb);
  1349. out_hdr = (struct sadb_msg *) out_skb->data;
  1350. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1351. out_hdr->sadb_msg_type = SADB_GET;
  1352. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1353. out_hdr->sadb_msg_errno = 0;
  1354. out_hdr->sadb_msg_reserved = 0;
  1355. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1356. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1357. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1358. return 0;
  1359. }
  1360. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1361. gfp_t allocation)
  1362. {
  1363. struct sk_buff *skb;
  1364. struct sadb_msg *hdr;
  1365. int len, auth_len, enc_len, i;
  1366. auth_len = xfrm_count_auth_supported();
  1367. if (auth_len) {
  1368. auth_len *= sizeof(struct sadb_alg);
  1369. auth_len += sizeof(struct sadb_supported);
  1370. }
  1371. enc_len = xfrm_count_enc_supported();
  1372. if (enc_len) {
  1373. enc_len *= sizeof(struct sadb_alg);
  1374. enc_len += sizeof(struct sadb_supported);
  1375. }
  1376. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1377. skb = alloc_skb(len + 16, allocation);
  1378. if (!skb)
  1379. goto out_put_algs;
  1380. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1381. pfkey_hdr_dup(hdr, orig);
  1382. hdr->sadb_msg_errno = 0;
  1383. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1384. if (auth_len) {
  1385. struct sadb_supported *sp;
  1386. struct sadb_alg *ap;
  1387. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1388. ap = (struct sadb_alg *) (sp + 1);
  1389. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1390. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1391. for (i = 0; ; i++) {
  1392. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1393. if (!aalg)
  1394. break;
  1395. if (aalg->available)
  1396. *ap++ = aalg->desc;
  1397. }
  1398. }
  1399. if (enc_len) {
  1400. struct sadb_supported *sp;
  1401. struct sadb_alg *ap;
  1402. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1403. ap = (struct sadb_alg *) (sp + 1);
  1404. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1405. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1406. for (i = 0; ; i++) {
  1407. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1408. if (!ealg)
  1409. break;
  1410. if (ealg->available)
  1411. *ap++ = ealg->desc;
  1412. }
  1413. }
  1414. out_put_algs:
  1415. return skb;
  1416. }
  1417. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1418. {
  1419. struct pfkey_sock *pfk = pfkey_sk(sk);
  1420. struct sk_buff *supp_skb;
  1421. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1422. return -EINVAL;
  1423. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1424. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1425. return -EEXIST;
  1426. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1427. }
  1428. xfrm_probe_algs();
  1429. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1430. if (!supp_skb) {
  1431. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1432. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1433. return -ENOBUFS;
  1434. }
  1435. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1436. return 0;
  1437. }
  1438. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1439. {
  1440. struct sk_buff *skb;
  1441. struct sadb_msg *hdr;
  1442. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1443. if (!skb)
  1444. return -ENOBUFS;
  1445. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1446. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1447. hdr->sadb_msg_errno = (uint8_t) 0;
  1448. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1449. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1450. }
  1451. static int key_notify_sa_flush(const struct km_event *c)
  1452. {
  1453. struct sk_buff *skb;
  1454. struct sadb_msg *hdr;
  1455. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1456. if (!skb)
  1457. return -ENOBUFS;
  1458. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1459. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1460. hdr->sadb_msg_type = SADB_FLUSH;
  1461. hdr->sadb_msg_seq = c->seq;
  1462. hdr->sadb_msg_pid = c->portid;
  1463. hdr->sadb_msg_version = PF_KEY_V2;
  1464. hdr->sadb_msg_errno = (uint8_t) 0;
  1465. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1466. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1467. return 0;
  1468. }
  1469. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1470. {
  1471. struct net *net = sock_net(sk);
  1472. unsigned int proto;
  1473. struct km_event c;
  1474. struct xfrm_audit audit_info;
  1475. int err, err2;
  1476. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1477. if (proto == 0)
  1478. return -EINVAL;
  1479. audit_info.loginuid = audit_get_loginuid(current);
  1480. audit_info.sessionid = audit_get_sessionid(current);
  1481. audit_info.secid = 0;
  1482. err = xfrm_state_flush(net, proto, &audit_info);
  1483. err2 = unicast_flush_resp(sk, hdr);
  1484. if (err || err2) {
  1485. if (err == -ESRCH) /* empty table - go quietly */
  1486. err = 0;
  1487. return err ? err : err2;
  1488. }
  1489. c.data.proto = proto;
  1490. c.seq = hdr->sadb_msg_seq;
  1491. c.portid = hdr->sadb_msg_pid;
  1492. c.event = XFRM_MSG_FLUSHSA;
  1493. c.net = net;
  1494. km_state_notify(NULL, &c);
  1495. return 0;
  1496. }
  1497. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1498. {
  1499. struct pfkey_sock *pfk = ptr;
  1500. struct sk_buff *out_skb;
  1501. struct sadb_msg *out_hdr;
  1502. if (!pfkey_can_dump(&pfk->sk))
  1503. return -ENOBUFS;
  1504. out_skb = pfkey_xfrm_state2msg(x);
  1505. if (IS_ERR(out_skb))
  1506. return PTR_ERR(out_skb);
  1507. out_hdr = (struct sadb_msg *) out_skb->data;
  1508. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1509. out_hdr->sadb_msg_type = SADB_DUMP;
  1510. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1511. out_hdr->sadb_msg_errno = 0;
  1512. out_hdr->sadb_msg_reserved = 0;
  1513. out_hdr->sadb_msg_seq = count + 1;
  1514. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1515. if (pfk->dump.skb)
  1516. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1517. &pfk->sk, sock_net(&pfk->sk));
  1518. pfk->dump.skb = out_skb;
  1519. return 0;
  1520. }
  1521. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1522. {
  1523. struct net *net = sock_net(&pfk->sk);
  1524. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1525. }
  1526. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1527. {
  1528. xfrm_state_walk_done(&pfk->dump.u.state);
  1529. }
  1530. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1531. {
  1532. u8 proto;
  1533. struct pfkey_sock *pfk = pfkey_sk(sk);
  1534. if (pfk->dump.dump != NULL)
  1535. return -EBUSY;
  1536. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1537. if (proto == 0)
  1538. return -EINVAL;
  1539. pfk->dump.msg_version = hdr->sadb_msg_version;
  1540. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1541. pfk->dump.dump = pfkey_dump_sa;
  1542. pfk->dump.done = pfkey_dump_sa_done;
  1543. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1544. return pfkey_do_dump(pfk);
  1545. }
  1546. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1547. {
  1548. struct pfkey_sock *pfk = pfkey_sk(sk);
  1549. int satype = hdr->sadb_msg_satype;
  1550. bool reset_errno = false;
  1551. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1552. reset_errno = true;
  1553. if (satype != 0 && satype != 1)
  1554. return -EINVAL;
  1555. pfk->promisc = satype;
  1556. }
  1557. if (reset_errno && skb_cloned(skb))
  1558. skb = skb_copy(skb, GFP_KERNEL);
  1559. else
  1560. skb = skb_clone(skb, GFP_KERNEL);
  1561. if (reset_errno && skb) {
  1562. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1563. new_hdr->sadb_msg_errno = 0;
  1564. }
  1565. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1566. return 0;
  1567. }
  1568. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1569. {
  1570. int i;
  1571. u32 reqid = *(u32*)ptr;
  1572. for (i=0; i<xp->xfrm_nr; i++) {
  1573. if (xp->xfrm_vec[i].reqid == reqid)
  1574. return -EEXIST;
  1575. }
  1576. return 0;
  1577. }
  1578. static u32 gen_reqid(struct net *net)
  1579. {
  1580. struct xfrm_policy_walk walk;
  1581. u32 start;
  1582. int rc;
  1583. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1584. start = reqid;
  1585. do {
  1586. ++reqid;
  1587. if (reqid == 0)
  1588. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1589. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1590. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1591. xfrm_policy_walk_done(&walk);
  1592. if (rc != -EEXIST)
  1593. return reqid;
  1594. } while (reqid != start);
  1595. return 0;
  1596. }
  1597. static int
  1598. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1599. {
  1600. struct net *net = xp_net(xp);
  1601. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1602. int mode;
  1603. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1604. return -ELOOP;
  1605. if (rq->sadb_x_ipsecrequest_mode == 0)
  1606. return -EINVAL;
  1607. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1608. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1609. return -EINVAL;
  1610. t->mode = mode;
  1611. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1612. t->optional = 1;
  1613. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1614. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1615. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1616. t->reqid = 0;
  1617. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1618. return -ENOBUFS;
  1619. }
  1620. /* addresses present only in tunnel mode */
  1621. if (t->mode == XFRM_MODE_TUNNEL) {
  1622. u8 *sa = (u8 *) (rq + 1);
  1623. int family, socklen;
  1624. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1625. &t->saddr);
  1626. if (!family)
  1627. return -EINVAL;
  1628. socklen = pfkey_sockaddr_len(family);
  1629. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1630. &t->id.daddr) != family)
  1631. return -EINVAL;
  1632. t->encap_family = family;
  1633. } else
  1634. t->encap_family = xp->family;
  1635. /* No way to set this via kame pfkey */
  1636. t->allalgs = 1;
  1637. xp->xfrm_nr++;
  1638. return 0;
  1639. }
  1640. static int
  1641. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1642. {
  1643. int err;
  1644. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1645. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1646. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1647. return -EINVAL;
  1648. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1649. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1650. return err;
  1651. len -= rq->sadb_x_ipsecrequest_len;
  1652. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1653. }
  1654. return 0;
  1655. }
  1656. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1657. {
  1658. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1659. if (xfrm_ctx) {
  1660. int len = sizeof(struct sadb_x_sec_ctx);
  1661. len += xfrm_ctx->ctx_len;
  1662. return PFKEY_ALIGN8(len);
  1663. }
  1664. return 0;
  1665. }
  1666. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1667. {
  1668. const struct xfrm_tmpl *t;
  1669. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1670. int socklen = 0;
  1671. int i;
  1672. for (i=0; i<xp->xfrm_nr; i++) {
  1673. t = xp->xfrm_vec + i;
  1674. socklen += pfkey_sockaddr_len(t->encap_family);
  1675. }
  1676. return sizeof(struct sadb_msg) +
  1677. (sizeof(struct sadb_lifetime) * 3) +
  1678. (sizeof(struct sadb_address) * 2) +
  1679. (sockaddr_size * 2) +
  1680. sizeof(struct sadb_x_policy) +
  1681. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1682. (socklen * 2) +
  1683. pfkey_xfrm_policy2sec_ctx_size(xp);
  1684. }
  1685. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1686. {
  1687. struct sk_buff *skb;
  1688. int size;
  1689. size = pfkey_xfrm_policy2msg_size(xp);
  1690. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1691. if (skb == NULL)
  1692. return ERR_PTR(-ENOBUFS);
  1693. return skb;
  1694. }
  1695. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1696. {
  1697. struct sadb_msg *hdr;
  1698. struct sadb_address *addr;
  1699. struct sadb_lifetime *lifetime;
  1700. struct sadb_x_policy *pol;
  1701. struct sadb_x_sec_ctx *sec_ctx;
  1702. struct xfrm_sec_ctx *xfrm_ctx;
  1703. int i;
  1704. int size;
  1705. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1706. int socklen = pfkey_sockaddr_len(xp->family);
  1707. size = pfkey_xfrm_policy2msg_size(xp);
  1708. /* call should fill header later */
  1709. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1710. memset(hdr, 0, size); /* XXX do we need this ? */
  1711. /* src address */
  1712. addr = (struct sadb_address*) skb_put(skb,
  1713. sizeof(struct sadb_address)+sockaddr_size);
  1714. addr->sadb_address_len =
  1715. (sizeof(struct sadb_address)+sockaddr_size)/
  1716. sizeof(uint64_t);
  1717. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1718. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1719. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1720. addr->sadb_address_reserved = 0;
  1721. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1722. xp->selector.sport,
  1723. (struct sockaddr *) (addr + 1),
  1724. xp->family))
  1725. BUG();
  1726. /* dst address */
  1727. addr = (struct sadb_address*) skb_put(skb,
  1728. sizeof(struct sadb_address)+sockaddr_size);
  1729. addr->sadb_address_len =
  1730. (sizeof(struct sadb_address)+sockaddr_size)/
  1731. sizeof(uint64_t);
  1732. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1733. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1734. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1735. addr->sadb_address_reserved = 0;
  1736. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1737. (struct sockaddr *) (addr + 1),
  1738. xp->family);
  1739. /* hard time */
  1740. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1741. sizeof(struct sadb_lifetime));
  1742. lifetime->sadb_lifetime_len =
  1743. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1744. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1745. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1746. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1747. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1748. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1749. /* soft time */
  1750. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1751. sizeof(struct sadb_lifetime));
  1752. lifetime->sadb_lifetime_len =
  1753. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1754. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1755. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1756. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1757. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1758. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1759. /* current time */
  1760. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1761. sizeof(struct sadb_lifetime));
  1762. lifetime->sadb_lifetime_len =
  1763. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1764. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1765. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1766. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1767. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1768. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1769. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1770. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1771. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1772. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1773. if (xp->action == XFRM_POLICY_ALLOW) {
  1774. if (xp->xfrm_nr)
  1775. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1776. else
  1777. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1778. }
  1779. pol->sadb_x_policy_dir = dir+1;
  1780. pol->sadb_x_policy_id = xp->index;
  1781. pol->sadb_x_policy_priority = xp->priority;
  1782. for (i=0; i<xp->xfrm_nr; i++) {
  1783. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1784. struct sadb_x_ipsecrequest *rq;
  1785. int req_size;
  1786. int mode;
  1787. req_size = sizeof(struct sadb_x_ipsecrequest);
  1788. if (t->mode == XFRM_MODE_TUNNEL) {
  1789. socklen = pfkey_sockaddr_len(t->encap_family);
  1790. req_size += socklen * 2;
  1791. } else {
  1792. size -= 2*socklen;
  1793. }
  1794. rq = (void*)skb_put(skb, req_size);
  1795. pol->sadb_x_policy_len += req_size/8;
  1796. memset(rq, 0, sizeof(*rq));
  1797. rq->sadb_x_ipsecrequest_len = req_size;
  1798. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1799. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1800. return -EINVAL;
  1801. rq->sadb_x_ipsecrequest_mode = mode;
  1802. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1803. if (t->reqid)
  1804. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1805. if (t->optional)
  1806. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1807. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1808. if (t->mode == XFRM_MODE_TUNNEL) {
  1809. u8 *sa = (void *)(rq + 1);
  1810. pfkey_sockaddr_fill(&t->saddr, 0,
  1811. (struct sockaddr *)sa,
  1812. t->encap_family);
  1813. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1814. (struct sockaddr *) (sa + socklen),
  1815. t->encap_family);
  1816. }
  1817. }
  1818. /* security context */
  1819. if ((xfrm_ctx = xp->security)) {
  1820. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1821. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1822. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1823. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1824. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1825. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1826. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1827. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1828. xfrm_ctx->ctx_len);
  1829. }
  1830. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1831. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1832. return 0;
  1833. }
  1834. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1835. {
  1836. struct sk_buff *out_skb;
  1837. struct sadb_msg *out_hdr;
  1838. int err;
  1839. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1840. if (IS_ERR(out_skb))
  1841. return PTR_ERR(out_skb);
  1842. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1843. if (err < 0)
  1844. return err;
  1845. out_hdr = (struct sadb_msg *) out_skb->data;
  1846. out_hdr->sadb_msg_version = PF_KEY_V2;
  1847. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1848. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1849. else
  1850. out_hdr->sadb_msg_type = event2poltype(c->event);
  1851. out_hdr->sadb_msg_errno = 0;
  1852. out_hdr->sadb_msg_seq = c->seq;
  1853. out_hdr->sadb_msg_pid = c->portid;
  1854. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1855. return 0;
  1856. }
  1857. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1858. {
  1859. struct net *net = sock_net(sk);
  1860. int err = 0;
  1861. struct sadb_lifetime *lifetime;
  1862. struct sadb_address *sa;
  1863. struct sadb_x_policy *pol;
  1864. struct xfrm_policy *xp;
  1865. struct km_event c;
  1866. struct sadb_x_sec_ctx *sec_ctx;
  1867. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1868. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1869. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1870. return -EINVAL;
  1871. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1872. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1873. return -EINVAL;
  1874. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1875. return -EINVAL;
  1876. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1877. if (xp == NULL)
  1878. return -ENOBUFS;
  1879. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1880. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1881. xp->priority = pol->sadb_x_policy_priority;
  1882. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1883. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1884. if (!xp->family) {
  1885. err = -EINVAL;
  1886. goto out;
  1887. }
  1888. xp->selector.family = xp->family;
  1889. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1890. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1891. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1892. if (xp->selector.sport)
  1893. xp->selector.sport_mask = htons(0xffff);
  1894. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1895. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1896. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1897. /* Amusing, we set this twice. KAME apps appear to set same value
  1898. * in both addresses.
  1899. */
  1900. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1901. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1902. if (xp->selector.dport)
  1903. xp->selector.dport_mask = htons(0xffff);
  1904. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1905. if (sec_ctx != NULL) {
  1906. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1907. if (!uctx) {
  1908. err = -ENOBUFS;
  1909. goto out;
  1910. }
  1911. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1912. kfree(uctx);
  1913. if (err)
  1914. goto out;
  1915. }
  1916. xp->lft.soft_byte_limit = XFRM_INF;
  1917. xp->lft.hard_byte_limit = XFRM_INF;
  1918. xp->lft.soft_packet_limit = XFRM_INF;
  1919. xp->lft.hard_packet_limit = XFRM_INF;
  1920. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1921. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1922. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1923. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1924. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1925. }
  1926. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1927. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1928. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1929. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1930. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1931. }
  1932. xp->xfrm_nr = 0;
  1933. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1934. (err = parse_ipsecrequests(xp, pol)) < 0)
  1935. goto out;
  1936. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1937. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1938. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1939. audit_get_loginuid(current),
  1940. audit_get_sessionid(current), 0);
  1941. if (err)
  1942. goto out;
  1943. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1944. c.event = XFRM_MSG_UPDPOLICY;
  1945. else
  1946. c.event = XFRM_MSG_NEWPOLICY;
  1947. c.seq = hdr->sadb_msg_seq;
  1948. c.portid = hdr->sadb_msg_pid;
  1949. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1950. xfrm_pol_put(xp);
  1951. return 0;
  1952. out:
  1953. xp->walk.dead = 1;
  1954. xfrm_policy_destroy(xp);
  1955. return err;
  1956. }
  1957. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1958. {
  1959. struct net *net = sock_net(sk);
  1960. int err;
  1961. struct sadb_address *sa;
  1962. struct sadb_x_policy *pol;
  1963. struct xfrm_policy *xp;
  1964. struct xfrm_selector sel;
  1965. struct km_event c;
  1966. struct sadb_x_sec_ctx *sec_ctx;
  1967. struct xfrm_sec_ctx *pol_ctx = NULL;
  1968. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1969. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1970. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1971. return -EINVAL;
  1972. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1973. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1974. return -EINVAL;
  1975. memset(&sel, 0, sizeof(sel));
  1976. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1977. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1978. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1979. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1980. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1981. if (sel.sport)
  1982. sel.sport_mask = htons(0xffff);
  1983. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1984. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1985. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1986. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1987. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1988. if (sel.dport)
  1989. sel.dport_mask = htons(0xffff);
  1990. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1991. if (sec_ctx != NULL) {
  1992. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1993. if (!uctx)
  1994. return -ENOMEM;
  1995. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1996. kfree(uctx);
  1997. if (err)
  1998. return err;
  1999. }
  2000. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2001. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2002. 1, &err);
  2003. security_xfrm_policy_free(pol_ctx);
  2004. if (xp == NULL)
  2005. return -ENOENT;
  2006. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2007. audit_get_loginuid(current),
  2008. audit_get_sessionid(current), 0);
  2009. if (err)
  2010. goto out;
  2011. c.seq = hdr->sadb_msg_seq;
  2012. c.portid = hdr->sadb_msg_pid;
  2013. c.data.byid = 0;
  2014. c.event = XFRM_MSG_DELPOLICY;
  2015. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2016. out:
  2017. xfrm_pol_put(xp);
  2018. return err;
  2019. }
  2020. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2021. {
  2022. int err;
  2023. struct sk_buff *out_skb;
  2024. struct sadb_msg *out_hdr;
  2025. err = 0;
  2026. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2027. if (IS_ERR(out_skb)) {
  2028. err = PTR_ERR(out_skb);
  2029. goto out;
  2030. }
  2031. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2032. if (err < 0)
  2033. goto out;
  2034. out_hdr = (struct sadb_msg *) out_skb->data;
  2035. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2036. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2037. out_hdr->sadb_msg_satype = 0;
  2038. out_hdr->sadb_msg_errno = 0;
  2039. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2040. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2041. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2042. err = 0;
  2043. out:
  2044. return err;
  2045. }
  2046. #ifdef CONFIG_NET_KEY_MIGRATE
  2047. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2048. {
  2049. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2050. }
  2051. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2052. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2053. u16 *family)
  2054. {
  2055. int af, socklen;
  2056. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2057. return -EINVAL;
  2058. af = pfkey_sockaddr_extract(sa, saddr);
  2059. if (!af)
  2060. return -EINVAL;
  2061. socklen = pfkey_sockaddr_len(af);
  2062. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2063. daddr) != af)
  2064. return -EINVAL;
  2065. *family = af;
  2066. return 0;
  2067. }
  2068. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2069. struct xfrm_migrate *m)
  2070. {
  2071. int err;
  2072. struct sadb_x_ipsecrequest *rq2;
  2073. int mode;
  2074. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2075. len < rq1->sadb_x_ipsecrequest_len)
  2076. return -EINVAL;
  2077. /* old endoints */
  2078. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2079. rq1->sadb_x_ipsecrequest_len,
  2080. &m->old_saddr, &m->old_daddr,
  2081. &m->old_family);
  2082. if (err)
  2083. return err;
  2084. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2085. len -= rq1->sadb_x_ipsecrequest_len;
  2086. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2087. len < rq2->sadb_x_ipsecrequest_len)
  2088. return -EINVAL;
  2089. /* new endpoints */
  2090. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2091. rq2->sadb_x_ipsecrequest_len,
  2092. &m->new_saddr, &m->new_daddr,
  2093. &m->new_family);
  2094. if (err)
  2095. return err;
  2096. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2097. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2098. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2099. return -EINVAL;
  2100. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2101. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2102. return -EINVAL;
  2103. m->mode = mode;
  2104. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2105. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2106. rq2->sadb_x_ipsecrequest_len));
  2107. }
  2108. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2109. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2110. {
  2111. int i, len, ret, err = -EINVAL;
  2112. u8 dir;
  2113. struct sadb_address *sa;
  2114. struct sadb_x_kmaddress *kma;
  2115. struct sadb_x_policy *pol;
  2116. struct sadb_x_ipsecrequest *rq;
  2117. struct xfrm_selector sel;
  2118. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2119. struct xfrm_kmaddress k;
  2120. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2121. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2122. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2123. err = -EINVAL;
  2124. goto out;
  2125. }
  2126. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2127. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2128. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2129. err = -EINVAL;
  2130. goto out;
  2131. }
  2132. if (kma) {
  2133. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2134. k.reserved = kma->sadb_x_kmaddress_reserved;
  2135. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2136. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2137. &k.local, &k.remote, &k.family);
  2138. if (ret < 0) {
  2139. err = ret;
  2140. goto out;
  2141. }
  2142. }
  2143. dir = pol->sadb_x_policy_dir - 1;
  2144. memset(&sel, 0, sizeof(sel));
  2145. /* set source address info of selector */
  2146. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2147. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2148. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2149. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2150. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2151. if (sel.sport)
  2152. sel.sport_mask = htons(0xffff);
  2153. /* set destination address info of selector */
  2154. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2155. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2156. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2157. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2158. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2159. if (sel.dport)
  2160. sel.dport_mask = htons(0xffff);
  2161. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2162. /* extract ipsecrequests */
  2163. i = 0;
  2164. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2165. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2166. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2167. if (ret < 0) {
  2168. err = ret;
  2169. goto out;
  2170. } else {
  2171. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2172. len -= ret;
  2173. i++;
  2174. }
  2175. }
  2176. if (!i || len > 0) {
  2177. err = -EINVAL;
  2178. goto out;
  2179. }
  2180. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2181. kma ? &k : NULL);
  2182. out:
  2183. return err;
  2184. }
  2185. #else
  2186. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2187. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2188. {
  2189. return -ENOPROTOOPT;
  2190. }
  2191. #endif
  2192. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2193. {
  2194. struct net *net = sock_net(sk);
  2195. unsigned int dir;
  2196. int err = 0, delete;
  2197. struct sadb_x_policy *pol;
  2198. struct xfrm_policy *xp;
  2199. struct km_event c;
  2200. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2201. return -EINVAL;
  2202. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2203. if (dir >= XFRM_POLICY_MAX)
  2204. return -EINVAL;
  2205. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2206. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2207. dir, pol->sadb_x_policy_id, delete, &err);
  2208. if (xp == NULL)
  2209. return -ENOENT;
  2210. if (delete) {
  2211. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2212. audit_get_loginuid(current),
  2213. audit_get_sessionid(current), 0);
  2214. if (err)
  2215. goto out;
  2216. c.seq = hdr->sadb_msg_seq;
  2217. c.portid = hdr->sadb_msg_pid;
  2218. c.data.byid = 1;
  2219. c.event = XFRM_MSG_DELPOLICY;
  2220. km_policy_notify(xp, dir, &c);
  2221. } else {
  2222. err = key_pol_get_resp(sk, xp, hdr, dir);
  2223. }
  2224. out:
  2225. xfrm_pol_put(xp);
  2226. return err;
  2227. }
  2228. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2229. {
  2230. struct pfkey_sock *pfk = ptr;
  2231. struct sk_buff *out_skb;
  2232. struct sadb_msg *out_hdr;
  2233. int err;
  2234. if (!pfkey_can_dump(&pfk->sk))
  2235. return -ENOBUFS;
  2236. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2237. if (IS_ERR(out_skb))
  2238. return PTR_ERR(out_skb);
  2239. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2240. if (err < 0)
  2241. return err;
  2242. out_hdr = (struct sadb_msg *) out_skb->data;
  2243. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2244. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2245. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2246. out_hdr->sadb_msg_errno = 0;
  2247. out_hdr->sadb_msg_seq = count + 1;
  2248. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2249. if (pfk->dump.skb)
  2250. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2251. &pfk->sk, sock_net(&pfk->sk));
  2252. pfk->dump.skb = out_skb;
  2253. return 0;
  2254. }
  2255. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2256. {
  2257. struct net *net = sock_net(&pfk->sk);
  2258. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2259. }
  2260. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2261. {
  2262. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2263. }
  2264. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2265. {
  2266. struct pfkey_sock *pfk = pfkey_sk(sk);
  2267. if (pfk->dump.dump != NULL)
  2268. return -EBUSY;
  2269. pfk->dump.msg_version = hdr->sadb_msg_version;
  2270. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2271. pfk->dump.dump = pfkey_dump_sp;
  2272. pfk->dump.done = pfkey_dump_sp_done;
  2273. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2274. return pfkey_do_dump(pfk);
  2275. }
  2276. static int key_notify_policy_flush(const struct km_event *c)
  2277. {
  2278. struct sk_buff *skb_out;
  2279. struct sadb_msg *hdr;
  2280. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2281. if (!skb_out)
  2282. return -ENOBUFS;
  2283. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2284. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2285. hdr->sadb_msg_seq = c->seq;
  2286. hdr->sadb_msg_pid = c->portid;
  2287. hdr->sadb_msg_version = PF_KEY_V2;
  2288. hdr->sadb_msg_errno = (uint8_t) 0;
  2289. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2290. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2291. return 0;
  2292. }
  2293. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2294. {
  2295. struct net *net = sock_net(sk);
  2296. struct km_event c;
  2297. struct xfrm_audit audit_info;
  2298. int err, err2;
  2299. audit_info.loginuid = audit_get_loginuid(current);
  2300. audit_info.sessionid = audit_get_sessionid(current);
  2301. audit_info.secid = 0;
  2302. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2303. err2 = unicast_flush_resp(sk, hdr);
  2304. if (err || err2) {
  2305. if (err == -ESRCH) /* empty table - old silent behavior */
  2306. return 0;
  2307. return err;
  2308. }
  2309. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2310. c.event = XFRM_MSG_FLUSHPOLICY;
  2311. c.portid = hdr->sadb_msg_pid;
  2312. c.seq = hdr->sadb_msg_seq;
  2313. c.net = net;
  2314. km_policy_notify(NULL, 0, &c);
  2315. return 0;
  2316. }
  2317. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2318. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2319. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2320. [SADB_RESERVED] = pfkey_reserved,
  2321. [SADB_GETSPI] = pfkey_getspi,
  2322. [SADB_UPDATE] = pfkey_add,
  2323. [SADB_ADD] = pfkey_add,
  2324. [SADB_DELETE] = pfkey_delete,
  2325. [SADB_GET] = pfkey_get,
  2326. [SADB_ACQUIRE] = pfkey_acquire,
  2327. [SADB_REGISTER] = pfkey_register,
  2328. [SADB_EXPIRE] = NULL,
  2329. [SADB_FLUSH] = pfkey_flush,
  2330. [SADB_DUMP] = pfkey_dump,
  2331. [SADB_X_PROMISC] = pfkey_promisc,
  2332. [SADB_X_PCHANGE] = NULL,
  2333. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2334. [SADB_X_SPDADD] = pfkey_spdadd,
  2335. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2336. [SADB_X_SPDGET] = pfkey_spdget,
  2337. [SADB_X_SPDACQUIRE] = NULL,
  2338. [SADB_X_SPDDUMP] = pfkey_spddump,
  2339. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2340. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2341. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2342. [SADB_X_MIGRATE] = pfkey_migrate,
  2343. };
  2344. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2345. {
  2346. void *ext_hdrs[SADB_EXT_MAX];
  2347. int err;
  2348. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2349. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2350. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2351. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2352. if (!err) {
  2353. err = -EOPNOTSUPP;
  2354. if (pfkey_funcs[hdr->sadb_msg_type])
  2355. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2356. }
  2357. return err;
  2358. }
  2359. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2360. {
  2361. struct sadb_msg *hdr = NULL;
  2362. if (skb->len < sizeof(*hdr)) {
  2363. *errp = -EMSGSIZE;
  2364. } else {
  2365. hdr = (struct sadb_msg *) skb->data;
  2366. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2367. hdr->sadb_msg_reserved != 0 ||
  2368. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2369. hdr->sadb_msg_type > SADB_MAX)) {
  2370. hdr = NULL;
  2371. *errp = -EINVAL;
  2372. } else if (hdr->sadb_msg_len != (skb->len /
  2373. sizeof(uint64_t)) ||
  2374. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2375. sizeof(uint64_t))) {
  2376. hdr = NULL;
  2377. *errp = -EMSGSIZE;
  2378. } else {
  2379. *errp = 0;
  2380. }
  2381. }
  2382. return hdr;
  2383. }
  2384. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2385. const struct xfrm_algo_desc *d)
  2386. {
  2387. unsigned int id = d->desc.sadb_alg_id;
  2388. if (id >= sizeof(t->aalgos) * 8)
  2389. return 0;
  2390. return (t->aalgos >> id) & 1;
  2391. }
  2392. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2393. const struct xfrm_algo_desc *d)
  2394. {
  2395. unsigned int id = d->desc.sadb_alg_id;
  2396. if (id >= sizeof(t->ealgos) * 8)
  2397. return 0;
  2398. return (t->ealgos >> id) & 1;
  2399. }
  2400. static int count_ah_combs(const struct xfrm_tmpl *t)
  2401. {
  2402. int i, sz = 0;
  2403. for (i = 0; ; i++) {
  2404. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2405. if (!aalg)
  2406. break;
  2407. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2408. sz += sizeof(struct sadb_comb);
  2409. }
  2410. return sz + sizeof(struct sadb_prop);
  2411. }
  2412. static int count_esp_combs(const struct xfrm_tmpl *t)
  2413. {
  2414. int i, k, sz = 0;
  2415. for (i = 0; ; i++) {
  2416. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2417. if (!ealg)
  2418. break;
  2419. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2420. continue;
  2421. for (k = 1; ; k++) {
  2422. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2423. if (!aalg)
  2424. break;
  2425. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2426. sz += sizeof(struct sadb_comb);
  2427. }
  2428. }
  2429. return sz + sizeof(struct sadb_prop);
  2430. }
  2431. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2432. {
  2433. struct sadb_prop *p;
  2434. int i;
  2435. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2436. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2437. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2438. p->sadb_prop_replay = 32;
  2439. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2440. for (i = 0; ; i++) {
  2441. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2442. if (!aalg)
  2443. break;
  2444. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2445. struct sadb_comb *c;
  2446. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2447. memset(c, 0, sizeof(*c));
  2448. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2449. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2450. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2451. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2452. c->sadb_comb_hard_addtime = 24*60*60;
  2453. c->sadb_comb_soft_addtime = 20*60*60;
  2454. c->sadb_comb_hard_usetime = 8*60*60;
  2455. c->sadb_comb_soft_usetime = 7*60*60;
  2456. }
  2457. }
  2458. }
  2459. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2460. {
  2461. struct sadb_prop *p;
  2462. int i, k;
  2463. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2464. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2465. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2466. p->sadb_prop_replay = 32;
  2467. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2468. for (i=0; ; i++) {
  2469. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2470. if (!ealg)
  2471. break;
  2472. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2473. continue;
  2474. for (k = 1; ; k++) {
  2475. struct sadb_comb *c;
  2476. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2477. if (!aalg)
  2478. break;
  2479. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2480. continue;
  2481. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2482. memset(c, 0, sizeof(*c));
  2483. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2484. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2485. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2486. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2487. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2488. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2489. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2490. c->sadb_comb_hard_addtime = 24*60*60;
  2491. c->sadb_comb_soft_addtime = 20*60*60;
  2492. c->sadb_comb_hard_usetime = 8*60*60;
  2493. c->sadb_comb_soft_usetime = 7*60*60;
  2494. }
  2495. }
  2496. }
  2497. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2498. {
  2499. return 0;
  2500. }
  2501. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2502. {
  2503. struct sk_buff *out_skb;
  2504. struct sadb_msg *out_hdr;
  2505. int hard;
  2506. int hsc;
  2507. hard = c->data.hard;
  2508. if (hard)
  2509. hsc = 2;
  2510. else
  2511. hsc = 1;
  2512. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2513. if (IS_ERR(out_skb))
  2514. return PTR_ERR(out_skb);
  2515. out_hdr = (struct sadb_msg *) out_skb->data;
  2516. out_hdr->sadb_msg_version = PF_KEY_V2;
  2517. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2518. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2519. out_hdr->sadb_msg_errno = 0;
  2520. out_hdr->sadb_msg_reserved = 0;
  2521. out_hdr->sadb_msg_seq = 0;
  2522. out_hdr->sadb_msg_pid = 0;
  2523. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2524. return 0;
  2525. }
  2526. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2527. {
  2528. struct net *net = x ? xs_net(x) : c->net;
  2529. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2530. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2531. return 0;
  2532. switch (c->event) {
  2533. case XFRM_MSG_EXPIRE:
  2534. return key_notify_sa_expire(x, c);
  2535. case XFRM_MSG_DELSA:
  2536. case XFRM_MSG_NEWSA:
  2537. case XFRM_MSG_UPDSA:
  2538. return key_notify_sa(x, c);
  2539. case XFRM_MSG_FLUSHSA:
  2540. return key_notify_sa_flush(c);
  2541. case XFRM_MSG_NEWAE: /* not yet supported */
  2542. break;
  2543. default:
  2544. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2545. break;
  2546. }
  2547. return 0;
  2548. }
  2549. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2550. {
  2551. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2552. return 0;
  2553. switch (c->event) {
  2554. case XFRM_MSG_POLEXPIRE:
  2555. return key_notify_policy_expire(xp, c);
  2556. case XFRM_MSG_DELPOLICY:
  2557. case XFRM_MSG_NEWPOLICY:
  2558. case XFRM_MSG_UPDPOLICY:
  2559. return key_notify_policy(xp, dir, c);
  2560. case XFRM_MSG_FLUSHPOLICY:
  2561. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2562. break;
  2563. return key_notify_policy_flush(c);
  2564. default:
  2565. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2566. break;
  2567. }
  2568. return 0;
  2569. }
  2570. static u32 get_acqseq(void)
  2571. {
  2572. u32 res;
  2573. static atomic_t acqseq;
  2574. do {
  2575. res = atomic_inc_return(&acqseq);
  2576. } while (!res);
  2577. return res;
  2578. }
  2579. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2580. {
  2581. struct sk_buff *skb;
  2582. struct sadb_msg *hdr;
  2583. struct sadb_address *addr;
  2584. struct sadb_x_policy *pol;
  2585. int sockaddr_size;
  2586. int size;
  2587. struct sadb_x_sec_ctx *sec_ctx;
  2588. struct xfrm_sec_ctx *xfrm_ctx;
  2589. int ctx_size = 0;
  2590. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2591. if (!sockaddr_size)
  2592. return -EINVAL;
  2593. size = sizeof(struct sadb_msg) +
  2594. (sizeof(struct sadb_address) * 2) +
  2595. (sockaddr_size * 2) +
  2596. sizeof(struct sadb_x_policy);
  2597. if (x->id.proto == IPPROTO_AH)
  2598. size += count_ah_combs(t);
  2599. else if (x->id.proto == IPPROTO_ESP)
  2600. size += count_esp_combs(t);
  2601. if ((xfrm_ctx = x->security)) {
  2602. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2603. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2604. }
  2605. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2606. if (skb == NULL)
  2607. return -ENOMEM;
  2608. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2609. hdr->sadb_msg_version = PF_KEY_V2;
  2610. hdr->sadb_msg_type = SADB_ACQUIRE;
  2611. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2612. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2613. hdr->sadb_msg_errno = 0;
  2614. hdr->sadb_msg_reserved = 0;
  2615. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2616. hdr->sadb_msg_pid = 0;
  2617. /* src address */
  2618. addr = (struct sadb_address*) skb_put(skb,
  2619. sizeof(struct sadb_address)+sockaddr_size);
  2620. addr->sadb_address_len =
  2621. (sizeof(struct sadb_address)+sockaddr_size)/
  2622. sizeof(uint64_t);
  2623. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2624. addr->sadb_address_proto = 0;
  2625. addr->sadb_address_reserved = 0;
  2626. addr->sadb_address_prefixlen =
  2627. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2628. (struct sockaddr *) (addr + 1),
  2629. x->props.family);
  2630. if (!addr->sadb_address_prefixlen)
  2631. BUG();
  2632. /* dst address */
  2633. addr = (struct sadb_address*) skb_put(skb,
  2634. sizeof(struct sadb_address)+sockaddr_size);
  2635. addr->sadb_address_len =
  2636. (sizeof(struct sadb_address)+sockaddr_size)/
  2637. sizeof(uint64_t);
  2638. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2639. addr->sadb_address_proto = 0;
  2640. addr->sadb_address_reserved = 0;
  2641. addr->sadb_address_prefixlen =
  2642. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2643. (struct sockaddr *) (addr + 1),
  2644. x->props.family);
  2645. if (!addr->sadb_address_prefixlen)
  2646. BUG();
  2647. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2648. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2649. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2650. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2651. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2652. pol->sadb_x_policy_id = xp->index;
  2653. /* Set sadb_comb's. */
  2654. if (x->id.proto == IPPROTO_AH)
  2655. dump_ah_combs(skb, t);
  2656. else if (x->id.proto == IPPROTO_ESP)
  2657. dump_esp_combs(skb, t);
  2658. /* security context */
  2659. if (xfrm_ctx) {
  2660. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2661. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2662. sec_ctx->sadb_x_sec_len =
  2663. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2664. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2665. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2666. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2667. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2668. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2669. xfrm_ctx->ctx_len);
  2670. }
  2671. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2672. }
  2673. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2674. u8 *data, int len, int *dir)
  2675. {
  2676. struct net *net = sock_net(sk);
  2677. struct xfrm_policy *xp;
  2678. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2679. struct sadb_x_sec_ctx *sec_ctx;
  2680. switch (sk->sk_family) {
  2681. case AF_INET:
  2682. if (opt != IP_IPSEC_POLICY) {
  2683. *dir = -EOPNOTSUPP;
  2684. return NULL;
  2685. }
  2686. break;
  2687. #if IS_ENABLED(CONFIG_IPV6)
  2688. case AF_INET6:
  2689. if (opt != IPV6_IPSEC_POLICY) {
  2690. *dir = -EOPNOTSUPP;
  2691. return NULL;
  2692. }
  2693. break;
  2694. #endif
  2695. default:
  2696. *dir = -EINVAL;
  2697. return NULL;
  2698. }
  2699. *dir = -EINVAL;
  2700. if (len < sizeof(struct sadb_x_policy) ||
  2701. pol->sadb_x_policy_len*8 > len ||
  2702. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2703. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2704. return NULL;
  2705. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2706. if (xp == NULL) {
  2707. *dir = -ENOBUFS;
  2708. return NULL;
  2709. }
  2710. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2711. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2712. xp->lft.soft_byte_limit = XFRM_INF;
  2713. xp->lft.hard_byte_limit = XFRM_INF;
  2714. xp->lft.soft_packet_limit = XFRM_INF;
  2715. xp->lft.hard_packet_limit = XFRM_INF;
  2716. xp->family = sk->sk_family;
  2717. xp->xfrm_nr = 0;
  2718. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2719. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2720. goto out;
  2721. /* security context too */
  2722. if (len >= (pol->sadb_x_policy_len*8 +
  2723. sizeof(struct sadb_x_sec_ctx))) {
  2724. char *p = (char *)pol;
  2725. struct xfrm_user_sec_ctx *uctx;
  2726. p += pol->sadb_x_policy_len*8;
  2727. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2728. if (len < pol->sadb_x_policy_len*8 +
  2729. sec_ctx->sadb_x_sec_len) {
  2730. *dir = -EINVAL;
  2731. goto out;
  2732. }
  2733. if ((*dir = verify_sec_ctx_len(p)))
  2734. goto out;
  2735. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2736. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2737. kfree(uctx);
  2738. if (*dir)
  2739. goto out;
  2740. }
  2741. *dir = pol->sadb_x_policy_dir-1;
  2742. return xp;
  2743. out:
  2744. xp->walk.dead = 1;
  2745. xfrm_policy_destroy(xp);
  2746. return NULL;
  2747. }
  2748. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2749. {
  2750. struct sk_buff *skb;
  2751. struct sadb_msg *hdr;
  2752. struct sadb_sa *sa;
  2753. struct sadb_address *addr;
  2754. struct sadb_x_nat_t_port *n_port;
  2755. int sockaddr_size;
  2756. int size;
  2757. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2758. struct xfrm_encap_tmpl *natt = NULL;
  2759. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2760. if (!sockaddr_size)
  2761. return -EINVAL;
  2762. if (!satype)
  2763. return -EINVAL;
  2764. if (!x->encap)
  2765. return -EINVAL;
  2766. natt = x->encap;
  2767. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2768. *
  2769. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2770. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2771. */
  2772. size = sizeof(struct sadb_msg) +
  2773. sizeof(struct sadb_sa) +
  2774. (sizeof(struct sadb_address) * 2) +
  2775. (sockaddr_size * 2) +
  2776. (sizeof(struct sadb_x_nat_t_port) * 2);
  2777. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2778. if (skb == NULL)
  2779. return -ENOMEM;
  2780. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2781. hdr->sadb_msg_version = PF_KEY_V2;
  2782. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2783. hdr->sadb_msg_satype = satype;
  2784. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2785. hdr->sadb_msg_errno = 0;
  2786. hdr->sadb_msg_reserved = 0;
  2787. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2788. hdr->sadb_msg_pid = 0;
  2789. /* SA */
  2790. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2791. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2792. sa->sadb_sa_exttype = SADB_EXT_SA;
  2793. sa->sadb_sa_spi = x->id.spi;
  2794. sa->sadb_sa_replay = 0;
  2795. sa->sadb_sa_state = 0;
  2796. sa->sadb_sa_auth = 0;
  2797. sa->sadb_sa_encrypt = 0;
  2798. sa->sadb_sa_flags = 0;
  2799. /* ADDRESS_SRC (old addr) */
  2800. addr = (struct sadb_address*)
  2801. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2802. addr->sadb_address_len =
  2803. (sizeof(struct sadb_address)+sockaddr_size)/
  2804. sizeof(uint64_t);
  2805. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2806. addr->sadb_address_proto = 0;
  2807. addr->sadb_address_reserved = 0;
  2808. addr->sadb_address_prefixlen =
  2809. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2810. (struct sockaddr *) (addr + 1),
  2811. x->props.family);
  2812. if (!addr->sadb_address_prefixlen)
  2813. BUG();
  2814. /* NAT_T_SPORT (old port) */
  2815. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2816. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2817. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2818. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2819. n_port->sadb_x_nat_t_port_reserved = 0;
  2820. /* ADDRESS_DST (new addr) */
  2821. addr = (struct sadb_address*)
  2822. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2823. addr->sadb_address_len =
  2824. (sizeof(struct sadb_address)+sockaddr_size)/
  2825. sizeof(uint64_t);
  2826. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2827. addr->sadb_address_proto = 0;
  2828. addr->sadb_address_reserved = 0;
  2829. addr->sadb_address_prefixlen =
  2830. pfkey_sockaddr_fill(ipaddr, 0,
  2831. (struct sockaddr *) (addr + 1),
  2832. x->props.family);
  2833. if (!addr->sadb_address_prefixlen)
  2834. BUG();
  2835. /* NAT_T_DPORT (new port) */
  2836. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2837. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2838. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2839. n_port->sadb_x_nat_t_port_port = sport;
  2840. n_port->sadb_x_nat_t_port_reserved = 0;
  2841. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2842. }
  2843. #ifdef CONFIG_NET_KEY_MIGRATE
  2844. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2845. const struct xfrm_selector *sel)
  2846. {
  2847. struct sadb_address *addr;
  2848. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2849. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2850. addr->sadb_address_exttype = type;
  2851. addr->sadb_address_proto = sel->proto;
  2852. addr->sadb_address_reserved = 0;
  2853. switch (type) {
  2854. case SADB_EXT_ADDRESS_SRC:
  2855. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2856. pfkey_sockaddr_fill(&sel->saddr, 0,
  2857. (struct sockaddr *)(addr + 1),
  2858. sel->family);
  2859. break;
  2860. case SADB_EXT_ADDRESS_DST:
  2861. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2862. pfkey_sockaddr_fill(&sel->daddr, 0,
  2863. (struct sockaddr *)(addr + 1),
  2864. sel->family);
  2865. break;
  2866. default:
  2867. return -EINVAL;
  2868. }
  2869. return 0;
  2870. }
  2871. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2872. {
  2873. struct sadb_x_kmaddress *kma;
  2874. u8 *sa;
  2875. int family = k->family;
  2876. int socklen = pfkey_sockaddr_len(family);
  2877. int size_req;
  2878. size_req = (sizeof(struct sadb_x_kmaddress) +
  2879. pfkey_sockaddr_pair_size(family));
  2880. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2881. memset(kma, 0, size_req);
  2882. kma->sadb_x_kmaddress_len = size_req / 8;
  2883. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2884. kma->sadb_x_kmaddress_reserved = k->reserved;
  2885. sa = (u8 *)(kma + 1);
  2886. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2887. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2888. return -EINVAL;
  2889. return 0;
  2890. }
  2891. static int set_ipsecrequest(struct sk_buff *skb,
  2892. uint8_t proto, uint8_t mode, int level,
  2893. uint32_t reqid, uint8_t family,
  2894. const xfrm_address_t *src, const xfrm_address_t *dst)
  2895. {
  2896. struct sadb_x_ipsecrequest *rq;
  2897. u8 *sa;
  2898. int socklen = pfkey_sockaddr_len(family);
  2899. int size_req;
  2900. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2901. pfkey_sockaddr_pair_size(family);
  2902. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2903. memset(rq, 0, size_req);
  2904. rq->sadb_x_ipsecrequest_len = size_req;
  2905. rq->sadb_x_ipsecrequest_proto = proto;
  2906. rq->sadb_x_ipsecrequest_mode = mode;
  2907. rq->sadb_x_ipsecrequest_level = level;
  2908. rq->sadb_x_ipsecrequest_reqid = reqid;
  2909. sa = (u8 *) (rq + 1);
  2910. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2911. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2912. return -EINVAL;
  2913. return 0;
  2914. }
  2915. #endif
  2916. #ifdef CONFIG_NET_KEY_MIGRATE
  2917. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  2918. const struct xfrm_migrate *m, int num_bundles,
  2919. const struct xfrm_kmaddress *k)
  2920. {
  2921. int i;
  2922. int sasize_sel;
  2923. int size = 0;
  2924. int size_pol = 0;
  2925. struct sk_buff *skb;
  2926. struct sadb_msg *hdr;
  2927. struct sadb_x_policy *pol;
  2928. const struct xfrm_migrate *mp;
  2929. if (type != XFRM_POLICY_TYPE_MAIN)
  2930. return 0;
  2931. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2932. return -EINVAL;
  2933. if (k != NULL) {
  2934. /* addresses for KM */
  2935. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2936. pfkey_sockaddr_pair_size(k->family));
  2937. }
  2938. /* selector */
  2939. sasize_sel = pfkey_sockaddr_size(sel->family);
  2940. if (!sasize_sel)
  2941. return -EINVAL;
  2942. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2943. /* policy info */
  2944. size_pol += sizeof(struct sadb_x_policy);
  2945. /* ipsecrequests */
  2946. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2947. /* old locator pair */
  2948. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2949. pfkey_sockaddr_pair_size(mp->old_family);
  2950. /* new locator pair */
  2951. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2952. pfkey_sockaddr_pair_size(mp->new_family);
  2953. }
  2954. size += sizeof(struct sadb_msg) + size_pol;
  2955. /* alloc buffer */
  2956. skb = alloc_skb(size, GFP_ATOMIC);
  2957. if (skb == NULL)
  2958. return -ENOMEM;
  2959. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2960. hdr->sadb_msg_version = PF_KEY_V2;
  2961. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2962. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2963. hdr->sadb_msg_len = size / 8;
  2964. hdr->sadb_msg_errno = 0;
  2965. hdr->sadb_msg_reserved = 0;
  2966. hdr->sadb_msg_seq = 0;
  2967. hdr->sadb_msg_pid = 0;
  2968. /* Addresses to be used by KM for negotiation, if ext is available */
  2969. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2970. goto err;
  2971. /* selector src */
  2972. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2973. /* selector dst */
  2974. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2975. /* policy information */
  2976. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2977. pol->sadb_x_policy_len = size_pol / 8;
  2978. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2979. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2980. pol->sadb_x_policy_dir = dir + 1;
  2981. pol->sadb_x_policy_id = 0;
  2982. pol->sadb_x_policy_priority = 0;
  2983. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2984. /* old ipsecrequest */
  2985. int mode = pfkey_mode_from_xfrm(mp->mode);
  2986. if (mode < 0)
  2987. goto err;
  2988. if (set_ipsecrequest(skb, mp->proto, mode,
  2989. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2990. mp->reqid, mp->old_family,
  2991. &mp->old_saddr, &mp->old_daddr) < 0)
  2992. goto err;
  2993. /* new ipsecrequest */
  2994. if (set_ipsecrequest(skb, mp->proto, mode,
  2995. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2996. mp->reqid, mp->new_family,
  2997. &mp->new_saddr, &mp->new_daddr) < 0)
  2998. goto err;
  2999. }
  3000. /* broadcast migrate message to sockets */
  3001. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3002. return 0;
  3003. err:
  3004. kfree_skb(skb);
  3005. return -EINVAL;
  3006. }
  3007. #else
  3008. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3009. const struct xfrm_migrate *m, int num_bundles,
  3010. const struct xfrm_kmaddress *k)
  3011. {
  3012. return -ENOPROTOOPT;
  3013. }
  3014. #endif
  3015. static int pfkey_sendmsg(struct kiocb *kiocb,
  3016. struct socket *sock, struct msghdr *msg, size_t len)
  3017. {
  3018. struct sock *sk = sock->sk;
  3019. struct sk_buff *skb = NULL;
  3020. struct sadb_msg *hdr = NULL;
  3021. int err;
  3022. err = -EOPNOTSUPP;
  3023. if (msg->msg_flags & MSG_OOB)
  3024. goto out;
  3025. err = -EMSGSIZE;
  3026. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3027. goto out;
  3028. err = -ENOBUFS;
  3029. skb = alloc_skb(len, GFP_KERNEL);
  3030. if (skb == NULL)
  3031. goto out;
  3032. err = -EFAULT;
  3033. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3034. goto out;
  3035. hdr = pfkey_get_base_msg(skb, &err);
  3036. if (!hdr)
  3037. goto out;
  3038. mutex_lock(&xfrm_cfg_mutex);
  3039. err = pfkey_process(sk, skb, hdr);
  3040. mutex_unlock(&xfrm_cfg_mutex);
  3041. out:
  3042. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3043. err = 0;
  3044. kfree_skb(skb);
  3045. return err ? : len;
  3046. }
  3047. static int pfkey_recvmsg(struct kiocb *kiocb,
  3048. struct socket *sock, struct msghdr *msg, size_t len,
  3049. int flags)
  3050. {
  3051. struct sock *sk = sock->sk;
  3052. struct pfkey_sock *pfk = pfkey_sk(sk);
  3053. struct sk_buff *skb;
  3054. int copied, err;
  3055. err = -EINVAL;
  3056. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3057. goto out;
  3058. msg->msg_namelen = 0;
  3059. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3060. if (skb == NULL)
  3061. goto out;
  3062. copied = skb->len;
  3063. if (copied > len) {
  3064. msg->msg_flags |= MSG_TRUNC;
  3065. copied = len;
  3066. }
  3067. skb_reset_transport_header(skb);
  3068. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3069. if (err)
  3070. goto out_free;
  3071. sock_recv_ts_and_drops(msg, sk, skb);
  3072. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3073. if (pfk->dump.dump != NULL &&
  3074. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3075. pfkey_do_dump(pfk);
  3076. out_free:
  3077. skb_free_datagram(sk, skb);
  3078. out:
  3079. return err;
  3080. }
  3081. static const struct proto_ops pfkey_ops = {
  3082. .family = PF_KEY,
  3083. .owner = THIS_MODULE,
  3084. /* Operations that make no sense on pfkey sockets. */
  3085. .bind = sock_no_bind,
  3086. .connect = sock_no_connect,
  3087. .socketpair = sock_no_socketpair,
  3088. .accept = sock_no_accept,
  3089. .getname = sock_no_getname,
  3090. .ioctl = sock_no_ioctl,
  3091. .listen = sock_no_listen,
  3092. .shutdown = sock_no_shutdown,
  3093. .setsockopt = sock_no_setsockopt,
  3094. .getsockopt = sock_no_getsockopt,
  3095. .mmap = sock_no_mmap,
  3096. .sendpage = sock_no_sendpage,
  3097. /* Now the operations that really occur. */
  3098. .release = pfkey_release,
  3099. .poll = datagram_poll,
  3100. .sendmsg = pfkey_sendmsg,
  3101. .recvmsg = pfkey_recvmsg,
  3102. };
  3103. static const struct net_proto_family pfkey_family_ops = {
  3104. .family = PF_KEY,
  3105. .create = pfkey_create,
  3106. .owner = THIS_MODULE,
  3107. };
  3108. #ifdef CONFIG_PROC_FS
  3109. static int pfkey_seq_show(struct seq_file *f, void *v)
  3110. {
  3111. struct sock *s = sk_entry(v);
  3112. if (v == SEQ_START_TOKEN)
  3113. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3114. else
  3115. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3116. s,
  3117. atomic_read(&s->sk_refcnt),
  3118. sk_rmem_alloc_get(s),
  3119. sk_wmem_alloc_get(s),
  3120. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3121. sock_i_ino(s)
  3122. );
  3123. return 0;
  3124. }
  3125. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3126. __acquires(rcu)
  3127. {
  3128. struct net *net = seq_file_net(f);
  3129. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3130. rcu_read_lock();
  3131. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3132. }
  3133. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3134. {
  3135. struct net *net = seq_file_net(f);
  3136. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3137. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3138. }
  3139. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3140. __releases(rcu)
  3141. {
  3142. rcu_read_unlock();
  3143. }
  3144. static const struct seq_operations pfkey_seq_ops = {
  3145. .start = pfkey_seq_start,
  3146. .next = pfkey_seq_next,
  3147. .stop = pfkey_seq_stop,
  3148. .show = pfkey_seq_show,
  3149. };
  3150. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3151. {
  3152. return seq_open_net(inode, file, &pfkey_seq_ops,
  3153. sizeof(struct seq_net_private));
  3154. }
  3155. static const struct file_operations pfkey_proc_ops = {
  3156. .open = pfkey_seq_open,
  3157. .read = seq_read,
  3158. .llseek = seq_lseek,
  3159. .release = seq_release_net,
  3160. };
  3161. static int __net_init pfkey_init_proc(struct net *net)
  3162. {
  3163. struct proc_dir_entry *e;
  3164. e = proc_net_fops_create(net, "pfkey", 0, &pfkey_proc_ops);
  3165. if (e == NULL)
  3166. return -ENOMEM;
  3167. return 0;
  3168. }
  3169. static void __net_exit pfkey_exit_proc(struct net *net)
  3170. {
  3171. proc_net_remove(net, "pfkey");
  3172. }
  3173. #else
  3174. static inline int pfkey_init_proc(struct net *net)
  3175. {
  3176. return 0;
  3177. }
  3178. static inline void pfkey_exit_proc(struct net *net)
  3179. {
  3180. }
  3181. #endif
  3182. static struct xfrm_mgr pfkeyv2_mgr =
  3183. {
  3184. .id = "pfkeyv2",
  3185. .notify = pfkey_send_notify,
  3186. .acquire = pfkey_send_acquire,
  3187. .compile_policy = pfkey_compile_policy,
  3188. .new_mapping = pfkey_send_new_mapping,
  3189. .notify_policy = pfkey_send_policy_notify,
  3190. .migrate = pfkey_send_migrate,
  3191. };
  3192. static int __net_init pfkey_net_init(struct net *net)
  3193. {
  3194. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3195. int rv;
  3196. INIT_HLIST_HEAD(&net_pfkey->table);
  3197. atomic_set(&net_pfkey->socks_nr, 0);
  3198. rv = pfkey_init_proc(net);
  3199. return rv;
  3200. }
  3201. static void __net_exit pfkey_net_exit(struct net *net)
  3202. {
  3203. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3204. pfkey_exit_proc(net);
  3205. BUG_ON(!hlist_empty(&net_pfkey->table));
  3206. }
  3207. static struct pernet_operations pfkey_net_ops = {
  3208. .init = pfkey_net_init,
  3209. .exit = pfkey_net_exit,
  3210. .id = &pfkey_net_id,
  3211. .size = sizeof(struct netns_pfkey),
  3212. };
  3213. static void __exit ipsec_pfkey_exit(void)
  3214. {
  3215. xfrm_unregister_km(&pfkeyv2_mgr);
  3216. sock_unregister(PF_KEY);
  3217. unregister_pernet_subsys(&pfkey_net_ops);
  3218. proto_unregister(&key_proto);
  3219. }
  3220. static int __init ipsec_pfkey_init(void)
  3221. {
  3222. int err = proto_register(&key_proto, 0);
  3223. if (err != 0)
  3224. goto out;
  3225. err = register_pernet_subsys(&pfkey_net_ops);
  3226. if (err != 0)
  3227. goto out_unregister_key_proto;
  3228. err = sock_register(&pfkey_family_ops);
  3229. if (err != 0)
  3230. goto out_unregister_pernet;
  3231. err = xfrm_register_km(&pfkeyv2_mgr);
  3232. if (err != 0)
  3233. goto out_sock_unregister;
  3234. out:
  3235. return err;
  3236. out_sock_unregister:
  3237. sock_unregister(PF_KEY);
  3238. out_unregister_pernet:
  3239. unregister_pernet_subsys(&pfkey_net_ops);
  3240. out_unregister_key_proto:
  3241. proto_unregister(&key_proto);
  3242. goto out;
  3243. }
  3244. module_init(ipsec_pfkey_init);
  3245. module_exit(ipsec_pfkey_exit);
  3246. MODULE_LICENSE("GPL");
  3247. MODULE_ALIAS_NETPROTO(PF_KEY);