request.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370
  1. /*
  2. * Main bcache entry point - handle a read or a write request and decide what to
  3. * do with it; the make_request functions are called by the block layer.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/cgroup.h>
  14. #include <linux/module.h>
  15. #include <linux/hash.h>
  16. #include <linux/random.h>
  17. #include "blk-cgroup.h"
  18. #include <trace/events/bcache.h>
  19. #define CUTOFF_CACHE_ADD 95
  20. #define CUTOFF_CACHE_READA 90
  21. struct kmem_cache *bch_search_cache;
  22. /* Cgroup interface */
  23. #ifdef CONFIG_CGROUP_BCACHE
  24. static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
  25. static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
  26. {
  27. struct cgroup_subsys_state *css;
  28. return cgroup &&
  29. (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
  30. ? container_of(css, struct bch_cgroup, css)
  31. : &bcache_default_cgroup;
  32. }
  33. struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
  34. {
  35. struct cgroup_subsys_state *css = bio->bi_css
  36. ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
  37. : task_subsys_state(current, bcache_subsys_id);
  38. return css
  39. ? container_of(css, struct bch_cgroup, css)
  40. : &bcache_default_cgroup;
  41. }
  42. static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
  43. struct file *file,
  44. char __user *buf, size_t nbytes, loff_t *ppos)
  45. {
  46. char tmp[1024];
  47. int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
  48. cgroup_to_bcache(cgrp)->cache_mode + 1);
  49. if (len < 0)
  50. return len;
  51. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  52. }
  53. static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
  54. const char *buf)
  55. {
  56. int v = bch_read_string_list(buf, bch_cache_modes);
  57. if (v < 0)
  58. return v;
  59. cgroup_to_bcache(cgrp)->cache_mode = v - 1;
  60. return 0;
  61. }
  62. static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
  63. {
  64. return cgroup_to_bcache(cgrp)->verify;
  65. }
  66. static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
  67. {
  68. cgroup_to_bcache(cgrp)->verify = val;
  69. return 0;
  70. }
  71. static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
  72. {
  73. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  74. return atomic_read(&bcachecg->stats.cache_hits);
  75. }
  76. static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
  77. {
  78. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  79. return atomic_read(&bcachecg->stats.cache_misses);
  80. }
  81. static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
  82. struct cftype *cft)
  83. {
  84. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  85. return atomic_read(&bcachecg->stats.cache_bypass_hits);
  86. }
  87. static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
  88. struct cftype *cft)
  89. {
  90. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  91. return atomic_read(&bcachecg->stats.cache_bypass_misses);
  92. }
  93. static struct cftype bch_files[] = {
  94. {
  95. .name = "cache_mode",
  96. .read = cache_mode_read,
  97. .write_string = cache_mode_write,
  98. },
  99. {
  100. .name = "verify",
  101. .read_u64 = bch_verify_read,
  102. .write_u64 = bch_verify_write,
  103. },
  104. {
  105. .name = "cache_hits",
  106. .read_u64 = bch_cache_hits_read,
  107. },
  108. {
  109. .name = "cache_misses",
  110. .read_u64 = bch_cache_misses_read,
  111. },
  112. {
  113. .name = "cache_bypass_hits",
  114. .read_u64 = bch_cache_bypass_hits_read,
  115. },
  116. {
  117. .name = "cache_bypass_misses",
  118. .read_u64 = bch_cache_bypass_misses_read,
  119. },
  120. { } /* terminate */
  121. };
  122. static void init_bch_cgroup(struct bch_cgroup *cg)
  123. {
  124. cg->cache_mode = -1;
  125. }
  126. static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
  127. {
  128. struct bch_cgroup *cg;
  129. cg = kzalloc(sizeof(*cg), GFP_KERNEL);
  130. if (!cg)
  131. return ERR_PTR(-ENOMEM);
  132. init_bch_cgroup(cg);
  133. return &cg->css;
  134. }
  135. static void bcachecg_destroy(struct cgroup *cgroup)
  136. {
  137. struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
  138. free_css_id(&bcache_subsys, &cg->css);
  139. kfree(cg);
  140. }
  141. struct cgroup_subsys bcache_subsys = {
  142. .create = bcachecg_create,
  143. .destroy = bcachecg_destroy,
  144. .subsys_id = bcache_subsys_id,
  145. .name = "bcache",
  146. .module = THIS_MODULE,
  147. };
  148. EXPORT_SYMBOL_GPL(bcache_subsys);
  149. #endif
  150. static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  151. {
  152. #ifdef CONFIG_CGROUP_BCACHE
  153. int r = bch_bio_to_cgroup(bio)->cache_mode;
  154. if (r >= 0)
  155. return r;
  156. #endif
  157. return BDEV_CACHE_MODE(&dc->sb);
  158. }
  159. static bool verify(struct cached_dev *dc, struct bio *bio)
  160. {
  161. #ifdef CONFIG_CGROUP_BCACHE
  162. if (bch_bio_to_cgroup(bio)->verify)
  163. return true;
  164. #endif
  165. return dc->verify;
  166. }
  167. static void bio_csum(struct bio *bio, struct bkey *k)
  168. {
  169. struct bio_vec *bv;
  170. uint64_t csum = 0;
  171. int i;
  172. bio_for_each_segment(bv, bio, i) {
  173. void *d = kmap(bv->bv_page) + bv->bv_offset;
  174. csum = bch_crc64_update(csum, d, bv->bv_len);
  175. kunmap(bv->bv_page);
  176. }
  177. k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  178. }
  179. /* Insert data into cache */
  180. static void bio_invalidate(struct closure *cl)
  181. {
  182. struct btree_op *op = container_of(cl, struct btree_op, cl);
  183. struct bio *bio = op->cache_bio;
  184. pr_debug("invalidating %i sectors from %llu",
  185. bio_sectors(bio), (uint64_t) bio->bi_sector);
  186. while (bio_sectors(bio)) {
  187. unsigned len = min(bio_sectors(bio), 1U << 14);
  188. if (bch_keylist_realloc(&op->keys, 0, op->c))
  189. goto out;
  190. bio->bi_sector += len;
  191. bio->bi_size -= len << 9;
  192. bch_keylist_add(&op->keys,
  193. &KEY(op->inode, bio->bi_sector, len));
  194. }
  195. op->insert_data_done = true;
  196. bio_put(bio);
  197. out:
  198. continue_at(cl, bch_journal, bcache_wq);
  199. }
  200. struct open_bucket {
  201. struct list_head list;
  202. struct task_struct *last;
  203. unsigned sectors_free;
  204. BKEY_PADDED(key);
  205. };
  206. void bch_open_buckets_free(struct cache_set *c)
  207. {
  208. struct open_bucket *b;
  209. while (!list_empty(&c->data_buckets)) {
  210. b = list_first_entry(&c->data_buckets,
  211. struct open_bucket, list);
  212. list_del(&b->list);
  213. kfree(b);
  214. }
  215. }
  216. int bch_open_buckets_alloc(struct cache_set *c)
  217. {
  218. int i;
  219. spin_lock_init(&c->data_bucket_lock);
  220. for (i = 0; i < 6; i++) {
  221. struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
  222. if (!b)
  223. return -ENOMEM;
  224. list_add(&b->list, &c->data_buckets);
  225. }
  226. return 0;
  227. }
  228. /*
  229. * We keep multiple buckets open for writes, and try to segregate different
  230. * write streams for better cache utilization: first we look for a bucket where
  231. * the last write to it was sequential with the current write, and failing that
  232. * we look for a bucket that was last used by the same task.
  233. *
  234. * The ideas is if you've got multiple tasks pulling data into the cache at the
  235. * same time, you'll get better cache utilization if you try to segregate their
  236. * data and preserve locality.
  237. *
  238. * For example, say you've starting Firefox at the same time you're copying a
  239. * bunch of files. Firefox will likely end up being fairly hot and stay in the
  240. * cache awhile, but the data you copied might not be; if you wrote all that
  241. * data to the same buckets it'd get invalidated at the same time.
  242. *
  243. * Both of those tasks will be doing fairly random IO so we can't rely on
  244. * detecting sequential IO to segregate their data, but going off of the task
  245. * should be a sane heuristic.
  246. */
  247. static struct open_bucket *pick_data_bucket(struct cache_set *c,
  248. const struct bkey *search,
  249. struct task_struct *task,
  250. struct bkey *alloc)
  251. {
  252. struct open_bucket *ret, *ret_task = NULL;
  253. list_for_each_entry_reverse(ret, &c->data_buckets, list)
  254. if (!bkey_cmp(&ret->key, search))
  255. goto found;
  256. else if (ret->last == task)
  257. ret_task = ret;
  258. ret = ret_task ?: list_first_entry(&c->data_buckets,
  259. struct open_bucket, list);
  260. found:
  261. if (!ret->sectors_free && KEY_PTRS(alloc)) {
  262. ret->sectors_free = c->sb.bucket_size;
  263. bkey_copy(&ret->key, alloc);
  264. bkey_init(alloc);
  265. }
  266. if (!ret->sectors_free)
  267. ret = NULL;
  268. return ret;
  269. }
  270. /*
  271. * Allocates some space in the cache to write to, and k to point to the newly
  272. * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
  273. * end of the newly allocated space).
  274. *
  275. * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
  276. * sectors were actually allocated.
  277. *
  278. * If s->writeback is true, will not fail.
  279. */
  280. static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
  281. struct search *s)
  282. {
  283. struct cache_set *c = s->op.c;
  284. struct open_bucket *b;
  285. BKEY_PADDED(key) alloc;
  286. struct closure cl, *w = NULL;
  287. unsigned i;
  288. if (s->writeback) {
  289. closure_init_stack(&cl);
  290. w = &cl;
  291. }
  292. /*
  293. * We might have to allocate a new bucket, which we can't do with a
  294. * spinlock held. So if we have to allocate, we drop the lock, allocate
  295. * and then retry. KEY_PTRS() indicates whether alloc points to
  296. * allocated bucket(s).
  297. */
  298. bkey_init(&alloc.key);
  299. spin_lock(&c->data_bucket_lock);
  300. while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
  301. unsigned watermark = s->op.write_prio
  302. ? WATERMARK_MOVINGGC
  303. : WATERMARK_NONE;
  304. spin_unlock(&c->data_bucket_lock);
  305. if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
  306. return false;
  307. spin_lock(&c->data_bucket_lock);
  308. }
  309. /*
  310. * If we had to allocate, we might race and not need to allocate the
  311. * second time we call find_data_bucket(). If we allocated a bucket but
  312. * didn't use it, drop the refcount bch_bucket_alloc_set() took:
  313. */
  314. if (KEY_PTRS(&alloc.key))
  315. __bkey_put(c, &alloc.key);
  316. for (i = 0; i < KEY_PTRS(&b->key); i++)
  317. EBUG_ON(ptr_stale(c, &b->key, i));
  318. /* Set up the pointer to the space we're allocating: */
  319. for (i = 0; i < KEY_PTRS(&b->key); i++)
  320. k->ptr[i] = b->key.ptr[i];
  321. sectors = min(sectors, b->sectors_free);
  322. SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
  323. SET_KEY_SIZE(k, sectors);
  324. SET_KEY_PTRS(k, KEY_PTRS(&b->key));
  325. /*
  326. * Move b to the end of the lru, and keep track of what this bucket was
  327. * last used for:
  328. */
  329. list_move_tail(&b->list, &c->data_buckets);
  330. bkey_copy_key(&b->key, k);
  331. b->last = s->task;
  332. b->sectors_free -= sectors;
  333. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  334. SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
  335. atomic_long_add(sectors,
  336. &PTR_CACHE(c, &b->key, i)->sectors_written);
  337. }
  338. if (b->sectors_free < c->sb.block_size)
  339. b->sectors_free = 0;
  340. /*
  341. * k takes refcounts on the buckets it points to until it's inserted
  342. * into the btree, but if we're done with this bucket we just transfer
  343. * get_data_bucket()'s refcount.
  344. */
  345. if (b->sectors_free)
  346. for (i = 0; i < KEY_PTRS(&b->key); i++)
  347. atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
  348. spin_unlock(&c->data_bucket_lock);
  349. return true;
  350. }
  351. static void bch_insert_data_error(struct closure *cl)
  352. {
  353. struct btree_op *op = container_of(cl, struct btree_op, cl);
  354. /*
  355. * Our data write just errored, which means we've got a bunch of keys to
  356. * insert that point to data that wasn't succesfully written.
  357. *
  358. * We don't have to insert those keys but we still have to invalidate
  359. * that region of the cache - so, if we just strip off all the pointers
  360. * from the keys we'll accomplish just that.
  361. */
  362. struct bkey *src = op->keys.keys, *dst = op->keys.keys;
  363. while (src != op->keys.top) {
  364. struct bkey *n = bkey_next(src);
  365. SET_KEY_PTRS(src, 0);
  366. memmove(dst, src, bkey_bytes(src));
  367. dst = bkey_next(dst);
  368. src = n;
  369. }
  370. op->keys.top = dst;
  371. bch_journal(cl);
  372. }
  373. static void bch_insert_data_endio(struct bio *bio, int error)
  374. {
  375. struct closure *cl = bio->bi_private;
  376. struct btree_op *op = container_of(cl, struct btree_op, cl);
  377. struct search *s = container_of(op, struct search, op);
  378. if (error) {
  379. /* TODO: We could try to recover from this. */
  380. if (s->writeback)
  381. s->error = error;
  382. else if (s->write)
  383. set_closure_fn(cl, bch_insert_data_error, bcache_wq);
  384. else
  385. set_closure_fn(cl, NULL, NULL);
  386. }
  387. bch_bbio_endio(op->c, bio, error, "writing data to cache");
  388. }
  389. static void bch_insert_data_loop(struct closure *cl)
  390. {
  391. struct btree_op *op = container_of(cl, struct btree_op, cl);
  392. struct search *s = container_of(op, struct search, op);
  393. struct bio *bio = op->cache_bio, *n;
  394. if (op->bypass)
  395. return bio_invalidate(cl);
  396. if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
  397. set_gc_sectors(op->c);
  398. bch_queue_gc(op->c);
  399. }
  400. /*
  401. * Journal writes are marked REQ_FLUSH; if the original write was a
  402. * flush, it'll wait on the journal write.
  403. */
  404. bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
  405. do {
  406. unsigned i;
  407. struct bkey *k;
  408. struct bio_set *split = s->d
  409. ? s->d->bio_split : op->c->bio_split;
  410. /* 1 for the device pointer and 1 for the chksum */
  411. if (bch_keylist_realloc(&op->keys,
  412. 1 + (op->csum ? 1 : 0),
  413. op->c))
  414. continue_at(cl, bch_journal, bcache_wq);
  415. k = op->keys.top;
  416. bkey_init(k);
  417. SET_KEY_INODE(k, op->inode);
  418. SET_KEY_OFFSET(k, bio->bi_sector);
  419. if (!bch_alloc_sectors(k, bio_sectors(bio), s))
  420. goto err;
  421. n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
  422. n->bi_end_io = bch_insert_data_endio;
  423. n->bi_private = cl;
  424. if (s->writeback) {
  425. SET_KEY_DIRTY(k, true);
  426. for (i = 0; i < KEY_PTRS(k); i++)
  427. SET_GC_MARK(PTR_BUCKET(op->c, k, i),
  428. GC_MARK_DIRTY);
  429. }
  430. SET_KEY_CSUM(k, op->csum);
  431. if (KEY_CSUM(k))
  432. bio_csum(n, k);
  433. trace_bcache_cache_insert(k);
  434. bch_keylist_push(&op->keys);
  435. n->bi_rw |= REQ_WRITE;
  436. bch_submit_bbio(n, op->c, k, 0);
  437. } while (n != bio);
  438. op->insert_data_done = true;
  439. continue_at(cl, bch_journal, bcache_wq);
  440. err:
  441. /* bch_alloc_sectors() blocks if s->writeback = true */
  442. BUG_ON(s->writeback);
  443. /*
  444. * But if it's not a writeback write we'd rather just bail out if
  445. * there aren't any buckets ready to write to - it might take awhile and
  446. * we might be starving btree writes for gc or something.
  447. */
  448. if (s->write) {
  449. /*
  450. * Writethrough write: We can't complete the write until we've
  451. * updated the index. But we don't want to delay the write while
  452. * we wait for buckets to be freed up, so just invalidate the
  453. * rest of the write.
  454. */
  455. op->bypass = true;
  456. return bio_invalidate(cl);
  457. } else {
  458. /*
  459. * From a cache miss, we can just insert the keys for the data
  460. * we have written or bail out if we didn't do anything.
  461. */
  462. op->insert_data_done = true;
  463. bio_put(bio);
  464. if (!bch_keylist_empty(&op->keys))
  465. continue_at(cl, bch_journal, bcache_wq);
  466. else
  467. closure_return(cl);
  468. }
  469. }
  470. /**
  471. * bch_insert_data - stick some data in the cache
  472. *
  473. * This is the starting point for any data to end up in a cache device; it could
  474. * be from a normal write, or a writeback write, or a write to a flash only
  475. * volume - it's also used by the moving garbage collector to compact data in
  476. * mostly empty buckets.
  477. *
  478. * It first writes the data to the cache, creating a list of keys to be inserted
  479. * (if the data had to be fragmented there will be multiple keys); after the
  480. * data is written it calls bch_journal, and after the keys have been added to
  481. * the next journal write they're inserted into the btree.
  482. *
  483. * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
  484. * and op->inode is used for the key inode.
  485. *
  486. * If op->bypass is true, instead of inserting the data it invalidates the
  487. * region of the cache represented by op->cache_bio and op->inode.
  488. */
  489. void bch_insert_data(struct closure *cl)
  490. {
  491. struct btree_op *op = container_of(cl, struct btree_op, cl);
  492. bch_keylist_init(&op->keys);
  493. bio_get(op->cache_bio);
  494. bch_insert_data_loop(cl);
  495. }
  496. void bch_btree_insert_async(struct closure *cl)
  497. {
  498. struct btree_op *op = container_of(cl, struct btree_op, cl);
  499. struct search *s = container_of(op, struct search, op);
  500. if (bch_btree_insert(op, op->c, &op->keys)) {
  501. s->error = -ENOMEM;
  502. op->insert_data_done = true;
  503. }
  504. if (op->insert_data_done) {
  505. bch_keylist_free(&op->keys);
  506. closure_return(cl);
  507. } else
  508. continue_at(cl, bch_insert_data_loop, bcache_wq);
  509. }
  510. /* Common code for the make_request functions */
  511. static void request_endio(struct bio *bio, int error)
  512. {
  513. struct closure *cl = bio->bi_private;
  514. if (error) {
  515. struct search *s = container_of(cl, struct search, cl);
  516. s->error = error;
  517. /* Only cache read errors are recoverable */
  518. s->recoverable = false;
  519. }
  520. bio_put(bio);
  521. closure_put(cl);
  522. }
  523. void bch_cache_read_endio(struct bio *bio, int error)
  524. {
  525. struct bbio *b = container_of(bio, struct bbio, bio);
  526. struct closure *cl = bio->bi_private;
  527. struct search *s = container_of(cl, struct search, cl);
  528. /*
  529. * If the bucket was reused while our bio was in flight, we might have
  530. * read the wrong data. Set s->error but not error so it doesn't get
  531. * counted against the cache device, but we'll still reread the data
  532. * from the backing device.
  533. */
  534. if (error)
  535. s->error = error;
  536. else if (ptr_stale(s->op.c, &b->key, 0)) {
  537. atomic_long_inc(&s->op.c->cache_read_races);
  538. s->error = -EINTR;
  539. }
  540. bch_bbio_endio(s->op.c, bio, error, "reading from cache");
  541. }
  542. static void bio_complete(struct search *s)
  543. {
  544. if (s->orig_bio) {
  545. int cpu, rw = bio_data_dir(s->orig_bio);
  546. unsigned long duration = jiffies - s->start_time;
  547. cpu = part_stat_lock();
  548. part_round_stats(cpu, &s->d->disk->part0);
  549. part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
  550. part_stat_unlock();
  551. trace_bcache_request_end(s, s->orig_bio);
  552. bio_endio(s->orig_bio, s->error);
  553. s->orig_bio = NULL;
  554. }
  555. }
  556. static void do_bio_hook(struct search *s)
  557. {
  558. struct bio *bio = &s->bio.bio;
  559. memcpy(bio, s->orig_bio, sizeof(struct bio));
  560. bio->bi_end_io = request_endio;
  561. bio->bi_private = &s->cl;
  562. atomic_set(&bio->bi_cnt, 3);
  563. }
  564. static void search_free(struct closure *cl)
  565. {
  566. struct search *s = container_of(cl, struct search, cl);
  567. bio_complete(s);
  568. if (s->op.cache_bio)
  569. bio_put(s->op.cache_bio);
  570. if (s->unaligned_bvec)
  571. mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
  572. closure_debug_destroy(cl);
  573. mempool_free(s, s->d->c->search);
  574. }
  575. static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
  576. {
  577. struct bio_vec *bv;
  578. struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
  579. memset(s, 0, offsetof(struct search, op.keys));
  580. __closure_init(&s->cl, NULL);
  581. s->op.inode = d->id;
  582. s->op.c = d->c;
  583. s->d = d;
  584. s->op.lock = -1;
  585. s->task = current;
  586. s->orig_bio = bio;
  587. s->write = (bio->bi_rw & REQ_WRITE) != 0;
  588. s->op.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
  589. s->recoverable = 1;
  590. s->start_time = jiffies;
  591. do_bio_hook(s);
  592. if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
  593. bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
  594. memcpy(bv, bio_iovec(bio),
  595. sizeof(struct bio_vec) * bio_segments(bio));
  596. s->bio.bio.bi_io_vec = bv;
  597. s->unaligned_bvec = 1;
  598. }
  599. return s;
  600. }
  601. static void btree_read_async(struct closure *cl)
  602. {
  603. struct btree_op *op = container_of(cl, struct btree_op, cl);
  604. int ret = btree_root(search_recurse, op->c, op);
  605. if (ret == -EAGAIN)
  606. continue_at(cl, btree_read_async, bcache_wq);
  607. closure_return(cl);
  608. }
  609. /* Cached devices */
  610. static void cached_dev_bio_complete(struct closure *cl)
  611. {
  612. struct search *s = container_of(cl, struct search, cl);
  613. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  614. search_free(cl);
  615. cached_dev_put(dc);
  616. }
  617. unsigned bch_get_congested(struct cache_set *c)
  618. {
  619. int i;
  620. long rand;
  621. if (!c->congested_read_threshold_us &&
  622. !c->congested_write_threshold_us)
  623. return 0;
  624. i = (local_clock_us() - c->congested_last_us) / 1024;
  625. if (i < 0)
  626. return 0;
  627. i += atomic_read(&c->congested);
  628. if (i >= 0)
  629. return 0;
  630. i += CONGESTED_MAX;
  631. if (i > 0)
  632. i = fract_exp_two(i, 6);
  633. rand = get_random_int();
  634. i -= bitmap_weight(&rand, BITS_PER_LONG);
  635. return i > 0 ? i : 1;
  636. }
  637. static void add_sequential(struct task_struct *t)
  638. {
  639. ewma_add(t->sequential_io_avg,
  640. t->sequential_io, 8, 0);
  641. t->sequential_io = 0;
  642. }
  643. static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
  644. {
  645. return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
  646. }
  647. static bool check_should_bypass(struct cached_dev *dc, struct search *s)
  648. {
  649. struct cache_set *c = s->op.c;
  650. struct bio *bio = &s->bio.bio;
  651. unsigned mode = cache_mode(dc, bio);
  652. unsigned sectors, congested = bch_get_congested(c);
  653. if (atomic_read(&dc->disk.detaching) ||
  654. c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
  655. (bio->bi_rw & REQ_DISCARD))
  656. goto skip;
  657. if (mode == CACHE_MODE_NONE ||
  658. (mode == CACHE_MODE_WRITEAROUND &&
  659. (bio->bi_rw & REQ_WRITE)))
  660. goto skip;
  661. if (bio->bi_sector & (c->sb.block_size - 1) ||
  662. bio_sectors(bio) & (c->sb.block_size - 1)) {
  663. pr_debug("skipping unaligned io");
  664. goto skip;
  665. }
  666. if (!congested && !dc->sequential_cutoff)
  667. goto rescale;
  668. if (!congested &&
  669. mode == CACHE_MODE_WRITEBACK &&
  670. (bio->bi_rw & REQ_WRITE) &&
  671. (bio->bi_rw & REQ_SYNC))
  672. goto rescale;
  673. if (dc->sequential_merge) {
  674. struct io *i;
  675. spin_lock(&dc->io_lock);
  676. hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
  677. if (i->last == bio->bi_sector &&
  678. time_before(jiffies, i->jiffies))
  679. goto found;
  680. i = list_first_entry(&dc->io_lru, struct io, lru);
  681. add_sequential(s->task);
  682. i->sequential = 0;
  683. found:
  684. if (i->sequential + bio->bi_size > i->sequential)
  685. i->sequential += bio->bi_size;
  686. i->last = bio_end_sector(bio);
  687. i->jiffies = jiffies + msecs_to_jiffies(5000);
  688. s->task->sequential_io = i->sequential;
  689. hlist_del(&i->hash);
  690. hlist_add_head(&i->hash, iohash(dc, i->last));
  691. list_move_tail(&i->lru, &dc->io_lru);
  692. spin_unlock(&dc->io_lock);
  693. } else {
  694. s->task->sequential_io = bio->bi_size;
  695. add_sequential(s->task);
  696. }
  697. sectors = max(s->task->sequential_io,
  698. s->task->sequential_io_avg) >> 9;
  699. if (dc->sequential_cutoff &&
  700. sectors >= dc->sequential_cutoff >> 9) {
  701. trace_bcache_bypass_sequential(s->orig_bio);
  702. goto skip;
  703. }
  704. if (congested && sectors >= congested) {
  705. trace_bcache_bypass_congested(s->orig_bio);
  706. goto skip;
  707. }
  708. rescale:
  709. bch_rescale_priorities(c, bio_sectors(bio));
  710. return false;
  711. skip:
  712. bch_mark_sectors_bypassed(s, bio_sectors(bio));
  713. return true;
  714. }
  715. /* Process reads */
  716. static void cached_dev_cache_miss_done(struct closure *cl)
  717. {
  718. struct search *s = container_of(cl, struct search, cl);
  719. if (s->op.insert_collision)
  720. bch_mark_cache_miss_collision(s);
  721. if (s->op.cache_bio) {
  722. int i;
  723. struct bio_vec *bv;
  724. __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
  725. __free_page(bv->bv_page);
  726. }
  727. cached_dev_bio_complete(cl);
  728. }
  729. static void cached_dev_read_error(struct closure *cl)
  730. {
  731. struct search *s = container_of(cl, struct search, cl);
  732. struct bio *bio = &s->bio.bio;
  733. struct bio_vec *bv;
  734. int i;
  735. if (s->recoverable) {
  736. /* Retry from the backing device: */
  737. trace_bcache_read_retry(s->orig_bio);
  738. s->error = 0;
  739. bv = s->bio.bio.bi_io_vec;
  740. do_bio_hook(s);
  741. s->bio.bio.bi_io_vec = bv;
  742. if (!s->unaligned_bvec)
  743. bio_for_each_segment(bv, s->orig_bio, i)
  744. bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
  745. else
  746. memcpy(s->bio.bio.bi_io_vec,
  747. bio_iovec(s->orig_bio),
  748. sizeof(struct bio_vec) *
  749. bio_segments(s->orig_bio));
  750. /* XXX: invalidate cache */
  751. closure_bio_submit(bio, cl, s->d);
  752. }
  753. continue_at(cl, cached_dev_cache_miss_done, NULL);
  754. }
  755. static void cached_dev_read_done(struct closure *cl)
  756. {
  757. struct search *s = container_of(cl, struct search, cl);
  758. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  759. /*
  760. * We had a cache miss; cache_bio now contains data ready to be inserted
  761. * into the cache.
  762. *
  763. * First, we copy the data we just read from cache_bio's bounce buffers
  764. * to the buffers the original bio pointed to:
  765. */
  766. if (s->op.cache_bio) {
  767. bio_reset(s->op.cache_bio);
  768. s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
  769. s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
  770. s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
  771. bch_bio_map(s->op.cache_bio, NULL);
  772. bio_copy_data(s->cache_miss, s->op.cache_bio);
  773. bio_put(s->cache_miss);
  774. s->cache_miss = NULL;
  775. }
  776. if (verify(dc, &s->bio.bio) && s->recoverable)
  777. bch_data_verify(s);
  778. bio_complete(s);
  779. if (s->op.cache_bio &&
  780. !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
  781. s->op.type = BTREE_REPLACE;
  782. closure_call(&s->op.cl, bch_insert_data, NULL, cl);
  783. }
  784. continue_at(cl, cached_dev_cache_miss_done, NULL);
  785. }
  786. static void cached_dev_read_done_bh(struct closure *cl)
  787. {
  788. struct search *s = container_of(cl, struct search, cl);
  789. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  790. bch_mark_cache_accounting(s, !s->cache_miss, s->op.bypass);
  791. trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.bypass);
  792. if (s->error)
  793. continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
  794. else if (s->op.cache_bio || verify(dc, &s->bio.bio))
  795. continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
  796. else
  797. continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
  798. }
  799. static int cached_dev_cache_miss(struct btree *b, struct search *s,
  800. struct bio *bio, unsigned sectors)
  801. {
  802. int ret = 0;
  803. unsigned reada = 0;
  804. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  805. struct bio *miss, *cache_bio;
  806. if (s->cache_miss || s->op.bypass) {
  807. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  808. if (miss == bio)
  809. s->op.lookup_done = true;
  810. goto out_submit;
  811. }
  812. if (!(bio->bi_rw & REQ_RAHEAD) &&
  813. !(bio->bi_rw & REQ_META) &&
  814. s->op.c->gc_stats.in_use < CUTOFF_CACHE_READA)
  815. reada = min_t(sector_t, dc->readahead >> 9,
  816. bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
  817. s->cache_bio_sectors = min(sectors, bio_sectors(bio) + reada);
  818. s->op.replace = KEY(s->op.inode, bio->bi_sector +
  819. s->cache_bio_sectors, s->cache_bio_sectors);
  820. ret = bch_btree_insert_check_key(b, &s->op, &s->op.replace);
  821. if (ret)
  822. return ret;
  823. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  824. if (miss == bio)
  825. s->op.lookup_done = true;
  826. else
  827. /* btree_search_recurse()'s btree iterator is no good anymore */
  828. ret = -EINTR;
  829. cache_bio = bio_alloc_bioset(GFP_NOWAIT,
  830. DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
  831. dc->disk.bio_split);
  832. if (!cache_bio)
  833. goto out_submit;
  834. cache_bio->bi_sector = miss->bi_sector;
  835. cache_bio->bi_bdev = miss->bi_bdev;
  836. cache_bio->bi_size = s->cache_bio_sectors << 9;
  837. cache_bio->bi_end_io = request_endio;
  838. cache_bio->bi_private = &s->cl;
  839. bch_bio_map(cache_bio, NULL);
  840. if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
  841. goto out_put;
  842. s->cache_miss = miss;
  843. s->op.cache_bio = cache_bio;
  844. bio_get(cache_bio);
  845. closure_bio_submit(cache_bio, &s->cl, s->d);
  846. return ret;
  847. out_put:
  848. bio_put(cache_bio);
  849. out_submit:
  850. miss->bi_end_io = request_endio;
  851. miss->bi_private = &s->cl;
  852. closure_bio_submit(miss, &s->cl, s->d);
  853. return ret;
  854. }
  855. static void cached_dev_read(struct cached_dev *dc, struct search *s)
  856. {
  857. struct closure *cl = &s->cl;
  858. closure_call(&s->op.cl, btree_read_async, NULL, cl);
  859. continue_at(cl, cached_dev_read_done_bh, NULL);
  860. }
  861. /* Process writes */
  862. static void cached_dev_write_complete(struct closure *cl)
  863. {
  864. struct search *s = container_of(cl, struct search, cl);
  865. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  866. up_read_non_owner(&dc->writeback_lock);
  867. cached_dev_bio_complete(cl);
  868. }
  869. static void cached_dev_write(struct cached_dev *dc, struct search *s)
  870. {
  871. struct closure *cl = &s->cl;
  872. struct bio *bio = &s->bio.bio;
  873. struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
  874. struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
  875. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
  876. down_read_non_owner(&dc->writeback_lock);
  877. if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
  878. /*
  879. * We overlap with some dirty data undergoing background
  880. * writeback, force this write to writeback
  881. */
  882. s->op.bypass = false;
  883. s->writeback = true;
  884. }
  885. /*
  886. * Discards aren't _required_ to do anything, so skipping if
  887. * check_overlapping returned true is ok
  888. *
  889. * But check_overlapping drops dirty keys for which io hasn't started,
  890. * so we still want to call it.
  891. */
  892. if (bio->bi_rw & REQ_DISCARD)
  893. s->op.bypass = true;
  894. if (should_writeback(dc, s->orig_bio,
  895. cache_mode(dc, bio),
  896. s->op.bypass)) {
  897. s->op.bypass = false;
  898. s->writeback = true;
  899. }
  900. trace_bcache_write(s->orig_bio, s->writeback, s->op.bypass);
  901. if (s->op.bypass) {
  902. s->op.cache_bio = s->orig_bio;
  903. bio_get(s->op.cache_bio);
  904. if (!(bio->bi_rw & REQ_DISCARD) ||
  905. blk_queue_discard(bdev_get_queue(dc->bdev)))
  906. closure_bio_submit(bio, cl, s->d);
  907. } else if (s->writeback) {
  908. bch_writeback_add(dc);
  909. s->op.cache_bio = bio;
  910. if (bio->bi_rw & REQ_FLUSH) {
  911. /* Also need to send a flush to the backing device */
  912. struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
  913. dc->disk.bio_split);
  914. flush->bi_rw = WRITE_FLUSH;
  915. flush->bi_bdev = bio->bi_bdev;
  916. flush->bi_end_io = request_endio;
  917. flush->bi_private = cl;
  918. closure_bio_submit(flush, cl, s->d);
  919. }
  920. } else {
  921. s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
  922. dc->disk.bio_split);
  923. closure_bio_submit(bio, cl, s->d);
  924. }
  925. closure_call(&s->op.cl, bch_insert_data, NULL, cl);
  926. continue_at(cl, cached_dev_write_complete, NULL);
  927. }
  928. static void cached_dev_nodata(struct cached_dev *dc, struct search *s)
  929. {
  930. struct closure *cl = &s->cl;
  931. struct bio *bio = &s->bio.bio;
  932. if (s->op.flush_journal)
  933. bch_journal_meta(s->op.c, cl);
  934. /* If it's a flush, we send the flush to the backing device too */
  935. closure_bio_submit(bio, cl, s->d);
  936. continue_at(cl, cached_dev_bio_complete, NULL);
  937. }
  938. /* Cached devices - read & write stuff */
  939. static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
  940. {
  941. struct search *s;
  942. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  943. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  944. int cpu, rw = bio_data_dir(bio);
  945. cpu = part_stat_lock();
  946. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  947. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  948. part_stat_unlock();
  949. bio->bi_bdev = dc->bdev;
  950. bio->bi_sector += dc->sb.data_offset;
  951. if (cached_dev_get(dc)) {
  952. s = search_alloc(bio, d);
  953. trace_bcache_request_start(s, bio);
  954. if (!bio->bi_size)
  955. cached_dev_nodata(dc, s);
  956. else {
  957. s->op.bypass = check_should_bypass(dc, s);
  958. if (rw)
  959. cached_dev_write(dc, s);
  960. else
  961. cached_dev_read(dc, s);
  962. }
  963. } else {
  964. if ((bio->bi_rw & REQ_DISCARD) &&
  965. !blk_queue_discard(bdev_get_queue(dc->bdev)))
  966. bio_endio(bio, 0);
  967. else
  968. bch_generic_make_request(bio, &d->bio_split_hook);
  969. }
  970. }
  971. static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
  972. unsigned int cmd, unsigned long arg)
  973. {
  974. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  975. return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
  976. }
  977. static int cached_dev_congested(void *data, int bits)
  978. {
  979. struct bcache_device *d = data;
  980. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  981. struct request_queue *q = bdev_get_queue(dc->bdev);
  982. int ret = 0;
  983. if (bdi_congested(&q->backing_dev_info, bits))
  984. return 1;
  985. if (cached_dev_get(dc)) {
  986. unsigned i;
  987. struct cache *ca;
  988. for_each_cache(ca, d->c, i) {
  989. q = bdev_get_queue(ca->bdev);
  990. ret |= bdi_congested(&q->backing_dev_info, bits);
  991. }
  992. cached_dev_put(dc);
  993. }
  994. return ret;
  995. }
  996. void bch_cached_dev_request_init(struct cached_dev *dc)
  997. {
  998. struct gendisk *g = dc->disk.disk;
  999. g->queue->make_request_fn = cached_dev_make_request;
  1000. g->queue->backing_dev_info.congested_fn = cached_dev_congested;
  1001. dc->disk.cache_miss = cached_dev_cache_miss;
  1002. dc->disk.ioctl = cached_dev_ioctl;
  1003. }
  1004. /* Flash backed devices */
  1005. static int flash_dev_cache_miss(struct btree *b, struct search *s,
  1006. struct bio *bio, unsigned sectors)
  1007. {
  1008. struct bio_vec *bv;
  1009. int i;
  1010. /* Zero fill bio */
  1011. bio_for_each_segment(bv, bio, i) {
  1012. unsigned j = min(bv->bv_len >> 9, sectors);
  1013. void *p = kmap(bv->bv_page);
  1014. memset(p + bv->bv_offset, 0, j << 9);
  1015. kunmap(bv->bv_page);
  1016. sectors -= j;
  1017. }
  1018. bio_advance(bio, min(sectors << 9, bio->bi_size));
  1019. if (!bio->bi_size)
  1020. s->op.lookup_done = true;
  1021. return 0;
  1022. }
  1023. static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
  1024. {
  1025. struct search *s;
  1026. struct closure *cl;
  1027. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  1028. int cpu, rw = bio_data_dir(bio);
  1029. cpu = part_stat_lock();
  1030. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  1031. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  1032. part_stat_unlock();
  1033. s = search_alloc(bio, d);
  1034. cl = &s->cl;
  1035. bio = &s->bio.bio;
  1036. trace_bcache_request_start(s, bio);
  1037. if (!bio->bi_size) {
  1038. if (s->op.flush_journal)
  1039. bch_journal_meta(s->op.c, cl);
  1040. } else if (rw) {
  1041. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
  1042. &KEY(d->id, bio->bi_sector, 0),
  1043. &KEY(d->id, bio_end_sector(bio), 0));
  1044. s->op.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
  1045. s->writeback = true;
  1046. s->op.cache_bio = bio;
  1047. closure_call(&s->op.cl, bch_insert_data, NULL, cl);
  1048. } else {
  1049. closure_call(&s->op.cl, btree_read_async, NULL, cl);
  1050. }
  1051. continue_at(cl, search_free, NULL);
  1052. }
  1053. static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
  1054. unsigned int cmd, unsigned long arg)
  1055. {
  1056. return -ENOTTY;
  1057. }
  1058. static int flash_dev_congested(void *data, int bits)
  1059. {
  1060. struct bcache_device *d = data;
  1061. struct request_queue *q;
  1062. struct cache *ca;
  1063. unsigned i;
  1064. int ret = 0;
  1065. for_each_cache(ca, d->c, i) {
  1066. q = bdev_get_queue(ca->bdev);
  1067. ret |= bdi_congested(&q->backing_dev_info, bits);
  1068. }
  1069. return ret;
  1070. }
  1071. void bch_flash_dev_request_init(struct bcache_device *d)
  1072. {
  1073. struct gendisk *g = d->disk;
  1074. g->queue->make_request_fn = flash_dev_make_request;
  1075. g->queue->backing_dev_info.congested_fn = flash_dev_congested;
  1076. d->cache_miss = flash_dev_cache_miss;
  1077. d->ioctl = flash_dev_ioctl;
  1078. }
  1079. void bch_request_exit(void)
  1080. {
  1081. #ifdef CONFIG_CGROUP_BCACHE
  1082. cgroup_unload_subsys(&bcache_subsys);
  1083. #endif
  1084. if (bch_search_cache)
  1085. kmem_cache_destroy(bch_search_cache);
  1086. }
  1087. int __init bch_request_init(void)
  1088. {
  1089. bch_search_cache = KMEM_CACHE(search, 0);
  1090. if (!bch_search_cache)
  1091. return -ENOMEM;
  1092. #ifdef CONFIG_CGROUP_BCACHE
  1093. cgroup_load_subsys(&bcache_subsys);
  1094. init_bch_cgroup(&bcache_default_cgroup);
  1095. cgroup_add_cftypes(&bcache_subsys, bch_files);
  1096. #endif
  1097. return 0;
  1098. }