niu.c 232 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "1.0"
  32. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  46. }
  47. static void writeq(u64 val, void __iomem *reg)
  48. {
  49. writel(val & 0xffffffff, reg);
  50. writel(val >> 32, reg + 0x4UL);
  51. }
  52. #endif
  53. static struct pci_device_id niu_pci_tbl[] = {
  54. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  55. {}
  56. };
  57. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  58. #define NIU_TX_TIMEOUT (5 * HZ)
  59. #define nr64(reg) readq(np->regs + (reg))
  60. #define nw64(reg, val) writeq((val), np->regs + (reg))
  61. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  62. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  63. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  64. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  65. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  66. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  67. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  68. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  69. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  70. static int niu_debug;
  71. static int debug = -1;
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "NIU debug level");
  74. #define niudbg(TYPE, f, a...) \
  75. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  76. printk(KERN_DEBUG PFX f, ## a); \
  77. } while (0)
  78. #define niuinfo(TYPE, f, a...) \
  79. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  80. printk(KERN_INFO PFX f, ## a); \
  81. } while (0)
  82. #define niuwarn(TYPE, f, a...) \
  83. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  84. printk(KERN_WARNING PFX f, ## a); \
  85. } while (0)
  86. #define niu_lock_parent(np, flags) \
  87. spin_lock_irqsave(&np->parent->lock, flags)
  88. #define niu_unlock_parent(np, flags) \
  89. spin_unlock_irqrestore(&np->parent->lock, flags)
  90. static int serdes_init_10g_serdes(struct niu *np);
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu_10g_fiber(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int serdes_init_niu_1g_serdes(struct niu *np)
  359. {
  360. struct niu_link_config *lp = &np->link_config;
  361. u16 pll_cfg, pll_sts;
  362. int max_retry = 100;
  363. u64 uninitialized_var(sig), mask, val;
  364. u32 tx_cfg, rx_cfg;
  365. unsigned long i;
  366. int err;
  367. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  368. PLL_TX_CFG_RATE_HALF);
  369. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  370. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  371. PLL_RX_CFG_RATE_HALF);
  372. if (np->port == 0)
  373. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  374. if (lp->loopback_mode == LOOPBACK_PHY) {
  375. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  376. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  377. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  378. tx_cfg |= PLL_TX_CFG_ENTEST;
  379. rx_cfg |= PLL_RX_CFG_ENTEST;
  380. }
  381. /* Initialize PLL for 1G */
  382. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  383. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  384. ESR2_TI_PLL_CFG_L, pll_cfg);
  385. if (err) {
  386. dev_err(np->device, PFX "NIU Port %d "
  387. "serdes_init_niu_1g_serdes: "
  388. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  389. return err;
  390. }
  391. pll_sts = PLL_CFG_ENPLL;
  392. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  393. ESR2_TI_PLL_STS_L, pll_sts);
  394. if (err) {
  395. dev_err(np->device, PFX "NIU Port %d "
  396. "serdes_init_niu_1g_serdes: "
  397. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  398. return err;
  399. }
  400. udelay(200);
  401. /* Initialize all 4 lanes of the SERDES. */
  402. for (i = 0; i < 4; i++) {
  403. err = esr2_set_tx_cfg(np, i, tx_cfg);
  404. if (err)
  405. return err;
  406. }
  407. for (i = 0; i < 4; i++) {
  408. err = esr2_set_rx_cfg(np, i, rx_cfg);
  409. if (err)
  410. return err;
  411. }
  412. switch (np->port) {
  413. case 0:
  414. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  415. mask = val;
  416. break;
  417. case 1:
  418. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  419. mask = val;
  420. break;
  421. default:
  422. return -EINVAL;
  423. }
  424. while (max_retry--) {
  425. sig = nr64(ESR_INT_SIGNALS);
  426. if ((sig & mask) == val)
  427. break;
  428. mdelay(500);
  429. }
  430. if ((sig & mask) != val) {
  431. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  432. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  433. return -ENODEV;
  434. }
  435. return 0;
  436. }
  437. static int serdes_init_niu_10g_serdes(struct niu *np)
  438. {
  439. struct niu_link_config *lp = &np->link_config;
  440. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  441. int max_retry = 100;
  442. u64 uninitialized_var(sig), mask, val;
  443. unsigned long i;
  444. int err;
  445. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  446. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  447. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  448. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  449. if (lp->loopback_mode == LOOPBACK_PHY) {
  450. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  451. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  452. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  453. tx_cfg |= PLL_TX_CFG_ENTEST;
  454. rx_cfg |= PLL_RX_CFG_ENTEST;
  455. }
  456. /* Initialize PLL for 10G */
  457. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  458. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  459. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  460. if (err) {
  461. dev_err(np->device, PFX "NIU Port %d "
  462. "serdes_init_niu_10g_serdes: "
  463. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  464. return err;
  465. }
  466. pll_sts = PLL_CFG_ENPLL;
  467. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  468. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  469. if (err) {
  470. dev_err(np->device, PFX "NIU Port %d "
  471. "serdes_init_niu_10g_serdes: "
  472. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  473. return err;
  474. }
  475. udelay(200);
  476. /* Initialize all 4 lanes of the SERDES. */
  477. for (i = 0; i < 4; i++) {
  478. err = esr2_set_tx_cfg(np, i, tx_cfg);
  479. if (err)
  480. return err;
  481. }
  482. for (i = 0; i < 4; i++) {
  483. err = esr2_set_rx_cfg(np, i, rx_cfg);
  484. if (err)
  485. return err;
  486. }
  487. /* check if serdes is ready */
  488. switch (np->port) {
  489. case 0:
  490. mask = ESR_INT_SIGNALS_P0_BITS;
  491. val = (ESR_INT_SRDY0_P0 |
  492. ESR_INT_DET0_P0 |
  493. ESR_INT_XSRDY_P0 |
  494. ESR_INT_XDP_P0_CH3 |
  495. ESR_INT_XDP_P0_CH2 |
  496. ESR_INT_XDP_P0_CH1 |
  497. ESR_INT_XDP_P0_CH0);
  498. break;
  499. case 1:
  500. mask = ESR_INT_SIGNALS_P1_BITS;
  501. val = (ESR_INT_SRDY0_P1 |
  502. ESR_INT_DET0_P1 |
  503. ESR_INT_XSRDY_P1 |
  504. ESR_INT_XDP_P1_CH3 |
  505. ESR_INT_XDP_P1_CH2 |
  506. ESR_INT_XDP_P1_CH1 |
  507. ESR_INT_XDP_P1_CH0);
  508. break;
  509. default:
  510. return -EINVAL;
  511. }
  512. while (max_retry--) {
  513. sig = nr64(ESR_INT_SIGNALS);
  514. if ((sig & mask) == val)
  515. break;
  516. mdelay(500);
  517. }
  518. if ((sig & mask) != val) {
  519. pr_info(PFX "NIU Port %u signal bits [%08x] are not "
  520. "[%08x] for 10G...trying 1G\n",
  521. np->port, (int) (sig & mask), (int) val);
  522. /* 10G failed, try initializing at 1G */
  523. err = serdes_init_niu_1g_serdes(np);
  524. if (!err) {
  525. np->flags &= ~NIU_FLAGS_10G;
  526. np->mac_xcvr = MAC_XCVR_PCS;
  527. } else {
  528. dev_err(np->device, PFX "Port %u 10G/1G SERDES "
  529. "Link Failed \n", np->port);
  530. return -ENODEV;
  531. }
  532. }
  533. return 0;
  534. }
  535. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  536. {
  537. int err;
  538. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  539. if (err >= 0) {
  540. *val = (err & 0xffff);
  541. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  542. ESR_RXTX_CTRL_H(chan));
  543. if (err >= 0)
  544. *val |= ((err & 0xffff) << 16);
  545. err = 0;
  546. }
  547. return err;
  548. }
  549. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  550. {
  551. int err;
  552. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  553. ESR_GLUE_CTRL0_L(chan));
  554. if (err >= 0) {
  555. *val = (err & 0xffff);
  556. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  557. ESR_GLUE_CTRL0_H(chan));
  558. if (err >= 0) {
  559. *val |= ((err & 0xffff) << 16);
  560. err = 0;
  561. }
  562. }
  563. return err;
  564. }
  565. static int esr_read_reset(struct niu *np, u32 *val)
  566. {
  567. int err;
  568. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  569. ESR_RXTX_RESET_CTRL_L);
  570. if (err >= 0) {
  571. *val = (err & 0xffff);
  572. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  573. ESR_RXTX_RESET_CTRL_H);
  574. if (err >= 0) {
  575. *val |= ((err & 0xffff) << 16);
  576. err = 0;
  577. }
  578. }
  579. return err;
  580. }
  581. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  582. {
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  586. if (!err)
  587. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  588. ESR_RXTX_CTRL_H(chan), (val >> 16));
  589. return err;
  590. }
  591. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  592. {
  593. int err;
  594. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  595. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  596. if (!err)
  597. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  598. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  599. return err;
  600. }
  601. static int esr_reset(struct niu *np)
  602. {
  603. u32 uninitialized_var(reset);
  604. int err;
  605. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  606. ESR_RXTX_RESET_CTRL_L, 0x0000);
  607. if (err)
  608. return err;
  609. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  610. ESR_RXTX_RESET_CTRL_H, 0xffff);
  611. if (err)
  612. return err;
  613. udelay(200);
  614. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  615. ESR_RXTX_RESET_CTRL_L, 0xffff);
  616. if (err)
  617. return err;
  618. udelay(200);
  619. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  620. ESR_RXTX_RESET_CTRL_H, 0x0000);
  621. if (err)
  622. return err;
  623. udelay(200);
  624. err = esr_read_reset(np, &reset);
  625. if (err)
  626. return err;
  627. if (reset != 0) {
  628. dev_err(np->device, PFX "Port %u ESR_RESET "
  629. "did not clear [%08x]\n",
  630. np->port, reset);
  631. return -ENODEV;
  632. }
  633. return 0;
  634. }
  635. static int serdes_init_10g(struct niu *np)
  636. {
  637. struct niu_link_config *lp = &np->link_config;
  638. unsigned long ctrl_reg, test_cfg_reg, i;
  639. u64 ctrl_val, test_cfg_val, sig, mask, val;
  640. int err;
  641. switch (np->port) {
  642. case 0:
  643. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  644. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  645. break;
  646. case 1:
  647. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  648. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  649. break;
  650. default:
  651. return -EINVAL;
  652. }
  653. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  654. ENET_SERDES_CTRL_SDET_1 |
  655. ENET_SERDES_CTRL_SDET_2 |
  656. ENET_SERDES_CTRL_SDET_3 |
  657. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  658. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  659. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  660. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  661. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  662. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  663. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  664. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  665. test_cfg_val = 0;
  666. if (lp->loopback_mode == LOOPBACK_PHY) {
  667. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  668. ENET_SERDES_TEST_MD_0_SHIFT) |
  669. (ENET_TEST_MD_PAD_LOOPBACK <<
  670. ENET_SERDES_TEST_MD_1_SHIFT) |
  671. (ENET_TEST_MD_PAD_LOOPBACK <<
  672. ENET_SERDES_TEST_MD_2_SHIFT) |
  673. (ENET_TEST_MD_PAD_LOOPBACK <<
  674. ENET_SERDES_TEST_MD_3_SHIFT));
  675. }
  676. nw64(ctrl_reg, ctrl_val);
  677. nw64(test_cfg_reg, test_cfg_val);
  678. /* Initialize all 4 lanes of the SERDES. */
  679. for (i = 0; i < 4; i++) {
  680. u32 rxtx_ctrl, glue0;
  681. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  682. if (err)
  683. return err;
  684. err = esr_read_glue0(np, i, &glue0);
  685. if (err)
  686. return err;
  687. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  688. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  689. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  690. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  691. ESR_GLUE_CTRL0_THCNT |
  692. ESR_GLUE_CTRL0_BLTIME);
  693. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  694. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  695. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  696. (BLTIME_300_CYCLES <<
  697. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  698. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  699. if (err)
  700. return err;
  701. err = esr_write_glue0(np, i, glue0);
  702. if (err)
  703. return err;
  704. }
  705. err = esr_reset(np);
  706. if (err)
  707. return err;
  708. sig = nr64(ESR_INT_SIGNALS);
  709. switch (np->port) {
  710. case 0:
  711. mask = ESR_INT_SIGNALS_P0_BITS;
  712. val = (ESR_INT_SRDY0_P0 |
  713. ESR_INT_DET0_P0 |
  714. ESR_INT_XSRDY_P0 |
  715. ESR_INT_XDP_P0_CH3 |
  716. ESR_INT_XDP_P0_CH2 |
  717. ESR_INT_XDP_P0_CH1 |
  718. ESR_INT_XDP_P0_CH0);
  719. break;
  720. case 1:
  721. mask = ESR_INT_SIGNALS_P1_BITS;
  722. val = (ESR_INT_SRDY0_P1 |
  723. ESR_INT_DET0_P1 |
  724. ESR_INT_XSRDY_P1 |
  725. ESR_INT_XDP_P1_CH3 |
  726. ESR_INT_XDP_P1_CH2 |
  727. ESR_INT_XDP_P1_CH1 |
  728. ESR_INT_XDP_P1_CH0);
  729. break;
  730. default:
  731. return -EINVAL;
  732. }
  733. if ((sig & mask) != val) {
  734. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  735. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  736. return 0;
  737. }
  738. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  739. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  740. return -ENODEV;
  741. }
  742. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  743. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  744. return 0;
  745. }
  746. static int serdes_init_1g(struct niu *np)
  747. {
  748. u64 val;
  749. val = nr64(ENET_SERDES_1_PLL_CFG);
  750. val &= ~ENET_SERDES_PLL_FBDIV2;
  751. switch (np->port) {
  752. case 0:
  753. val |= ENET_SERDES_PLL_HRATE0;
  754. break;
  755. case 1:
  756. val |= ENET_SERDES_PLL_HRATE1;
  757. break;
  758. case 2:
  759. val |= ENET_SERDES_PLL_HRATE2;
  760. break;
  761. case 3:
  762. val |= ENET_SERDES_PLL_HRATE3;
  763. break;
  764. default:
  765. return -EINVAL;
  766. }
  767. nw64(ENET_SERDES_1_PLL_CFG, val);
  768. return 0;
  769. }
  770. static int serdes_init_1g_serdes(struct niu *np)
  771. {
  772. struct niu_link_config *lp = &np->link_config;
  773. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  774. u64 ctrl_val, test_cfg_val, sig, mask, val;
  775. int err;
  776. u64 reset_val, val_rd;
  777. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  778. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  779. ENET_SERDES_PLL_FBDIV0;
  780. switch (np->port) {
  781. case 0:
  782. reset_val = ENET_SERDES_RESET_0;
  783. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  784. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  785. pll_cfg = ENET_SERDES_0_PLL_CFG;
  786. break;
  787. case 1:
  788. reset_val = ENET_SERDES_RESET_1;
  789. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  790. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  791. pll_cfg = ENET_SERDES_1_PLL_CFG;
  792. break;
  793. default:
  794. return -EINVAL;
  795. }
  796. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  797. ENET_SERDES_CTRL_SDET_1 |
  798. ENET_SERDES_CTRL_SDET_2 |
  799. ENET_SERDES_CTRL_SDET_3 |
  800. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  801. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  802. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  803. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  804. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  805. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  806. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  807. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  808. test_cfg_val = 0;
  809. if (lp->loopback_mode == LOOPBACK_PHY) {
  810. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  811. ENET_SERDES_TEST_MD_0_SHIFT) |
  812. (ENET_TEST_MD_PAD_LOOPBACK <<
  813. ENET_SERDES_TEST_MD_1_SHIFT) |
  814. (ENET_TEST_MD_PAD_LOOPBACK <<
  815. ENET_SERDES_TEST_MD_2_SHIFT) |
  816. (ENET_TEST_MD_PAD_LOOPBACK <<
  817. ENET_SERDES_TEST_MD_3_SHIFT));
  818. }
  819. nw64(ENET_SERDES_RESET, reset_val);
  820. mdelay(20);
  821. val_rd = nr64(ENET_SERDES_RESET);
  822. val_rd &= ~reset_val;
  823. nw64(pll_cfg, val);
  824. nw64(ctrl_reg, ctrl_val);
  825. nw64(test_cfg_reg, test_cfg_val);
  826. nw64(ENET_SERDES_RESET, val_rd);
  827. mdelay(2000);
  828. /* Initialize all 4 lanes of the SERDES. */
  829. for (i = 0; i < 4; i++) {
  830. u32 rxtx_ctrl, glue0;
  831. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  832. if (err)
  833. return err;
  834. err = esr_read_glue0(np, i, &glue0);
  835. if (err)
  836. return err;
  837. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  838. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  839. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  840. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  841. ESR_GLUE_CTRL0_THCNT |
  842. ESR_GLUE_CTRL0_BLTIME);
  843. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  844. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  845. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  846. (BLTIME_300_CYCLES <<
  847. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  848. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  849. if (err)
  850. return err;
  851. err = esr_write_glue0(np, i, glue0);
  852. if (err)
  853. return err;
  854. }
  855. sig = nr64(ESR_INT_SIGNALS);
  856. switch (np->port) {
  857. case 0:
  858. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  859. mask = val;
  860. break;
  861. case 1:
  862. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  863. mask = val;
  864. break;
  865. default:
  866. return -EINVAL;
  867. }
  868. if ((sig & mask) != val) {
  869. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  870. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  871. return -ENODEV;
  872. }
  873. return 0;
  874. }
  875. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  876. {
  877. struct niu_link_config *lp = &np->link_config;
  878. int link_up;
  879. u64 val;
  880. u16 current_speed;
  881. unsigned long flags;
  882. u8 current_duplex;
  883. link_up = 0;
  884. current_speed = SPEED_INVALID;
  885. current_duplex = DUPLEX_INVALID;
  886. spin_lock_irqsave(&np->lock, flags);
  887. val = nr64_pcs(PCS_MII_STAT);
  888. if (val & PCS_MII_STAT_LINK_STATUS) {
  889. link_up = 1;
  890. current_speed = SPEED_1000;
  891. current_duplex = DUPLEX_FULL;
  892. }
  893. lp->active_speed = current_speed;
  894. lp->active_duplex = current_duplex;
  895. spin_unlock_irqrestore(&np->lock, flags);
  896. *link_up_p = link_up;
  897. return 0;
  898. }
  899. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  900. {
  901. unsigned long flags;
  902. struct niu_link_config *lp = &np->link_config;
  903. int link_up = 0;
  904. int link_ok = 1;
  905. u64 val, val2;
  906. u16 current_speed;
  907. u8 current_duplex;
  908. if (!(np->flags & NIU_FLAGS_10G))
  909. return link_status_1g_serdes(np, link_up_p);
  910. current_speed = SPEED_INVALID;
  911. current_duplex = DUPLEX_INVALID;
  912. spin_lock_irqsave(&np->lock, flags);
  913. val = nr64_xpcs(XPCS_STATUS(0));
  914. val2 = nr64_mac(XMAC_INTER2);
  915. if (val2 & 0x01000000)
  916. link_ok = 0;
  917. if ((val & 0x1000ULL) && link_ok) {
  918. link_up = 1;
  919. current_speed = SPEED_10000;
  920. current_duplex = DUPLEX_FULL;
  921. }
  922. lp->active_speed = current_speed;
  923. lp->active_duplex = current_duplex;
  924. spin_unlock_irqrestore(&np->lock, flags);
  925. *link_up_p = link_up;
  926. return 0;
  927. }
  928. static int link_status_mii(struct niu *np, int *link_up_p)
  929. {
  930. struct niu_link_config *lp = &np->link_config;
  931. int err;
  932. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  933. int supported, advertising, active_speed, active_duplex;
  934. err = mii_read(np, np->phy_addr, MII_BMCR);
  935. if (unlikely(err < 0))
  936. return err;
  937. bmcr = err;
  938. err = mii_read(np, np->phy_addr, MII_BMSR);
  939. if (unlikely(err < 0))
  940. return err;
  941. bmsr = err;
  942. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  943. if (unlikely(err < 0))
  944. return err;
  945. advert = err;
  946. err = mii_read(np, np->phy_addr, MII_LPA);
  947. if (unlikely(err < 0))
  948. return err;
  949. lpa = err;
  950. if (likely(bmsr & BMSR_ESTATEN)) {
  951. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  952. if (unlikely(err < 0))
  953. return err;
  954. estatus = err;
  955. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  956. if (unlikely(err < 0))
  957. return err;
  958. ctrl1000 = err;
  959. err = mii_read(np, np->phy_addr, MII_STAT1000);
  960. if (unlikely(err < 0))
  961. return err;
  962. stat1000 = err;
  963. } else
  964. estatus = ctrl1000 = stat1000 = 0;
  965. supported = 0;
  966. if (bmsr & BMSR_ANEGCAPABLE)
  967. supported |= SUPPORTED_Autoneg;
  968. if (bmsr & BMSR_10HALF)
  969. supported |= SUPPORTED_10baseT_Half;
  970. if (bmsr & BMSR_10FULL)
  971. supported |= SUPPORTED_10baseT_Full;
  972. if (bmsr & BMSR_100HALF)
  973. supported |= SUPPORTED_100baseT_Half;
  974. if (bmsr & BMSR_100FULL)
  975. supported |= SUPPORTED_100baseT_Full;
  976. if (estatus & ESTATUS_1000_THALF)
  977. supported |= SUPPORTED_1000baseT_Half;
  978. if (estatus & ESTATUS_1000_TFULL)
  979. supported |= SUPPORTED_1000baseT_Full;
  980. lp->supported = supported;
  981. advertising = 0;
  982. if (advert & ADVERTISE_10HALF)
  983. advertising |= ADVERTISED_10baseT_Half;
  984. if (advert & ADVERTISE_10FULL)
  985. advertising |= ADVERTISED_10baseT_Full;
  986. if (advert & ADVERTISE_100HALF)
  987. advertising |= ADVERTISED_100baseT_Half;
  988. if (advert & ADVERTISE_100FULL)
  989. advertising |= ADVERTISED_100baseT_Full;
  990. if (ctrl1000 & ADVERTISE_1000HALF)
  991. advertising |= ADVERTISED_1000baseT_Half;
  992. if (ctrl1000 & ADVERTISE_1000FULL)
  993. advertising |= ADVERTISED_1000baseT_Full;
  994. if (bmcr & BMCR_ANENABLE) {
  995. int neg, neg1000;
  996. lp->active_autoneg = 1;
  997. advertising |= ADVERTISED_Autoneg;
  998. neg = advert & lpa;
  999. neg1000 = (ctrl1000 << 2) & stat1000;
  1000. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  1001. active_speed = SPEED_1000;
  1002. else if (neg & LPA_100)
  1003. active_speed = SPEED_100;
  1004. else if (neg & (LPA_10HALF | LPA_10FULL))
  1005. active_speed = SPEED_10;
  1006. else
  1007. active_speed = SPEED_INVALID;
  1008. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  1009. active_duplex = DUPLEX_FULL;
  1010. else if (active_speed != SPEED_INVALID)
  1011. active_duplex = DUPLEX_HALF;
  1012. else
  1013. active_duplex = DUPLEX_INVALID;
  1014. } else {
  1015. lp->active_autoneg = 0;
  1016. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  1017. active_speed = SPEED_1000;
  1018. else if (bmcr & BMCR_SPEED100)
  1019. active_speed = SPEED_100;
  1020. else
  1021. active_speed = SPEED_10;
  1022. if (bmcr & BMCR_FULLDPLX)
  1023. active_duplex = DUPLEX_FULL;
  1024. else
  1025. active_duplex = DUPLEX_HALF;
  1026. }
  1027. lp->active_advertising = advertising;
  1028. lp->active_speed = active_speed;
  1029. lp->active_duplex = active_duplex;
  1030. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1031. return 0;
  1032. }
  1033. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1034. {
  1035. struct niu_link_config *lp = &np->link_config;
  1036. u16 current_speed, bmsr;
  1037. unsigned long flags;
  1038. u8 current_duplex;
  1039. int err, link_up;
  1040. link_up = 0;
  1041. current_speed = SPEED_INVALID;
  1042. current_duplex = DUPLEX_INVALID;
  1043. spin_lock_irqsave(&np->lock, flags);
  1044. err = -EINVAL;
  1045. err = mii_read(np, np->phy_addr, MII_BMSR);
  1046. if (err < 0)
  1047. goto out;
  1048. bmsr = err;
  1049. if (bmsr & BMSR_LSTATUS) {
  1050. u16 adv, lpa, common, estat;
  1051. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1052. if (err < 0)
  1053. goto out;
  1054. adv = err;
  1055. err = mii_read(np, np->phy_addr, MII_LPA);
  1056. if (err < 0)
  1057. goto out;
  1058. lpa = err;
  1059. common = adv & lpa;
  1060. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1061. if (err < 0)
  1062. goto out;
  1063. estat = err;
  1064. link_up = 1;
  1065. current_speed = SPEED_1000;
  1066. current_duplex = DUPLEX_FULL;
  1067. }
  1068. lp->active_speed = current_speed;
  1069. lp->active_duplex = current_duplex;
  1070. err = 0;
  1071. out:
  1072. spin_unlock_irqrestore(&np->lock, flags);
  1073. *link_up_p = link_up;
  1074. return err;
  1075. }
  1076. static int link_status_1g(struct niu *np, int *link_up_p)
  1077. {
  1078. struct niu_link_config *lp = &np->link_config;
  1079. unsigned long flags;
  1080. int err;
  1081. spin_lock_irqsave(&np->lock, flags);
  1082. err = link_status_mii(np, link_up_p);
  1083. lp->supported |= SUPPORTED_TP;
  1084. lp->active_advertising |= ADVERTISED_TP;
  1085. spin_unlock_irqrestore(&np->lock, flags);
  1086. return err;
  1087. }
  1088. static int bcm8704_reset(struct niu *np)
  1089. {
  1090. int err, limit;
  1091. err = mdio_read(np, np->phy_addr,
  1092. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1093. if (err < 0 || err == 0xffff)
  1094. return err;
  1095. err |= BMCR_RESET;
  1096. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1097. MII_BMCR, err);
  1098. if (err)
  1099. return err;
  1100. limit = 1000;
  1101. while (--limit >= 0) {
  1102. err = mdio_read(np, np->phy_addr,
  1103. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1104. if (err < 0)
  1105. return err;
  1106. if (!(err & BMCR_RESET))
  1107. break;
  1108. }
  1109. if (limit < 0) {
  1110. dev_err(np->device, PFX "Port %u PHY will not reset "
  1111. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  1112. return -ENODEV;
  1113. }
  1114. return 0;
  1115. }
  1116. /* When written, certain PHY registers need to be read back twice
  1117. * in order for the bits to settle properly.
  1118. */
  1119. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1120. {
  1121. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1122. if (err < 0)
  1123. return err;
  1124. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1125. if (err < 0)
  1126. return err;
  1127. return 0;
  1128. }
  1129. static int bcm8706_init_user_dev3(struct niu *np)
  1130. {
  1131. int err;
  1132. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1133. BCM8704_USER_OPT_DIGITAL_CTRL);
  1134. if (err < 0)
  1135. return err;
  1136. err &= ~USER_ODIG_CTRL_GPIOS;
  1137. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1138. err |= USER_ODIG_CTRL_RESV2;
  1139. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1140. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1141. if (err)
  1142. return err;
  1143. mdelay(1000);
  1144. return 0;
  1145. }
  1146. static int bcm8704_init_user_dev3(struct niu *np)
  1147. {
  1148. int err;
  1149. err = mdio_write(np, np->phy_addr,
  1150. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1151. (USER_CONTROL_OPTXRST_LVL |
  1152. USER_CONTROL_OPBIASFLT_LVL |
  1153. USER_CONTROL_OBTMPFLT_LVL |
  1154. USER_CONTROL_OPPRFLT_LVL |
  1155. USER_CONTROL_OPTXFLT_LVL |
  1156. USER_CONTROL_OPRXLOS_LVL |
  1157. USER_CONTROL_OPRXFLT_LVL |
  1158. USER_CONTROL_OPTXON_LVL |
  1159. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1160. if (err)
  1161. return err;
  1162. err = mdio_write(np, np->phy_addr,
  1163. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1164. (USER_PMD_TX_CTL_XFP_CLKEN |
  1165. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1166. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1167. USER_PMD_TX_CTL_TSCK_LPWREN));
  1168. if (err)
  1169. return err;
  1170. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1171. if (err)
  1172. return err;
  1173. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1174. if (err)
  1175. return err;
  1176. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1177. BCM8704_USER_OPT_DIGITAL_CTRL);
  1178. if (err < 0)
  1179. return err;
  1180. err &= ~USER_ODIG_CTRL_GPIOS;
  1181. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1182. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1183. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1184. if (err)
  1185. return err;
  1186. mdelay(1000);
  1187. return 0;
  1188. }
  1189. static int mrvl88x2011_act_led(struct niu *np, int val)
  1190. {
  1191. int err;
  1192. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1193. MRVL88X2011_LED_8_TO_11_CTL);
  1194. if (err < 0)
  1195. return err;
  1196. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1197. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1198. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1199. MRVL88X2011_LED_8_TO_11_CTL, err);
  1200. }
  1201. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1202. {
  1203. int err;
  1204. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1205. MRVL88X2011_LED_BLINK_CTL);
  1206. if (err >= 0) {
  1207. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1208. err |= (rate << 4);
  1209. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1210. MRVL88X2011_LED_BLINK_CTL, err);
  1211. }
  1212. return err;
  1213. }
  1214. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1215. {
  1216. int err;
  1217. /* Set LED functions */
  1218. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1219. if (err)
  1220. return err;
  1221. /* led activity */
  1222. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1223. if (err)
  1224. return err;
  1225. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1226. MRVL88X2011_GENERAL_CTL);
  1227. if (err < 0)
  1228. return err;
  1229. err |= MRVL88X2011_ENA_XFPREFCLK;
  1230. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1231. MRVL88X2011_GENERAL_CTL, err);
  1232. if (err < 0)
  1233. return err;
  1234. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1235. MRVL88X2011_PMA_PMD_CTL_1);
  1236. if (err < 0)
  1237. return err;
  1238. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1239. err |= MRVL88X2011_LOOPBACK;
  1240. else
  1241. err &= ~MRVL88X2011_LOOPBACK;
  1242. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1243. MRVL88X2011_PMA_PMD_CTL_1, err);
  1244. if (err < 0)
  1245. return err;
  1246. /* Enable PMD */
  1247. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1248. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1249. }
  1250. static int xcvr_diag_bcm870x(struct niu *np)
  1251. {
  1252. u16 analog_stat0, tx_alarm_status;
  1253. int err = 0;
  1254. #if 1
  1255. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1256. MII_STAT1000);
  1257. if (err < 0)
  1258. return err;
  1259. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  1260. np->port, err);
  1261. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1262. if (err < 0)
  1263. return err;
  1264. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  1265. np->port, err);
  1266. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1267. MII_NWAYTEST);
  1268. if (err < 0)
  1269. return err;
  1270. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  1271. np->port, err);
  1272. #endif
  1273. /* XXX dig this out it might not be so useful XXX */
  1274. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1275. BCM8704_USER_ANALOG_STATUS0);
  1276. if (err < 0)
  1277. return err;
  1278. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1279. BCM8704_USER_ANALOG_STATUS0);
  1280. if (err < 0)
  1281. return err;
  1282. analog_stat0 = err;
  1283. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1284. BCM8704_USER_TX_ALARM_STATUS);
  1285. if (err < 0)
  1286. return err;
  1287. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1288. BCM8704_USER_TX_ALARM_STATUS);
  1289. if (err < 0)
  1290. return err;
  1291. tx_alarm_status = err;
  1292. if (analog_stat0 != 0x03fc) {
  1293. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1294. pr_info(PFX "Port %u cable not connected "
  1295. "or bad cable.\n", np->port);
  1296. } else if (analog_stat0 == 0x639c) {
  1297. pr_info(PFX "Port %u optical module is bad "
  1298. "or missing.\n", np->port);
  1299. }
  1300. }
  1301. return 0;
  1302. }
  1303. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1304. {
  1305. struct niu_link_config *lp = &np->link_config;
  1306. int err;
  1307. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1308. MII_BMCR);
  1309. if (err < 0)
  1310. return err;
  1311. err &= ~BMCR_LOOPBACK;
  1312. if (lp->loopback_mode == LOOPBACK_MAC)
  1313. err |= BMCR_LOOPBACK;
  1314. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1315. MII_BMCR, err);
  1316. if (err)
  1317. return err;
  1318. return 0;
  1319. }
  1320. static int xcvr_init_10g_bcm8706(struct niu *np)
  1321. {
  1322. int err = 0;
  1323. u64 val;
  1324. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1325. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1326. return err;
  1327. val = nr64_mac(XMAC_CONFIG);
  1328. val &= ~XMAC_CONFIG_LED_POLARITY;
  1329. val |= XMAC_CONFIG_FORCE_LED_ON;
  1330. nw64_mac(XMAC_CONFIG, val);
  1331. val = nr64(MIF_CONFIG);
  1332. val |= MIF_CONFIG_INDIRECT_MODE;
  1333. nw64(MIF_CONFIG, val);
  1334. err = bcm8704_reset(np);
  1335. if (err)
  1336. return err;
  1337. err = xcvr_10g_set_lb_bcm870x(np);
  1338. if (err)
  1339. return err;
  1340. err = bcm8706_init_user_dev3(np);
  1341. if (err)
  1342. return err;
  1343. err = xcvr_diag_bcm870x(np);
  1344. if (err)
  1345. return err;
  1346. return 0;
  1347. }
  1348. static int xcvr_init_10g_bcm8704(struct niu *np)
  1349. {
  1350. int err;
  1351. err = bcm8704_reset(np);
  1352. if (err)
  1353. return err;
  1354. err = bcm8704_init_user_dev3(np);
  1355. if (err)
  1356. return err;
  1357. err = xcvr_10g_set_lb_bcm870x(np);
  1358. if (err)
  1359. return err;
  1360. err = xcvr_diag_bcm870x(np);
  1361. if (err)
  1362. return err;
  1363. return 0;
  1364. }
  1365. static int xcvr_init_10g(struct niu *np)
  1366. {
  1367. int phy_id, err;
  1368. u64 val;
  1369. val = nr64_mac(XMAC_CONFIG);
  1370. val &= ~XMAC_CONFIG_LED_POLARITY;
  1371. val |= XMAC_CONFIG_FORCE_LED_ON;
  1372. nw64_mac(XMAC_CONFIG, val);
  1373. /* XXX shared resource, lock parent XXX */
  1374. val = nr64(MIF_CONFIG);
  1375. val |= MIF_CONFIG_INDIRECT_MODE;
  1376. nw64(MIF_CONFIG, val);
  1377. phy_id = phy_decode(np->parent->port_phy, np->port);
  1378. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1379. /* handle different phy types */
  1380. switch (phy_id & NIU_PHY_ID_MASK) {
  1381. case NIU_PHY_ID_MRVL88X2011:
  1382. err = xcvr_init_10g_mrvl88x2011(np);
  1383. break;
  1384. default: /* bcom 8704 */
  1385. err = xcvr_init_10g_bcm8704(np);
  1386. break;
  1387. }
  1388. return 0;
  1389. }
  1390. static int mii_reset(struct niu *np)
  1391. {
  1392. int limit, err;
  1393. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1394. if (err)
  1395. return err;
  1396. limit = 1000;
  1397. while (--limit >= 0) {
  1398. udelay(500);
  1399. err = mii_read(np, np->phy_addr, MII_BMCR);
  1400. if (err < 0)
  1401. return err;
  1402. if (!(err & BMCR_RESET))
  1403. break;
  1404. }
  1405. if (limit < 0) {
  1406. dev_err(np->device, PFX "Port %u MII would not reset, "
  1407. "bmcr[%04x]\n", np->port, err);
  1408. return -ENODEV;
  1409. }
  1410. return 0;
  1411. }
  1412. static int xcvr_init_1g_rgmii(struct niu *np)
  1413. {
  1414. int err;
  1415. u64 val;
  1416. u16 bmcr, bmsr, estat;
  1417. val = nr64(MIF_CONFIG);
  1418. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1419. nw64(MIF_CONFIG, val);
  1420. err = mii_reset(np);
  1421. if (err)
  1422. return err;
  1423. err = mii_read(np, np->phy_addr, MII_BMSR);
  1424. if (err < 0)
  1425. return err;
  1426. bmsr = err;
  1427. estat = 0;
  1428. if (bmsr & BMSR_ESTATEN) {
  1429. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1430. if (err < 0)
  1431. return err;
  1432. estat = err;
  1433. }
  1434. bmcr = 0;
  1435. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1436. if (err)
  1437. return err;
  1438. if (bmsr & BMSR_ESTATEN) {
  1439. u16 ctrl1000 = 0;
  1440. if (estat & ESTATUS_1000_TFULL)
  1441. ctrl1000 |= ADVERTISE_1000FULL;
  1442. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1443. if (err)
  1444. return err;
  1445. }
  1446. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1447. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1448. if (err)
  1449. return err;
  1450. err = mii_read(np, np->phy_addr, MII_BMCR);
  1451. if (err < 0)
  1452. return err;
  1453. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1454. err = mii_read(np, np->phy_addr, MII_BMSR);
  1455. if (err < 0)
  1456. return err;
  1457. return 0;
  1458. }
  1459. static int mii_init_common(struct niu *np)
  1460. {
  1461. struct niu_link_config *lp = &np->link_config;
  1462. u16 bmcr, bmsr, adv, estat;
  1463. int err;
  1464. err = mii_reset(np);
  1465. if (err)
  1466. return err;
  1467. err = mii_read(np, np->phy_addr, MII_BMSR);
  1468. if (err < 0)
  1469. return err;
  1470. bmsr = err;
  1471. estat = 0;
  1472. if (bmsr & BMSR_ESTATEN) {
  1473. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1474. if (err < 0)
  1475. return err;
  1476. estat = err;
  1477. }
  1478. bmcr = 0;
  1479. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1480. if (err)
  1481. return err;
  1482. if (lp->loopback_mode == LOOPBACK_MAC) {
  1483. bmcr |= BMCR_LOOPBACK;
  1484. if (lp->active_speed == SPEED_1000)
  1485. bmcr |= BMCR_SPEED1000;
  1486. if (lp->active_duplex == DUPLEX_FULL)
  1487. bmcr |= BMCR_FULLDPLX;
  1488. }
  1489. if (lp->loopback_mode == LOOPBACK_PHY) {
  1490. u16 aux;
  1491. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1492. BCM5464R_AUX_CTL_WRITE_1);
  1493. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1494. if (err)
  1495. return err;
  1496. }
  1497. if (lp->autoneg) {
  1498. u16 ctrl1000;
  1499. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1500. if ((bmsr & BMSR_10HALF) &&
  1501. (lp->advertising & ADVERTISED_10baseT_Half))
  1502. adv |= ADVERTISE_10HALF;
  1503. if ((bmsr & BMSR_10FULL) &&
  1504. (lp->advertising & ADVERTISED_10baseT_Full))
  1505. adv |= ADVERTISE_10FULL;
  1506. if ((bmsr & BMSR_100HALF) &&
  1507. (lp->advertising & ADVERTISED_100baseT_Half))
  1508. adv |= ADVERTISE_100HALF;
  1509. if ((bmsr & BMSR_100FULL) &&
  1510. (lp->advertising & ADVERTISED_100baseT_Full))
  1511. adv |= ADVERTISE_100FULL;
  1512. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1513. if (err)
  1514. return err;
  1515. if (likely(bmsr & BMSR_ESTATEN)) {
  1516. ctrl1000 = 0;
  1517. if ((estat & ESTATUS_1000_THALF) &&
  1518. (lp->advertising & ADVERTISED_1000baseT_Half))
  1519. ctrl1000 |= ADVERTISE_1000HALF;
  1520. if ((estat & ESTATUS_1000_TFULL) &&
  1521. (lp->advertising & ADVERTISED_1000baseT_Full))
  1522. ctrl1000 |= ADVERTISE_1000FULL;
  1523. err = mii_write(np, np->phy_addr,
  1524. MII_CTRL1000, ctrl1000);
  1525. if (err)
  1526. return err;
  1527. }
  1528. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1529. } else {
  1530. /* !lp->autoneg */
  1531. int fulldpx;
  1532. if (lp->duplex == DUPLEX_FULL) {
  1533. bmcr |= BMCR_FULLDPLX;
  1534. fulldpx = 1;
  1535. } else if (lp->duplex == DUPLEX_HALF)
  1536. fulldpx = 0;
  1537. else
  1538. return -EINVAL;
  1539. if (lp->speed == SPEED_1000) {
  1540. /* if X-full requested while not supported, or
  1541. X-half requested while not supported... */
  1542. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1543. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1544. return -EINVAL;
  1545. bmcr |= BMCR_SPEED1000;
  1546. } else if (lp->speed == SPEED_100) {
  1547. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1548. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1549. return -EINVAL;
  1550. bmcr |= BMCR_SPEED100;
  1551. } else if (lp->speed == SPEED_10) {
  1552. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1553. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1554. return -EINVAL;
  1555. } else
  1556. return -EINVAL;
  1557. }
  1558. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1559. if (err)
  1560. return err;
  1561. #if 0
  1562. err = mii_read(np, np->phy_addr, MII_BMCR);
  1563. if (err < 0)
  1564. return err;
  1565. bmcr = err;
  1566. err = mii_read(np, np->phy_addr, MII_BMSR);
  1567. if (err < 0)
  1568. return err;
  1569. bmsr = err;
  1570. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1571. np->port, bmcr, bmsr);
  1572. #endif
  1573. return 0;
  1574. }
  1575. static int xcvr_init_1g(struct niu *np)
  1576. {
  1577. u64 val;
  1578. /* XXX shared resource, lock parent XXX */
  1579. val = nr64(MIF_CONFIG);
  1580. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1581. nw64(MIF_CONFIG, val);
  1582. return mii_init_common(np);
  1583. }
  1584. static int niu_xcvr_init(struct niu *np)
  1585. {
  1586. const struct niu_phy_ops *ops = np->phy_ops;
  1587. int err;
  1588. err = 0;
  1589. if (ops->xcvr_init)
  1590. err = ops->xcvr_init(np);
  1591. return err;
  1592. }
  1593. static int niu_serdes_init(struct niu *np)
  1594. {
  1595. const struct niu_phy_ops *ops = np->phy_ops;
  1596. int err;
  1597. err = 0;
  1598. if (ops->serdes_init)
  1599. err = ops->serdes_init(np);
  1600. return err;
  1601. }
  1602. static void niu_init_xif(struct niu *);
  1603. static void niu_handle_led(struct niu *, int status);
  1604. static int niu_link_status_common(struct niu *np, int link_up)
  1605. {
  1606. struct niu_link_config *lp = &np->link_config;
  1607. struct net_device *dev = np->dev;
  1608. unsigned long flags;
  1609. if (!netif_carrier_ok(dev) && link_up) {
  1610. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1611. dev->name,
  1612. (lp->active_speed == SPEED_10000 ?
  1613. "10Gb/sec" :
  1614. (lp->active_speed == SPEED_1000 ?
  1615. "1Gb/sec" :
  1616. (lp->active_speed == SPEED_100 ?
  1617. "100Mbit/sec" : "10Mbit/sec"))),
  1618. (lp->active_duplex == DUPLEX_FULL ?
  1619. "full" : "half"));
  1620. spin_lock_irqsave(&np->lock, flags);
  1621. niu_init_xif(np);
  1622. niu_handle_led(np, 1);
  1623. spin_unlock_irqrestore(&np->lock, flags);
  1624. netif_carrier_on(dev);
  1625. } else if (netif_carrier_ok(dev) && !link_up) {
  1626. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1627. spin_lock_irqsave(&np->lock, flags);
  1628. niu_handle_led(np, 0);
  1629. spin_unlock_irqrestore(&np->lock, flags);
  1630. netif_carrier_off(dev);
  1631. }
  1632. return 0;
  1633. }
  1634. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1635. {
  1636. int err, link_up, pma_status, pcs_status;
  1637. link_up = 0;
  1638. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1639. MRVL88X2011_10G_PMD_STATUS_2);
  1640. if (err < 0)
  1641. goto out;
  1642. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1643. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1644. MRVL88X2011_PMA_PMD_STATUS_1);
  1645. if (err < 0)
  1646. goto out;
  1647. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1648. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1649. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1650. MRVL88X2011_PMA_PMD_STATUS_1);
  1651. if (err < 0)
  1652. goto out;
  1653. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1654. MRVL88X2011_PMA_PMD_STATUS_1);
  1655. if (err < 0)
  1656. goto out;
  1657. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1658. /* Check XGXS Register : 4.0018.[0-3,12] */
  1659. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1660. MRVL88X2011_10G_XGXS_LANE_STAT);
  1661. if (err < 0)
  1662. goto out;
  1663. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1664. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1665. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1666. 0x800))
  1667. link_up = (pma_status && pcs_status) ? 1 : 0;
  1668. np->link_config.active_speed = SPEED_10000;
  1669. np->link_config.active_duplex = DUPLEX_FULL;
  1670. err = 0;
  1671. out:
  1672. mrvl88x2011_act_led(np, (link_up ?
  1673. MRVL88X2011_LED_CTL_PCS_ACT :
  1674. MRVL88X2011_LED_CTL_OFF));
  1675. *link_up_p = link_up;
  1676. return err;
  1677. }
  1678. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1679. {
  1680. int err, link_up;
  1681. link_up = 0;
  1682. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1683. BCM8704_PMD_RCV_SIGDET);
  1684. if (err < 0 || err == 0xffff)
  1685. goto out;
  1686. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1687. err = 0;
  1688. goto out;
  1689. }
  1690. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1691. BCM8704_PCS_10G_R_STATUS);
  1692. if (err < 0)
  1693. goto out;
  1694. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1695. err = 0;
  1696. goto out;
  1697. }
  1698. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1699. BCM8704_PHYXS_XGXS_LANE_STAT);
  1700. if (err < 0)
  1701. goto out;
  1702. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1703. PHYXS_XGXS_LANE_STAT_MAGIC |
  1704. PHYXS_XGXS_LANE_STAT_PATTEST |
  1705. PHYXS_XGXS_LANE_STAT_LANE3 |
  1706. PHYXS_XGXS_LANE_STAT_LANE2 |
  1707. PHYXS_XGXS_LANE_STAT_LANE1 |
  1708. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1709. err = 0;
  1710. np->link_config.active_speed = SPEED_INVALID;
  1711. np->link_config.active_duplex = DUPLEX_INVALID;
  1712. goto out;
  1713. }
  1714. link_up = 1;
  1715. np->link_config.active_speed = SPEED_10000;
  1716. np->link_config.active_duplex = DUPLEX_FULL;
  1717. err = 0;
  1718. out:
  1719. *link_up_p = link_up;
  1720. return err;
  1721. }
  1722. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1723. {
  1724. int err, link_up;
  1725. link_up = 0;
  1726. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1727. BCM8704_PMD_RCV_SIGDET);
  1728. if (err < 0)
  1729. goto out;
  1730. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1731. err = 0;
  1732. goto out;
  1733. }
  1734. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1735. BCM8704_PCS_10G_R_STATUS);
  1736. if (err < 0)
  1737. goto out;
  1738. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1739. err = 0;
  1740. goto out;
  1741. }
  1742. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1743. BCM8704_PHYXS_XGXS_LANE_STAT);
  1744. if (err < 0)
  1745. goto out;
  1746. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1747. PHYXS_XGXS_LANE_STAT_MAGIC |
  1748. PHYXS_XGXS_LANE_STAT_LANE3 |
  1749. PHYXS_XGXS_LANE_STAT_LANE2 |
  1750. PHYXS_XGXS_LANE_STAT_LANE1 |
  1751. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1752. err = 0;
  1753. goto out;
  1754. }
  1755. link_up = 1;
  1756. np->link_config.active_speed = SPEED_10000;
  1757. np->link_config.active_duplex = DUPLEX_FULL;
  1758. err = 0;
  1759. out:
  1760. *link_up_p = link_up;
  1761. return err;
  1762. }
  1763. static int link_status_10g(struct niu *np, int *link_up_p)
  1764. {
  1765. unsigned long flags;
  1766. int err = -EINVAL;
  1767. spin_lock_irqsave(&np->lock, flags);
  1768. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1769. int phy_id;
  1770. phy_id = phy_decode(np->parent->port_phy, np->port);
  1771. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1772. /* handle different phy types */
  1773. switch (phy_id & NIU_PHY_ID_MASK) {
  1774. case NIU_PHY_ID_MRVL88X2011:
  1775. err = link_status_10g_mrvl(np, link_up_p);
  1776. break;
  1777. default: /* bcom 8704 */
  1778. err = link_status_10g_bcom(np, link_up_p);
  1779. break;
  1780. }
  1781. }
  1782. spin_unlock_irqrestore(&np->lock, flags);
  1783. return err;
  1784. }
  1785. static int niu_10g_phy_present(struct niu *np)
  1786. {
  1787. u64 sig, mask, val;
  1788. sig = nr64(ESR_INT_SIGNALS);
  1789. switch (np->port) {
  1790. case 0:
  1791. mask = ESR_INT_SIGNALS_P0_BITS;
  1792. val = (ESR_INT_SRDY0_P0 |
  1793. ESR_INT_DET0_P0 |
  1794. ESR_INT_XSRDY_P0 |
  1795. ESR_INT_XDP_P0_CH3 |
  1796. ESR_INT_XDP_P0_CH2 |
  1797. ESR_INT_XDP_P0_CH1 |
  1798. ESR_INT_XDP_P0_CH0);
  1799. break;
  1800. case 1:
  1801. mask = ESR_INT_SIGNALS_P1_BITS;
  1802. val = (ESR_INT_SRDY0_P1 |
  1803. ESR_INT_DET0_P1 |
  1804. ESR_INT_XSRDY_P1 |
  1805. ESR_INT_XDP_P1_CH3 |
  1806. ESR_INT_XDP_P1_CH2 |
  1807. ESR_INT_XDP_P1_CH1 |
  1808. ESR_INT_XDP_P1_CH0);
  1809. break;
  1810. default:
  1811. return 0;
  1812. }
  1813. if ((sig & mask) != val)
  1814. return 0;
  1815. return 1;
  1816. }
  1817. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1818. {
  1819. unsigned long flags;
  1820. int err = 0;
  1821. int phy_present;
  1822. int phy_present_prev;
  1823. spin_lock_irqsave(&np->lock, flags);
  1824. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1825. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1826. 1 : 0;
  1827. phy_present = niu_10g_phy_present(np);
  1828. if (phy_present != phy_present_prev) {
  1829. /* state change */
  1830. if (phy_present) {
  1831. /* A NEM was just plugged in */
  1832. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1833. if (np->phy_ops->xcvr_init)
  1834. err = np->phy_ops->xcvr_init(np);
  1835. if (err) {
  1836. err = mdio_read(np, np->phy_addr,
  1837. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1838. if (err == 0xffff) {
  1839. /* No mdio, back-to-back XAUI */
  1840. goto out;
  1841. }
  1842. /* debounce */
  1843. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1844. }
  1845. } else {
  1846. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1847. *link_up_p = 0;
  1848. niuwarn(LINK, "%s: Hotplug PHY Removed\n",
  1849. np->dev->name);
  1850. }
  1851. }
  1852. out:
  1853. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1854. err = link_status_10g_bcm8706(np, link_up_p);
  1855. if (err == 0xffff) {
  1856. /* No mdio, back-to-back XAUI: it is C10NEM */
  1857. *link_up_p = 1;
  1858. np->link_config.active_speed = SPEED_10000;
  1859. np->link_config.active_duplex = DUPLEX_FULL;
  1860. }
  1861. }
  1862. }
  1863. spin_unlock_irqrestore(&np->lock, flags);
  1864. return 0;
  1865. }
  1866. static int niu_link_status(struct niu *np, int *link_up_p)
  1867. {
  1868. const struct niu_phy_ops *ops = np->phy_ops;
  1869. int err;
  1870. err = 0;
  1871. if (ops->link_status)
  1872. err = ops->link_status(np, link_up_p);
  1873. return err;
  1874. }
  1875. static void niu_timer(unsigned long __opaque)
  1876. {
  1877. struct niu *np = (struct niu *) __opaque;
  1878. unsigned long off;
  1879. int err, link_up;
  1880. err = niu_link_status(np, &link_up);
  1881. if (!err)
  1882. niu_link_status_common(np, link_up);
  1883. if (netif_carrier_ok(np->dev))
  1884. off = 5 * HZ;
  1885. else
  1886. off = 1 * HZ;
  1887. np->timer.expires = jiffies + off;
  1888. add_timer(&np->timer);
  1889. }
  1890. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1891. .serdes_init = serdes_init_10g_serdes,
  1892. .link_status = link_status_10g_serdes,
  1893. };
  1894. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1895. .serdes_init = serdes_init_niu_10g_serdes,
  1896. .link_status = link_status_10g_serdes,
  1897. };
  1898. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1899. .serdes_init = serdes_init_niu_1g_serdes,
  1900. .link_status = link_status_1g_serdes,
  1901. };
  1902. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1903. .xcvr_init = xcvr_init_1g_rgmii,
  1904. .link_status = link_status_1g_rgmii,
  1905. };
  1906. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1907. .serdes_init = serdes_init_niu_10g_fiber,
  1908. .xcvr_init = xcvr_init_10g,
  1909. .link_status = link_status_10g,
  1910. };
  1911. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1912. .serdes_init = serdes_init_10g,
  1913. .xcvr_init = xcvr_init_10g,
  1914. .link_status = link_status_10g,
  1915. };
  1916. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1917. .serdes_init = serdes_init_10g,
  1918. .xcvr_init = xcvr_init_10g_bcm8706,
  1919. .link_status = link_status_10g_hotplug,
  1920. };
  1921. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1922. .serdes_init = serdes_init_niu_10g_fiber,
  1923. .xcvr_init = xcvr_init_10g_bcm8706,
  1924. .link_status = link_status_10g_hotplug,
  1925. };
  1926. static const struct niu_phy_ops phy_ops_10g_copper = {
  1927. .serdes_init = serdes_init_10g,
  1928. .link_status = link_status_10g, /* XXX */
  1929. };
  1930. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1931. .serdes_init = serdes_init_1g,
  1932. .xcvr_init = xcvr_init_1g,
  1933. .link_status = link_status_1g,
  1934. };
  1935. static const struct niu_phy_ops phy_ops_1g_copper = {
  1936. .xcvr_init = xcvr_init_1g,
  1937. .link_status = link_status_1g,
  1938. };
  1939. struct niu_phy_template {
  1940. const struct niu_phy_ops *ops;
  1941. u32 phy_addr_base;
  1942. };
  1943. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1944. .ops = &phy_ops_10g_fiber_niu,
  1945. .phy_addr_base = 16,
  1946. };
  1947. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1948. .ops = &phy_ops_10g_serdes_niu,
  1949. .phy_addr_base = 0,
  1950. };
  1951. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1952. .ops = &phy_ops_1g_serdes_niu,
  1953. .phy_addr_base = 0,
  1954. };
  1955. static const struct niu_phy_template phy_template_10g_fiber = {
  1956. .ops = &phy_ops_10g_fiber,
  1957. .phy_addr_base = 8,
  1958. };
  1959. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1960. .ops = &phy_ops_10g_fiber_hotplug,
  1961. .phy_addr_base = 8,
  1962. };
  1963. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1964. .ops = &phy_ops_niu_10g_hotplug,
  1965. .phy_addr_base = 8,
  1966. };
  1967. static const struct niu_phy_template phy_template_10g_copper = {
  1968. .ops = &phy_ops_10g_copper,
  1969. .phy_addr_base = 10,
  1970. };
  1971. static const struct niu_phy_template phy_template_1g_fiber = {
  1972. .ops = &phy_ops_1g_fiber,
  1973. .phy_addr_base = 0,
  1974. };
  1975. static const struct niu_phy_template phy_template_1g_copper = {
  1976. .ops = &phy_ops_1g_copper,
  1977. .phy_addr_base = 0,
  1978. };
  1979. static const struct niu_phy_template phy_template_1g_rgmii = {
  1980. .ops = &phy_ops_1g_rgmii,
  1981. .phy_addr_base = 0,
  1982. };
  1983. static const struct niu_phy_template phy_template_10g_serdes = {
  1984. .ops = &phy_ops_10g_serdes,
  1985. .phy_addr_base = 0,
  1986. };
  1987. static int niu_atca_port_num[4] = {
  1988. 0, 0, 11, 10
  1989. };
  1990. static int serdes_init_10g_serdes(struct niu *np)
  1991. {
  1992. struct niu_link_config *lp = &np->link_config;
  1993. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1994. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1995. u64 reset_val;
  1996. switch (np->port) {
  1997. case 0:
  1998. reset_val = ENET_SERDES_RESET_0;
  1999. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  2000. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  2001. pll_cfg = ENET_SERDES_0_PLL_CFG;
  2002. break;
  2003. case 1:
  2004. reset_val = ENET_SERDES_RESET_1;
  2005. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  2006. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  2007. pll_cfg = ENET_SERDES_1_PLL_CFG;
  2008. break;
  2009. default:
  2010. return -EINVAL;
  2011. }
  2012. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  2013. ENET_SERDES_CTRL_SDET_1 |
  2014. ENET_SERDES_CTRL_SDET_2 |
  2015. ENET_SERDES_CTRL_SDET_3 |
  2016. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  2017. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  2018. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  2019. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  2020. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  2021. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  2022. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  2023. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  2024. test_cfg_val = 0;
  2025. if (lp->loopback_mode == LOOPBACK_PHY) {
  2026. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  2027. ENET_SERDES_TEST_MD_0_SHIFT) |
  2028. (ENET_TEST_MD_PAD_LOOPBACK <<
  2029. ENET_SERDES_TEST_MD_1_SHIFT) |
  2030. (ENET_TEST_MD_PAD_LOOPBACK <<
  2031. ENET_SERDES_TEST_MD_2_SHIFT) |
  2032. (ENET_TEST_MD_PAD_LOOPBACK <<
  2033. ENET_SERDES_TEST_MD_3_SHIFT));
  2034. }
  2035. esr_reset(np);
  2036. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2037. nw64(ctrl_reg, ctrl_val);
  2038. nw64(test_cfg_reg, test_cfg_val);
  2039. /* Initialize all 4 lanes of the SERDES. */
  2040. for (i = 0; i < 4; i++) {
  2041. u32 rxtx_ctrl, glue0;
  2042. int err;
  2043. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2044. if (err)
  2045. return err;
  2046. err = esr_read_glue0(np, i, &glue0);
  2047. if (err)
  2048. return err;
  2049. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2050. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2051. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2052. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2053. ESR_GLUE_CTRL0_THCNT |
  2054. ESR_GLUE_CTRL0_BLTIME);
  2055. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2056. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2057. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2058. (BLTIME_300_CYCLES <<
  2059. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2060. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2061. if (err)
  2062. return err;
  2063. err = esr_write_glue0(np, i, glue0);
  2064. if (err)
  2065. return err;
  2066. }
  2067. sig = nr64(ESR_INT_SIGNALS);
  2068. switch (np->port) {
  2069. case 0:
  2070. mask = ESR_INT_SIGNALS_P0_BITS;
  2071. val = (ESR_INT_SRDY0_P0 |
  2072. ESR_INT_DET0_P0 |
  2073. ESR_INT_XSRDY_P0 |
  2074. ESR_INT_XDP_P0_CH3 |
  2075. ESR_INT_XDP_P0_CH2 |
  2076. ESR_INT_XDP_P0_CH1 |
  2077. ESR_INT_XDP_P0_CH0);
  2078. break;
  2079. case 1:
  2080. mask = ESR_INT_SIGNALS_P1_BITS;
  2081. val = (ESR_INT_SRDY0_P1 |
  2082. ESR_INT_DET0_P1 |
  2083. ESR_INT_XSRDY_P1 |
  2084. ESR_INT_XDP_P1_CH3 |
  2085. ESR_INT_XDP_P1_CH2 |
  2086. ESR_INT_XDP_P1_CH1 |
  2087. ESR_INT_XDP_P1_CH0);
  2088. break;
  2089. default:
  2090. return -EINVAL;
  2091. }
  2092. if ((sig & mask) != val) {
  2093. int err;
  2094. err = serdes_init_1g_serdes(np);
  2095. if (!err) {
  2096. np->flags &= ~NIU_FLAGS_10G;
  2097. np->mac_xcvr = MAC_XCVR_PCS;
  2098. } else {
  2099. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  2100. np->port);
  2101. return -ENODEV;
  2102. }
  2103. }
  2104. return 0;
  2105. }
  2106. static int niu_determine_phy_disposition(struct niu *np)
  2107. {
  2108. struct niu_parent *parent = np->parent;
  2109. u8 plat_type = parent->plat_type;
  2110. const struct niu_phy_template *tp;
  2111. u32 phy_addr_off = 0;
  2112. if (plat_type == PLAT_TYPE_NIU) {
  2113. switch (np->flags &
  2114. (NIU_FLAGS_10G |
  2115. NIU_FLAGS_FIBER |
  2116. NIU_FLAGS_XCVR_SERDES)) {
  2117. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2118. /* 10G Serdes */
  2119. tp = &phy_template_niu_10g_serdes;
  2120. break;
  2121. case NIU_FLAGS_XCVR_SERDES:
  2122. /* 1G Serdes */
  2123. tp = &phy_template_niu_1g_serdes;
  2124. break;
  2125. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2126. /* 10G Fiber */
  2127. default:
  2128. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2129. tp = &phy_template_niu_10g_hotplug;
  2130. if (np->port == 0)
  2131. phy_addr_off = 8;
  2132. if (np->port == 1)
  2133. phy_addr_off = 12;
  2134. } else {
  2135. tp = &phy_template_niu_10g_fiber;
  2136. phy_addr_off += np->port;
  2137. }
  2138. break;
  2139. }
  2140. } else {
  2141. switch (np->flags &
  2142. (NIU_FLAGS_10G |
  2143. NIU_FLAGS_FIBER |
  2144. NIU_FLAGS_XCVR_SERDES)) {
  2145. case 0:
  2146. /* 1G copper */
  2147. tp = &phy_template_1g_copper;
  2148. if (plat_type == PLAT_TYPE_VF_P0)
  2149. phy_addr_off = 10;
  2150. else if (plat_type == PLAT_TYPE_VF_P1)
  2151. phy_addr_off = 26;
  2152. phy_addr_off += (np->port ^ 0x3);
  2153. break;
  2154. case NIU_FLAGS_10G:
  2155. /* 10G copper */
  2156. tp = &phy_template_10g_copper;
  2157. break;
  2158. case NIU_FLAGS_FIBER:
  2159. /* 1G fiber */
  2160. tp = &phy_template_1g_fiber;
  2161. break;
  2162. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2163. /* 10G fiber */
  2164. tp = &phy_template_10g_fiber;
  2165. if (plat_type == PLAT_TYPE_VF_P0 ||
  2166. plat_type == PLAT_TYPE_VF_P1)
  2167. phy_addr_off = 8;
  2168. phy_addr_off += np->port;
  2169. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2170. tp = &phy_template_10g_fiber_hotplug;
  2171. if (np->port == 0)
  2172. phy_addr_off = 8;
  2173. if (np->port == 1)
  2174. phy_addr_off = 12;
  2175. }
  2176. break;
  2177. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2178. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2179. case NIU_FLAGS_XCVR_SERDES:
  2180. switch(np->port) {
  2181. case 0:
  2182. case 1:
  2183. tp = &phy_template_10g_serdes;
  2184. break;
  2185. case 2:
  2186. case 3:
  2187. tp = &phy_template_1g_rgmii;
  2188. break;
  2189. default:
  2190. return -EINVAL;
  2191. break;
  2192. }
  2193. phy_addr_off = niu_atca_port_num[np->port];
  2194. break;
  2195. default:
  2196. return -EINVAL;
  2197. }
  2198. }
  2199. np->phy_ops = tp->ops;
  2200. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2201. return 0;
  2202. }
  2203. static int niu_init_link(struct niu *np)
  2204. {
  2205. struct niu_parent *parent = np->parent;
  2206. int err, ignore;
  2207. if (parent->plat_type == PLAT_TYPE_NIU) {
  2208. err = niu_xcvr_init(np);
  2209. if (err)
  2210. return err;
  2211. msleep(200);
  2212. }
  2213. err = niu_serdes_init(np);
  2214. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2215. return err;
  2216. msleep(200);
  2217. err = niu_xcvr_init(np);
  2218. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2219. niu_link_status(np, &ignore);
  2220. return 0;
  2221. }
  2222. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2223. {
  2224. u16 reg0 = addr[4] << 8 | addr[5];
  2225. u16 reg1 = addr[2] << 8 | addr[3];
  2226. u16 reg2 = addr[0] << 8 | addr[1];
  2227. if (np->flags & NIU_FLAGS_XMAC) {
  2228. nw64_mac(XMAC_ADDR0, reg0);
  2229. nw64_mac(XMAC_ADDR1, reg1);
  2230. nw64_mac(XMAC_ADDR2, reg2);
  2231. } else {
  2232. nw64_mac(BMAC_ADDR0, reg0);
  2233. nw64_mac(BMAC_ADDR1, reg1);
  2234. nw64_mac(BMAC_ADDR2, reg2);
  2235. }
  2236. }
  2237. static int niu_num_alt_addr(struct niu *np)
  2238. {
  2239. if (np->flags & NIU_FLAGS_XMAC)
  2240. return XMAC_NUM_ALT_ADDR;
  2241. else
  2242. return BMAC_NUM_ALT_ADDR;
  2243. }
  2244. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2245. {
  2246. u16 reg0 = addr[4] << 8 | addr[5];
  2247. u16 reg1 = addr[2] << 8 | addr[3];
  2248. u16 reg2 = addr[0] << 8 | addr[1];
  2249. if (index >= niu_num_alt_addr(np))
  2250. return -EINVAL;
  2251. if (np->flags & NIU_FLAGS_XMAC) {
  2252. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2253. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2254. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2255. } else {
  2256. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2257. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2258. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2259. }
  2260. return 0;
  2261. }
  2262. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2263. {
  2264. unsigned long reg;
  2265. u64 val, mask;
  2266. if (index >= niu_num_alt_addr(np))
  2267. return -EINVAL;
  2268. if (np->flags & NIU_FLAGS_XMAC) {
  2269. reg = XMAC_ADDR_CMPEN;
  2270. mask = 1 << index;
  2271. } else {
  2272. reg = BMAC_ADDR_CMPEN;
  2273. mask = 1 << (index + 1);
  2274. }
  2275. val = nr64_mac(reg);
  2276. if (on)
  2277. val |= mask;
  2278. else
  2279. val &= ~mask;
  2280. nw64_mac(reg, val);
  2281. return 0;
  2282. }
  2283. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2284. int num, int mac_pref)
  2285. {
  2286. u64 val = nr64_mac(reg);
  2287. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2288. val |= num;
  2289. if (mac_pref)
  2290. val |= HOST_INFO_MPR;
  2291. nw64_mac(reg, val);
  2292. }
  2293. static int __set_rdc_table_num(struct niu *np,
  2294. int xmac_index, int bmac_index,
  2295. int rdc_table_num, int mac_pref)
  2296. {
  2297. unsigned long reg;
  2298. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2299. return -EINVAL;
  2300. if (np->flags & NIU_FLAGS_XMAC)
  2301. reg = XMAC_HOST_INFO(xmac_index);
  2302. else
  2303. reg = BMAC_HOST_INFO(bmac_index);
  2304. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2305. return 0;
  2306. }
  2307. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2308. int mac_pref)
  2309. {
  2310. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2311. }
  2312. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2313. int mac_pref)
  2314. {
  2315. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2316. }
  2317. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2318. int table_num, int mac_pref)
  2319. {
  2320. if (idx >= niu_num_alt_addr(np))
  2321. return -EINVAL;
  2322. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2323. }
  2324. static u64 vlan_entry_set_parity(u64 reg_val)
  2325. {
  2326. u64 port01_mask;
  2327. u64 port23_mask;
  2328. port01_mask = 0x00ff;
  2329. port23_mask = 0xff00;
  2330. if (hweight64(reg_val & port01_mask) & 1)
  2331. reg_val |= ENET_VLAN_TBL_PARITY0;
  2332. else
  2333. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2334. if (hweight64(reg_val & port23_mask) & 1)
  2335. reg_val |= ENET_VLAN_TBL_PARITY1;
  2336. else
  2337. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2338. return reg_val;
  2339. }
  2340. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2341. int port, int vpr, int rdc_table)
  2342. {
  2343. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2344. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2345. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2346. ENET_VLAN_TBL_SHIFT(port));
  2347. if (vpr)
  2348. reg_val |= (ENET_VLAN_TBL_VPR <<
  2349. ENET_VLAN_TBL_SHIFT(port));
  2350. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2351. reg_val = vlan_entry_set_parity(reg_val);
  2352. nw64(ENET_VLAN_TBL(index), reg_val);
  2353. }
  2354. static void vlan_tbl_clear(struct niu *np)
  2355. {
  2356. int i;
  2357. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2358. nw64(ENET_VLAN_TBL(i), 0);
  2359. }
  2360. static int tcam_wait_bit(struct niu *np, u64 bit)
  2361. {
  2362. int limit = 1000;
  2363. while (--limit > 0) {
  2364. if (nr64(TCAM_CTL) & bit)
  2365. break;
  2366. udelay(1);
  2367. }
  2368. if (limit < 0)
  2369. return -ENODEV;
  2370. return 0;
  2371. }
  2372. static int tcam_flush(struct niu *np, int index)
  2373. {
  2374. nw64(TCAM_KEY_0, 0x00);
  2375. nw64(TCAM_KEY_MASK_0, 0xff);
  2376. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2377. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2378. }
  2379. #if 0
  2380. static int tcam_read(struct niu *np, int index,
  2381. u64 *key, u64 *mask)
  2382. {
  2383. int err;
  2384. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2385. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2386. if (!err) {
  2387. key[0] = nr64(TCAM_KEY_0);
  2388. key[1] = nr64(TCAM_KEY_1);
  2389. key[2] = nr64(TCAM_KEY_2);
  2390. key[3] = nr64(TCAM_KEY_3);
  2391. mask[0] = nr64(TCAM_KEY_MASK_0);
  2392. mask[1] = nr64(TCAM_KEY_MASK_1);
  2393. mask[2] = nr64(TCAM_KEY_MASK_2);
  2394. mask[3] = nr64(TCAM_KEY_MASK_3);
  2395. }
  2396. return err;
  2397. }
  2398. #endif
  2399. static int tcam_write(struct niu *np, int index,
  2400. u64 *key, u64 *mask)
  2401. {
  2402. nw64(TCAM_KEY_0, key[0]);
  2403. nw64(TCAM_KEY_1, key[1]);
  2404. nw64(TCAM_KEY_2, key[2]);
  2405. nw64(TCAM_KEY_3, key[3]);
  2406. nw64(TCAM_KEY_MASK_0, mask[0]);
  2407. nw64(TCAM_KEY_MASK_1, mask[1]);
  2408. nw64(TCAM_KEY_MASK_2, mask[2]);
  2409. nw64(TCAM_KEY_MASK_3, mask[3]);
  2410. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2411. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2412. }
  2413. #if 0
  2414. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2415. {
  2416. int err;
  2417. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2418. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2419. if (!err)
  2420. *data = nr64(TCAM_KEY_1);
  2421. return err;
  2422. }
  2423. #endif
  2424. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2425. {
  2426. nw64(TCAM_KEY_1, assoc_data);
  2427. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2428. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2429. }
  2430. static void tcam_enable(struct niu *np, int on)
  2431. {
  2432. u64 val = nr64(FFLP_CFG_1);
  2433. if (on)
  2434. val &= ~FFLP_CFG_1_TCAM_DIS;
  2435. else
  2436. val |= FFLP_CFG_1_TCAM_DIS;
  2437. nw64(FFLP_CFG_1, val);
  2438. }
  2439. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2440. {
  2441. u64 val = nr64(FFLP_CFG_1);
  2442. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2443. FFLP_CFG_1_CAMLAT |
  2444. FFLP_CFG_1_CAMRATIO);
  2445. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2446. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2447. nw64(FFLP_CFG_1, val);
  2448. val = nr64(FFLP_CFG_1);
  2449. val |= FFLP_CFG_1_FFLPINITDONE;
  2450. nw64(FFLP_CFG_1, val);
  2451. }
  2452. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2453. int on)
  2454. {
  2455. unsigned long reg;
  2456. u64 val;
  2457. if (class < CLASS_CODE_ETHERTYPE1 ||
  2458. class > CLASS_CODE_ETHERTYPE2)
  2459. return -EINVAL;
  2460. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2461. val = nr64(reg);
  2462. if (on)
  2463. val |= L2_CLS_VLD;
  2464. else
  2465. val &= ~L2_CLS_VLD;
  2466. nw64(reg, val);
  2467. return 0;
  2468. }
  2469. #if 0
  2470. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2471. u64 ether_type)
  2472. {
  2473. unsigned long reg;
  2474. u64 val;
  2475. if (class < CLASS_CODE_ETHERTYPE1 ||
  2476. class > CLASS_CODE_ETHERTYPE2 ||
  2477. (ether_type & ~(u64)0xffff) != 0)
  2478. return -EINVAL;
  2479. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2480. val = nr64(reg);
  2481. val &= ~L2_CLS_ETYPE;
  2482. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2483. nw64(reg, val);
  2484. return 0;
  2485. }
  2486. #endif
  2487. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2488. int on)
  2489. {
  2490. unsigned long reg;
  2491. u64 val;
  2492. if (class < CLASS_CODE_USER_PROG1 ||
  2493. class > CLASS_CODE_USER_PROG4)
  2494. return -EINVAL;
  2495. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2496. val = nr64(reg);
  2497. if (on)
  2498. val |= L3_CLS_VALID;
  2499. else
  2500. val &= ~L3_CLS_VALID;
  2501. nw64(reg, val);
  2502. return 0;
  2503. }
  2504. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2505. int ipv6, u64 protocol_id,
  2506. u64 tos_mask, u64 tos_val)
  2507. {
  2508. unsigned long reg;
  2509. u64 val;
  2510. if (class < CLASS_CODE_USER_PROG1 ||
  2511. class > CLASS_CODE_USER_PROG4 ||
  2512. (protocol_id & ~(u64)0xff) != 0 ||
  2513. (tos_mask & ~(u64)0xff) != 0 ||
  2514. (tos_val & ~(u64)0xff) != 0)
  2515. return -EINVAL;
  2516. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2517. val = nr64(reg);
  2518. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2519. L3_CLS_TOSMASK | L3_CLS_TOS);
  2520. if (ipv6)
  2521. val |= L3_CLS_IPVER;
  2522. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2523. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2524. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2525. nw64(reg, val);
  2526. return 0;
  2527. }
  2528. static int tcam_early_init(struct niu *np)
  2529. {
  2530. unsigned long i;
  2531. int err;
  2532. tcam_enable(np, 0);
  2533. tcam_set_lat_and_ratio(np,
  2534. DEFAULT_TCAM_LATENCY,
  2535. DEFAULT_TCAM_ACCESS_RATIO);
  2536. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2537. err = tcam_user_eth_class_enable(np, i, 0);
  2538. if (err)
  2539. return err;
  2540. }
  2541. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2542. err = tcam_user_ip_class_enable(np, i, 0);
  2543. if (err)
  2544. return err;
  2545. }
  2546. return 0;
  2547. }
  2548. static int tcam_flush_all(struct niu *np)
  2549. {
  2550. unsigned long i;
  2551. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2552. int err = tcam_flush(np, i);
  2553. if (err)
  2554. return err;
  2555. }
  2556. return 0;
  2557. }
  2558. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2559. {
  2560. return ((u64)index | (num_entries == 1 ?
  2561. HASH_TBL_ADDR_AUTOINC : 0));
  2562. }
  2563. #if 0
  2564. static int hash_read(struct niu *np, unsigned long partition,
  2565. unsigned long index, unsigned long num_entries,
  2566. u64 *data)
  2567. {
  2568. u64 val = hash_addr_regval(index, num_entries);
  2569. unsigned long i;
  2570. if (partition >= FCRAM_NUM_PARTITIONS ||
  2571. index + num_entries > FCRAM_SIZE)
  2572. return -EINVAL;
  2573. nw64(HASH_TBL_ADDR(partition), val);
  2574. for (i = 0; i < num_entries; i++)
  2575. data[i] = nr64(HASH_TBL_DATA(partition));
  2576. return 0;
  2577. }
  2578. #endif
  2579. static int hash_write(struct niu *np, unsigned long partition,
  2580. unsigned long index, unsigned long num_entries,
  2581. u64 *data)
  2582. {
  2583. u64 val = hash_addr_regval(index, num_entries);
  2584. unsigned long i;
  2585. if (partition >= FCRAM_NUM_PARTITIONS ||
  2586. index + (num_entries * 8) > FCRAM_SIZE)
  2587. return -EINVAL;
  2588. nw64(HASH_TBL_ADDR(partition), val);
  2589. for (i = 0; i < num_entries; i++)
  2590. nw64(HASH_TBL_DATA(partition), data[i]);
  2591. return 0;
  2592. }
  2593. static void fflp_reset(struct niu *np)
  2594. {
  2595. u64 val;
  2596. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2597. udelay(10);
  2598. nw64(FFLP_CFG_1, 0);
  2599. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2600. nw64(FFLP_CFG_1, val);
  2601. }
  2602. static void fflp_set_timings(struct niu *np)
  2603. {
  2604. u64 val = nr64(FFLP_CFG_1);
  2605. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2606. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2607. nw64(FFLP_CFG_1, val);
  2608. val = nr64(FFLP_CFG_1);
  2609. val |= FFLP_CFG_1_FFLPINITDONE;
  2610. nw64(FFLP_CFG_1, val);
  2611. val = nr64(FCRAM_REF_TMR);
  2612. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2613. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2614. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2615. nw64(FCRAM_REF_TMR, val);
  2616. }
  2617. static int fflp_set_partition(struct niu *np, u64 partition,
  2618. u64 mask, u64 base, int enable)
  2619. {
  2620. unsigned long reg;
  2621. u64 val;
  2622. if (partition >= FCRAM_NUM_PARTITIONS ||
  2623. (mask & ~(u64)0x1f) != 0 ||
  2624. (base & ~(u64)0x1f) != 0)
  2625. return -EINVAL;
  2626. reg = FLW_PRT_SEL(partition);
  2627. val = nr64(reg);
  2628. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2629. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2630. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2631. if (enable)
  2632. val |= FLW_PRT_SEL_EXT;
  2633. nw64(reg, val);
  2634. return 0;
  2635. }
  2636. static int fflp_disable_all_partitions(struct niu *np)
  2637. {
  2638. unsigned long i;
  2639. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2640. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2641. if (err)
  2642. return err;
  2643. }
  2644. return 0;
  2645. }
  2646. static void fflp_llcsnap_enable(struct niu *np, int on)
  2647. {
  2648. u64 val = nr64(FFLP_CFG_1);
  2649. if (on)
  2650. val |= FFLP_CFG_1_LLCSNAP;
  2651. else
  2652. val &= ~FFLP_CFG_1_LLCSNAP;
  2653. nw64(FFLP_CFG_1, val);
  2654. }
  2655. static void fflp_errors_enable(struct niu *np, int on)
  2656. {
  2657. u64 val = nr64(FFLP_CFG_1);
  2658. if (on)
  2659. val &= ~FFLP_CFG_1_ERRORDIS;
  2660. else
  2661. val |= FFLP_CFG_1_ERRORDIS;
  2662. nw64(FFLP_CFG_1, val);
  2663. }
  2664. static int fflp_hash_clear(struct niu *np)
  2665. {
  2666. struct fcram_hash_ipv4 ent;
  2667. unsigned long i;
  2668. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2669. memset(&ent, 0, sizeof(ent));
  2670. ent.header = HASH_HEADER_EXT;
  2671. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2672. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2673. if (err)
  2674. return err;
  2675. }
  2676. return 0;
  2677. }
  2678. static int fflp_early_init(struct niu *np)
  2679. {
  2680. struct niu_parent *parent;
  2681. unsigned long flags;
  2682. int err;
  2683. niu_lock_parent(np, flags);
  2684. parent = np->parent;
  2685. err = 0;
  2686. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2687. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2688. np->port);
  2689. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2690. fflp_reset(np);
  2691. fflp_set_timings(np);
  2692. err = fflp_disable_all_partitions(np);
  2693. if (err) {
  2694. niudbg(PROBE, "fflp_disable_all_partitions "
  2695. "failed, err=%d\n", err);
  2696. goto out;
  2697. }
  2698. }
  2699. err = tcam_early_init(np);
  2700. if (err) {
  2701. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2702. err);
  2703. goto out;
  2704. }
  2705. fflp_llcsnap_enable(np, 1);
  2706. fflp_errors_enable(np, 0);
  2707. nw64(H1POLY, 0);
  2708. nw64(H2POLY, 0);
  2709. err = tcam_flush_all(np);
  2710. if (err) {
  2711. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2712. err);
  2713. goto out;
  2714. }
  2715. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2716. err = fflp_hash_clear(np);
  2717. if (err) {
  2718. niudbg(PROBE, "fflp_hash_clear failed, "
  2719. "err=%d\n", err);
  2720. goto out;
  2721. }
  2722. }
  2723. vlan_tbl_clear(np);
  2724. niudbg(PROBE, "fflp_early_init: Success\n");
  2725. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2726. }
  2727. out:
  2728. niu_unlock_parent(np, flags);
  2729. return err;
  2730. }
  2731. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2732. {
  2733. if (class_code < CLASS_CODE_USER_PROG1 ||
  2734. class_code > CLASS_CODE_SCTP_IPV6)
  2735. return -EINVAL;
  2736. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2737. return 0;
  2738. }
  2739. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2740. {
  2741. if (class_code < CLASS_CODE_USER_PROG1 ||
  2742. class_code > CLASS_CODE_SCTP_IPV6)
  2743. return -EINVAL;
  2744. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2745. return 0;
  2746. }
  2747. /* Entries for the ports are interleaved in the TCAM */
  2748. static u16 tcam_get_index(struct niu *np, u16 idx)
  2749. {
  2750. /* One entry reserved for IP fragment rule */
  2751. if (idx >= (np->clas.tcam_sz - 1))
  2752. idx = 0;
  2753. return (np->clas.tcam_top + ((idx+1) * np->parent->num_ports));
  2754. }
  2755. static u16 tcam_get_size(struct niu *np)
  2756. {
  2757. /* One entry reserved for IP fragment rule */
  2758. return np->clas.tcam_sz - 1;
  2759. }
  2760. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2761. {
  2762. /* One entry reserved for IP fragment rule */
  2763. return np->clas.tcam_valid_entries - 1;
  2764. }
  2765. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2766. u32 offset, u32 size)
  2767. {
  2768. int i = skb_shinfo(skb)->nr_frags;
  2769. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2770. frag->page = page;
  2771. frag->page_offset = offset;
  2772. frag->size = size;
  2773. skb->len += size;
  2774. skb->data_len += size;
  2775. skb->truesize += size;
  2776. skb_shinfo(skb)->nr_frags = i + 1;
  2777. }
  2778. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2779. {
  2780. a >>= PAGE_SHIFT;
  2781. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2782. return (a & (MAX_RBR_RING_SIZE - 1));
  2783. }
  2784. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2785. struct page ***link)
  2786. {
  2787. unsigned int h = niu_hash_rxaddr(rp, addr);
  2788. struct page *p, **pp;
  2789. addr &= PAGE_MASK;
  2790. pp = &rp->rxhash[h];
  2791. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2792. if (p->index == addr) {
  2793. *link = pp;
  2794. break;
  2795. }
  2796. }
  2797. return p;
  2798. }
  2799. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2800. {
  2801. unsigned int h = niu_hash_rxaddr(rp, base);
  2802. page->index = base;
  2803. page->mapping = (struct address_space *) rp->rxhash[h];
  2804. rp->rxhash[h] = page;
  2805. }
  2806. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2807. gfp_t mask, int start_index)
  2808. {
  2809. struct page *page;
  2810. u64 addr;
  2811. int i;
  2812. page = alloc_page(mask);
  2813. if (!page)
  2814. return -ENOMEM;
  2815. addr = np->ops->map_page(np->device, page, 0,
  2816. PAGE_SIZE, DMA_FROM_DEVICE);
  2817. niu_hash_page(rp, page, addr);
  2818. if (rp->rbr_blocks_per_page > 1)
  2819. atomic_add(rp->rbr_blocks_per_page - 1,
  2820. &compound_head(page)->_count);
  2821. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2822. __le32 *rbr = &rp->rbr[start_index + i];
  2823. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2824. addr += rp->rbr_block_size;
  2825. }
  2826. return 0;
  2827. }
  2828. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2829. {
  2830. int index = rp->rbr_index;
  2831. rp->rbr_pending++;
  2832. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2833. int err = niu_rbr_add_page(np, rp, mask, index);
  2834. if (unlikely(err)) {
  2835. rp->rbr_pending--;
  2836. return;
  2837. }
  2838. rp->rbr_index += rp->rbr_blocks_per_page;
  2839. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2840. if (rp->rbr_index == rp->rbr_table_size)
  2841. rp->rbr_index = 0;
  2842. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2843. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2844. rp->rbr_pending = 0;
  2845. }
  2846. }
  2847. }
  2848. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2849. {
  2850. unsigned int index = rp->rcr_index;
  2851. int num_rcr = 0;
  2852. rp->rx_dropped++;
  2853. while (1) {
  2854. struct page *page, **link;
  2855. u64 addr, val;
  2856. u32 rcr_size;
  2857. num_rcr++;
  2858. val = le64_to_cpup(&rp->rcr[index]);
  2859. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2860. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2861. page = niu_find_rxpage(rp, addr, &link);
  2862. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2863. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2864. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2865. *link = (struct page *) page->mapping;
  2866. np->ops->unmap_page(np->device, page->index,
  2867. PAGE_SIZE, DMA_FROM_DEVICE);
  2868. page->index = 0;
  2869. page->mapping = NULL;
  2870. __free_page(page);
  2871. rp->rbr_refill_pending++;
  2872. }
  2873. index = NEXT_RCR(rp, index);
  2874. if (!(val & RCR_ENTRY_MULTI))
  2875. break;
  2876. }
  2877. rp->rcr_index = index;
  2878. return num_rcr;
  2879. }
  2880. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2881. struct rx_ring_info *rp)
  2882. {
  2883. unsigned int index = rp->rcr_index;
  2884. struct sk_buff *skb;
  2885. int len, num_rcr;
  2886. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2887. if (unlikely(!skb))
  2888. return niu_rx_pkt_ignore(np, rp);
  2889. num_rcr = 0;
  2890. while (1) {
  2891. struct page *page, **link;
  2892. u32 rcr_size, append_size;
  2893. u64 addr, val, off;
  2894. num_rcr++;
  2895. val = le64_to_cpup(&rp->rcr[index]);
  2896. len = (val & RCR_ENTRY_L2_LEN) >>
  2897. RCR_ENTRY_L2_LEN_SHIFT;
  2898. len -= ETH_FCS_LEN;
  2899. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2900. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2901. page = niu_find_rxpage(rp, addr, &link);
  2902. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2903. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2904. off = addr & ~PAGE_MASK;
  2905. append_size = rcr_size;
  2906. if (num_rcr == 1) {
  2907. int ptype;
  2908. off += 2;
  2909. append_size -= 2;
  2910. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2911. if ((ptype == RCR_PKT_TYPE_TCP ||
  2912. ptype == RCR_PKT_TYPE_UDP) &&
  2913. !(val & (RCR_ENTRY_NOPORT |
  2914. RCR_ENTRY_ERROR)))
  2915. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2916. else
  2917. skb->ip_summed = CHECKSUM_NONE;
  2918. }
  2919. if (!(val & RCR_ENTRY_MULTI))
  2920. append_size = len - skb->len;
  2921. niu_rx_skb_append(skb, page, off, append_size);
  2922. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2923. *link = (struct page *) page->mapping;
  2924. np->ops->unmap_page(np->device, page->index,
  2925. PAGE_SIZE, DMA_FROM_DEVICE);
  2926. page->index = 0;
  2927. page->mapping = NULL;
  2928. rp->rbr_refill_pending++;
  2929. } else
  2930. get_page(page);
  2931. index = NEXT_RCR(rp, index);
  2932. if (!(val & RCR_ENTRY_MULTI))
  2933. break;
  2934. }
  2935. rp->rcr_index = index;
  2936. skb_reserve(skb, NET_IP_ALIGN);
  2937. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  2938. rp->rx_packets++;
  2939. rp->rx_bytes += skb->len;
  2940. skb->protocol = eth_type_trans(skb, np->dev);
  2941. skb_record_rx_queue(skb, rp->rx_channel);
  2942. napi_gro_receive(napi, skb);
  2943. return num_rcr;
  2944. }
  2945. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2946. {
  2947. int blocks_per_page = rp->rbr_blocks_per_page;
  2948. int err, index = rp->rbr_index;
  2949. err = 0;
  2950. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2951. err = niu_rbr_add_page(np, rp, mask, index);
  2952. if (err)
  2953. break;
  2954. index += blocks_per_page;
  2955. }
  2956. rp->rbr_index = index;
  2957. return err;
  2958. }
  2959. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2960. {
  2961. int i;
  2962. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2963. struct page *page;
  2964. page = rp->rxhash[i];
  2965. while (page) {
  2966. struct page *next = (struct page *) page->mapping;
  2967. u64 base = page->index;
  2968. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2969. DMA_FROM_DEVICE);
  2970. page->index = 0;
  2971. page->mapping = NULL;
  2972. __free_page(page);
  2973. page = next;
  2974. }
  2975. }
  2976. for (i = 0; i < rp->rbr_table_size; i++)
  2977. rp->rbr[i] = cpu_to_le32(0);
  2978. rp->rbr_index = 0;
  2979. }
  2980. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2981. {
  2982. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2983. struct sk_buff *skb = tb->skb;
  2984. struct tx_pkt_hdr *tp;
  2985. u64 tx_flags;
  2986. int i, len;
  2987. tp = (struct tx_pkt_hdr *) skb->data;
  2988. tx_flags = le64_to_cpup(&tp->flags);
  2989. rp->tx_packets++;
  2990. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2991. ((tx_flags & TXHDR_PAD) / 2));
  2992. len = skb_headlen(skb);
  2993. np->ops->unmap_single(np->device, tb->mapping,
  2994. len, DMA_TO_DEVICE);
  2995. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2996. rp->mark_pending--;
  2997. tb->skb = NULL;
  2998. do {
  2999. idx = NEXT_TX(rp, idx);
  3000. len -= MAX_TX_DESC_LEN;
  3001. } while (len > 0);
  3002. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  3003. tb = &rp->tx_buffs[idx];
  3004. BUG_ON(tb->skb != NULL);
  3005. np->ops->unmap_page(np->device, tb->mapping,
  3006. skb_shinfo(skb)->frags[i].size,
  3007. DMA_TO_DEVICE);
  3008. idx = NEXT_TX(rp, idx);
  3009. }
  3010. dev_kfree_skb(skb);
  3011. return idx;
  3012. }
  3013. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  3014. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  3015. {
  3016. struct netdev_queue *txq;
  3017. u16 pkt_cnt, tmp;
  3018. int cons, index;
  3019. u64 cs;
  3020. index = (rp - np->tx_rings);
  3021. txq = netdev_get_tx_queue(np->dev, index);
  3022. cs = rp->tx_cs;
  3023. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  3024. goto out;
  3025. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  3026. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  3027. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  3028. rp->last_pkt_cnt = tmp;
  3029. cons = rp->cons;
  3030. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  3031. np->dev->name, pkt_cnt, cons);
  3032. while (pkt_cnt--)
  3033. cons = release_tx_packet(np, rp, cons);
  3034. rp->cons = cons;
  3035. smp_mb();
  3036. out:
  3037. if (unlikely(netif_tx_queue_stopped(txq) &&
  3038. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3039. __netif_tx_lock(txq, smp_processor_id());
  3040. if (netif_tx_queue_stopped(txq) &&
  3041. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3042. netif_tx_wake_queue(txq);
  3043. __netif_tx_unlock(txq);
  3044. }
  3045. }
  3046. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3047. struct rx_ring_info *rp,
  3048. const int limit)
  3049. {
  3050. /* This elaborate scheme is needed for reading the RX discard
  3051. * counters, as they are only 16-bit and can overflow quickly,
  3052. * and because the overflow indication bit is not usable as
  3053. * the counter value does not wrap, but remains at max value
  3054. * 0xFFFF.
  3055. *
  3056. * In theory and in practice counters can be lost in between
  3057. * reading nr64() and clearing the counter nw64(). For this
  3058. * reason, the number of counter clearings nw64() is
  3059. * limited/reduced though the limit parameter.
  3060. */
  3061. int rx_channel = rp->rx_channel;
  3062. u32 misc, wred;
  3063. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3064. * following discard events: IPP (Input Port Process),
  3065. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3066. * Block Ring) prefetch buffer is empty.
  3067. */
  3068. misc = nr64(RXMISC(rx_channel));
  3069. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3070. nw64(RXMISC(rx_channel), 0);
  3071. rp->rx_errors += misc & RXMISC_COUNT;
  3072. if (unlikely(misc & RXMISC_OFLOW))
  3073. dev_err(np->device, "rx-%d: Counter overflow "
  3074. "RXMISC discard\n", rx_channel);
  3075. niudbg(RX_ERR, "%s-rx-%d: MISC drop=%u over=%u\n",
  3076. np->dev->name, rx_channel, misc, misc-limit);
  3077. }
  3078. /* WRED (Weighted Random Early Discard) by hardware */
  3079. wred = nr64(RED_DIS_CNT(rx_channel));
  3080. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3081. nw64(RED_DIS_CNT(rx_channel), 0);
  3082. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3083. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3084. dev_err(np->device, "rx-%d: Counter overflow "
  3085. "WRED discard\n", rx_channel);
  3086. niudbg(RX_ERR, "%s-rx-%d: WRED drop=%u over=%u\n",
  3087. np->dev->name, rx_channel, wred, wred-limit);
  3088. }
  3089. }
  3090. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3091. struct rx_ring_info *rp, int budget)
  3092. {
  3093. int qlen, rcr_done = 0, work_done = 0;
  3094. struct rxdma_mailbox *mbox = rp->mbox;
  3095. u64 stat;
  3096. #if 1
  3097. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3098. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3099. #else
  3100. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3101. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3102. #endif
  3103. mbox->rx_dma_ctl_stat = 0;
  3104. mbox->rcrstat_a = 0;
  3105. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  3106. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  3107. rcr_done = work_done = 0;
  3108. qlen = min(qlen, budget);
  3109. while (work_done < qlen) {
  3110. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3111. work_done++;
  3112. }
  3113. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3114. unsigned int i;
  3115. for (i = 0; i < rp->rbr_refill_pending; i++)
  3116. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3117. rp->rbr_refill_pending = 0;
  3118. }
  3119. stat = (RX_DMA_CTL_STAT_MEX |
  3120. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3121. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3122. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3123. /* Only sync discards stats when qlen indicate potential for drops */
  3124. if (qlen > 10)
  3125. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3126. return work_done;
  3127. }
  3128. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3129. {
  3130. u64 v0 = lp->v0;
  3131. u32 tx_vec = (v0 >> 32);
  3132. u32 rx_vec = (v0 & 0xffffffff);
  3133. int i, work_done = 0;
  3134. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  3135. np->dev->name, (unsigned long long) v0);
  3136. for (i = 0; i < np->num_tx_rings; i++) {
  3137. struct tx_ring_info *rp = &np->tx_rings[i];
  3138. if (tx_vec & (1 << rp->tx_channel))
  3139. niu_tx_work(np, rp);
  3140. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3141. }
  3142. for (i = 0; i < np->num_rx_rings; i++) {
  3143. struct rx_ring_info *rp = &np->rx_rings[i];
  3144. if (rx_vec & (1 << rp->rx_channel)) {
  3145. int this_work_done;
  3146. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3147. budget);
  3148. budget -= this_work_done;
  3149. work_done += this_work_done;
  3150. }
  3151. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3152. }
  3153. return work_done;
  3154. }
  3155. static int niu_poll(struct napi_struct *napi, int budget)
  3156. {
  3157. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3158. struct niu *np = lp->np;
  3159. int work_done;
  3160. work_done = niu_poll_core(np, lp, budget);
  3161. if (work_done < budget) {
  3162. napi_complete(napi);
  3163. niu_ldg_rearm(np, lp, 1);
  3164. }
  3165. return work_done;
  3166. }
  3167. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3168. u64 stat)
  3169. {
  3170. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  3171. np->dev->name, rp->rx_channel);
  3172. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3173. printk("RBR_TMOUT ");
  3174. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3175. printk("RSP_CNT ");
  3176. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3177. printk("BYTE_EN_BUS ");
  3178. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3179. printk("RSP_DAT ");
  3180. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3181. printk("RCR_ACK ");
  3182. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3183. printk("RCR_SHA_PAR ");
  3184. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3185. printk("RBR_PRE_PAR ");
  3186. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3187. printk("CONFIG ");
  3188. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3189. printk("RCRINCON ");
  3190. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3191. printk("RCRFULL ");
  3192. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3193. printk("RBRFULL ");
  3194. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3195. printk("RBRLOGPAGE ");
  3196. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3197. printk("CFIGLOGPAGE ");
  3198. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3199. printk("DC_FIDO ");
  3200. printk(")\n");
  3201. }
  3202. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3203. {
  3204. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3205. int err = 0;
  3206. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3207. RX_DMA_CTL_STAT_PORT_FATAL))
  3208. err = -EINVAL;
  3209. if (err) {
  3210. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  3211. np->dev->name, rp->rx_channel,
  3212. (unsigned long long) stat);
  3213. niu_log_rxchan_errors(np, rp, stat);
  3214. }
  3215. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3216. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3217. return err;
  3218. }
  3219. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3220. u64 cs)
  3221. {
  3222. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  3223. np->dev->name, rp->tx_channel);
  3224. if (cs & TX_CS_MBOX_ERR)
  3225. printk("MBOX ");
  3226. if (cs & TX_CS_PKT_SIZE_ERR)
  3227. printk("PKT_SIZE ");
  3228. if (cs & TX_CS_TX_RING_OFLOW)
  3229. printk("TX_RING_OFLOW ");
  3230. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3231. printk("PREF_BUF_PAR ");
  3232. if (cs & TX_CS_NACK_PREF)
  3233. printk("NACK_PREF ");
  3234. if (cs & TX_CS_NACK_PKT_RD)
  3235. printk("NACK_PKT_RD ");
  3236. if (cs & TX_CS_CONF_PART_ERR)
  3237. printk("CONF_PART ");
  3238. if (cs & TX_CS_PKT_PRT_ERR)
  3239. printk("PKT_PTR ");
  3240. printk(")\n");
  3241. }
  3242. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3243. {
  3244. u64 cs, logh, logl;
  3245. cs = nr64(TX_CS(rp->tx_channel));
  3246. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3247. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3248. dev_err(np->device, PFX "%s: TX channel %u error, "
  3249. "cs[%llx] logh[%llx] logl[%llx]\n",
  3250. np->dev->name, rp->tx_channel,
  3251. (unsigned long long) cs,
  3252. (unsigned long long) logh,
  3253. (unsigned long long) logl);
  3254. niu_log_txchan_errors(np, rp, cs);
  3255. return -ENODEV;
  3256. }
  3257. static int niu_mif_interrupt(struct niu *np)
  3258. {
  3259. u64 mif_status = nr64(MIF_STATUS);
  3260. int phy_mdint = 0;
  3261. if (np->flags & NIU_FLAGS_XMAC) {
  3262. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3263. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3264. phy_mdint = 1;
  3265. }
  3266. dev_err(np->device, PFX "%s: MIF interrupt, "
  3267. "stat[%llx] phy_mdint(%d)\n",
  3268. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  3269. return -ENODEV;
  3270. }
  3271. static void niu_xmac_interrupt(struct niu *np)
  3272. {
  3273. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3274. u64 val;
  3275. val = nr64_mac(XTXMAC_STATUS);
  3276. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3277. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3278. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3279. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3280. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3281. mp->tx_fifo_errors++;
  3282. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3283. mp->tx_overflow_errors++;
  3284. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3285. mp->tx_max_pkt_size_errors++;
  3286. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3287. mp->tx_underflow_errors++;
  3288. val = nr64_mac(XRXMAC_STATUS);
  3289. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3290. mp->rx_local_faults++;
  3291. if (val & XRXMAC_STATUS_RFLT_DET)
  3292. mp->rx_remote_faults++;
  3293. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3294. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3295. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3296. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3297. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3298. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3299. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3300. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3301. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3302. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3303. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3304. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3305. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3306. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3307. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3308. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3309. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3310. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3311. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3312. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3313. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3314. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3315. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3316. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3317. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3318. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3319. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  3320. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3321. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3322. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3323. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3324. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3325. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3326. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3327. if (val & XRXMAC_STATUS_RXUFLOW)
  3328. mp->rx_underflows++;
  3329. if (val & XRXMAC_STATUS_RXOFLOW)
  3330. mp->rx_overflows++;
  3331. val = nr64_mac(XMAC_FC_STAT);
  3332. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3333. mp->pause_off_state++;
  3334. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3335. mp->pause_on_state++;
  3336. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3337. mp->pause_received++;
  3338. }
  3339. static void niu_bmac_interrupt(struct niu *np)
  3340. {
  3341. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3342. u64 val;
  3343. val = nr64_mac(BTXMAC_STATUS);
  3344. if (val & BTXMAC_STATUS_UNDERRUN)
  3345. mp->tx_underflow_errors++;
  3346. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3347. mp->tx_max_pkt_size_errors++;
  3348. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3349. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3350. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3351. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3352. val = nr64_mac(BRXMAC_STATUS);
  3353. if (val & BRXMAC_STATUS_OVERFLOW)
  3354. mp->rx_overflows++;
  3355. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3356. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3357. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3358. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3359. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3360. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3361. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3362. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3363. val = nr64_mac(BMAC_CTRL_STATUS);
  3364. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3365. mp->pause_off_state++;
  3366. if (val & BMAC_CTRL_STATUS_PAUSE)
  3367. mp->pause_on_state++;
  3368. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3369. mp->pause_received++;
  3370. }
  3371. static int niu_mac_interrupt(struct niu *np)
  3372. {
  3373. if (np->flags & NIU_FLAGS_XMAC)
  3374. niu_xmac_interrupt(np);
  3375. else
  3376. niu_bmac_interrupt(np);
  3377. return 0;
  3378. }
  3379. static void niu_log_device_error(struct niu *np, u64 stat)
  3380. {
  3381. dev_err(np->device, PFX "%s: Core device errors ( ",
  3382. np->dev->name);
  3383. if (stat & SYS_ERR_MASK_META2)
  3384. printk("META2 ");
  3385. if (stat & SYS_ERR_MASK_META1)
  3386. printk("META1 ");
  3387. if (stat & SYS_ERR_MASK_PEU)
  3388. printk("PEU ");
  3389. if (stat & SYS_ERR_MASK_TXC)
  3390. printk("TXC ");
  3391. if (stat & SYS_ERR_MASK_RDMC)
  3392. printk("RDMC ");
  3393. if (stat & SYS_ERR_MASK_TDMC)
  3394. printk("TDMC ");
  3395. if (stat & SYS_ERR_MASK_ZCP)
  3396. printk("ZCP ");
  3397. if (stat & SYS_ERR_MASK_FFLP)
  3398. printk("FFLP ");
  3399. if (stat & SYS_ERR_MASK_IPP)
  3400. printk("IPP ");
  3401. if (stat & SYS_ERR_MASK_MAC)
  3402. printk("MAC ");
  3403. if (stat & SYS_ERR_MASK_SMX)
  3404. printk("SMX ");
  3405. printk(")\n");
  3406. }
  3407. static int niu_device_error(struct niu *np)
  3408. {
  3409. u64 stat = nr64(SYS_ERR_STAT);
  3410. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  3411. np->dev->name, (unsigned long long) stat);
  3412. niu_log_device_error(np, stat);
  3413. return -ENODEV;
  3414. }
  3415. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3416. u64 v0, u64 v1, u64 v2)
  3417. {
  3418. int i, err = 0;
  3419. lp->v0 = v0;
  3420. lp->v1 = v1;
  3421. lp->v2 = v2;
  3422. if (v1 & 0x00000000ffffffffULL) {
  3423. u32 rx_vec = (v1 & 0xffffffff);
  3424. for (i = 0; i < np->num_rx_rings; i++) {
  3425. struct rx_ring_info *rp = &np->rx_rings[i];
  3426. if (rx_vec & (1 << rp->rx_channel)) {
  3427. int r = niu_rx_error(np, rp);
  3428. if (r) {
  3429. err = r;
  3430. } else {
  3431. if (!v0)
  3432. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3433. RX_DMA_CTL_STAT_MEX);
  3434. }
  3435. }
  3436. }
  3437. }
  3438. if (v1 & 0x7fffffff00000000ULL) {
  3439. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3440. for (i = 0; i < np->num_tx_rings; i++) {
  3441. struct tx_ring_info *rp = &np->tx_rings[i];
  3442. if (tx_vec & (1 << rp->tx_channel)) {
  3443. int r = niu_tx_error(np, rp);
  3444. if (r)
  3445. err = r;
  3446. }
  3447. }
  3448. }
  3449. if ((v0 | v1) & 0x8000000000000000ULL) {
  3450. int r = niu_mif_interrupt(np);
  3451. if (r)
  3452. err = r;
  3453. }
  3454. if (v2) {
  3455. if (v2 & 0x01ef) {
  3456. int r = niu_mac_interrupt(np);
  3457. if (r)
  3458. err = r;
  3459. }
  3460. if (v2 & 0x0210) {
  3461. int r = niu_device_error(np);
  3462. if (r)
  3463. err = r;
  3464. }
  3465. }
  3466. if (err)
  3467. niu_enable_interrupts(np, 0);
  3468. return err;
  3469. }
  3470. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3471. int ldn)
  3472. {
  3473. struct rxdma_mailbox *mbox = rp->mbox;
  3474. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3475. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3476. RX_DMA_CTL_STAT_RCRTO);
  3477. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3478. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  3479. np->dev->name, (unsigned long long) stat);
  3480. }
  3481. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3482. int ldn)
  3483. {
  3484. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3485. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  3486. np->dev->name, (unsigned long long) rp->tx_cs);
  3487. }
  3488. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3489. {
  3490. struct niu_parent *parent = np->parent;
  3491. u32 rx_vec, tx_vec;
  3492. int i;
  3493. tx_vec = (v0 >> 32);
  3494. rx_vec = (v0 & 0xffffffff);
  3495. for (i = 0; i < np->num_rx_rings; i++) {
  3496. struct rx_ring_info *rp = &np->rx_rings[i];
  3497. int ldn = LDN_RXDMA(rp->rx_channel);
  3498. if (parent->ldg_map[ldn] != ldg)
  3499. continue;
  3500. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3501. if (rx_vec & (1 << rp->rx_channel))
  3502. niu_rxchan_intr(np, rp, ldn);
  3503. }
  3504. for (i = 0; i < np->num_tx_rings; i++) {
  3505. struct tx_ring_info *rp = &np->tx_rings[i];
  3506. int ldn = LDN_TXDMA(rp->tx_channel);
  3507. if (parent->ldg_map[ldn] != ldg)
  3508. continue;
  3509. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3510. if (tx_vec & (1 << rp->tx_channel))
  3511. niu_txchan_intr(np, rp, ldn);
  3512. }
  3513. }
  3514. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3515. u64 v0, u64 v1, u64 v2)
  3516. {
  3517. if (likely(napi_schedule_prep(&lp->napi))) {
  3518. lp->v0 = v0;
  3519. lp->v1 = v1;
  3520. lp->v2 = v2;
  3521. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3522. __napi_schedule(&lp->napi);
  3523. }
  3524. }
  3525. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3526. {
  3527. struct niu_ldg *lp = dev_id;
  3528. struct niu *np = lp->np;
  3529. int ldg = lp->ldg_num;
  3530. unsigned long flags;
  3531. u64 v0, v1, v2;
  3532. if (netif_msg_intr(np))
  3533. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  3534. lp, ldg);
  3535. spin_lock_irqsave(&np->lock, flags);
  3536. v0 = nr64(LDSV0(ldg));
  3537. v1 = nr64(LDSV1(ldg));
  3538. v2 = nr64(LDSV2(ldg));
  3539. if (netif_msg_intr(np))
  3540. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  3541. (unsigned long long) v0,
  3542. (unsigned long long) v1,
  3543. (unsigned long long) v2);
  3544. if (unlikely(!v0 && !v1 && !v2)) {
  3545. spin_unlock_irqrestore(&np->lock, flags);
  3546. return IRQ_NONE;
  3547. }
  3548. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3549. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3550. if (err)
  3551. goto out;
  3552. }
  3553. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3554. niu_schedule_napi(np, lp, v0, v1, v2);
  3555. else
  3556. niu_ldg_rearm(np, lp, 1);
  3557. out:
  3558. spin_unlock_irqrestore(&np->lock, flags);
  3559. return IRQ_HANDLED;
  3560. }
  3561. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3562. {
  3563. if (rp->mbox) {
  3564. np->ops->free_coherent(np->device,
  3565. sizeof(struct rxdma_mailbox),
  3566. rp->mbox, rp->mbox_dma);
  3567. rp->mbox = NULL;
  3568. }
  3569. if (rp->rcr) {
  3570. np->ops->free_coherent(np->device,
  3571. MAX_RCR_RING_SIZE * sizeof(__le64),
  3572. rp->rcr, rp->rcr_dma);
  3573. rp->rcr = NULL;
  3574. rp->rcr_table_size = 0;
  3575. rp->rcr_index = 0;
  3576. }
  3577. if (rp->rbr) {
  3578. niu_rbr_free(np, rp);
  3579. np->ops->free_coherent(np->device,
  3580. MAX_RBR_RING_SIZE * sizeof(__le32),
  3581. rp->rbr, rp->rbr_dma);
  3582. rp->rbr = NULL;
  3583. rp->rbr_table_size = 0;
  3584. rp->rbr_index = 0;
  3585. }
  3586. kfree(rp->rxhash);
  3587. rp->rxhash = NULL;
  3588. }
  3589. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3590. {
  3591. if (rp->mbox) {
  3592. np->ops->free_coherent(np->device,
  3593. sizeof(struct txdma_mailbox),
  3594. rp->mbox, rp->mbox_dma);
  3595. rp->mbox = NULL;
  3596. }
  3597. if (rp->descr) {
  3598. int i;
  3599. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3600. if (rp->tx_buffs[i].skb)
  3601. (void) release_tx_packet(np, rp, i);
  3602. }
  3603. np->ops->free_coherent(np->device,
  3604. MAX_TX_RING_SIZE * sizeof(__le64),
  3605. rp->descr, rp->descr_dma);
  3606. rp->descr = NULL;
  3607. rp->pending = 0;
  3608. rp->prod = 0;
  3609. rp->cons = 0;
  3610. rp->wrap_bit = 0;
  3611. }
  3612. }
  3613. static void niu_free_channels(struct niu *np)
  3614. {
  3615. int i;
  3616. if (np->rx_rings) {
  3617. for (i = 0; i < np->num_rx_rings; i++) {
  3618. struct rx_ring_info *rp = &np->rx_rings[i];
  3619. niu_free_rx_ring_info(np, rp);
  3620. }
  3621. kfree(np->rx_rings);
  3622. np->rx_rings = NULL;
  3623. np->num_rx_rings = 0;
  3624. }
  3625. if (np->tx_rings) {
  3626. for (i = 0; i < np->num_tx_rings; i++) {
  3627. struct tx_ring_info *rp = &np->tx_rings[i];
  3628. niu_free_tx_ring_info(np, rp);
  3629. }
  3630. kfree(np->tx_rings);
  3631. np->tx_rings = NULL;
  3632. np->num_tx_rings = 0;
  3633. }
  3634. }
  3635. static int niu_alloc_rx_ring_info(struct niu *np,
  3636. struct rx_ring_info *rp)
  3637. {
  3638. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3639. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3640. GFP_KERNEL);
  3641. if (!rp->rxhash)
  3642. return -ENOMEM;
  3643. rp->mbox = np->ops->alloc_coherent(np->device,
  3644. sizeof(struct rxdma_mailbox),
  3645. &rp->mbox_dma, GFP_KERNEL);
  3646. if (!rp->mbox)
  3647. return -ENOMEM;
  3648. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3649. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3650. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3651. return -EINVAL;
  3652. }
  3653. rp->rcr = np->ops->alloc_coherent(np->device,
  3654. MAX_RCR_RING_SIZE * sizeof(__le64),
  3655. &rp->rcr_dma, GFP_KERNEL);
  3656. if (!rp->rcr)
  3657. return -ENOMEM;
  3658. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3659. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3660. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3661. return -EINVAL;
  3662. }
  3663. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3664. rp->rcr_index = 0;
  3665. rp->rbr = np->ops->alloc_coherent(np->device,
  3666. MAX_RBR_RING_SIZE * sizeof(__le32),
  3667. &rp->rbr_dma, GFP_KERNEL);
  3668. if (!rp->rbr)
  3669. return -ENOMEM;
  3670. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3671. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3672. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3673. return -EINVAL;
  3674. }
  3675. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3676. rp->rbr_index = 0;
  3677. rp->rbr_pending = 0;
  3678. return 0;
  3679. }
  3680. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3681. {
  3682. int mtu = np->dev->mtu;
  3683. /* These values are recommended by the HW designers for fair
  3684. * utilization of DRR amongst the rings.
  3685. */
  3686. rp->max_burst = mtu + 32;
  3687. if (rp->max_burst > 4096)
  3688. rp->max_burst = 4096;
  3689. }
  3690. static int niu_alloc_tx_ring_info(struct niu *np,
  3691. struct tx_ring_info *rp)
  3692. {
  3693. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3694. rp->mbox = np->ops->alloc_coherent(np->device,
  3695. sizeof(struct txdma_mailbox),
  3696. &rp->mbox_dma, GFP_KERNEL);
  3697. if (!rp->mbox)
  3698. return -ENOMEM;
  3699. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3700. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3701. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3702. return -EINVAL;
  3703. }
  3704. rp->descr = np->ops->alloc_coherent(np->device,
  3705. MAX_TX_RING_SIZE * sizeof(__le64),
  3706. &rp->descr_dma, GFP_KERNEL);
  3707. if (!rp->descr)
  3708. return -ENOMEM;
  3709. if ((unsigned long)rp->descr & (64UL - 1)) {
  3710. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3711. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3712. return -EINVAL;
  3713. }
  3714. rp->pending = MAX_TX_RING_SIZE;
  3715. rp->prod = 0;
  3716. rp->cons = 0;
  3717. rp->wrap_bit = 0;
  3718. /* XXX make these configurable... XXX */
  3719. rp->mark_freq = rp->pending / 4;
  3720. niu_set_max_burst(np, rp);
  3721. return 0;
  3722. }
  3723. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3724. {
  3725. u16 bss;
  3726. bss = min(PAGE_SHIFT, 15);
  3727. rp->rbr_block_size = 1 << bss;
  3728. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3729. rp->rbr_sizes[0] = 256;
  3730. rp->rbr_sizes[1] = 1024;
  3731. if (np->dev->mtu > ETH_DATA_LEN) {
  3732. switch (PAGE_SIZE) {
  3733. case 4 * 1024:
  3734. rp->rbr_sizes[2] = 4096;
  3735. break;
  3736. default:
  3737. rp->rbr_sizes[2] = 8192;
  3738. break;
  3739. }
  3740. } else {
  3741. rp->rbr_sizes[2] = 2048;
  3742. }
  3743. rp->rbr_sizes[3] = rp->rbr_block_size;
  3744. }
  3745. static int niu_alloc_channels(struct niu *np)
  3746. {
  3747. struct niu_parent *parent = np->parent;
  3748. int first_rx_channel, first_tx_channel;
  3749. int i, port, err;
  3750. port = np->port;
  3751. first_rx_channel = first_tx_channel = 0;
  3752. for (i = 0; i < port; i++) {
  3753. first_rx_channel += parent->rxchan_per_port[i];
  3754. first_tx_channel += parent->txchan_per_port[i];
  3755. }
  3756. np->num_rx_rings = parent->rxchan_per_port[port];
  3757. np->num_tx_rings = parent->txchan_per_port[port];
  3758. np->dev->real_num_tx_queues = np->num_tx_rings;
  3759. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3760. GFP_KERNEL);
  3761. err = -ENOMEM;
  3762. if (!np->rx_rings)
  3763. goto out_err;
  3764. for (i = 0; i < np->num_rx_rings; i++) {
  3765. struct rx_ring_info *rp = &np->rx_rings[i];
  3766. rp->np = np;
  3767. rp->rx_channel = first_rx_channel + i;
  3768. err = niu_alloc_rx_ring_info(np, rp);
  3769. if (err)
  3770. goto out_err;
  3771. niu_size_rbr(np, rp);
  3772. /* XXX better defaults, configurable, etc... XXX */
  3773. rp->nonsyn_window = 64;
  3774. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3775. rp->syn_window = 64;
  3776. rp->syn_threshold = rp->rcr_table_size - 64;
  3777. rp->rcr_pkt_threshold = 16;
  3778. rp->rcr_timeout = 8;
  3779. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3780. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3781. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3782. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3783. if (err)
  3784. return err;
  3785. }
  3786. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3787. GFP_KERNEL);
  3788. err = -ENOMEM;
  3789. if (!np->tx_rings)
  3790. goto out_err;
  3791. for (i = 0; i < np->num_tx_rings; i++) {
  3792. struct tx_ring_info *rp = &np->tx_rings[i];
  3793. rp->np = np;
  3794. rp->tx_channel = first_tx_channel + i;
  3795. err = niu_alloc_tx_ring_info(np, rp);
  3796. if (err)
  3797. goto out_err;
  3798. }
  3799. return 0;
  3800. out_err:
  3801. niu_free_channels(np);
  3802. return err;
  3803. }
  3804. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3805. {
  3806. int limit = 1000;
  3807. while (--limit > 0) {
  3808. u64 val = nr64(TX_CS(channel));
  3809. if (val & TX_CS_SNG_STATE)
  3810. return 0;
  3811. }
  3812. return -ENODEV;
  3813. }
  3814. static int niu_tx_channel_stop(struct niu *np, int channel)
  3815. {
  3816. u64 val = nr64(TX_CS(channel));
  3817. val |= TX_CS_STOP_N_GO;
  3818. nw64(TX_CS(channel), val);
  3819. return niu_tx_cs_sng_poll(np, channel);
  3820. }
  3821. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3822. {
  3823. int limit = 1000;
  3824. while (--limit > 0) {
  3825. u64 val = nr64(TX_CS(channel));
  3826. if (!(val & TX_CS_RST))
  3827. return 0;
  3828. }
  3829. return -ENODEV;
  3830. }
  3831. static int niu_tx_channel_reset(struct niu *np, int channel)
  3832. {
  3833. u64 val = nr64(TX_CS(channel));
  3834. int err;
  3835. val |= TX_CS_RST;
  3836. nw64(TX_CS(channel), val);
  3837. err = niu_tx_cs_reset_poll(np, channel);
  3838. if (!err)
  3839. nw64(TX_RING_KICK(channel), 0);
  3840. return err;
  3841. }
  3842. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3843. {
  3844. u64 val;
  3845. nw64(TX_LOG_MASK1(channel), 0);
  3846. nw64(TX_LOG_VAL1(channel), 0);
  3847. nw64(TX_LOG_MASK2(channel), 0);
  3848. nw64(TX_LOG_VAL2(channel), 0);
  3849. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3850. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3851. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3852. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3853. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3854. nw64(TX_LOG_PAGE_VLD(channel), val);
  3855. /* XXX TXDMA 32bit mode? XXX */
  3856. return 0;
  3857. }
  3858. static void niu_txc_enable_port(struct niu *np, int on)
  3859. {
  3860. unsigned long flags;
  3861. u64 val, mask;
  3862. niu_lock_parent(np, flags);
  3863. val = nr64(TXC_CONTROL);
  3864. mask = (u64)1 << np->port;
  3865. if (on) {
  3866. val |= TXC_CONTROL_ENABLE | mask;
  3867. } else {
  3868. val &= ~mask;
  3869. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3870. val &= ~TXC_CONTROL_ENABLE;
  3871. }
  3872. nw64(TXC_CONTROL, val);
  3873. niu_unlock_parent(np, flags);
  3874. }
  3875. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3876. {
  3877. unsigned long flags;
  3878. u64 val;
  3879. niu_lock_parent(np, flags);
  3880. val = nr64(TXC_INT_MASK);
  3881. val &= ~TXC_INT_MASK_VAL(np->port);
  3882. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3883. niu_unlock_parent(np, flags);
  3884. }
  3885. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3886. {
  3887. u64 val = 0;
  3888. if (on) {
  3889. int i;
  3890. for (i = 0; i < np->num_tx_rings; i++)
  3891. val |= (1 << np->tx_rings[i].tx_channel);
  3892. }
  3893. nw64(TXC_PORT_DMA(np->port), val);
  3894. }
  3895. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3896. {
  3897. int err, channel = rp->tx_channel;
  3898. u64 val, ring_len;
  3899. err = niu_tx_channel_stop(np, channel);
  3900. if (err)
  3901. return err;
  3902. err = niu_tx_channel_reset(np, channel);
  3903. if (err)
  3904. return err;
  3905. err = niu_tx_channel_lpage_init(np, channel);
  3906. if (err)
  3907. return err;
  3908. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3909. nw64(TX_ENT_MSK(channel), 0);
  3910. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3911. TX_RNG_CFIG_STADDR)) {
  3912. dev_err(np->device, PFX "%s: TX ring channel %d "
  3913. "DMA addr (%llx) is not aligned.\n",
  3914. np->dev->name, channel,
  3915. (unsigned long long) rp->descr_dma);
  3916. return -EINVAL;
  3917. }
  3918. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3919. * blocks. rp->pending is the number of TX descriptors in
  3920. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3921. * to get the proper value the chip wants.
  3922. */
  3923. ring_len = (rp->pending / 8);
  3924. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3925. rp->descr_dma);
  3926. nw64(TX_RNG_CFIG(channel), val);
  3927. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3928. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3929. dev_err(np->device, PFX "%s: TX ring channel %d "
  3930. "MBOX addr (%llx) is has illegal bits.\n",
  3931. np->dev->name, channel,
  3932. (unsigned long long) rp->mbox_dma);
  3933. return -EINVAL;
  3934. }
  3935. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3936. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3937. nw64(TX_CS(channel), 0);
  3938. rp->last_pkt_cnt = 0;
  3939. return 0;
  3940. }
  3941. static void niu_init_rdc_groups(struct niu *np)
  3942. {
  3943. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3944. int i, first_table_num = tp->first_table_num;
  3945. for (i = 0; i < tp->num_tables; i++) {
  3946. struct rdc_table *tbl = &tp->tables[i];
  3947. int this_table = first_table_num + i;
  3948. int slot;
  3949. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3950. nw64(RDC_TBL(this_table, slot),
  3951. tbl->rxdma_channel[slot]);
  3952. }
  3953. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3954. }
  3955. static void niu_init_drr_weight(struct niu *np)
  3956. {
  3957. int type = phy_decode(np->parent->port_phy, np->port);
  3958. u64 val;
  3959. switch (type) {
  3960. case PORT_TYPE_10G:
  3961. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3962. break;
  3963. case PORT_TYPE_1G:
  3964. default:
  3965. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3966. break;
  3967. }
  3968. nw64(PT_DRR_WT(np->port), val);
  3969. }
  3970. static int niu_init_hostinfo(struct niu *np)
  3971. {
  3972. struct niu_parent *parent = np->parent;
  3973. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3974. int i, err, num_alt = niu_num_alt_addr(np);
  3975. int first_rdc_table = tp->first_table_num;
  3976. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3977. if (err)
  3978. return err;
  3979. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3980. if (err)
  3981. return err;
  3982. for (i = 0; i < num_alt; i++) {
  3983. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3984. if (err)
  3985. return err;
  3986. }
  3987. return 0;
  3988. }
  3989. static int niu_rx_channel_reset(struct niu *np, int channel)
  3990. {
  3991. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3992. RXDMA_CFIG1_RST, 1000, 10,
  3993. "RXDMA_CFIG1");
  3994. }
  3995. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3996. {
  3997. u64 val;
  3998. nw64(RX_LOG_MASK1(channel), 0);
  3999. nw64(RX_LOG_VAL1(channel), 0);
  4000. nw64(RX_LOG_MASK2(channel), 0);
  4001. nw64(RX_LOG_VAL2(channel), 0);
  4002. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  4003. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  4004. nw64(RX_LOG_PAGE_HDL(channel), 0);
  4005. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  4006. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  4007. nw64(RX_LOG_PAGE_VLD(channel), val);
  4008. return 0;
  4009. }
  4010. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  4011. {
  4012. u64 val;
  4013. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  4014. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  4015. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  4016. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  4017. nw64(RDC_RED_PARA(rp->rx_channel), val);
  4018. }
  4019. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  4020. {
  4021. u64 val = 0;
  4022. *ret = 0;
  4023. switch (rp->rbr_block_size) {
  4024. case 4 * 1024:
  4025. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4026. break;
  4027. case 8 * 1024:
  4028. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4029. break;
  4030. case 16 * 1024:
  4031. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4032. break;
  4033. case 32 * 1024:
  4034. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4035. break;
  4036. default:
  4037. return -EINVAL;
  4038. }
  4039. val |= RBR_CFIG_B_VLD2;
  4040. switch (rp->rbr_sizes[2]) {
  4041. case 2 * 1024:
  4042. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4043. break;
  4044. case 4 * 1024:
  4045. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4046. break;
  4047. case 8 * 1024:
  4048. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4049. break;
  4050. case 16 * 1024:
  4051. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4052. break;
  4053. default:
  4054. return -EINVAL;
  4055. }
  4056. val |= RBR_CFIG_B_VLD1;
  4057. switch (rp->rbr_sizes[1]) {
  4058. case 1 * 1024:
  4059. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4060. break;
  4061. case 2 * 1024:
  4062. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4063. break;
  4064. case 4 * 1024:
  4065. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4066. break;
  4067. case 8 * 1024:
  4068. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4069. break;
  4070. default:
  4071. return -EINVAL;
  4072. }
  4073. val |= RBR_CFIG_B_VLD0;
  4074. switch (rp->rbr_sizes[0]) {
  4075. case 256:
  4076. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4077. break;
  4078. case 512:
  4079. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4080. break;
  4081. case 1 * 1024:
  4082. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4083. break;
  4084. case 2 * 1024:
  4085. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4086. break;
  4087. default:
  4088. return -EINVAL;
  4089. }
  4090. *ret = val;
  4091. return 0;
  4092. }
  4093. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4094. {
  4095. u64 val = nr64(RXDMA_CFIG1(channel));
  4096. int limit;
  4097. if (on)
  4098. val |= RXDMA_CFIG1_EN;
  4099. else
  4100. val &= ~RXDMA_CFIG1_EN;
  4101. nw64(RXDMA_CFIG1(channel), val);
  4102. limit = 1000;
  4103. while (--limit > 0) {
  4104. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4105. break;
  4106. udelay(10);
  4107. }
  4108. if (limit <= 0)
  4109. return -ENODEV;
  4110. return 0;
  4111. }
  4112. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4113. {
  4114. int err, channel = rp->rx_channel;
  4115. u64 val;
  4116. err = niu_rx_channel_reset(np, channel);
  4117. if (err)
  4118. return err;
  4119. err = niu_rx_channel_lpage_init(np, channel);
  4120. if (err)
  4121. return err;
  4122. niu_rx_channel_wred_init(np, rp);
  4123. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4124. nw64(RX_DMA_CTL_STAT(channel),
  4125. (RX_DMA_CTL_STAT_MEX |
  4126. RX_DMA_CTL_STAT_RCRTHRES |
  4127. RX_DMA_CTL_STAT_RCRTO |
  4128. RX_DMA_CTL_STAT_RBR_EMPTY));
  4129. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4130. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  4131. nw64(RBR_CFIG_A(channel),
  4132. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4133. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4134. err = niu_compute_rbr_cfig_b(rp, &val);
  4135. if (err)
  4136. return err;
  4137. nw64(RBR_CFIG_B(channel), val);
  4138. nw64(RCRCFIG_A(channel),
  4139. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4140. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4141. nw64(RCRCFIG_B(channel),
  4142. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4143. RCRCFIG_B_ENTOUT |
  4144. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4145. err = niu_enable_rx_channel(np, channel, 1);
  4146. if (err)
  4147. return err;
  4148. nw64(RBR_KICK(channel), rp->rbr_index);
  4149. val = nr64(RX_DMA_CTL_STAT(channel));
  4150. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4151. nw64(RX_DMA_CTL_STAT(channel), val);
  4152. return 0;
  4153. }
  4154. static int niu_init_rx_channels(struct niu *np)
  4155. {
  4156. unsigned long flags;
  4157. u64 seed = jiffies_64;
  4158. int err, i;
  4159. niu_lock_parent(np, flags);
  4160. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4161. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4162. niu_unlock_parent(np, flags);
  4163. /* XXX RXDMA 32bit mode? XXX */
  4164. niu_init_rdc_groups(np);
  4165. niu_init_drr_weight(np);
  4166. err = niu_init_hostinfo(np);
  4167. if (err)
  4168. return err;
  4169. for (i = 0; i < np->num_rx_rings; i++) {
  4170. struct rx_ring_info *rp = &np->rx_rings[i];
  4171. err = niu_init_one_rx_channel(np, rp);
  4172. if (err)
  4173. return err;
  4174. }
  4175. return 0;
  4176. }
  4177. static int niu_set_ip_frag_rule(struct niu *np)
  4178. {
  4179. struct niu_parent *parent = np->parent;
  4180. struct niu_classifier *cp = &np->clas;
  4181. struct niu_tcam_entry *tp;
  4182. int index, err;
  4183. index = cp->tcam_top;
  4184. tp = &parent->tcam[index];
  4185. /* Note that the noport bit is the same in both ipv4 and
  4186. * ipv6 format TCAM entries.
  4187. */
  4188. memset(tp, 0, sizeof(*tp));
  4189. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4190. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4191. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4192. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4193. err = tcam_write(np, index, tp->key, tp->key_mask);
  4194. if (err)
  4195. return err;
  4196. err = tcam_assoc_write(np, index, tp->assoc_data);
  4197. if (err)
  4198. return err;
  4199. tp->valid = 1;
  4200. cp->tcam_valid_entries++;
  4201. return 0;
  4202. }
  4203. static int niu_init_classifier_hw(struct niu *np)
  4204. {
  4205. struct niu_parent *parent = np->parent;
  4206. struct niu_classifier *cp = &np->clas;
  4207. int i, err;
  4208. nw64(H1POLY, cp->h1_init);
  4209. nw64(H2POLY, cp->h2_init);
  4210. err = niu_init_hostinfo(np);
  4211. if (err)
  4212. return err;
  4213. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4214. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4215. vlan_tbl_write(np, i, np->port,
  4216. vp->vlan_pref, vp->rdc_num);
  4217. }
  4218. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4219. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4220. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4221. ap->rdc_num, ap->mac_pref);
  4222. if (err)
  4223. return err;
  4224. }
  4225. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4226. int index = i - CLASS_CODE_USER_PROG1;
  4227. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4228. if (err)
  4229. return err;
  4230. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4231. if (err)
  4232. return err;
  4233. }
  4234. err = niu_set_ip_frag_rule(np);
  4235. if (err)
  4236. return err;
  4237. tcam_enable(np, 1);
  4238. return 0;
  4239. }
  4240. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4241. {
  4242. nw64(ZCP_RAM_DATA0, data[0]);
  4243. nw64(ZCP_RAM_DATA1, data[1]);
  4244. nw64(ZCP_RAM_DATA2, data[2]);
  4245. nw64(ZCP_RAM_DATA3, data[3]);
  4246. nw64(ZCP_RAM_DATA4, data[4]);
  4247. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4248. nw64(ZCP_RAM_ACC,
  4249. (ZCP_RAM_ACC_WRITE |
  4250. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4251. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4252. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4253. 1000, 100);
  4254. }
  4255. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4256. {
  4257. int err;
  4258. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4259. 1000, 100);
  4260. if (err) {
  4261. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  4262. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4263. (unsigned long long) nr64(ZCP_RAM_ACC));
  4264. return err;
  4265. }
  4266. nw64(ZCP_RAM_ACC,
  4267. (ZCP_RAM_ACC_READ |
  4268. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4269. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4270. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4271. 1000, 100);
  4272. if (err) {
  4273. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  4274. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4275. (unsigned long long) nr64(ZCP_RAM_ACC));
  4276. return err;
  4277. }
  4278. data[0] = nr64(ZCP_RAM_DATA0);
  4279. data[1] = nr64(ZCP_RAM_DATA1);
  4280. data[2] = nr64(ZCP_RAM_DATA2);
  4281. data[3] = nr64(ZCP_RAM_DATA3);
  4282. data[4] = nr64(ZCP_RAM_DATA4);
  4283. return 0;
  4284. }
  4285. static void niu_zcp_cfifo_reset(struct niu *np)
  4286. {
  4287. u64 val = nr64(RESET_CFIFO);
  4288. val |= RESET_CFIFO_RST(np->port);
  4289. nw64(RESET_CFIFO, val);
  4290. udelay(10);
  4291. val &= ~RESET_CFIFO_RST(np->port);
  4292. nw64(RESET_CFIFO, val);
  4293. }
  4294. static int niu_init_zcp(struct niu *np)
  4295. {
  4296. u64 data[5], rbuf[5];
  4297. int i, max, err;
  4298. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4299. if (np->port == 0 || np->port == 1)
  4300. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4301. else
  4302. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4303. } else
  4304. max = NIU_CFIFO_ENTRIES;
  4305. data[0] = 0;
  4306. data[1] = 0;
  4307. data[2] = 0;
  4308. data[3] = 0;
  4309. data[4] = 0;
  4310. for (i = 0; i < max; i++) {
  4311. err = niu_zcp_write(np, i, data);
  4312. if (err)
  4313. return err;
  4314. err = niu_zcp_read(np, i, rbuf);
  4315. if (err)
  4316. return err;
  4317. }
  4318. niu_zcp_cfifo_reset(np);
  4319. nw64(CFIFO_ECC(np->port), 0);
  4320. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4321. (void) nr64(ZCP_INT_STAT);
  4322. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4323. return 0;
  4324. }
  4325. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4326. {
  4327. u64 val = nr64_ipp(IPP_CFIG);
  4328. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4329. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4330. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4331. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4332. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4333. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4334. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4335. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4336. }
  4337. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4338. {
  4339. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4340. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4341. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4342. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4343. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4344. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4345. }
  4346. static int niu_ipp_reset(struct niu *np)
  4347. {
  4348. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4349. 1000, 100, "IPP_CFIG");
  4350. }
  4351. static int niu_init_ipp(struct niu *np)
  4352. {
  4353. u64 data[5], rbuf[5], val;
  4354. int i, max, err;
  4355. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4356. if (np->port == 0 || np->port == 1)
  4357. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4358. else
  4359. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4360. } else
  4361. max = NIU_DFIFO_ENTRIES;
  4362. data[0] = 0;
  4363. data[1] = 0;
  4364. data[2] = 0;
  4365. data[3] = 0;
  4366. data[4] = 0;
  4367. for (i = 0; i < max; i++) {
  4368. niu_ipp_write(np, i, data);
  4369. niu_ipp_read(np, i, rbuf);
  4370. }
  4371. (void) nr64_ipp(IPP_INT_STAT);
  4372. (void) nr64_ipp(IPP_INT_STAT);
  4373. err = niu_ipp_reset(np);
  4374. if (err)
  4375. return err;
  4376. (void) nr64_ipp(IPP_PKT_DIS);
  4377. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4378. (void) nr64_ipp(IPP_ECC);
  4379. (void) nr64_ipp(IPP_INT_STAT);
  4380. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4381. val = nr64_ipp(IPP_CFIG);
  4382. val &= ~IPP_CFIG_IP_MAX_PKT;
  4383. val |= (IPP_CFIG_IPP_ENABLE |
  4384. IPP_CFIG_DFIFO_ECC_EN |
  4385. IPP_CFIG_DROP_BAD_CRC |
  4386. IPP_CFIG_CKSUM_EN |
  4387. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4388. nw64_ipp(IPP_CFIG, val);
  4389. return 0;
  4390. }
  4391. static void niu_handle_led(struct niu *np, int status)
  4392. {
  4393. u64 val;
  4394. val = nr64_mac(XMAC_CONFIG);
  4395. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4396. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4397. if (status) {
  4398. val |= XMAC_CONFIG_LED_POLARITY;
  4399. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4400. } else {
  4401. val |= XMAC_CONFIG_FORCE_LED_ON;
  4402. val &= ~XMAC_CONFIG_LED_POLARITY;
  4403. }
  4404. }
  4405. nw64_mac(XMAC_CONFIG, val);
  4406. }
  4407. static void niu_init_xif_xmac(struct niu *np)
  4408. {
  4409. struct niu_link_config *lp = &np->link_config;
  4410. u64 val;
  4411. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4412. val = nr64(MIF_CONFIG);
  4413. val |= MIF_CONFIG_ATCA_GE;
  4414. nw64(MIF_CONFIG, val);
  4415. }
  4416. val = nr64_mac(XMAC_CONFIG);
  4417. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4418. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4419. if (lp->loopback_mode == LOOPBACK_MAC) {
  4420. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4421. val |= XMAC_CONFIG_LOOPBACK;
  4422. } else {
  4423. val &= ~XMAC_CONFIG_LOOPBACK;
  4424. }
  4425. if (np->flags & NIU_FLAGS_10G) {
  4426. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4427. } else {
  4428. val |= XMAC_CONFIG_LFS_DISABLE;
  4429. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4430. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4431. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4432. else
  4433. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4434. }
  4435. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4436. if (lp->active_speed == SPEED_100)
  4437. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4438. else
  4439. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4440. nw64_mac(XMAC_CONFIG, val);
  4441. val = nr64_mac(XMAC_CONFIG);
  4442. val &= ~XMAC_CONFIG_MODE_MASK;
  4443. if (np->flags & NIU_FLAGS_10G) {
  4444. val |= XMAC_CONFIG_MODE_XGMII;
  4445. } else {
  4446. if (lp->active_speed == SPEED_1000)
  4447. val |= XMAC_CONFIG_MODE_GMII;
  4448. else
  4449. val |= XMAC_CONFIG_MODE_MII;
  4450. }
  4451. nw64_mac(XMAC_CONFIG, val);
  4452. }
  4453. static void niu_init_xif_bmac(struct niu *np)
  4454. {
  4455. struct niu_link_config *lp = &np->link_config;
  4456. u64 val;
  4457. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4458. if (lp->loopback_mode == LOOPBACK_MAC)
  4459. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4460. else
  4461. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4462. if (lp->active_speed == SPEED_1000)
  4463. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4464. else
  4465. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4466. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4467. BMAC_XIF_CONFIG_LED_POLARITY);
  4468. if (!(np->flags & NIU_FLAGS_10G) &&
  4469. !(np->flags & NIU_FLAGS_FIBER) &&
  4470. lp->active_speed == SPEED_100)
  4471. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4472. else
  4473. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4474. nw64_mac(BMAC_XIF_CONFIG, val);
  4475. }
  4476. static void niu_init_xif(struct niu *np)
  4477. {
  4478. if (np->flags & NIU_FLAGS_XMAC)
  4479. niu_init_xif_xmac(np);
  4480. else
  4481. niu_init_xif_bmac(np);
  4482. }
  4483. static void niu_pcs_mii_reset(struct niu *np)
  4484. {
  4485. int limit = 1000;
  4486. u64 val = nr64_pcs(PCS_MII_CTL);
  4487. val |= PCS_MII_CTL_RST;
  4488. nw64_pcs(PCS_MII_CTL, val);
  4489. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4490. udelay(100);
  4491. val = nr64_pcs(PCS_MII_CTL);
  4492. }
  4493. }
  4494. static void niu_xpcs_reset(struct niu *np)
  4495. {
  4496. int limit = 1000;
  4497. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4498. val |= XPCS_CONTROL1_RESET;
  4499. nw64_xpcs(XPCS_CONTROL1, val);
  4500. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4501. udelay(100);
  4502. val = nr64_xpcs(XPCS_CONTROL1);
  4503. }
  4504. }
  4505. static int niu_init_pcs(struct niu *np)
  4506. {
  4507. struct niu_link_config *lp = &np->link_config;
  4508. u64 val;
  4509. switch (np->flags & (NIU_FLAGS_10G |
  4510. NIU_FLAGS_FIBER |
  4511. NIU_FLAGS_XCVR_SERDES)) {
  4512. case NIU_FLAGS_FIBER:
  4513. /* 1G fiber */
  4514. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4515. nw64_pcs(PCS_DPATH_MODE, 0);
  4516. niu_pcs_mii_reset(np);
  4517. break;
  4518. case NIU_FLAGS_10G:
  4519. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4520. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4521. /* 10G SERDES */
  4522. if (!(np->flags & NIU_FLAGS_XMAC))
  4523. return -EINVAL;
  4524. /* 10G copper or fiber */
  4525. val = nr64_mac(XMAC_CONFIG);
  4526. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4527. nw64_mac(XMAC_CONFIG, val);
  4528. niu_xpcs_reset(np);
  4529. val = nr64_xpcs(XPCS_CONTROL1);
  4530. if (lp->loopback_mode == LOOPBACK_PHY)
  4531. val |= XPCS_CONTROL1_LOOPBACK;
  4532. else
  4533. val &= ~XPCS_CONTROL1_LOOPBACK;
  4534. nw64_xpcs(XPCS_CONTROL1, val);
  4535. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4536. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4537. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4538. break;
  4539. case NIU_FLAGS_XCVR_SERDES:
  4540. /* 1G SERDES */
  4541. niu_pcs_mii_reset(np);
  4542. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4543. nw64_pcs(PCS_DPATH_MODE, 0);
  4544. break;
  4545. case 0:
  4546. /* 1G copper */
  4547. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4548. /* 1G RGMII FIBER */
  4549. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4550. niu_pcs_mii_reset(np);
  4551. break;
  4552. default:
  4553. return -EINVAL;
  4554. }
  4555. return 0;
  4556. }
  4557. static int niu_reset_tx_xmac(struct niu *np)
  4558. {
  4559. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4560. (XTXMAC_SW_RST_REG_RS |
  4561. XTXMAC_SW_RST_SOFT_RST),
  4562. 1000, 100, "XTXMAC_SW_RST");
  4563. }
  4564. static int niu_reset_tx_bmac(struct niu *np)
  4565. {
  4566. int limit;
  4567. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4568. limit = 1000;
  4569. while (--limit >= 0) {
  4570. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4571. break;
  4572. udelay(100);
  4573. }
  4574. if (limit < 0) {
  4575. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  4576. "BTXMAC_SW_RST[%llx]\n",
  4577. np->port,
  4578. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4579. return -ENODEV;
  4580. }
  4581. return 0;
  4582. }
  4583. static int niu_reset_tx_mac(struct niu *np)
  4584. {
  4585. if (np->flags & NIU_FLAGS_XMAC)
  4586. return niu_reset_tx_xmac(np);
  4587. else
  4588. return niu_reset_tx_bmac(np);
  4589. }
  4590. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4591. {
  4592. u64 val;
  4593. val = nr64_mac(XMAC_MIN);
  4594. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4595. XMAC_MIN_RX_MIN_PKT_SIZE);
  4596. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4597. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4598. nw64_mac(XMAC_MIN, val);
  4599. nw64_mac(XMAC_MAX, max);
  4600. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4601. val = nr64_mac(XMAC_IPG);
  4602. if (np->flags & NIU_FLAGS_10G) {
  4603. val &= ~XMAC_IPG_IPG_XGMII;
  4604. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4605. } else {
  4606. val &= ~XMAC_IPG_IPG_MII_GMII;
  4607. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4608. }
  4609. nw64_mac(XMAC_IPG, val);
  4610. val = nr64_mac(XMAC_CONFIG);
  4611. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4612. XMAC_CONFIG_STRETCH_MODE |
  4613. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4614. XMAC_CONFIG_TX_ENABLE);
  4615. nw64_mac(XMAC_CONFIG, val);
  4616. nw64_mac(TXMAC_FRM_CNT, 0);
  4617. nw64_mac(TXMAC_BYTE_CNT, 0);
  4618. }
  4619. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4620. {
  4621. u64 val;
  4622. nw64_mac(BMAC_MIN_FRAME, min);
  4623. nw64_mac(BMAC_MAX_FRAME, max);
  4624. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4625. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4626. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4627. val = nr64_mac(BTXMAC_CONFIG);
  4628. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4629. BTXMAC_CONFIG_ENABLE);
  4630. nw64_mac(BTXMAC_CONFIG, val);
  4631. }
  4632. static void niu_init_tx_mac(struct niu *np)
  4633. {
  4634. u64 min, max;
  4635. min = 64;
  4636. if (np->dev->mtu > ETH_DATA_LEN)
  4637. max = 9216;
  4638. else
  4639. max = 1522;
  4640. /* The XMAC_MIN register only accepts values for TX min which
  4641. * have the low 3 bits cleared.
  4642. */
  4643. BUILD_BUG_ON(min & 0x7);
  4644. if (np->flags & NIU_FLAGS_XMAC)
  4645. niu_init_tx_xmac(np, min, max);
  4646. else
  4647. niu_init_tx_bmac(np, min, max);
  4648. }
  4649. static int niu_reset_rx_xmac(struct niu *np)
  4650. {
  4651. int limit;
  4652. nw64_mac(XRXMAC_SW_RST,
  4653. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4654. limit = 1000;
  4655. while (--limit >= 0) {
  4656. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4657. XRXMAC_SW_RST_SOFT_RST)))
  4658. break;
  4659. udelay(100);
  4660. }
  4661. if (limit < 0) {
  4662. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4663. "XRXMAC_SW_RST[%llx]\n",
  4664. np->port,
  4665. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4666. return -ENODEV;
  4667. }
  4668. return 0;
  4669. }
  4670. static int niu_reset_rx_bmac(struct niu *np)
  4671. {
  4672. int limit;
  4673. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4674. limit = 1000;
  4675. while (--limit >= 0) {
  4676. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4677. break;
  4678. udelay(100);
  4679. }
  4680. if (limit < 0) {
  4681. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4682. "BRXMAC_SW_RST[%llx]\n",
  4683. np->port,
  4684. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4685. return -ENODEV;
  4686. }
  4687. return 0;
  4688. }
  4689. static int niu_reset_rx_mac(struct niu *np)
  4690. {
  4691. if (np->flags & NIU_FLAGS_XMAC)
  4692. return niu_reset_rx_xmac(np);
  4693. else
  4694. return niu_reset_rx_bmac(np);
  4695. }
  4696. static void niu_init_rx_xmac(struct niu *np)
  4697. {
  4698. struct niu_parent *parent = np->parent;
  4699. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4700. int first_rdc_table = tp->first_table_num;
  4701. unsigned long i;
  4702. u64 val;
  4703. nw64_mac(XMAC_ADD_FILT0, 0);
  4704. nw64_mac(XMAC_ADD_FILT1, 0);
  4705. nw64_mac(XMAC_ADD_FILT2, 0);
  4706. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4707. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4708. for (i = 0; i < MAC_NUM_HASH; i++)
  4709. nw64_mac(XMAC_HASH_TBL(i), 0);
  4710. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4711. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4712. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4713. val = nr64_mac(XMAC_CONFIG);
  4714. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4715. XMAC_CONFIG_PROMISCUOUS |
  4716. XMAC_CONFIG_PROMISC_GROUP |
  4717. XMAC_CONFIG_ERR_CHK_DIS |
  4718. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4719. XMAC_CONFIG_RESERVED_MULTICAST |
  4720. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4721. XMAC_CONFIG_ADDR_FILTER_EN |
  4722. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4723. XMAC_CONFIG_STRIP_CRC |
  4724. XMAC_CONFIG_PASS_FLOW_CTRL |
  4725. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4726. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4727. nw64_mac(XMAC_CONFIG, val);
  4728. nw64_mac(RXMAC_BT_CNT, 0);
  4729. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4730. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4731. nw64_mac(RXMAC_FRAG_CNT, 0);
  4732. nw64_mac(RXMAC_HIST_CNT1, 0);
  4733. nw64_mac(RXMAC_HIST_CNT2, 0);
  4734. nw64_mac(RXMAC_HIST_CNT3, 0);
  4735. nw64_mac(RXMAC_HIST_CNT4, 0);
  4736. nw64_mac(RXMAC_HIST_CNT5, 0);
  4737. nw64_mac(RXMAC_HIST_CNT6, 0);
  4738. nw64_mac(RXMAC_HIST_CNT7, 0);
  4739. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4740. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4741. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4742. nw64_mac(LINK_FAULT_CNT, 0);
  4743. }
  4744. static void niu_init_rx_bmac(struct niu *np)
  4745. {
  4746. struct niu_parent *parent = np->parent;
  4747. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4748. int first_rdc_table = tp->first_table_num;
  4749. unsigned long i;
  4750. u64 val;
  4751. nw64_mac(BMAC_ADD_FILT0, 0);
  4752. nw64_mac(BMAC_ADD_FILT1, 0);
  4753. nw64_mac(BMAC_ADD_FILT2, 0);
  4754. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4755. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4756. for (i = 0; i < MAC_NUM_HASH; i++)
  4757. nw64_mac(BMAC_HASH_TBL(i), 0);
  4758. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4759. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4760. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4761. val = nr64_mac(BRXMAC_CONFIG);
  4762. val &= ~(BRXMAC_CONFIG_ENABLE |
  4763. BRXMAC_CONFIG_STRIP_PAD |
  4764. BRXMAC_CONFIG_STRIP_FCS |
  4765. BRXMAC_CONFIG_PROMISC |
  4766. BRXMAC_CONFIG_PROMISC_GRP |
  4767. BRXMAC_CONFIG_ADDR_FILT_EN |
  4768. BRXMAC_CONFIG_DISCARD_DIS);
  4769. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4770. nw64_mac(BRXMAC_CONFIG, val);
  4771. val = nr64_mac(BMAC_ADDR_CMPEN);
  4772. val |= BMAC_ADDR_CMPEN_EN0;
  4773. nw64_mac(BMAC_ADDR_CMPEN, val);
  4774. }
  4775. static void niu_init_rx_mac(struct niu *np)
  4776. {
  4777. niu_set_primary_mac(np, np->dev->dev_addr);
  4778. if (np->flags & NIU_FLAGS_XMAC)
  4779. niu_init_rx_xmac(np);
  4780. else
  4781. niu_init_rx_bmac(np);
  4782. }
  4783. static void niu_enable_tx_xmac(struct niu *np, int on)
  4784. {
  4785. u64 val = nr64_mac(XMAC_CONFIG);
  4786. if (on)
  4787. val |= XMAC_CONFIG_TX_ENABLE;
  4788. else
  4789. val &= ~XMAC_CONFIG_TX_ENABLE;
  4790. nw64_mac(XMAC_CONFIG, val);
  4791. }
  4792. static void niu_enable_tx_bmac(struct niu *np, int on)
  4793. {
  4794. u64 val = nr64_mac(BTXMAC_CONFIG);
  4795. if (on)
  4796. val |= BTXMAC_CONFIG_ENABLE;
  4797. else
  4798. val &= ~BTXMAC_CONFIG_ENABLE;
  4799. nw64_mac(BTXMAC_CONFIG, val);
  4800. }
  4801. static void niu_enable_tx_mac(struct niu *np, int on)
  4802. {
  4803. if (np->flags & NIU_FLAGS_XMAC)
  4804. niu_enable_tx_xmac(np, on);
  4805. else
  4806. niu_enable_tx_bmac(np, on);
  4807. }
  4808. static void niu_enable_rx_xmac(struct niu *np, int on)
  4809. {
  4810. u64 val = nr64_mac(XMAC_CONFIG);
  4811. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4812. XMAC_CONFIG_PROMISCUOUS);
  4813. if (np->flags & NIU_FLAGS_MCAST)
  4814. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4815. if (np->flags & NIU_FLAGS_PROMISC)
  4816. val |= XMAC_CONFIG_PROMISCUOUS;
  4817. if (on)
  4818. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4819. else
  4820. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4821. nw64_mac(XMAC_CONFIG, val);
  4822. }
  4823. static void niu_enable_rx_bmac(struct niu *np, int on)
  4824. {
  4825. u64 val = nr64_mac(BRXMAC_CONFIG);
  4826. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4827. BRXMAC_CONFIG_PROMISC);
  4828. if (np->flags & NIU_FLAGS_MCAST)
  4829. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4830. if (np->flags & NIU_FLAGS_PROMISC)
  4831. val |= BRXMAC_CONFIG_PROMISC;
  4832. if (on)
  4833. val |= BRXMAC_CONFIG_ENABLE;
  4834. else
  4835. val &= ~BRXMAC_CONFIG_ENABLE;
  4836. nw64_mac(BRXMAC_CONFIG, val);
  4837. }
  4838. static void niu_enable_rx_mac(struct niu *np, int on)
  4839. {
  4840. if (np->flags & NIU_FLAGS_XMAC)
  4841. niu_enable_rx_xmac(np, on);
  4842. else
  4843. niu_enable_rx_bmac(np, on);
  4844. }
  4845. static int niu_init_mac(struct niu *np)
  4846. {
  4847. int err;
  4848. niu_init_xif(np);
  4849. err = niu_init_pcs(np);
  4850. if (err)
  4851. return err;
  4852. err = niu_reset_tx_mac(np);
  4853. if (err)
  4854. return err;
  4855. niu_init_tx_mac(np);
  4856. err = niu_reset_rx_mac(np);
  4857. if (err)
  4858. return err;
  4859. niu_init_rx_mac(np);
  4860. /* This looks hookey but the RX MAC reset we just did will
  4861. * undo some of the state we setup in niu_init_tx_mac() so we
  4862. * have to call it again. In particular, the RX MAC reset will
  4863. * set the XMAC_MAX register back to it's default value.
  4864. */
  4865. niu_init_tx_mac(np);
  4866. niu_enable_tx_mac(np, 1);
  4867. niu_enable_rx_mac(np, 1);
  4868. return 0;
  4869. }
  4870. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4871. {
  4872. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4873. }
  4874. static void niu_stop_tx_channels(struct niu *np)
  4875. {
  4876. int i;
  4877. for (i = 0; i < np->num_tx_rings; i++) {
  4878. struct tx_ring_info *rp = &np->tx_rings[i];
  4879. niu_stop_one_tx_channel(np, rp);
  4880. }
  4881. }
  4882. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4883. {
  4884. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4885. }
  4886. static void niu_reset_tx_channels(struct niu *np)
  4887. {
  4888. int i;
  4889. for (i = 0; i < np->num_tx_rings; i++) {
  4890. struct tx_ring_info *rp = &np->tx_rings[i];
  4891. niu_reset_one_tx_channel(np, rp);
  4892. }
  4893. }
  4894. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4895. {
  4896. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4897. }
  4898. static void niu_stop_rx_channels(struct niu *np)
  4899. {
  4900. int i;
  4901. for (i = 0; i < np->num_rx_rings; i++) {
  4902. struct rx_ring_info *rp = &np->rx_rings[i];
  4903. niu_stop_one_rx_channel(np, rp);
  4904. }
  4905. }
  4906. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4907. {
  4908. int channel = rp->rx_channel;
  4909. (void) niu_rx_channel_reset(np, channel);
  4910. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4911. nw64(RX_DMA_CTL_STAT(channel), 0);
  4912. (void) niu_enable_rx_channel(np, channel, 0);
  4913. }
  4914. static void niu_reset_rx_channels(struct niu *np)
  4915. {
  4916. int i;
  4917. for (i = 0; i < np->num_rx_rings; i++) {
  4918. struct rx_ring_info *rp = &np->rx_rings[i];
  4919. niu_reset_one_rx_channel(np, rp);
  4920. }
  4921. }
  4922. static void niu_disable_ipp(struct niu *np)
  4923. {
  4924. u64 rd, wr, val;
  4925. int limit;
  4926. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4927. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4928. limit = 100;
  4929. while (--limit >= 0 && (rd != wr)) {
  4930. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4931. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4932. }
  4933. if (limit < 0 &&
  4934. (rd != 0 && wr != 1)) {
  4935. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4936. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4937. np->dev->name,
  4938. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4939. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4940. }
  4941. val = nr64_ipp(IPP_CFIG);
  4942. val &= ~(IPP_CFIG_IPP_ENABLE |
  4943. IPP_CFIG_DFIFO_ECC_EN |
  4944. IPP_CFIG_DROP_BAD_CRC |
  4945. IPP_CFIG_CKSUM_EN);
  4946. nw64_ipp(IPP_CFIG, val);
  4947. (void) niu_ipp_reset(np);
  4948. }
  4949. static int niu_init_hw(struct niu *np)
  4950. {
  4951. int i, err;
  4952. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4953. niu_txc_enable_port(np, 1);
  4954. niu_txc_port_dma_enable(np, 1);
  4955. niu_txc_set_imask(np, 0);
  4956. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4957. for (i = 0; i < np->num_tx_rings; i++) {
  4958. struct tx_ring_info *rp = &np->tx_rings[i];
  4959. err = niu_init_one_tx_channel(np, rp);
  4960. if (err)
  4961. return err;
  4962. }
  4963. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4964. err = niu_init_rx_channels(np);
  4965. if (err)
  4966. goto out_uninit_tx_channels;
  4967. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4968. err = niu_init_classifier_hw(np);
  4969. if (err)
  4970. goto out_uninit_rx_channels;
  4971. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4972. err = niu_init_zcp(np);
  4973. if (err)
  4974. goto out_uninit_rx_channels;
  4975. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4976. err = niu_init_ipp(np);
  4977. if (err)
  4978. goto out_uninit_rx_channels;
  4979. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4980. err = niu_init_mac(np);
  4981. if (err)
  4982. goto out_uninit_ipp;
  4983. return 0;
  4984. out_uninit_ipp:
  4985. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4986. niu_disable_ipp(np);
  4987. out_uninit_rx_channels:
  4988. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4989. niu_stop_rx_channels(np);
  4990. niu_reset_rx_channels(np);
  4991. out_uninit_tx_channels:
  4992. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4993. niu_stop_tx_channels(np);
  4994. niu_reset_tx_channels(np);
  4995. return err;
  4996. }
  4997. static void niu_stop_hw(struct niu *np)
  4998. {
  4999. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  5000. niu_enable_interrupts(np, 0);
  5001. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  5002. niu_enable_rx_mac(np, 0);
  5003. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  5004. niu_disable_ipp(np);
  5005. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  5006. niu_stop_tx_channels(np);
  5007. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  5008. niu_stop_rx_channels(np);
  5009. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  5010. niu_reset_tx_channels(np);
  5011. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  5012. niu_reset_rx_channels(np);
  5013. }
  5014. static void niu_set_irq_name(struct niu *np)
  5015. {
  5016. int port = np->port;
  5017. int i, j = 1;
  5018. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  5019. if (port == 0) {
  5020. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  5021. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  5022. j = 3;
  5023. }
  5024. for (i = 0; i < np->num_ldg - j; i++) {
  5025. if (i < np->num_rx_rings)
  5026. sprintf(np->irq_name[i+j], "%s-rx-%d",
  5027. np->dev->name, i);
  5028. else if (i < np->num_tx_rings + np->num_rx_rings)
  5029. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  5030. i - np->num_rx_rings);
  5031. }
  5032. }
  5033. static int niu_request_irq(struct niu *np)
  5034. {
  5035. int i, j, err;
  5036. niu_set_irq_name(np);
  5037. err = 0;
  5038. for (i = 0; i < np->num_ldg; i++) {
  5039. struct niu_ldg *lp = &np->ldg[i];
  5040. err = request_irq(lp->irq, niu_interrupt,
  5041. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  5042. np->irq_name[i], lp);
  5043. if (err)
  5044. goto out_free_irqs;
  5045. }
  5046. return 0;
  5047. out_free_irqs:
  5048. for (j = 0; j < i; j++) {
  5049. struct niu_ldg *lp = &np->ldg[j];
  5050. free_irq(lp->irq, lp);
  5051. }
  5052. return err;
  5053. }
  5054. static void niu_free_irq(struct niu *np)
  5055. {
  5056. int i;
  5057. for (i = 0; i < np->num_ldg; i++) {
  5058. struct niu_ldg *lp = &np->ldg[i];
  5059. free_irq(lp->irq, lp);
  5060. }
  5061. }
  5062. static void niu_enable_napi(struct niu *np)
  5063. {
  5064. int i;
  5065. for (i = 0; i < np->num_ldg; i++)
  5066. napi_enable(&np->ldg[i].napi);
  5067. }
  5068. static void niu_disable_napi(struct niu *np)
  5069. {
  5070. int i;
  5071. for (i = 0; i < np->num_ldg; i++)
  5072. napi_disable(&np->ldg[i].napi);
  5073. }
  5074. static int niu_open(struct net_device *dev)
  5075. {
  5076. struct niu *np = netdev_priv(dev);
  5077. int err;
  5078. netif_carrier_off(dev);
  5079. err = niu_alloc_channels(np);
  5080. if (err)
  5081. goto out_err;
  5082. err = niu_enable_interrupts(np, 0);
  5083. if (err)
  5084. goto out_free_channels;
  5085. err = niu_request_irq(np);
  5086. if (err)
  5087. goto out_free_channels;
  5088. niu_enable_napi(np);
  5089. spin_lock_irq(&np->lock);
  5090. err = niu_init_hw(np);
  5091. if (!err) {
  5092. init_timer(&np->timer);
  5093. np->timer.expires = jiffies + HZ;
  5094. np->timer.data = (unsigned long) np;
  5095. np->timer.function = niu_timer;
  5096. err = niu_enable_interrupts(np, 1);
  5097. if (err)
  5098. niu_stop_hw(np);
  5099. }
  5100. spin_unlock_irq(&np->lock);
  5101. if (err) {
  5102. niu_disable_napi(np);
  5103. goto out_free_irq;
  5104. }
  5105. netif_tx_start_all_queues(dev);
  5106. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5107. netif_carrier_on(dev);
  5108. add_timer(&np->timer);
  5109. return 0;
  5110. out_free_irq:
  5111. niu_free_irq(np);
  5112. out_free_channels:
  5113. niu_free_channels(np);
  5114. out_err:
  5115. return err;
  5116. }
  5117. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5118. {
  5119. cancel_work_sync(&np->reset_task);
  5120. niu_disable_napi(np);
  5121. netif_tx_stop_all_queues(dev);
  5122. del_timer_sync(&np->timer);
  5123. spin_lock_irq(&np->lock);
  5124. niu_stop_hw(np);
  5125. spin_unlock_irq(&np->lock);
  5126. }
  5127. static int niu_close(struct net_device *dev)
  5128. {
  5129. struct niu *np = netdev_priv(dev);
  5130. niu_full_shutdown(np, dev);
  5131. niu_free_irq(np);
  5132. niu_free_channels(np);
  5133. niu_handle_led(np, 0);
  5134. return 0;
  5135. }
  5136. static void niu_sync_xmac_stats(struct niu *np)
  5137. {
  5138. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5139. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5140. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5141. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5142. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5143. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5144. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5145. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5146. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5147. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5148. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5149. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5150. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5151. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5152. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5153. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5154. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5155. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5156. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5157. }
  5158. static void niu_sync_bmac_stats(struct niu *np)
  5159. {
  5160. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5161. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5162. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5163. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5164. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5165. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5166. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5167. }
  5168. static void niu_sync_mac_stats(struct niu *np)
  5169. {
  5170. if (np->flags & NIU_FLAGS_XMAC)
  5171. niu_sync_xmac_stats(np);
  5172. else
  5173. niu_sync_bmac_stats(np);
  5174. }
  5175. static void niu_get_rx_stats(struct niu *np)
  5176. {
  5177. unsigned long pkts, dropped, errors, bytes;
  5178. int i;
  5179. pkts = dropped = errors = bytes = 0;
  5180. for (i = 0; i < np->num_rx_rings; i++) {
  5181. struct rx_ring_info *rp = &np->rx_rings[i];
  5182. niu_sync_rx_discard_stats(np, rp, 0);
  5183. pkts += rp->rx_packets;
  5184. bytes += rp->rx_bytes;
  5185. dropped += rp->rx_dropped;
  5186. errors += rp->rx_errors;
  5187. }
  5188. np->dev->stats.rx_packets = pkts;
  5189. np->dev->stats.rx_bytes = bytes;
  5190. np->dev->stats.rx_dropped = dropped;
  5191. np->dev->stats.rx_errors = errors;
  5192. }
  5193. static void niu_get_tx_stats(struct niu *np)
  5194. {
  5195. unsigned long pkts, errors, bytes;
  5196. int i;
  5197. pkts = errors = bytes = 0;
  5198. for (i = 0; i < np->num_tx_rings; i++) {
  5199. struct tx_ring_info *rp = &np->tx_rings[i];
  5200. pkts += rp->tx_packets;
  5201. bytes += rp->tx_bytes;
  5202. errors += rp->tx_errors;
  5203. }
  5204. np->dev->stats.tx_packets = pkts;
  5205. np->dev->stats.tx_bytes = bytes;
  5206. np->dev->stats.tx_errors = errors;
  5207. }
  5208. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5209. {
  5210. struct niu *np = netdev_priv(dev);
  5211. niu_get_rx_stats(np);
  5212. niu_get_tx_stats(np);
  5213. return &dev->stats;
  5214. }
  5215. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5216. {
  5217. int i;
  5218. for (i = 0; i < 16; i++)
  5219. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5220. }
  5221. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5222. {
  5223. int i;
  5224. for (i = 0; i < 16; i++)
  5225. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5226. }
  5227. static void niu_load_hash(struct niu *np, u16 *hash)
  5228. {
  5229. if (np->flags & NIU_FLAGS_XMAC)
  5230. niu_load_hash_xmac(np, hash);
  5231. else
  5232. niu_load_hash_bmac(np, hash);
  5233. }
  5234. static void niu_set_rx_mode(struct net_device *dev)
  5235. {
  5236. struct niu *np = netdev_priv(dev);
  5237. int i, alt_cnt, err;
  5238. struct dev_addr_list *addr;
  5239. unsigned long flags;
  5240. u16 hash[16] = { 0, };
  5241. spin_lock_irqsave(&np->lock, flags);
  5242. niu_enable_rx_mac(np, 0);
  5243. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5244. if (dev->flags & IFF_PROMISC)
  5245. np->flags |= NIU_FLAGS_PROMISC;
  5246. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  5247. np->flags |= NIU_FLAGS_MCAST;
  5248. alt_cnt = dev->uc_count;
  5249. if (alt_cnt > niu_num_alt_addr(np)) {
  5250. alt_cnt = 0;
  5251. np->flags |= NIU_FLAGS_PROMISC;
  5252. }
  5253. if (alt_cnt) {
  5254. int index = 0;
  5255. for (addr = dev->uc_list; addr; addr = addr->next) {
  5256. err = niu_set_alt_mac(np, index,
  5257. addr->da_addr);
  5258. if (err)
  5259. printk(KERN_WARNING PFX "%s: Error %d "
  5260. "adding alt mac %d\n",
  5261. dev->name, err, index);
  5262. err = niu_enable_alt_mac(np, index, 1);
  5263. if (err)
  5264. printk(KERN_WARNING PFX "%s: Error %d "
  5265. "enabling alt mac %d\n",
  5266. dev->name, err, index);
  5267. index++;
  5268. }
  5269. } else {
  5270. int alt_start;
  5271. if (np->flags & NIU_FLAGS_XMAC)
  5272. alt_start = 0;
  5273. else
  5274. alt_start = 1;
  5275. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5276. err = niu_enable_alt_mac(np, i, 0);
  5277. if (err)
  5278. printk(KERN_WARNING PFX "%s: Error %d "
  5279. "disabling alt mac %d\n",
  5280. dev->name, err, i);
  5281. }
  5282. }
  5283. if (dev->flags & IFF_ALLMULTI) {
  5284. for (i = 0; i < 16; i++)
  5285. hash[i] = 0xffff;
  5286. } else if (dev->mc_count > 0) {
  5287. for (addr = dev->mc_list; addr; addr = addr->next) {
  5288. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5289. crc >>= 24;
  5290. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5291. }
  5292. }
  5293. if (np->flags & NIU_FLAGS_MCAST)
  5294. niu_load_hash(np, hash);
  5295. niu_enable_rx_mac(np, 1);
  5296. spin_unlock_irqrestore(&np->lock, flags);
  5297. }
  5298. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5299. {
  5300. struct niu *np = netdev_priv(dev);
  5301. struct sockaddr *addr = p;
  5302. unsigned long flags;
  5303. if (!is_valid_ether_addr(addr->sa_data))
  5304. return -EINVAL;
  5305. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5306. if (!netif_running(dev))
  5307. return 0;
  5308. spin_lock_irqsave(&np->lock, flags);
  5309. niu_enable_rx_mac(np, 0);
  5310. niu_set_primary_mac(np, dev->dev_addr);
  5311. niu_enable_rx_mac(np, 1);
  5312. spin_unlock_irqrestore(&np->lock, flags);
  5313. return 0;
  5314. }
  5315. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5316. {
  5317. return -EOPNOTSUPP;
  5318. }
  5319. static void niu_netif_stop(struct niu *np)
  5320. {
  5321. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5322. niu_disable_napi(np);
  5323. netif_tx_disable(np->dev);
  5324. }
  5325. static void niu_netif_start(struct niu *np)
  5326. {
  5327. /* NOTE: unconditional netif_wake_queue is only appropriate
  5328. * so long as all callers are assured to have free tx slots
  5329. * (such as after niu_init_hw).
  5330. */
  5331. netif_tx_wake_all_queues(np->dev);
  5332. niu_enable_napi(np);
  5333. niu_enable_interrupts(np, 1);
  5334. }
  5335. static void niu_reset_buffers(struct niu *np)
  5336. {
  5337. int i, j, k, err;
  5338. if (np->rx_rings) {
  5339. for (i = 0; i < np->num_rx_rings; i++) {
  5340. struct rx_ring_info *rp = &np->rx_rings[i];
  5341. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5342. struct page *page;
  5343. page = rp->rxhash[j];
  5344. while (page) {
  5345. struct page *next =
  5346. (struct page *) page->mapping;
  5347. u64 base = page->index;
  5348. base = base >> RBR_DESCR_ADDR_SHIFT;
  5349. rp->rbr[k++] = cpu_to_le32(base);
  5350. page = next;
  5351. }
  5352. }
  5353. for (; k < MAX_RBR_RING_SIZE; k++) {
  5354. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5355. if (unlikely(err))
  5356. break;
  5357. }
  5358. rp->rbr_index = rp->rbr_table_size - 1;
  5359. rp->rcr_index = 0;
  5360. rp->rbr_pending = 0;
  5361. rp->rbr_refill_pending = 0;
  5362. }
  5363. }
  5364. if (np->tx_rings) {
  5365. for (i = 0; i < np->num_tx_rings; i++) {
  5366. struct tx_ring_info *rp = &np->tx_rings[i];
  5367. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5368. if (rp->tx_buffs[j].skb)
  5369. (void) release_tx_packet(np, rp, j);
  5370. }
  5371. rp->pending = MAX_TX_RING_SIZE;
  5372. rp->prod = 0;
  5373. rp->cons = 0;
  5374. rp->wrap_bit = 0;
  5375. }
  5376. }
  5377. }
  5378. static void niu_reset_task(struct work_struct *work)
  5379. {
  5380. struct niu *np = container_of(work, struct niu, reset_task);
  5381. unsigned long flags;
  5382. int err;
  5383. spin_lock_irqsave(&np->lock, flags);
  5384. if (!netif_running(np->dev)) {
  5385. spin_unlock_irqrestore(&np->lock, flags);
  5386. return;
  5387. }
  5388. spin_unlock_irqrestore(&np->lock, flags);
  5389. del_timer_sync(&np->timer);
  5390. niu_netif_stop(np);
  5391. spin_lock_irqsave(&np->lock, flags);
  5392. niu_stop_hw(np);
  5393. spin_unlock_irqrestore(&np->lock, flags);
  5394. niu_reset_buffers(np);
  5395. spin_lock_irqsave(&np->lock, flags);
  5396. err = niu_init_hw(np);
  5397. if (!err) {
  5398. np->timer.expires = jiffies + HZ;
  5399. add_timer(&np->timer);
  5400. niu_netif_start(np);
  5401. }
  5402. spin_unlock_irqrestore(&np->lock, flags);
  5403. }
  5404. static void niu_tx_timeout(struct net_device *dev)
  5405. {
  5406. struct niu *np = netdev_priv(dev);
  5407. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  5408. dev->name);
  5409. schedule_work(&np->reset_task);
  5410. }
  5411. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5412. u64 mapping, u64 len, u64 mark,
  5413. u64 n_frags)
  5414. {
  5415. __le64 *desc = &rp->descr[index];
  5416. *desc = cpu_to_le64(mark |
  5417. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5418. (len << TX_DESC_TR_LEN_SHIFT) |
  5419. (mapping & TX_DESC_SAD));
  5420. }
  5421. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5422. u64 pad_bytes, u64 len)
  5423. {
  5424. u16 eth_proto, eth_proto_inner;
  5425. u64 csum_bits, l3off, ihl, ret;
  5426. u8 ip_proto;
  5427. int ipv6;
  5428. eth_proto = be16_to_cpu(ehdr->h_proto);
  5429. eth_proto_inner = eth_proto;
  5430. if (eth_proto == ETH_P_8021Q) {
  5431. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5432. __be16 val = vp->h_vlan_encapsulated_proto;
  5433. eth_proto_inner = be16_to_cpu(val);
  5434. }
  5435. ipv6 = ihl = 0;
  5436. switch (skb->protocol) {
  5437. case cpu_to_be16(ETH_P_IP):
  5438. ip_proto = ip_hdr(skb)->protocol;
  5439. ihl = ip_hdr(skb)->ihl;
  5440. break;
  5441. case cpu_to_be16(ETH_P_IPV6):
  5442. ip_proto = ipv6_hdr(skb)->nexthdr;
  5443. ihl = (40 >> 2);
  5444. ipv6 = 1;
  5445. break;
  5446. default:
  5447. ip_proto = ihl = 0;
  5448. break;
  5449. }
  5450. csum_bits = TXHDR_CSUM_NONE;
  5451. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5452. u64 start, stuff;
  5453. csum_bits = (ip_proto == IPPROTO_TCP ?
  5454. TXHDR_CSUM_TCP :
  5455. (ip_proto == IPPROTO_UDP ?
  5456. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5457. start = skb_transport_offset(skb) -
  5458. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5459. stuff = start + skb->csum_offset;
  5460. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5461. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5462. }
  5463. l3off = skb_network_offset(skb) -
  5464. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5465. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5466. (len << TXHDR_LEN_SHIFT) |
  5467. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5468. (ihl << TXHDR_IHL_SHIFT) |
  5469. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5470. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5471. (ipv6 ? TXHDR_IP_VER : 0) |
  5472. csum_bits);
  5473. return ret;
  5474. }
  5475. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5476. {
  5477. struct niu *np = netdev_priv(dev);
  5478. unsigned long align, headroom;
  5479. struct netdev_queue *txq;
  5480. struct tx_ring_info *rp;
  5481. struct tx_pkt_hdr *tp;
  5482. unsigned int len, nfg;
  5483. struct ethhdr *ehdr;
  5484. int prod, i, tlen;
  5485. u64 mapping, mrk;
  5486. i = skb_get_queue_mapping(skb);
  5487. rp = &np->tx_rings[i];
  5488. txq = netdev_get_tx_queue(dev, i);
  5489. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5490. netif_tx_stop_queue(txq);
  5491. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  5492. "queue awake!\n", dev->name);
  5493. rp->tx_errors++;
  5494. return NETDEV_TX_BUSY;
  5495. }
  5496. if (skb->len < ETH_ZLEN) {
  5497. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5498. if (skb_pad(skb, pad_bytes))
  5499. goto out;
  5500. skb_put(skb, pad_bytes);
  5501. }
  5502. len = sizeof(struct tx_pkt_hdr) + 15;
  5503. if (skb_headroom(skb) < len) {
  5504. struct sk_buff *skb_new;
  5505. skb_new = skb_realloc_headroom(skb, len);
  5506. if (!skb_new) {
  5507. rp->tx_errors++;
  5508. goto out_drop;
  5509. }
  5510. kfree_skb(skb);
  5511. skb = skb_new;
  5512. } else
  5513. skb_orphan(skb);
  5514. align = ((unsigned long) skb->data & (16 - 1));
  5515. headroom = align + sizeof(struct tx_pkt_hdr);
  5516. ehdr = (struct ethhdr *) skb->data;
  5517. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5518. len = skb->len - sizeof(struct tx_pkt_hdr);
  5519. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5520. tp->resv = 0;
  5521. len = skb_headlen(skb);
  5522. mapping = np->ops->map_single(np->device, skb->data,
  5523. len, DMA_TO_DEVICE);
  5524. prod = rp->prod;
  5525. rp->tx_buffs[prod].skb = skb;
  5526. rp->tx_buffs[prod].mapping = mapping;
  5527. mrk = TX_DESC_SOP;
  5528. if (++rp->mark_counter == rp->mark_freq) {
  5529. rp->mark_counter = 0;
  5530. mrk |= TX_DESC_MARK;
  5531. rp->mark_pending++;
  5532. }
  5533. tlen = len;
  5534. nfg = skb_shinfo(skb)->nr_frags;
  5535. while (tlen > 0) {
  5536. tlen -= MAX_TX_DESC_LEN;
  5537. nfg++;
  5538. }
  5539. while (len > 0) {
  5540. unsigned int this_len = len;
  5541. if (this_len > MAX_TX_DESC_LEN)
  5542. this_len = MAX_TX_DESC_LEN;
  5543. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5544. mrk = nfg = 0;
  5545. prod = NEXT_TX(rp, prod);
  5546. mapping += this_len;
  5547. len -= this_len;
  5548. }
  5549. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5550. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5551. len = frag->size;
  5552. mapping = np->ops->map_page(np->device, frag->page,
  5553. frag->page_offset, len,
  5554. DMA_TO_DEVICE);
  5555. rp->tx_buffs[prod].skb = NULL;
  5556. rp->tx_buffs[prod].mapping = mapping;
  5557. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5558. prod = NEXT_TX(rp, prod);
  5559. }
  5560. if (prod < rp->prod)
  5561. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5562. rp->prod = prod;
  5563. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5564. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5565. netif_tx_stop_queue(txq);
  5566. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5567. netif_tx_wake_queue(txq);
  5568. }
  5569. out:
  5570. return NETDEV_TX_OK;
  5571. out_drop:
  5572. rp->tx_errors++;
  5573. kfree_skb(skb);
  5574. goto out;
  5575. }
  5576. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5577. {
  5578. struct niu *np = netdev_priv(dev);
  5579. int err, orig_jumbo, new_jumbo;
  5580. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5581. return -EINVAL;
  5582. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5583. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5584. dev->mtu = new_mtu;
  5585. if (!netif_running(dev) ||
  5586. (orig_jumbo == new_jumbo))
  5587. return 0;
  5588. niu_full_shutdown(np, dev);
  5589. niu_free_channels(np);
  5590. niu_enable_napi(np);
  5591. err = niu_alloc_channels(np);
  5592. if (err)
  5593. return err;
  5594. spin_lock_irq(&np->lock);
  5595. err = niu_init_hw(np);
  5596. if (!err) {
  5597. init_timer(&np->timer);
  5598. np->timer.expires = jiffies + HZ;
  5599. np->timer.data = (unsigned long) np;
  5600. np->timer.function = niu_timer;
  5601. err = niu_enable_interrupts(np, 1);
  5602. if (err)
  5603. niu_stop_hw(np);
  5604. }
  5605. spin_unlock_irq(&np->lock);
  5606. if (!err) {
  5607. netif_tx_start_all_queues(dev);
  5608. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5609. netif_carrier_on(dev);
  5610. add_timer(&np->timer);
  5611. }
  5612. return err;
  5613. }
  5614. static void niu_get_drvinfo(struct net_device *dev,
  5615. struct ethtool_drvinfo *info)
  5616. {
  5617. struct niu *np = netdev_priv(dev);
  5618. struct niu_vpd *vpd = &np->vpd;
  5619. strcpy(info->driver, DRV_MODULE_NAME);
  5620. strcpy(info->version, DRV_MODULE_VERSION);
  5621. sprintf(info->fw_version, "%d.%d",
  5622. vpd->fcode_major, vpd->fcode_minor);
  5623. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5624. strcpy(info->bus_info, pci_name(np->pdev));
  5625. }
  5626. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5627. {
  5628. struct niu *np = netdev_priv(dev);
  5629. struct niu_link_config *lp;
  5630. lp = &np->link_config;
  5631. memset(cmd, 0, sizeof(*cmd));
  5632. cmd->phy_address = np->phy_addr;
  5633. cmd->supported = lp->supported;
  5634. cmd->advertising = lp->active_advertising;
  5635. cmd->autoneg = lp->active_autoneg;
  5636. cmd->speed = lp->active_speed;
  5637. cmd->duplex = lp->active_duplex;
  5638. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5639. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5640. XCVR_EXTERNAL : XCVR_INTERNAL;
  5641. return 0;
  5642. }
  5643. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5644. {
  5645. struct niu *np = netdev_priv(dev);
  5646. struct niu_link_config *lp = &np->link_config;
  5647. lp->advertising = cmd->advertising;
  5648. lp->speed = cmd->speed;
  5649. lp->duplex = cmd->duplex;
  5650. lp->autoneg = cmd->autoneg;
  5651. return niu_init_link(np);
  5652. }
  5653. static u32 niu_get_msglevel(struct net_device *dev)
  5654. {
  5655. struct niu *np = netdev_priv(dev);
  5656. return np->msg_enable;
  5657. }
  5658. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5659. {
  5660. struct niu *np = netdev_priv(dev);
  5661. np->msg_enable = value;
  5662. }
  5663. static int niu_nway_reset(struct net_device *dev)
  5664. {
  5665. struct niu *np = netdev_priv(dev);
  5666. if (np->link_config.autoneg)
  5667. return niu_init_link(np);
  5668. return 0;
  5669. }
  5670. static int niu_get_eeprom_len(struct net_device *dev)
  5671. {
  5672. struct niu *np = netdev_priv(dev);
  5673. return np->eeprom_len;
  5674. }
  5675. static int niu_get_eeprom(struct net_device *dev,
  5676. struct ethtool_eeprom *eeprom, u8 *data)
  5677. {
  5678. struct niu *np = netdev_priv(dev);
  5679. u32 offset, len, val;
  5680. offset = eeprom->offset;
  5681. len = eeprom->len;
  5682. if (offset + len < offset)
  5683. return -EINVAL;
  5684. if (offset >= np->eeprom_len)
  5685. return -EINVAL;
  5686. if (offset + len > np->eeprom_len)
  5687. len = eeprom->len = np->eeprom_len - offset;
  5688. if (offset & 3) {
  5689. u32 b_offset, b_count;
  5690. b_offset = offset & 3;
  5691. b_count = 4 - b_offset;
  5692. if (b_count > len)
  5693. b_count = len;
  5694. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5695. memcpy(data, ((char *)&val) + b_offset, b_count);
  5696. data += b_count;
  5697. len -= b_count;
  5698. offset += b_count;
  5699. }
  5700. while (len >= 4) {
  5701. val = nr64(ESPC_NCR(offset / 4));
  5702. memcpy(data, &val, 4);
  5703. data += 4;
  5704. len -= 4;
  5705. offset += 4;
  5706. }
  5707. if (len) {
  5708. val = nr64(ESPC_NCR(offset / 4));
  5709. memcpy(data, &val, len);
  5710. }
  5711. return 0;
  5712. }
  5713. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5714. {
  5715. switch (flow_type) {
  5716. case TCP_V4_FLOW:
  5717. case TCP_V6_FLOW:
  5718. *pid = IPPROTO_TCP;
  5719. break;
  5720. case UDP_V4_FLOW:
  5721. case UDP_V6_FLOW:
  5722. *pid = IPPROTO_UDP;
  5723. break;
  5724. case SCTP_V4_FLOW:
  5725. case SCTP_V6_FLOW:
  5726. *pid = IPPROTO_SCTP;
  5727. break;
  5728. case AH_V4_FLOW:
  5729. case AH_V6_FLOW:
  5730. *pid = IPPROTO_AH;
  5731. break;
  5732. case ESP_V4_FLOW:
  5733. case ESP_V6_FLOW:
  5734. *pid = IPPROTO_ESP;
  5735. break;
  5736. default:
  5737. *pid = 0;
  5738. break;
  5739. }
  5740. }
  5741. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5742. {
  5743. switch (class) {
  5744. case CLASS_CODE_TCP_IPV4:
  5745. *flow_type = TCP_V4_FLOW;
  5746. break;
  5747. case CLASS_CODE_UDP_IPV4:
  5748. *flow_type = UDP_V4_FLOW;
  5749. break;
  5750. case CLASS_CODE_AH_ESP_IPV4:
  5751. *flow_type = AH_V4_FLOW;
  5752. break;
  5753. case CLASS_CODE_SCTP_IPV4:
  5754. *flow_type = SCTP_V4_FLOW;
  5755. break;
  5756. case CLASS_CODE_TCP_IPV6:
  5757. *flow_type = TCP_V6_FLOW;
  5758. break;
  5759. case CLASS_CODE_UDP_IPV6:
  5760. *flow_type = UDP_V6_FLOW;
  5761. break;
  5762. case CLASS_CODE_AH_ESP_IPV6:
  5763. *flow_type = AH_V6_FLOW;
  5764. break;
  5765. case CLASS_CODE_SCTP_IPV6:
  5766. *flow_type = SCTP_V6_FLOW;
  5767. break;
  5768. case CLASS_CODE_USER_PROG1:
  5769. case CLASS_CODE_USER_PROG2:
  5770. case CLASS_CODE_USER_PROG3:
  5771. case CLASS_CODE_USER_PROG4:
  5772. *flow_type = IP_USER_FLOW;
  5773. break;
  5774. default:
  5775. return 0;
  5776. }
  5777. return 1;
  5778. }
  5779. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5780. {
  5781. switch (flow_type) {
  5782. case TCP_V4_FLOW:
  5783. *class = CLASS_CODE_TCP_IPV4;
  5784. break;
  5785. case UDP_V4_FLOW:
  5786. *class = CLASS_CODE_UDP_IPV4;
  5787. break;
  5788. case AH_V4_FLOW:
  5789. case ESP_V4_FLOW:
  5790. *class = CLASS_CODE_AH_ESP_IPV4;
  5791. break;
  5792. case SCTP_V4_FLOW:
  5793. *class = CLASS_CODE_SCTP_IPV4;
  5794. break;
  5795. case TCP_V6_FLOW:
  5796. *class = CLASS_CODE_TCP_IPV6;
  5797. break;
  5798. case UDP_V6_FLOW:
  5799. *class = CLASS_CODE_UDP_IPV6;
  5800. break;
  5801. case AH_V6_FLOW:
  5802. case ESP_V6_FLOW:
  5803. *class = CLASS_CODE_AH_ESP_IPV6;
  5804. break;
  5805. case SCTP_V6_FLOW:
  5806. *class = CLASS_CODE_SCTP_IPV6;
  5807. break;
  5808. default:
  5809. return 0;
  5810. }
  5811. return 1;
  5812. }
  5813. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5814. {
  5815. u64 ethflow = 0;
  5816. if (flow_key & FLOW_KEY_L2DA)
  5817. ethflow |= RXH_L2DA;
  5818. if (flow_key & FLOW_KEY_VLAN)
  5819. ethflow |= RXH_VLAN;
  5820. if (flow_key & FLOW_KEY_IPSA)
  5821. ethflow |= RXH_IP_SRC;
  5822. if (flow_key & FLOW_KEY_IPDA)
  5823. ethflow |= RXH_IP_DST;
  5824. if (flow_key & FLOW_KEY_PROTO)
  5825. ethflow |= RXH_L3_PROTO;
  5826. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5827. ethflow |= RXH_L4_B_0_1;
  5828. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5829. ethflow |= RXH_L4_B_2_3;
  5830. return ethflow;
  5831. }
  5832. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5833. {
  5834. u64 key = 0;
  5835. if (ethflow & RXH_L2DA)
  5836. key |= FLOW_KEY_L2DA;
  5837. if (ethflow & RXH_VLAN)
  5838. key |= FLOW_KEY_VLAN;
  5839. if (ethflow & RXH_IP_SRC)
  5840. key |= FLOW_KEY_IPSA;
  5841. if (ethflow & RXH_IP_DST)
  5842. key |= FLOW_KEY_IPDA;
  5843. if (ethflow & RXH_L3_PROTO)
  5844. key |= FLOW_KEY_PROTO;
  5845. if (ethflow & RXH_L4_B_0_1)
  5846. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5847. if (ethflow & RXH_L4_B_2_3)
  5848. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5849. *flow_key = key;
  5850. return 1;
  5851. }
  5852. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5853. {
  5854. u64 class;
  5855. nfc->data = 0;
  5856. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5857. return -EINVAL;
  5858. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5859. TCAM_KEY_DISC)
  5860. nfc->data = RXH_DISCARD;
  5861. else
  5862. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5863. CLASS_CODE_USER_PROG1]);
  5864. return 0;
  5865. }
  5866. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5867. struct ethtool_rx_flow_spec *fsp)
  5868. {
  5869. fsp->h_u.tcp_ip4_spec.ip4src = (tp->key[3] & TCAM_V4KEY3_SADDR) >>
  5870. TCAM_V4KEY3_SADDR_SHIFT;
  5871. fsp->h_u.tcp_ip4_spec.ip4dst = (tp->key[3] & TCAM_V4KEY3_DADDR) >>
  5872. TCAM_V4KEY3_DADDR_SHIFT;
  5873. fsp->m_u.tcp_ip4_spec.ip4src = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >>
  5874. TCAM_V4KEY3_SADDR_SHIFT;
  5875. fsp->m_u.tcp_ip4_spec.ip4dst = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >>
  5876. TCAM_V4KEY3_DADDR_SHIFT;
  5877. fsp->h_u.tcp_ip4_spec.ip4src =
  5878. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4src);
  5879. fsp->m_u.tcp_ip4_spec.ip4src =
  5880. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4src);
  5881. fsp->h_u.tcp_ip4_spec.ip4dst =
  5882. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4dst);
  5883. fsp->m_u.tcp_ip4_spec.ip4dst =
  5884. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4dst);
  5885. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5886. TCAM_V4KEY2_TOS_SHIFT;
  5887. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5888. TCAM_V4KEY2_TOS_SHIFT;
  5889. switch (fsp->flow_type) {
  5890. case TCP_V4_FLOW:
  5891. case UDP_V4_FLOW:
  5892. case SCTP_V4_FLOW:
  5893. fsp->h_u.tcp_ip4_spec.psrc =
  5894. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5895. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5896. fsp->h_u.tcp_ip4_spec.pdst =
  5897. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5898. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5899. fsp->m_u.tcp_ip4_spec.psrc =
  5900. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5901. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5902. fsp->m_u.tcp_ip4_spec.pdst =
  5903. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5904. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5905. fsp->h_u.tcp_ip4_spec.psrc =
  5906. cpu_to_be16(fsp->h_u.tcp_ip4_spec.psrc);
  5907. fsp->h_u.tcp_ip4_spec.pdst =
  5908. cpu_to_be16(fsp->h_u.tcp_ip4_spec.pdst);
  5909. fsp->m_u.tcp_ip4_spec.psrc =
  5910. cpu_to_be16(fsp->m_u.tcp_ip4_spec.psrc);
  5911. fsp->m_u.tcp_ip4_spec.pdst =
  5912. cpu_to_be16(fsp->m_u.tcp_ip4_spec.pdst);
  5913. break;
  5914. case AH_V4_FLOW:
  5915. case ESP_V4_FLOW:
  5916. fsp->h_u.ah_ip4_spec.spi =
  5917. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5918. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5919. fsp->m_u.ah_ip4_spec.spi =
  5920. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5921. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5922. fsp->h_u.ah_ip4_spec.spi =
  5923. cpu_to_be32(fsp->h_u.ah_ip4_spec.spi);
  5924. fsp->m_u.ah_ip4_spec.spi =
  5925. cpu_to_be32(fsp->m_u.ah_ip4_spec.spi);
  5926. break;
  5927. case IP_USER_FLOW:
  5928. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5929. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5930. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5931. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5932. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5933. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5934. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5935. cpu_to_be32(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  5936. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5937. cpu_to_be32(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  5938. fsp->h_u.usr_ip4_spec.proto =
  5939. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5940. TCAM_V4KEY2_PROTO_SHIFT;
  5941. fsp->m_u.usr_ip4_spec.proto =
  5942. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5943. TCAM_V4KEY2_PROTO_SHIFT;
  5944. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5945. break;
  5946. default:
  5947. break;
  5948. }
  5949. }
  5950. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5951. struct ethtool_rxnfc *nfc)
  5952. {
  5953. struct niu_parent *parent = np->parent;
  5954. struct niu_tcam_entry *tp;
  5955. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5956. u16 idx;
  5957. u64 class;
  5958. int ret = 0;
  5959. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5960. tp = &parent->tcam[idx];
  5961. if (!tp->valid) {
  5962. pr_info(PFX "niu%d: %s entry [%d] invalid for idx[%d]\n",
  5963. parent->index, np->dev->name, (u16)nfc->fs.location, idx);
  5964. return -EINVAL;
  5965. }
  5966. /* fill the flow spec entry */
  5967. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5968. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5969. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5970. if (ret < 0) {
  5971. pr_info(PFX "niu%d: %s niu_class_to_ethflow failed\n",
  5972. parent->index, np->dev->name);
  5973. ret = -EINVAL;
  5974. goto out;
  5975. }
  5976. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5977. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5978. TCAM_V4KEY2_PROTO_SHIFT;
  5979. if (proto == IPPROTO_ESP) {
  5980. if (fsp->flow_type == AH_V4_FLOW)
  5981. fsp->flow_type = ESP_V4_FLOW;
  5982. else
  5983. fsp->flow_type = ESP_V6_FLOW;
  5984. }
  5985. }
  5986. switch (fsp->flow_type) {
  5987. case TCP_V4_FLOW:
  5988. case UDP_V4_FLOW:
  5989. case SCTP_V4_FLOW:
  5990. case AH_V4_FLOW:
  5991. case ESP_V4_FLOW:
  5992. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5993. break;
  5994. case TCP_V6_FLOW:
  5995. case UDP_V6_FLOW:
  5996. case SCTP_V6_FLOW:
  5997. case AH_V6_FLOW:
  5998. case ESP_V6_FLOW:
  5999. /* Not yet implemented */
  6000. ret = -EINVAL;
  6001. break;
  6002. case IP_USER_FLOW:
  6003. niu_get_ip4fs_from_tcam_key(tp, fsp);
  6004. break;
  6005. default:
  6006. ret = -EINVAL;
  6007. break;
  6008. }
  6009. if (ret < 0)
  6010. goto out;
  6011. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  6012. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  6013. else
  6014. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  6015. TCAM_ASSOCDATA_OFFSET_SHIFT;
  6016. /* put the tcam size here */
  6017. nfc->data = tcam_get_size(np);
  6018. out:
  6019. return ret;
  6020. }
  6021. static int niu_get_ethtool_tcam_all(struct niu *np,
  6022. struct ethtool_rxnfc *nfc,
  6023. u32 *rule_locs)
  6024. {
  6025. struct niu_parent *parent = np->parent;
  6026. struct niu_tcam_entry *tp;
  6027. int i, idx, cnt;
  6028. u16 n_entries;
  6029. unsigned long flags;
  6030. /* put the tcam size here */
  6031. nfc->data = tcam_get_size(np);
  6032. niu_lock_parent(np, flags);
  6033. n_entries = nfc->rule_cnt;
  6034. for (cnt = 0, i = 0; i < nfc->data; i++) {
  6035. idx = tcam_get_index(np, i);
  6036. tp = &parent->tcam[idx];
  6037. if (!tp->valid)
  6038. continue;
  6039. rule_locs[cnt] = i;
  6040. cnt++;
  6041. }
  6042. niu_unlock_parent(np, flags);
  6043. if (n_entries != cnt) {
  6044. /* print warning, this should not happen */
  6045. pr_info(PFX "niu%d: %s In niu_get_ethtool_tcam_all, "
  6046. "n_entries[%d] != cnt[%d]!!!\n\n",
  6047. np->parent->index, np->dev->name, n_entries, cnt);
  6048. }
  6049. return 0;
  6050. }
  6051. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6052. void *rule_locs)
  6053. {
  6054. struct niu *np = netdev_priv(dev);
  6055. int ret = 0;
  6056. switch (cmd->cmd) {
  6057. case ETHTOOL_GRXFH:
  6058. ret = niu_get_hash_opts(np, cmd);
  6059. break;
  6060. case ETHTOOL_GRXRINGS:
  6061. cmd->data = np->num_rx_rings;
  6062. break;
  6063. case ETHTOOL_GRXCLSRLCNT:
  6064. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6065. break;
  6066. case ETHTOOL_GRXCLSRULE:
  6067. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6068. break;
  6069. case ETHTOOL_GRXCLSRLALL:
  6070. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6071. break;
  6072. default:
  6073. ret = -EINVAL;
  6074. break;
  6075. }
  6076. return ret;
  6077. }
  6078. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6079. {
  6080. u64 class;
  6081. u64 flow_key = 0;
  6082. unsigned long flags;
  6083. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6084. return -EINVAL;
  6085. if (class < CLASS_CODE_USER_PROG1 ||
  6086. class > CLASS_CODE_SCTP_IPV6)
  6087. return -EINVAL;
  6088. if (nfc->data & RXH_DISCARD) {
  6089. niu_lock_parent(np, flags);
  6090. flow_key = np->parent->tcam_key[class -
  6091. CLASS_CODE_USER_PROG1];
  6092. flow_key |= TCAM_KEY_DISC;
  6093. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6094. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6095. niu_unlock_parent(np, flags);
  6096. return 0;
  6097. } else {
  6098. /* Discard was set before, but is not set now */
  6099. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6100. TCAM_KEY_DISC) {
  6101. niu_lock_parent(np, flags);
  6102. flow_key = np->parent->tcam_key[class -
  6103. CLASS_CODE_USER_PROG1];
  6104. flow_key &= ~TCAM_KEY_DISC;
  6105. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6106. flow_key);
  6107. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6108. flow_key;
  6109. niu_unlock_parent(np, flags);
  6110. }
  6111. }
  6112. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6113. return -EINVAL;
  6114. niu_lock_parent(np, flags);
  6115. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6116. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6117. niu_unlock_parent(np, flags);
  6118. return 0;
  6119. }
  6120. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6121. struct niu_tcam_entry *tp,
  6122. int l2_rdc_tab, u64 class)
  6123. {
  6124. u8 pid = 0;
  6125. u32 sip, dip, sipm, dipm, spi, spim;
  6126. u16 sport, dport, spm, dpm;
  6127. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6128. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6129. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6130. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6131. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6132. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6133. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6134. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6135. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6136. tp->key[3] |= dip;
  6137. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6138. tp->key_mask[3] |= dipm;
  6139. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6140. TCAM_V4KEY2_TOS_SHIFT);
  6141. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6142. TCAM_V4KEY2_TOS_SHIFT);
  6143. switch (fsp->flow_type) {
  6144. case TCP_V4_FLOW:
  6145. case UDP_V4_FLOW:
  6146. case SCTP_V4_FLOW:
  6147. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6148. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6149. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6150. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6151. tp->key[2] |= (((u64)sport << 16) | dport);
  6152. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6153. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6154. break;
  6155. case AH_V4_FLOW:
  6156. case ESP_V4_FLOW:
  6157. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6158. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6159. tp->key[2] |= spi;
  6160. tp->key_mask[2] |= spim;
  6161. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6162. break;
  6163. case IP_USER_FLOW:
  6164. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6165. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6166. tp->key[2] |= spi;
  6167. tp->key_mask[2] |= spim;
  6168. pid = fsp->h_u.usr_ip4_spec.proto;
  6169. break;
  6170. default:
  6171. break;
  6172. }
  6173. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6174. if (pid) {
  6175. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6176. }
  6177. }
  6178. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6179. struct ethtool_rxnfc *nfc)
  6180. {
  6181. struct niu_parent *parent = np->parent;
  6182. struct niu_tcam_entry *tp;
  6183. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6184. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6185. int l2_rdc_table = rdc_table->first_table_num;
  6186. u16 idx;
  6187. u64 class;
  6188. unsigned long flags;
  6189. int err, ret;
  6190. ret = 0;
  6191. idx = nfc->fs.location;
  6192. if (idx >= tcam_get_size(np))
  6193. return -EINVAL;
  6194. if (fsp->flow_type == IP_USER_FLOW) {
  6195. int i;
  6196. int add_usr_cls = 0;
  6197. int ipv6 = 0;
  6198. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6199. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6200. niu_lock_parent(np, flags);
  6201. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6202. if (parent->l3_cls[i]) {
  6203. if (uspec->proto == parent->l3_cls_pid[i]) {
  6204. class = parent->l3_cls[i];
  6205. parent->l3_cls_refcnt[i]++;
  6206. add_usr_cls = 1;
  6207. break;
  6208. }
  6209. } else {
  6210. /* Program new user IP class */
  6211. switch (i) {
  6212. case 0:
  6213. class = CLASS_CODE_USER_PROG1;
  6214. break;
  6215. case 1:
  6216. class = CLASS_CODE_USER_PROG2;
  6217. break;
  6218. case 2:
  6219. class = CLASS_CODE_USER_PROG3;
  6220. break;
  6221. case 3:
  6222. class = CLASS_CODE_USER_PROG4;
  6223. break;
  6224. default:
  6225. break;
  6226. }
  6227. if (uspec->ip_ver == ETH_RX_NFC_IP6)
  6228. ipv6 = 1;
  6229. ret = tcam_user_ip_class_set(np, class, ipv6,
  6230. uspec->proto,
  6231. uspec->tos,
  6232. umask->tos);
  6233. if (ret)
  6234. goto out;
  6235. ret = tcam_user_ip_class_enable(np, class, 1);
  6236. if (ret)
  6237. goto out;
  6238. parent->l3_cls[i] = class;
  6239. parent->l3_cls_pid[i] = uspec->proto;
  6240. parent->l3_cls_refcnt[i]++;
  6241. add_usr_cls = 1;
  6242. break;
  6243. }
  6244. }
  6245. if (!add_usr_cls) {
  6246. pr_info(PFX "niu%d: %s niu_add_ethtool_tcam_entry: "
  6247. "Could not find/insert class for pid %d\n",
  6248. parent->index, np->dev->name, uspec->proto);
  6249. ret = -EINVAL;
  6250. goto out;
  6251. }
  6252. niu_unlock_parent(np, flags);
  6253. } else {
  6254. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6255. return -EINVAL;
  6256. }
  6257. }
  6258. niu_lock_parent(np, flags);
  6259. idx = tcam_get_index(np, idx);
  6260. tp = &parent->tcam[idx];
  6261. memset(tp, 0, sizeof(*tp));
  6262. /* fill in the tcam key and mask */
  6263. switch (fsp->flow_type) {
  6264. case TCP_V4_FLOW:
  6265. case UDP_V4_FLOW:
  6266. case SCTP_V4_FLOW:
  6267. case AH_V4_FLOW:
  6268. case ESP_V4_FLOW:
  6269. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6270. break;
  6271. case TCP_V6_FLOW:
  6272. case UDP_V6_FLOW:
  6273. case SCTP_V6_FLOW:
  6274. case AH_V6_FLOW:
  6275. case ESP_V6_FLOW:
  6276. /* Not yet implemented */
  6277. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6278. "flow %d for IPv6 not implemented\n\n",
  6279. parent->index, np->dev->name, fsp->flow_type);
  6280. ret = -EINVAL;
  6281. goto out;
  6282. case IP_USER_FLOW:
  6283. if (fsp->h_u.usr_ip4_spec.ip_ver == ETH_RX_NFC_IP4) {
  6284. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table,
  6285. class);
  6286. } else {
  6287. /* Not yet implemented */
  6288. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6289. "usr flow for IPv6 not implemented\n\n",
  6290. parent->index, np->dev->name);
  6291. ret = -EINVAL;
  6292. goto out;
  6293. }
  6294. break;
  6295. default:
  6296. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6297. "Unknown flow type %d\n\n",
  6298. parent->index, np->dev->name, fsp->flow_type);
  6299. ret = -EINVAL;
  6300. goto out;
  6301. }
  6302. /* fill in the assoc data */
  6303. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6304. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6305. } else {
  6306. if (fsp->ring_cookie >= np->num_rx_rings) {
  6307. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6308. "Invalid RX ring %lld\n\n",
  6309. parent->index, np->dev->name,
  6310. (long long) fsp->ring_cookie);
  6311. ret = -EINVAL;
  6312. goto out;
  6313. }
  6314. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6315. (fsp->ring_cookie <<
  6316. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6317. }
  6318. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6319. if (err) {
  6320. ret = -EINVAL;
  6321. goto out;
  6322. }
  6323. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6324. if (err) {
  6325. ret = -EINVAL;
  6326. goto out;
  6327. }
  6328. /* validate the entry */
  6329. tp->valid = 1;
  6330. np->clas.tcam_valid_entries++;
  6331. out:
  6332. niu_unlock_parent(np, flags);
  6333. return ret;
  6334. }
  6335. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6336. {
  6337. struct niu_parent *parent = np->parent;
  6338. struct niu_tcam_entry *tp;
  6339. u16 idx;
  6340. unsigned long flags;
  6341. u64 class;
  6342. int ret = 0;
  6343. if (loc >= tcam_get_size(np))
  6344. return -EINVAL;
  6345. niu_lock_parent(np, flags);
  6346. idx = tcam_get_index(np, loc);
  6347. tp = &parent->tcam[idx];
  6348. /* if the entry is of a user defined class, then update*/
  6349. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6350. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6351. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6352. int i;
  6353. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6354. if (parent->l3_cls[i] == class) {
  6355. parent->l3_cls_refcnt[i]--;
  6356. if (!parent->l3_cls_refcnt[i]) {
  6357. /* disable class */
  6358. ret = tcam_user_ip_class_enable(np,
  6359. class,
  6360. 0);
  6361. if (ret)
  6362. goto out;
  6363. parent->l3_cls[i] = 0;
  6364. parent->l3_cls_pid[i] = 0;
  6365. }
  6366. break;
  6367. }
  6368. }
  6369. if (i == NIU_L3_PROG_CLS) {
  6370. pr_info(PFX "niu%d: %s In niu_del_ethtool_tcam_entry,"
  6371. "Usr class 0x%llx not found \n",
  6372. parent->index, np->dev->name,
  6373. (unsigned long long) class);
  6374. ret = -EINVAL;
  6375. goto out;
  6376. }
  6377. }
  6378. ret = tcam_flush(np, idx);
  6379. if (ret)
  6380. goto out;
  6381. /* invalidate the entry */
  6382. tp->valid = 0;
  6383. np->clas.tcam_valid_entries--;
  6384. out:
  6385. niu_unlock_parent(np, flags);
  6386. return ret;
  6387. }
  6388. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6389. {
  6390. struct niu *np = netdev_priv(dev);
  6391. int ret = 0;
  6392. switch (cmd->cmd) {
  6393. case ETHTOOL_SRXFH:
  6394. ret = niu_set_hash_opts(np, cmd);
  6395. break;
  6396. case ETHTOOL_SRXCLSRLINS:
  6397. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6398. break;
  6399. case ETHTOOL_SRXCLSRLDEL:
  6400. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6401. break;
  6402. default:
  6403. ret = -EINVAL;
  6404. break;
  6405. }
  6406. return ret;
  6407. }
  6408. static const struct {
  6409. const char string[ETH_GSTRING_LEN];
  6410. } niu_xmac_stat_keys[] = {
  6411. { "tx_frames" },
  6412. { "tx_bytes" },
  6413. { "tx_fifo_errors" },
  6414. { "tx_overflow_errors" },
  6415. { "tx_max_pkt_size_errors" },
  6416. { "tx_underflow_errors" },
  6417. { "rx_local_faults" },
  6418. { "rx_remote_faults" },
  6419. { "rx_link_faults" },
  6420. { "rx_align_errors" },
  6421. { "rx_frags" },
  6422. { "rx_mcasts" },
  6423. { "rx_bcasts" },
  6424. { "rx_hist_cnt1" },
  6425. { "rx_hist_cnt2" },
  6426. { "rx_hist_cnt3" },
  6427. { "rx_hist_cnt4" },
  6428. { "rx_hist_cnt5" },
  6429. { "rx_hist_cnt6" },
  6430. { "rx_hist_cnt7" },
  6431. { "rx_octets" },
  6432. { "rx_code_violations" },
  6433. { "rx_len_errors" },
  6434. { "rx_crc_errors" },
  6435. { "rx_underflows" },
  6436. { "rx_overflows" },
  6437. { "pause_off_state" },
  6438. { "pause_on_state" },
  6439. { "pause_received" },
  6440. };
  6441. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6442. static const struct {
  6443. const char string[ETH_GSTRING_LEN];
  6444. } niu_bmac_stat_keys[] = {
  6445. { "tx_underflow_errors" },
  6446. { "tx_max_pkt_size_errors" },
  6447. { "tx_bytes" },
  6448. { "tx_frames" },
  6449. { "rx_overflows" },
  6450. { "rx_frames" },
  6451. { "rx_align_errors" },
  6452. { "rx_crc_errors" },
  6453. { "rx_len_errors" },
  6454. { "pause_off_state" },
  6455. { "pause_on_state" },
  6456. { "pause_received" },
  6457. };
  6458. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6459. static const struct {
  6460. const char string[ETH_GSTRING_LEN];
  6461. } niu_rxchan_stat_keys[] = {
  6462. { "rx_channel" },
  6463. { "rx_packets" },
  6464. { "rx_bytes" },
  6465. { "rx_dropped" },
  6466. { "rx_errors" },
  6467. };
  6468. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6469. static const struct {
  6470. const char string[ETH_GSTRING_LEN];
  6471. } niu_txchan_stat_keys[] = {
  6472. { "tx_channel" },
  6473. { "tx_packets" },
  6474. { "tx_bytes" },
  6475. { "tx_errors" },
  6476. };
  6477. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6478. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6479. {
  6480. struct niu *np = netdev_priv(dev);
  6481. int i;
  6482. if (stringset != ETH_SS_STATS)
  6483. return;
  6484. if (np->flags & NIU_FLAGS_XMAC) {
  6485. memcpy(data, niu_xmac_stat_keys,
  6486. sizeof(niu_xmac_stat_keys));
  6487. data += sizeof(niu_xmac_stat_keys);
  6488. } else {
  6489. memcpy(data, niu_bmac_stat_keys,
  6490. sizeof(niu_bmac_stat_keys));
  6491. data += sizeof(niu_bmac_stat_keys);
  6492. }
  6493. for (i = 0; i < np->num_rx_rings; i++) {
  6494. memcpy(data, niu_rxchan_stat_keys,
  6495. sizeof(niu_rxchan_stat_keys));
  6496. data += sizeof(niu_rxchan_stat_keys);
  6497. }
  6498. for (i = 0; i < np->num_tx_rings; i++) {
  6499. memcpy(data, niu_txchan_stat_keys,
  6500. sizeof(niu_txchan_stat_keys));
  6501. data += sizeof(niu_txchan_stat_keys);
  6502. }
  6503. }
  6504. static int niu_get_stats_count(struct net_device *dev)
  6505. {
  6506. struct niu *np = netdev_priv(dev);
  6507. return ((np->flags & NIU_FLAGS_XMAC ?
  6508. NUM_XMAC_STAT_KEYS :
  6509. NUM_BMAC_STAT_KEYS) +
  6510. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6511. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  6512. }
  6513. static void niu_get_ethtool_stats(struct net_device *dev,
  6514. struct ethtool_stats *stats, u64 *data)
  6515. {
  6516. struct niu *np = netdev_priv(dev);
  6517. int i;
  6518. niu_sync_mac_stats(np);
  6519. if (np->flags & NIU_FLAGS_XMAC) {
  6520. memcpy(data, &np->mac_stats.xmac,
  6521. sizeof(struct niu_xmac_stats));
  6522. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6523. } else {
  6524. memcpy(data, &np->mac_stats.bmac,
  6525. sizeof(struct niu_bmac_stats));
  6526. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6527. }
  6528. for (i = 0; i < np->num_rx_rings; i++) {
  6529. struct rx_ring_info *rp = &np->rx_rings[i];
  6530. niu_sync_rx_discard_stats(np, rp, 0);
  6531. data[0] = rp->rx_channel;
  6532. data[1] = rp->rx_packets;
  6533. data[2] = rp->rx_bytes;
  6534. data[3] = rp->rx_dropped;
  6535. data[4] = rp->rx_errors;
  6536. data += 5;
  6537. }
  6538. for (i = 0; i < np->num_tx_rings; i++) {
  6539. struct tx_ring_info *rp = &np->tx_rings[i];
  6540. data[0] = rp->tx_channel;
  6541. data[1] = rp->tx_packets;
  6542. data[2] = rp->tx_bytes;
  6543. data[3] = rp->tx_errors;
  6544. data += 4;
  6545. }
  6546. }
  6547. static u64 niu_led_state_save(struct niu *np)
  6548. {
  6549. if (np->flags & NIU_FLAGS_XMAC)
  6550. return nr64_mac(XMAC_CONFIG);
  6551. else
  6552. return nr64_mac(BMAC_XIF_CONFIG);
  6553. }
  6554. static void niu_led_state_restore(struct niu *np, u64 val)
  6555. {
  6556. if (np->flags & NIU_FLAGS_XMAC)
  6557. nw64_mac(XMAC_CONFIG, val);
  6558. else
  6559. nw64_mac(BMAC_XIF_CONFIG, val);
  6560. }
  6561. static void niu_force_led(struct niu *np, int on)
  6562. {
  6563. u64 val, reg, bit;
  6564. if (np->flags & NIU_FLAGS_XMAC) {
  6565. reg = XMAC_CONFIG;
  6566. bit = XMAC_CONFIG_FORCE_LED_ON;
  6567. } else {
  6568. reg = BMAC_XIF_CONFIG;
  6569. bit = BMAC_XIF_CONFIG_LINK_LED;
  6570. }
  6571. val = nr64_mac(reg);
  6572. if (on)
  6573. val |= bit;
  6574. else
  6575. val &= ~bit;
  6576. nw64_mac(reg, val);
  6577. }
  6578. static int niu_phys_id(struct net_device *dev, u32 data)
  6579. {
  6580. struct niu *np = netdev_priv(dev);
  6581. u64 orig_led_state;
  6582. int i;
  6583. if (!netif_running(dev))
  6584. return -EAGAIN;
  6585. if (data == 0)
  6586. data = 2;
  6587. orig_led_state = niu_led_state_save(np);
  6588. for (i = 0; i < (data * 2); i++) {
  6589. int on = ((i % 2) == 0);
  6590. niu_force_led(np, on);
  6591. if (msleep_interruptible(500))
  6592. break;
  6593. }
  6594. niu_led_state_restore(np, orig_led_state);
  6595. return 0;
  6596. }
  6597. static const struct ethtool_ops niu_ethtool_ops = {
  6598. .get_drvinfo = niu_get_drvinfo,
  6599. .get_link = ethtool_op_get_link,
  6600. .get_msglevel = niu_get_msglevel,
  6601. .set_msglevel = niu_set_msglevel,
  6602. .nway_reset = niu_nway_reset,
  6603. .get_eeprom_len = niu_get_eeprom_len,
  6604. .get_eeprom = niu_get_eeprom,
  6605. .get_settings = niu_get_settings,
  6606. .set_settings = niu_set_settings,
  6607. .get_strings = niu_get_strings,
  6608. .get_stats_count = niu_get_stats_count,
  6609. .get_ethtool_stats = niu_get_ethtool_stats,
  6610. .phys_id = niu_phys_id,
  6611. .get_rxnfc = niu_get_nfc,
  6612. .set_rxnfc = niu_set_nfc,
  6613. };
  6614. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6615. int ldg, int ldn)
  6616. {
  6617. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6618. return -EINVAL;
  6619. if (ldn < 0 || ldn > LDN_MAX)
  6620. return -EINVAL;
  6621. parent->ldg_map[ldn] = ldg;
  6622. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6623. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6624. * the firmware, and we're not supposed to change them.
  6625. * Validate the mapping, because if it's wrong we probably
  6626. * won't get any interrupts and that's painful to debug.
  6627. */
  6628. if (nr64(LDG_NUM(ldn)) != ldg) {
  6629. dev_err(np->device, PFX "Port %u, mis-matched "
  6630. "LDG assignment "
  6631. "for ldn %d, should be %d is %llu\n",
  6632. np->port, ldn, ldg,
  6633. (unsigned long long) nr64(LDG_NUM(ldn)));
  6634. return -EINVAL;
  6635. }
  6636. } else
  6637. nw64(LDG_NUM(ldn), ldg);
  6638. return 0;
  6639. }
  6640. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6641. {
  6642. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6643. return -EINVAL;
  6644. nw64(LDG_TIMER_RES, res);
  6645. return 0;
  6646. }
  6647. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6648. {
  6649. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6650. (func < 0 || func > 3) ||
  6651. (vector < 0 || vector > 0x1f))
  6652. return -EINVAL;
  6653. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6654. return 0;
  6655. }
  6656. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6657. {
  6658. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6659. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6660. int limit;
  6661. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6662. return -EINVAL;
  6663. frame = frame_base;
  6664. nw64(ESPC_PIO_STAT, frame);
  6665. limit = 64;
  6666. do {
  6667. udelay(5);
  6668. frame = nr64(ESPC_PIO_STAT);
  6669. if (frame & ESPC_PIO_STAT_READ_END)
  6670. break;
  6671. } while (limit--);
  6672. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6673. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6674. (unsigned long long) frame);
  6675. return -ENODEV;
  6676. }
  6677. frame = frame_base;
  6678. nw64(ESPC_PIO_STAT, frame);
  6679. limit = 64;
  6680. do {
  6681. udelay(5);
  6682. frame = nr64(ESPC_PIO_STAT);
  6683. if (frame & ESPC_PIO_STAT_READ_END)
  6684. break;
  6685. } while (limit--);
  6686. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6687. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6688. (unsigned long long) frame);
  6689. return -ENODEV;
  6690. }
  6691. frame = nr64(ESPC_PIO_STAT);
  6692. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6693. }
  6694. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6695. {
  6696. int err = niu_pci_eeprom_read(np, off);
  6697. u16 val;
  6698. if (err < 0)
  6699. return err;
  6700. val = (err << 8);
  6701. err = niu_pci_eeprom_read(np, off + 1);
  6702. if (err < 0)
  6703. return err;
  6704. val |= (err & 0xff);
  6705. return val;
  6706. }
  6707. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6708. {
  6709. int err = niu_pci_eeprom_read(np, off);
  6710. u16 val;
  6711. if (err < 0)
  6712. return err;
  6713. val = (err & 0xff);
  6714. err = niu_pci_eeprom_read(np, off + 1);
  6715. if (err < 0)
  6716. return err;
  6717. val |= (err & 0xff) << 8;
  6718. return val;
  6719. }
  6720. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6721. u32 off,
  6722. char *namebuf,
  6723. int namebuf_len)
  6724. {
  6725. int i;
  6726. for (i = 0; i < namebuf_len; i++) {
  6727. int err = niu_pci_eeprom_read(np, off + i);
  6728. if (err < 0)
  6729. return err;
  6730. *namebuf++ = err;
  6731. if (!err)
  6732. break;
  6733. }
  6734. if (i >= namebuf_len)
  6735. return -EINVAL;
  6736. return i + 1;
  6737. }
  6738. static void __devinit niu_vpd_parse_version(struct niu *np)
  6739. {
  6740. struct niu_vpd *vpd = &np->vpd;
  6741. int len = strlen(vpd->version) + 1;
  6742. const char *s = vpd->version;
  6743. int i;
  6744. for (i = 0; i < len - 5; i++) {
  6745. if (!strncmp(s + i, "FCode ", 5))
  6746. break;
  6747. }
  6748. if (i >= len - 5)
  6749. return;
  6750. s += i + 5;
  6751. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6752. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6753. vpd->fcode_major, vpd->fcode_minor);
  6754. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6755. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6756. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6757. np->flags |= NIU_FLAGS_VPD_VALID;
  6758. }
  6759. /* ESPC_PIO_EN_ENABLE must be set */
  6760. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6761. u32 start, u32 end)
  6762. {
  6763. unsigned int found_mask = 0;
  6764. #define FOUND_MASK_MODEL 0x00000001
  6765. #define FOUND_MASK_BMODEL 0x00000002
  6766. #define FOUND_MASK_VERS 0x00000004
  6767. #define FOUND_MASK_MAC 0x00000008
  6768. #define FOUND_MASK_NMAC 0x00000010
  6769. #define FOUND_MASK_PHY 0x00000020
  6770. #define FOUND_MASK_ALL 0x0000003f
  6771. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  6772. start, end);
  6773. while (start < end) {
  6774. int len, err, instance, type, prop_len;
  6775. char namebuf[64];
  6776. u8 *prop_buf;
  6777. int max_len;
  6778. if (found_mask == FOUND_MASK_ALL) {
  6779. niu_vpd_parse_version(np);
  6780. return 1;
  6781. }
  6782. err = niu_pci_eeprom_read(np, start + 2);
  6783. if (err < 0)
  6784. return err;
  6785. len = err;
  6786. start += 3;
  6787. instance = niu_pci_eeprom_read(np, start);
  6788. type = niu_pci_eeprom_read(np, start + 3);
  6789. prop_len = niu_pci_eeprom_read(np, start + 4);
  6790. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6791. if (err < 0)
  6792. return err;
  6793. prop_buf = NULL;
  6794. max_len = 0;
  6795. if (!strcmp(namebuf, "model")) {
  6796. prop_buf = np->vpd.model;
  6797. max_len = NIU_VPD_MODEL_MAX;
  6798. found_mask |= FOUND_MASK_MODEL;
  6799. } else if (!strcmp(namebuf, "board-model")) {
  6800. prop_buf = np->vpd.board_model;
  6801. max_len = NIU_VPD_BD_MODEL_MAX;
  6802. found_mask |= FOUND_MASK_BMODEL;
  6803. } else if (!strcmp(namebuf, "version")) {
  6804. prop_buf = np->vpd.version;
  6805. max_len = NIU_VPD_VERSION_MAX;
  6806. found_mask |= FOUND_MASK_VERS;
  6807. } else if (!strcmp(namebuf, "local-mac-address")) {
  6808. prop_buf = np->vpd.local_mac;
  6809. max_len = ETH_ALEN;
  6810. found_mask |= FOUND_MASK_MAC;
  6811. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6812. prop_buf = &np->vpd.mac_num;
  6813. max_len = 1;
  6814. found_mask |= FOUND_MASK_NMAC;
  6815. } else if (!strcmp(namebuf, "phy-type")) {
  6816. prop_buf = np->vpd.phy_type;
  6817. max_len = NIU_VPD_PHY_TYPE_MAX;
  6818. found_mask |= FOUND_MASK_PHY;
  6819. }
  6820. if (max_len && prop_len > max_len) {
  6821. dev_err(np->device, PFX "Property '%s' length (%d) is "
  6822. "too long.\n", namebuf, prop_len);
  6823. return -EINVAL;
  6824. }
  6825. if (prop_buf) {
  6826. u32 off = start + 5 + err;
  6827. int i;
  6828. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  6829. "len[%d]\n", namebuf, prop_len);
  6830. for (i = 0; i < prop_len; i++)
  6831. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6832. }
  6833. start += len;
  6834. }
  6835. return 0;
  6836. }
  6837. /* ESPC_PIO_EN_ENABLE must be set */
  6838. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6839. {
  6840. u32 offset;
  6841. int err;
  6842. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6843. if (err < 0)
  6844. return;
  6845. offset = err + 3;
  6846. while (start + offset < ESPC_EEPROM_SIZE) {
  6847. u32 here = start + offset;
  6848. u32 end;
  6849. err = niu_pci_eeprom_read(np, here);
  6850. if (err != 0x90)
  6851. return;
  6852. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6853. if (err < 0)
  6854. return;
  6855. here = start + offset + 3;
  6856. end = start + offset + err;
  6857. offset += err;
  6858. err = niu_pci_vpd_scan_props(np, here, end);
  6859. if (err < 0 || err == 1)
  6860. return;
  6861. }
  6862. }
  6863. /* ESPC_PIO_EN_ENABLE must be set */
  6864. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6865. {
  6866. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6867. int err;
  6868. while (start < end) {
  6869. ret = start;
  6870. /* ROM header signature? */
  6871. err = niu_pci_eeprom_read16(np, start + 0);
  6872. if (err != 0x55aa)
  6873. return 0;
  6874. /* Apply offset to PCI data structure. */
  6875. err = niu_pci_eeprom_read16(np, start + 23);
  6876. if (err < 0)
  6877. return 0;
  6878. start += err;
  6879. /* Check for "PCIR" signature. */
  6880. err = niu_pci_eeprom_read16(np, start + 0);
  6881. if (err != 0x5043)
  6882. return 0;
  6883. err = niu_pci_eeprom_read16(np, start + 2);
  6884. if (err != 0x4952)
  6885. return 0;
  6886. /* Check for OBP image type. */
  6887. err = niu_pci_eeprom_read(np, start + 20);
  6888. if (err < 0)
  6889. return 0;
  6890. if (err != 0x01) {
  6891. err = niu_pci_eeprom_read(np, ret + 2);
  6892. if (err < 0)
  6893. return 0;
  6894. start = ret + (err * 512);
  6895. continue;
  6896. }
  6897. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6898. if (err < 0)
  6899. return err;
  6900. ret += err;
  6901. err = niu_pci_eeprom_read(np, ret + 0);
  6902. if (err != 0x82)
  6903. return 0;
  6904. return ret;
  6905. }
  6906. return 0;
  6907. }
  6908. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6909. const char *phy_prop)
  6910. {
  6911. if (!strcmp(phy_prop, "mif")) {
  6912. /* 1G copper, MII */
  6913. np->flags &= ~(NIU_FLAGS_FIBER |
  6914. NIU_FLAGS_10G);
  6915. np->mac_xcvr = MAC_XCVR_MII;
  6916. } else if (!strcmp(phy_prop, "xgf")) {
  6917. /* 10G fiber, XPCS */
  6918. np->flags |= (NIU_FLAGS_10G |
  6919. NIU_FLAGS_FIBER);
  6920. np->mac_xcvr = MAC_XCVR_XPCS;
  6921. } else if (!strcmp(phy_prop, "pcs")) {
  6922. /* 1G fiber, PCS */
  6923. np->flags &= ~NIU_FLAGS_10G;
  6924. np->flags |= NIU_FLAGS_FIBER;
  6925. np->mac_xcvr = MAC_XCVR_PCS;
  6926. } else if (!strcmp(phy_prop, "xgc")) {
  6927. /* 10G copper, XPCS */
  6928. np->flags |= NIU_FLAGS_10G;
  6929. np->flags &= ~NIU_FLAGS_FIBER;
  6930. np->mac_xcvr = MAC_XCVR_XPCS;
  6931. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6932. /* 10G Serdes or 1G Serdes, default to 10G */
  6933. np->flags |= NIU_FLAGS_10G;
  6934. np->flags &= ~NIU_FLAGS_FIBER;
  6935. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6936. np->mac_xcvr = MAC_XCVR_XPCS;
  6937. } else {
  6938. return -EINVAL;
  6939. }
  6940. return 0;
  6941. }
  6942. static int niu_pci_vpd_get_nports(struct niu *np)
  6943. {
  6944. int ports = 0;
  6945. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6946. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6947. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6948. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6949. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6950. ports = 4;
  6951. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6952. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6953. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6954. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6955. ports = 2;
  6956. }
  6957. return ports;
  6958. }
  6959. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6960. {
  6961. struct net_device *dev = np->dev;
  6962. struct niu_vpd *vpd = &np->vpd;
  6963. u8 val8;
  6964. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6965. dev_err(np->device, PFX "VPD MAC invalid, "
  6966. "falling back to SPROM.\n");
  6967. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6968. return;
  6969. }
  6970. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6971. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6972. np->flags |= NIU_FLAGS_10G;
  6973. np->flags &= ~NIU_FLAGS_FIBER;
  6974. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6975. np->mac_xcvr = MAC_XCVR_PCS;
  6976. if (np->port > 1) {
  6977. np->flags |= NIU_FLAGS_FIBER;
  6978. np->flags &= ~NIU_FLAGS_10G;
  6979. }
  6980. if (np->flags & NIU_FLAGS_10G)
  6981. np->mac_xcvr = MAC_XCVR_XPCS;
  6982. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6983. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6984. NIU_FLAGS_HOTPLUG_PHY);
  6985. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6986. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  6987. np->vpd.phy_type);
  6988. dev_err(np->device, PFX "Falling back to SPROM.\n");
  6989. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6990. return;
  6991. }
  6992. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6993. val8 = dev->perm_addr[5];
  6994. dev->perm_addr[5] += np->port;
  6995. if (dev->perm_addr[5] < val8)
  6996. dev->perm_addr[4]++;
  6997. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6998. }
  6999. static int __devinit niu_pci_probe_sprom(struct niu *np)
  7000. {
  7001. struct net_device *dev = np->dev;
  7002. int len, i;
  7003. u64 val, sum;
  7004. u8 val8;
  7005. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  7006. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  7007. len = val / 4;
  7008. np->eeprom_len = len;
  7009. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  7010. sum = 0;
  7011. for (i = 0; i < len; i++) {
  7012. val = nr64(ESPC_NCR(i));
  7013. sum += (val >> 0) & 0xff;
  7014. sum += (val >> 8) & 0xff;
  7015. sum += (val >> 16) & 0xff;
  7016. sum += (val >> 24) & 0xff;
  7017. }
  7018. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  7019. if ((sum & 0xff) != 0xab) {
  7020. dev_err(np->device, PFX "Bad SPROM checksum "
  7021. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  7022. return -EINVAL;
  7023. }
  7024. val = nr64(ESPC_PHY_TYPE);
  7025. switch (np->port) {
  7026. case 0:
  7027. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  7028. ESPC_PHY_TYPE_PORT0_SHIFT;
  7029. break;
  7030. case 1:
  7031. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  7032. ESPC_PHY_TYPE_PORT1_SHIFT;
  7033. break;
  7034. case 2:
  7035. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  7036. ESPC_PHY_TYPE_PORT2_SHIFT;
  7037. break;
  7038. case 3:
  7039. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  7040. ESPC_PHY_TYPE_PORT3_SHIFT;
  7041. break;
  7042. default:
  7043. dev_err(np->device, PFX "Bogus port number %u\n",
  7044. np->port);
  7045. return -EINVAL;
  7046. }
  7047. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  7048. switch (val8) {
  7049. case ESPC_PHY_TYPE_1G_COPPER:
  7050. /* 1G copper, MII */
  7051. np->flags &= ~(NIU_FLAGS_FIBER |
  7052. NIU_FLAGS_10G);
  7053. np->mac_xcvr = MAC_XCVR_MII;
  7054. break;
  7055. case ESPC_PHY_TYPE_1G_FIBER:
  7056. /* 1G fiber, PCS */
  7057. np->flags &= ~NIU_FLAGS_10G;
  7058. np->flags |= NIU_FLAGS_FIBER;
  7059. np->mac_xcvr = MAC_XCVR_PCS;
  7060. break;
  7061. case ESPC_PHY_TYPE_10G_COPPER:
  7062. /* 10G copper, XPCS */
  7063. np->flags |= NIU_FLAGS_10G;
  7064. np->flags &= ~NIU_FLAGS_FIBER;
  7065. np->mac_xcvr = MAC_XCVR_XPCS;
  7066. break;
  7067. case ESPC_PHY_TYPE_10G_FIBER:
  7068. /* 10G fiber, XPCS */
  7069. np->flags |= (NIU_FLAGS_10G |
  7070. NIU_FLAGS_FIBER);
  7071. np->mac_xcvr = MAC_XCVR_XPCS;
  7072. break;
  7073. default:
  7074. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  7075. return -EINVAL;
  7076. }
  7077. val = nr64(ESPC_MAC_ADDR0);
  7078. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  7079. (unsigned long long) val);
  7080. dev->perm_addr[0] = (val >> 0) & 0xff;
  7081. dev->perm_addr[1] = (val >> 8) & 0xff;
  7082. dev->perm_addr[2] = (val >> 16) & 0xff;
  7083. dev->perm_addr[3] = (val >> 24) & 0xff;
  7084. val = nr64(ESPC_MAC_ADDR1);
  7085. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  7086. (unsigned long long) val);
  7087. dev->perm_addr[4] = (val >> 0) & 0xff;
  7088. dev->perm_addr[5] = (val >> 8) & 0xff;
  7089. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7090. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  7091. dev_err(np->device, PFX "[ \n");
  7092. for (i = 0; i < 6; i++)
  7093. printk("%02x ", dev->perm_addr[i]);
  7094. printk("]\n");
  7095. return -EINVAL;
  7096. }
  7097. val8 = dev->perm_addr[5];
  7098. dev->perm_addr[5] += np->port;
  7099. if (dev->perm_addr[5] < val8)
  7100. dev->perm_addr[4]++;
  7101. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7102. val = nr64(ESPC_MOD_STR_LEN);
  7103. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  7104. (unsigned long long) val);
  7105. if (val >= 8 * 4)
  7106. return -EINVAL;
  7107. for (i = 0; i < val; i += 4) {
  7108. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7109. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7110. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7111. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7112. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7113. }
  7114. np->vpd.model[val] = '\0';
  7115. val = nr64(ESPC_BD_MOD_STR_LEN);
  7116. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  7117. (unsigned long long) val);
  7118. if (val >= 4 * 4)
  7119. return -EINVAL;
  7120. for (i = 0; i < val; i += 4) {
  7121. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7122. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7123. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7124. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7125. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7126. }
  7127. np->vpd.board_model[val] = '\0';
  7128. np->vpd.mac_num =
  7129. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7130. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  7131. np->vpd.mac_num);
  7132. return 0;
  7133. }
  7134. static int __devinit niu_get_and_validate_port(struct niu *np)
  7135. {
  7136. struct niu_parent *parent = np->parent;
  7137. if (np->port <= 1)
  7138. np->flags |= NIU_FLAGS_XMAC;
  7139. if (!parent->num_ports) {
  7140. if (parent->plat_type == PLAT_TYPE_NIU) {
  7141. parent->num_ports = 2;
  7142. } else {
  7143. parent->num_ports = niu_pci_vpd_get_nports(np);
  7144. if (!parent->num_ports) {
  7145. /* Fall back to SPROM as last resort.
  7146. * This will fail on most cards.
  7147. */
  7148. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7149. ESPC_NUM_PORTS_MACS_VAL;
  7150. /* All of the current probing methods fail on
  7151. * Maramba on-board parts.
  7152. */
  7153. if (!parent->num_ports)
  7154. parent->num_ports = 4;
  7155. }
  7156. }
  7157. }
  7158. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  7159. np->port, parent->num_ports);
  7160. if (np->port >= parent->num_ports)
  7161. return -ENODEV;
  7162. return 0;
  7163. }
  7164. static int __devinit phy_record(struct niu_parent *parent,
  7165. struct phy_probe_info *p,
  7166. int dev_id_1, int dev_id_2, u8 phy_port,
  7167. int type)
  7168. {
  7169. u32 id = (dev_id_1 << 16) | dev_id_2;
  7170. u8 idx;
  7171. if (dev_id_1 < 0 || dev_id_2 < 0)
  7172. return 0;
  7173. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7174. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7175. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7176. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7177. return 0;
  7178. } else {
  7179. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7180. return 0;
  7181. }
  7182. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7183. parent->index, id,
  7184. (type == PHY_TYPE_PMA_PMD ?
  7185. "PMA/PMD" :
  7186. (type == PHY_TYPE_PCS ?
  7187. "PCS" : "MII")),
  7188. phy_port);
  7189. if (p->cur[type] >= NIU_MAX_PORTS) {
  7190. printk(KERN_ERR PFX "Too many PHY ports.\n");
  7191. return -EINVAL;
  7192. }
  7193. idx = p->cur[type];
  7194. p->phy_id[type][idx] = id;
  7195. p->phy_port[type][idx] = phy_port;
  7196. p->cur[type] = idx + 1;
  7197. return 0;
  7198. }
  7199. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7200. {
  7201. int i;
  7202. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7203. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7204. return 1;
  7205. }
  7206. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7207. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7208. return 1;
  7209. }
  7210. return 0;
  7211. }
  7212. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7213. {
  7214. int port, cnt;
  7215. cnt = 0;
  7216. *lowest = 32;
  7217. for (port = 8; port < 32; port++) {
  7218. if (port_has_10g(p, port)) {
  7219. if (!cnt)
  7220. *lowest = port;
  7221. cnt++;
  7222. }
  7223. }
  7224. return cnt;
  7225. }
  7226. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7227. {
  7228. *lowest = 32;
  7229. if (p->cur[PHY_TYPE_MII])
  7230. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7231. return p->cur[PHY_TYPE_MII];
  7232. }
  7233. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7234. {
  7235. int num_ports = parent->num_ports;
  7236. int i;
  7237. for (i = 0; i < num_ports; i++) {
  7238. parent->rxchan_per_port[i] = (16 / num_ports);
  7239. parent->txchan_per_port[i] = (16 / num_ports);
  7240. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7241. "[%u TX chans]\n",
  7242. parent->index, i,
  7243. parent->rxchan_per_port[i],
  7244. parent->txchan_per_port[i]);
  7245. }
  7246. }
  7247. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7248. int num_10g, int num_1g)
  7249. {
  7250. int num_ports = parent->num_ports;
  7251. int rx_chans_per_10g, rx_chans_per_1g;
  7252. int tx_chans_per_10g, tx_chans_per_1g;
  7253. int i, tot_rx, tot_tx;
  7254. if (!num_10g || !num_1g) {
  7255. rx_chans_per_10g = rx_chans_per_1g =
  7256. (NIU_NUM_RXCHAN / num_ports);
  7257. tx_chans_per_10g = tx_chans_per_1g =
  7258. (NIU_NUM_TXCHAN / num_ports);
  7259. } else {
  7260. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7261. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7262. (rx_chans_per_1g * num_1g)) /
  7263. num_10g;
  7264. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7265. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7266. (tx_chans_per_1g * num_1g)) /
  7267. num_10g;
  7268. }
  7269. tot_rx = tot_tx = 0;
  7270. for (i = 0; i < num_ports; i++) {
  7271. int type = phy_decode(parent->port_phy, i);
  7272. if (type == PORT_TYPE_10G) {
  7273. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7274. parent->txchan_per_port[i] = tx_chans_per_10g;
  7275. } else {
  7276. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7277. parent->txchan_per_port[i] = tx_chans_per_1g;
  7278. }
  7279. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7280. "[%u TX chans]\n",
  7281. parent->index, i,
  7282. parent->rxchan_per_port[i],
  7283. parent->txchan_per_port[i]);
  7284. tot_rx += parent->rxchan_per_port[i];
  7285. tot_tx += parent->txchan_per_port[i];
  7286. }
  7287. if (tot_rx > NIU_NUM_RXCHAN) {
  7288. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  7289. "resetting to one per port.\n",
  7290. parent->index, tot_rx);
  7291. for (i = 0; i < num_ports; i++)
  7292. parent->rxchan_per_port[i] = 1;
  7293. }
  7294. if (tot_tx > NIU_NUM_TXCHAN) {
  7295. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  7296. "resetting to one per port.\n",
  7297. parent->index, tot_tx);
  7298. for (i = 0; i < num_ports; i++)
  7299. parent->txchan_per_port[i] = 1;
  7300. }
  7301. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7302. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  7303. "RX[%d] TX[%d]\n",
  7304. parent->index, tot_rx, tot_tx);
  7305. }
  7306. }
  7307. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7308. int num_10g, int num_1g)
  7309. {
  7310. int i, num_ports = parent->num_ports;
  7311. int rdc_group, rdc_groups_per_port;
  7312. int rdc_channel_base;
  7313. rdc_group = 0;
  7314. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7315. rdc_channel_base = 0;
  7316. for (i = 0; i < num_ports; i++) {
  7317. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7318. int grp, num_channels = parent->rxchan_per_port[i];
  7319. int this_channel_offset;
  7320. tp->first_table_num = rdc_group;
  7321. tp->num_tables = rdc_groups_per_port;
  7322. this_channel_offset = 0;
  7323. for (grp = 0; grp < tp->num_tables; grp++) {
  7324. struct rdc_table *rt = &tp->tables[grp];
  7325. int slot;
  7326. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  7327. parent->index, i, tp->first_table_num + grp);
  7328. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7329. rt->rxdma_channel[slot] =
  7330. rdc_channel_base + this_channel_offset;
  7331. printk("%d ", rt->rxdma_channel[slot]);
  7332. if (++this_channel_offset == num_channels)
  7333. this_channel_offset = 0;
  7334. }
  7335. printk("]\n");
  7336. }
  7337. parent->rdc_default[i] = rdc_channel_base;
  7338. rdc_channel_base += num_channels;
  7339. rdc_group += rdc_groups_per_port;
  7340. }
  7341. }
  7342. static int __devinit fill_phy_probe_info(struct niu *np,
  7343. struct niu_parent *parent,
  7344. struct phy_probe_info *info)
  7345. {
  7346. unsigned long flags;
  7347. int port, err;
  7348. memset(info, 0, sizeof(*info));
  7349. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7350. niu_lock_parent(np, flags);
  7351. err = 0;
  7352. for (port = 8; port < 32; port++) {
  7353. int dev_id_1, dev_id_2;
  7354. dev_id_1 = mdio_read(np, port,
  7355. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7356. dev_id_2 = mdio_read(np, port,
  7357. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7358. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7359. PHY_TYPE_PMA_PMD);
  7360. if (err)
  7361. break;
  7362. dev_id_1 = mdio_read(np, port,
  7363. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7364. dev_id_2 = mdio_read(np, port,
  7365. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7366. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7367. PHY_TYPE_PCS);
  7368. if (err)
  7369. break;
  7370. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7371. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7372. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7373. PHY_TYPE_MII);
  7374. if (err)
  7375. break;
  7376. }
  7377. niu_unlock_parent(np, flags);
  7378. return err;
  7379. }
  7380. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7381. {
  7382. struct phy_probe_info *info = &parent->phy_probe_info;
  7383. int lowest_10g, lowest_1g;
  7384. int num_10g, num_1g;
  7385. u32 val;
  7386. int err;
  7387. num_10g = num_1g = 0;
  7388. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7389. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7390. num_10g = 0;
  7391. num_1g = 2;
  7392. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7393. parent->num_ports = 4;
  7394. val = (phy_encode(PORT_TYPE_1G, 0) |
  7395. phy_encode(PORT_TYPE_1G, 1) |
  7396. phy_encode(PORT_TYPE_1G, 2) |
  7397. phy_encode(PORT_TYPE_1G, 3));
  7398. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7399. num_10g = 2;
  7400. num_1g = 0;
  7401. parent->num_ports = 2;
  7402. val = (phy_encode(PORT_TYPE_10G, 0) |
  7403. phy_encode(PORT_TYPE_10G, 1));
  7404. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7405. (parent->plat_type == PLAT_TYPE_NIU)) {
  7406. /* this is the Monza case */
  7407. if (np->flags & NIU_FLAGS_10G) {
  7408. val = (phy_encode(PORT_TYPE_10G, 0) |
  7409. phy_encode(PORT_TYPE_10G, 1));
  7410. } else {
  7411. val = (phy_encode(PORT_TYPE_1G, 0) |
  7412. phy_encode(PORT_TYPE_1G, 1));
  7413. }
  7414. } else {
  7415. err = fill_phy_probe_info(np, parent, info);
  7416. if (err)
  7417. return err;
  7418. num_10g = count_10g_ports(info, &lowest_10g);
  7419. num_1g = count_1g_ports(info, &lowest_1g);
  7420. switch ((num_10g << 4) | num_1g) {
  7421. case 0x24:
  7422. if (lowest_1g == 10)
  7423. parent->plat_type = PLAT_TYPE_VF_P0;
  7424. else if (lowest_1g == 26)
  7425. parent->plat_type = PLAT_TYPE_VF_P1;
  7426. else
  7427. goto unknown_vg_1g_port;
  7428. /* fallthru */
  7429. case 0x22:
  7430. val = (phy_encode(PORT_TYPE_10G, 0) |
  7431. phy_encode(PORT_TYPE_10G, 1) |
  7432. phy_encode(PORT_TYPE_1G, 2) |
  7433. phy_encode(PORT_TYPE_1G, 3));
  7434. break;
  7435. case 0x20:
  7436. val = (phy_encode(PORT_TYPE_10G, 0) |
  7437. phy_encode(PORT_TYPE_10G, 1));
  7438. break;
  7439. case 0x10:
  7440. val = phy_encode(PORT_TYPE_10G, np->port);
  7441. break;
  7442. case 0x14:
  7443. if (lowest_1g == 10)
  7444. parent->plat_type = PLAT_TYPE_VF_P0;
  7445. else if (lowest_1g == 26)
  7446. parent->plat_type = PLAT_TYPE_VF_P1;
  7447. else
  7448. goto unknown_vg_1g_port;
  7449. /* fallthru */
  7450. case 0x13:
  7451. if ((lowest_10g & 0x7) == 0)
  7452. val = (phy_encode(PORT_TYPE_10G, 0) |
  7453. phy_encode(PORT_TYPE_1G, 1) |
  7454. phy_encode(PORT_TYPE_1G, 2) |
  7455. phy_encode(PORT_TYPE_1G, 3));
  7456. else
  7457. val = (phy_encode(PORT_TYPE_1G, 0) |
  7458. phy_encode(PORT_TYPE_10G, 1) |
  7459. phy_encode(PORT_TYPE_1G, 2) |
  7460. phy_encode(PORT_TYPE_1G, 3));
  7461. break;
  7462. case 0x04:
  7463. if (lowest_1g == 10)
  7464. parent->plat_type = PLAT_TYPE_VF_P0;
  7465. else if (lowest_1g == 26)
  7466. parent->plat_type = PLAT_TYPE_VF_P1;
  7467. else
  7468. goto unknown_vg_1g_port;
  7469. val = (phy_encode(PORT_TYPE_1G, 0) |
  7470. phy_encode(PORT_TYPE_1G, 1) |
  7471. phy_encode(PORT_TYPE_1G, 2) |
  7472. phy_encode(PORT_TYPE_1G, 3));
  7473. break;
  7474. default:
  7475. printk(KERN_ERR PFX "Unsupported port config "
  7476. "10G[%d] 1G[%d]\n",
  7477. num_10g, num_1g);
  7478. return -EINVAL;
  7479. }
  7480. }
  7481. parent->port_phy = val;
  7482. if (parent->plat_type == PLAT_TYPE_NIU)
  7483. niu_n2_divide_channels(parent);
  7484. else
  7485. niu_divide_channels(parent, num_10g, num_1g);
  7486. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7487. return 0;
  7488. unknown_vg_1g_port:
  7489. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  7490. lowest_1g);
  7491. return -EINVAL;
  7492. }
  7493. static int __devinit niu_probe_ports(struct niu *np)
  7494. {
  7495. struct niu_parent *parent = np->parent;
  7496. int err, i;
  7497. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  7498. parent->port_phy);
  7499. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7500. err = walk_phys(np, parent);
  7501. if (err)
  7502. return err;
  7503. niu_set_ldg_timer_res(np, 2);
  7504. for (i = 0; i <= LDN_MAX; i++)
  7505. niu_ldn_irq_enable(np, i, 0);
  7506. }
  7507. if (parent->port_phy == PORT_PHY_INVALID)
  7508. return -EINVAL;
  7509. return 0;
  7510. }
  7511. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7512. {
  7513. struct niu_classifier *cp = &np->clas;
  7514. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  7515. np->parent->tcam_num_entries);
  7516. cp->tcam_top = (u16) np->port;
  7517. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7518. cp->h1_init = 0xffffffff;
  7519. cp->h2_init = 0xffff;
  7520. return fflp_early_init(np);
  7521. }
  7522. static void __devinit niu_link_config_init(struct niu *np)
  7523. {
  7524. struct niu_link_config *lp = &np->link_config;
  7525. lp->advertising = (ADVERTISED_10baseT_Half |
  7526. ADVERTISED_10baseT_Full |
  7527. ADVERTISED_100baseT_Half |
  7528. ADVERTISED_100baseT_Full |
  7529. ADVERTISED_1000baseT_Half |
  7530. ADVERTISED_1000baseT_Full |
  7531. ADVERTISED_10000baseT_Full |
  7532. ADVERTISED_Autoneg);
  7533. lp->speed = lp->active_speed = SPEED_INVALID;
  7534. lp->duplex = DUPLEX_FULL;
  7535. lp->active_duplex = DUPLEX_INVALID;
  7536. lp->autoneg = 1;
  7537. #if 0
  7538. lp->loopback_mode = LOOPBACK_MAC;
  7539. lp->active_speed = SPEED_10000;
  7540. lp->active_duplex = DUPLEX_FULL;
  7541. #else
  7542. lp->loopback_mode = LOOPBACK_DISABLED;
  7543. #endif
  7544. }
  7545. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7546. {
  7547. switch (np->port) {
  7548. case 0:
  7549. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7550. np->ipp_off = 0x00000;
  7551. np->pcs_off = 0x04000;
  7552. np->xpcs_off = 0x02000;
  7553. break;
  7554. case 1:
  7555. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7556. np->ipp_off = 0x08000;
  7557. np->pcs_off = 0x0a000;
  7558. np->xpcs_off = 0x08000;
  7559. break;
  7560. case 2:
  7561. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7562. np->ipp_off = 0x04000;
  7563. np->pcs_off = 0x0e000;
  7564. np->xpcs_off = ~0UL;
  7565. break;
  7566. case 3:
  7567. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7568. np->ipp_off = 0x0c000;
  7569. np->pcs_off = 0x12000;
  7570. np->xpcs_off = ~0UL;
  7571. break;
  7572. default:
  7573. dev_err(np->device, PFX "Port %u is invalid, cannot "
  7574. "compute MAC block offset.\n", np->port);
  7575. return -EINVAL;
  7576. }
  7577. return 0;
  7578. }
  7579. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7580. {
  7581. struct msix_entry msi_vec[NIU_NUM_LDG];
  7582. struct niu_parent *parent = np->parent;
  7583. struct pci_dev *pdev = np->pdev;
  7584. int i, num_irqs, err;
  7585. u8 first_ldg;
  7586. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7587. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7588. ldg_num_map[i] = first_ldg + i;
  7589. num_irqs = (parent->rxchan_per_port[np->port] +
  7590. parent->txchan_per_port[np->port] +
  7591. (np->port == 0 ? 3 : 1));
  7592. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7593. retry:
  7594. for (i = 0; i < num_irqs; i++) {
  7595. msi_vec[i].vector = 0;
  7596. msi_vec[i].entry = i;
  7597. }
  7598. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7599. if (err < 0) {
  7600. np->flags &= ~NIU_FLAGS_MSIX;
  7601. return;
  7602. }
  7603. if (err > 0) {
  7604. num_irqs = err;
  7605. goto retry;
  7606. }
  7607. np->flags |= NIU_FLAGS_MSIX;
  7608. for (i = 0; i < num_irqs; i++)
  7609. np->ldg[i].irq = msi_vec[i].vector;
  7610. np->num_ldg = num_irqs;
  7611. }
  7612. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7613. {
  7614. #ifdef CONFIG_SPARC64
  7615. struct of_device *op = np->op;
  7616. const u32 *int_prop;
  7617. int i;
  7618. int_prop = of_get_property(op->node, "interrupts", NULL);
  7619. if (!int_prop)
  7620. return -ENODEV;
  7621. for (i = 0; i < op->num_irqs; i++) {
  7622. ldg_num_map[i] = int_prop[i];
  7623. np->ldg[i].irq = op->irqs[i];
  7624. }
  7625. np->num_ldg = op->num_irqs;
  7626. return 0;
  7627. #else
  7628. return -EINVAL;
  7629. #endif
  7630. }
  7631. static int __devinit niu_ldg_init(struct niu *np)
  7632. {
  7633. struct niu_parent *parent = np->parent;
  7634. u8 ldg_num_map[NIU_NUM_LDG];
  7635. int first_chan, num_chan;
  7636. int i, err, ldg_rotor;
  7637. u8 port;
  7638. np->num_ldg = 1;
  7639. np->ldg[0].irq = np->dev->irq;
  7640. if (parent->plat_type == PLAT_TYPE_NIU) {
  7641. err = niu_n2_irq_init(np, ldg_num_map);
  7642. if (err)
  7643. return err;
  7644. } else
  7645. niu_try_msix(np, ldg_num_map);
  7646. port = np->port;
  7647. for (i = 0; i < np->num_ldg; i++) {
  7648. struct niu_ldg *lp = &np->ldg[i];
  7649. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7650. lp->np = np;
  7651. lp->ldg_num = ldg_num_map[i];
  7652. lp->timer = 2; /* XXX */
  7653. /* On N2 NIU the firmware has setup the SID mappings so they go
  7654. * to the correct values that will route the LDG to the proper
  7655. * interrupt in the NCU interrupt table.
  7656. */
  7657. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7658. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7659. if (err)
  7660. return err;
  7661. }
  7662. }
  7663. /* We adopt the LDG assignment ordering used by the N2 NIU
  7664. * 'interrupt' properties because that simplifies a lot of
  7665. * things. This ordering is:
  7666. *
  7667. * MAC
  7668. * MIF (if port zero)
  7669. * SYSERR (if port zero)
  7670. * RX channels
  7671. * TX channels
  7672. */
  7673. ldg_rotor = 0;
  7674. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7675. LDN_MAC(port));
  7676. if (err)
  7677. return err;
  7678. ldg_rotor++;
  7679. if (ldg_rotor == np->num_ldg)
  7680. ldg_rotor = 0;
  7681. if (port == 0) {
  7682. err = niu_ldg_assign_ldn(np, parent,
  7683. ldg_num_map[ldg_rotor],
  7684. LDN_MIF);
  7685. if (err)
  7686. return err;
  7687. ldg_rotor++;
  7688. if (ldg_rotor == np->num_ldg)
  7689. ldg_rotor = 0;
  7690. err = niu_ldg_assign_ldn(np, parent,
  7691. ldg_num_map[ldg_rotor],
  7692. LDN_DEVICE_ERROR);
  7693. if (err)
  7694. return err;
  7695. ldg_rotor++;
  7696. if (ldg_rotor == np->num_ldg)
  7697. ldg_rotor = 0;
  7698. }
  7699. first_chan = 0;
  7700. for (i = 0; i < port; i++)
  7701. first_chan += parent->rxchan_per_port[port];
  7702. num_chan = parent->rxchan_per_port[port];
  7703. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7704. err = niu_ldg_assign_ldn(np, parent,
  7705. ldg_num_map[ldg_rotor],
  7706. LDN_RXDMA(i));
  7707. if (err)
  7708. return err;
  7709. ldg_rotor++;
  7710. if (ldg_rotor == np->num_ldg)
  7711. ldg_rotor = 0;
  7712. }
  7713. first_chan = 0;
  7714. for (i = 0; i < port; i++)
  7715. first_chan += parent->txchan_per_port[port];
  7716. num_chan = parent->txchan_per_port[port];
  7717. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7718. err = niu_ldg_assign_ldn(np, parent,
  7719. ldg_num_map[ldg_rotor],
  7720. LDN_TXDMA(i));
  7721. if (err)
  7722. return err;
  7723. ldg_rotor++;
  7724. if (ldg_rotor == np->num_ldg)
  7725. ldg_rotor = 0;
  7726. }
  7727. return 0;
  7728. }
  7729. static void __devexit niu_ldg_free(struct niu *np)
  7730. {
  7731. if (np->flags & NIU_FLAGS_MSIX)
  7732. pci_disable_msix(np->pdev);
  7733. }
  7734. static int __devinit niu_get_of_props(struct niu *np)
  7735. {
  7736. #ifdef CONFIG_SPARC64
  7737. struct net_device *dev = np->dev;
  7738. struct device_node *dp;
  7739. const char *phy_type;
  7740. const u8 *mac_addr;
  7741. const char *model;
  7742. int prop_len;
  7743. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7744. dp = np->op->node;
  7745. else
  7746. dp = pci_device_to_OF_node(np->pdev);
  7747. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7748. if (!phy_type) {
  7749. dev_err(np->device, PFX "%s: OF node lacks "
  7750. "phy-type property\n",
  7751. dp->full_name);
  7752. return -EINVAL;
  7753. }
  7754. if (!strcmp(phy_type, "none"))
  7755. return -ENODEV;
  7756. strcpy(np->vpd.phy_type, phy_type);
  7757. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7758. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  7759. dp->full_name, np->vpd.phy_type);
  7760. return -EINVAL;
  7761. }
  7762. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7763. if (!mac_addr) {
  7764. dev_err(np->device, PFX "%s: OF node lacks "
  7765. "local-mac-address property\n",
  7766. dp->full_name);
  7767. return -EINVAL;
  7768. }
  7769. if (prop_len != dev->addr_len) {
  7770. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  7771. "is wrong.\n",
  7772. dp->full_name, prop_len);
  7773. }
  7774. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7775. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7776. int i;
  7777. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  7778. dp->full_name);
  7779. dev_err(np->device, PFX "%s: [ \n",
  7780. dp->full_name);
  7781. for (i = 0; i < 6; i++)
  7782. printk("%02x ", dev->perm_addr[i]);
  7783. printk("]\n");
  7784. return -EINVAL;
  7785. }
  7786. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7787. model = of_get_property(dp, "model", &prop_len);
  7788. if (model)
  7789. strcpy(np->vpd.model, model);
  7790. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7791. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7792. NIU_FLAGS_HOTPLUG_PHY);
  7793. }
  7794. return 0;
  7795. #else
  7796. return -EINVAL;
  7797. #endif
  7798. }
  7799. static int __devinit niu_get_invariants(struct niu *np)
  7800. {
  7801. int err, have_props;
  7802. u32 offset;
  7803. err = niu_get_of_props(np);
  7804. if (err == -ENODEV)
  7805. return err;
  7806. have_props = !err;
  7807. err = niu_init_mac_ipp_pcs_base(np);
  7808. if (err)
  7809. return err;
  7810. if (have_props) {
  7811. err = niu_get_and_validate_port(np);
  7812. if (err)
  7813. return err;
  7814. } else {
  7815. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7816. return -EINVAL;
  7817. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7818. offset = niu_pci_vpd_offset(np);
  7819. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  7820. offset);
  7821. if (offset)
  7822. niu_pci_vpd_fetch(np, offset);
  7823. nw64(ESPC_PIO_EN, 0);
  7824. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7825. niu_pci_vpd_validate(np);
  7826. err = niu_get_and_validate_port(np);
  7827. if (err)
  7828. return err;
  7829. }
  7830. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7831. err = niu_get_and_validate_port(np);
  7832. if (err)
  7833. return err;
  7834. err = niu_pci_probe_sprom(np);
  7835. if (err)
  7836. return err;
  7837. }
  7838. }
  7839. err = niu_probe_ports(np);
  7840. if (err)
  7841. return err;
  7842. niu_ldg_init(np);
  7843. niu_classifier_swstate_init(np);
  7844. niu_link_config_init(np);
  7845. err = niu_determine_phy_disposition(np);
  7846. if (!err)
  7847. err = niu_init_link(np);
  7848. return err;
  7849. }
  7850. static LIST_HEAD(niu_parent_list);
  7851. static DEFINE_MUTEX(niu_parent_lock);
  7852. static int niu_parent_index;
  7853. static ssize_t show_port_phy(struct device *dev,
  7854. struct device_attribute *attr, char *buf)
  7855. {
  7856. struct platform_device *plat_dev = to_platform_device(dev);
  7857. struct niu_parent *p = plat_dev->dev.platform_data;
  7858. u32 port_phy = p->port_phy;
  7859. char *orig_buf = buf;
  7860. int i;
  7861. if (port_phy == PORT_PHY_UNKNOWN ||
  7862. port_phy == PORT_PHY_INVALID)
  7863. return 0;
  7864. for (i = 0; i < p->num_ports; i++) {
  7865. const char *type_str;
  7866. int type;
  7867. type = phy_decode(port_phy, i);
  7868. if (type == PORT_TYPE_10G)
  7869. type_str = "10G";
  7870. else
  7871. type_str = "1G";
  7872. buf += sprintf(buf,
  7873. (i == 0) ? "%s" : " %s",
  7874. type_str);
  7875. }
  7876. buf += sprintf(buf, "\n");
  7877. return buf - orig_buf;
  7878. }
  7879. static ssize_t show_plat_type(struct device *dev,
  7880. struct device_attribute *attr, char *buf)
  7881. {
  7882. struct platform_device *plat_dev = to_platform_device(dev);
  7883. struct niu_parent *p = plat_dev->dev.platform_data;
  7884. const char *type_str;
  7885. switch (p->plat_type) {
  7886. case PLAT_TYPE_ATLAS:
  7887. type_str = "atlas";
  7888. break;
  7889. case PLAT_TYPE_NIU:
  7890. type_str = "niu";
  7891. break;
  7892. case PLAT_TYPE_VF_P0:
  7893. type_str = "vf_p0";
  7894. break;
  7895. case PLAT_TYPE_VF_P1:
  7896. type_str = "vf_p1";
  7897. break;
  7898. default:
  7899. type_str = "unknown";
  7900. break;
  7901. }
  7902. return sprintf(buf, "%s\n", type_str);
  7903. }
  7904. static ssize_t __show_chan_per_port(struct device *dev,
  7905. struct device_attribute *attr, char *buf,
  7906. int rx)
  7907. {
  7908. struct platform_device *plat_dev = to_platform_device(dev);
  7909. struct niu_parent *p = plat_dev->dev.platform_data;
  7910. char *orig_buf = buf;
  7911. u8 *arr;
  7912. int i;
  7913. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7914. for (i = 0; i < p->num_ports; i++) {
  7915. buf += sprintf(buf,
  7916. (i == 0) ? "%d" : " %d",
  7917. arr[i]);
  7918. }
  7919. buf += sprintf(buf, "\n");
  7920. return buf - orig_buf;
  7921. }
  7922. static ssize_t show_rxchan_per_port(struct device *dev,
  7923. struct device_attribute *attr, char *buf)
  7924. {
  7925. return __show_chan_per_port(dev, attr, buf, 1);
  7926. }
  7927. static ssize_t show_txchan_per_port(struct device *dev,
  7928. struct device_attribute *attr, char *buf)
  7929. {
  7930. return __show_chan_per_port(dev, attr, buf, 1);
  7931. }
  7932. static ssize_t show_num_ports(struct device *dev,
  7933. struct device_attribute *attr, char *buf)
  7934. {
  7935. struct platform_device *plat_dev = to_platform_device(dev);
  7936. struct niu_parent *p = plat_dev->dev.platform_data;
  7937. return sprintf(buf, "%d\n", p->num_ports);
  7938. }
  7939. static struct device_attribute niu_parent_attributes[] = {
  7940. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7941. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7942. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7943. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7944. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7945. {}
  7946. };
  7947. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7948. union niu_parent_id *id,
  7949. u8 ptype)
  7950. {
  7951. struct platform_device *plat_dev;
  7952. struct niu_parent *p;
  7953. int i;
  7954. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  7955. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7956. NULL, 0);
  7957. if (IS_ERR(plat_dev))
  7958. return NULL;
  7959. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7960. int err = device_create_file(&plat_dev->dev,
  7961. &niu_parent_attributes[i]);
  7962. if (err)
  7963. goto fail_unregister;
  7964. }
  7965. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7966. if (!p)
  7967. goto fail_unregister;
  7968. p->index = niu_parent_index++;
  7969. plat_dev->dev.platform_data = p;
  7970. p->plat_dev = plat_dev;
  7971. memcpy(&p->id, id, sizeof(*id));
  7972. p->plat_type = ptype;
  7973. INIT_LIST_HEAD(&p->list);
  7974. atomic_set(&p->refcnt, 0);
  7975. list_add(&p->list, &niu_parent_list);
  7976. spin_lock_init(&p->lock);
  7977. p->rxdma_clock_divider = 7500;
  7978. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7979. if (p->plat_type == PLAT_TYPE_NIU)
  7980. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7981. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7982. int index = i - CLASS_CODE_USER_PROG1;
  7983. p->tcam_key[index] = TCAM_KEY_TSEL;
  7984. p->flow_key[index] = (FLOW_KEY_IPSA |
  7985. FLOW_KEY_IPDA |
  7986. FLOW_KEY_PROTO |
  7987. (FLOW_KEY_L4_BYTE12 <<
  7988. FLOW_KEY_L4_0_SHIFT) |
  7989. (FLOW_KEY_L4_BYTE12 <<
  7990. FLOW_KEY_L4_1_SHIFT));
  7991. }
  7992. for (i = 0; i < LDN_MAX + 1; i++)
  7993. p->ldg_map[i] = LDG_INVALID;
  7994. return p;
  7995. fail_unregister:
  7996. platform_device_unregister(plat_dev);
  7997. return NULL;
  7998. }
  7999. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  8000. union niu_parent_id *id,
  8001. u8 ptype)
  8002. {
  8003. struct niu_parent *p, *tmp;
  8004. int port = np->port;
  8005. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  8006. ptype, port);
  8007. mutex_lock(&niu_parent_lock);
  8008. p = NULL;
  8009. list_for_each_entry(tmp, &niu_parent_list, list) {
  8010. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  8011. p = tmp;
  8012. break;
  8013. }
  8014. }
  8015. if (!p)
  8016. p = niu_new_parent(np, id, ptype);
  8017. if (p) {
  8018. char port_name[6];
  8019. int err;
  8020. sprintf(port_name, "port%d", port);
  8021. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  8022. &np->device->kobj,
  8023. port_name);
  8024. if (!err) {
  8025. p->ports[port] = np;
  8026. atomic_inc(&p->refcnt);
  8027. }
  8028. }
  8029. mutex_unlock(&niu_parent_lock);
  8030. return p;
  8031. }
  8032. static void niu_put_parent(struct niu *np)
  8033. {
  8034. struct niu_parent *p = np->parent;
  8035. u8 port = np->port;
  8036. char port_name[6];
  8037. BUG_ON(!p || p->ports[port] != np);
  8038. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  8039. sprintf(port_name, "port%d", port);
  8040. mutex_lock(&niu_parent_lock);
  8041. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  8042. p->ports[port] = NULL;
  8043. np->parent = NULL;
  8044. if (atomic_dec_and_test(&p->refcnt)) {
  8045. list_del(&p->list);
  8046. platform_device_unregister(p->plat_dev);
  8047. }
  8048. mutex_unlock(&niu_parent_lock);
  8049. }
  8050. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  8051. u64 *handle, gfp_t flag)
  8052. {
  8053. dma_addr_t dh;
  8054. void *ret;
  8055. ret = dma_alloc_coherent(dev, size, &dh, flag);
  8056. if (ret)
  8057. *handle = dh;
  8058. return ret;
  8059. }
  8060. static void niu_pci_free_coherent(struct device *dev, size_t size,
  8061. void *cpu_addr, u64 handle)
  8062. {
  8063. dma_free_coherent(dev, size, cpu_addr, handle);
  8064. }
  8065. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  8066. unsigned long offset, size_t size,
  8067. enum dma_data_direction direction)
  8068. {
  8069. return dma_map_page(dev, page, offset, size, direction);
  8070. }
  8071. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  8072. size_t size, enum dma_data_direction direction)
  8073. {
  8074. dma_unmap_page(dev, dma_address, size, direction);
  8075. }
  8076. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  8077. size_t size,
  8078. enum dma_data_direction direction)
  8079. {
  8080. return dma_map_single(dev, cpu_addr, size, direction);
  8081. }
  8082. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  8083. size_t size,
  8084. enum dma_data_direction direction)
  8085. {
  8086. dma_unmap_single(dev, dma_address, size, direction);
  8087. }
  8088. static const struct niu_ops niu_pci_ops = {
  8089. .alloc_coherent = niu_pci_alloc_coherent,
  8090. .free_coherent = niu_pci_free_coherent,
  8091. .map_page = niu_pci_map_page,
  8092. .unmap_page = niu_pci_unmap_page,
  8093. .map_single = niu_pci_map_single,
  8094. .unmap_single = niu_pci_unmap_single,
  8095. };
  8096. static void __devinit niu_driver_version(void)
  8097. {
  8098. static int niu_version_printed;
  8099. if (niu_version_printed++ == 0)
  8100. pr_info("%s", version);
  8101. }
  8102. static struct net_device * __devinit niu_alloc_and_init(
  8103. struct device *gen_dev, struct pci_dev *pdev,
  8104. struct of_device *op, const struct niu_ops *ops,
  8105. u8 port)
  8106. {
  8107. struct net_device *dev;
  8108. struct niu *np;
  8109. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8110. if (!dev) {
  8111. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  8112. return NULL;
  8113. }
  8114. SET_NETDEV_DEV(dev, gen_dev);
  8115. np = netdev_priv(dev);
  8116. np->dev = dev;
  8117. np->pdev = pdev;
  8118. np->op = op;
  8119. np->device = gen_dev;
  8120. np->ops = ops;
  8121. np->msg_enable = niu_debug;
  8122. spin_lock_init(&np->lock);
  8123. INIT_WORK(&np->reset_task, niu_reset_task);
  8124. np->port = port;
  8125. return dev;
  8126. }
  8127. static const struct net_device_ops niu_netdev_ops = {
  8128. .ndo_open = niu_open,
  8129. .ndo_stop = niu_close,
  8130. .ndo_start_xmit = niu_start_xmit,
  8131. .ndo_get_stats = niu_get_stats,
  8132. .ndo_set_multicast_list = niu_set_rx_mode,
  8133. .ndo_validate_addr = eth_validate_addr,
  8134. .ndo_set_mac_address = niu_set_mac_addr,
  8135. .ndo_do_ioctl = niu_ioctl,
  8136. .ndo_tx_timeout = niu_tx_timeout,
  8137. .ndo_change_mtu = niu_change_mtu,
  8138. };
  8139. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8140. {
  8141. dev->netdev_ops = &niu_netdev_ops;
  8142. dev->ethtool_ops = &niu_ethtool_ops;
  8143. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8144. }
  8145. static void __devinit niu_device_announce(struct niu *np)
  8146. {
  8147. struct net_device *dev = np->dev;
  8148. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8149. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8150. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8151. dev->name,
  8152. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8153. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8154. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8155. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8156. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8157. np->vpd.phy_type);
  8158. } else {
  8159. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8160. dev->name,
  8161. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8162. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8163. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8164. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8165. "COPPER")),
  8166. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8167. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8168. np->vpd.phy_type);
  8169. }
  8170. }
  8171. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8172. const struct pci_device_id *ent)
  8173. {
  8174. union niu_parent_id parent_id;
  8175. struct net_device *dev;
  8176. struct niu *np;
  8177. int err, pos;
  8178. u64 dma_mask;
  8179. u16 val16;
  8180. niu_driver_version();
  8181. err = pci_enable_device(pdev);
  8182. if (err) {
  8183. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  8184. "aborting.\n");
  8185. return err;
  8186. }
  8187. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8188. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8189. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  8190. "base addresses, aborting.\n");
  8191. err = -ENODEV;
  8192. goto err_out_disable_pdev;
  8193. }
  8194. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8195. if (err) {
  8196. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  8197. "aborting.\n");
  8198. goto err_out_disable_pdev;
  8199. }
  8200. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8201. if (pos <= 0) {
  8202. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  8203. "aborting.\n");
  8204. goto err_out_free_res;
  8205. }
  8206. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8207. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8208. if (!dev) {
  8209. err = -ENOMEM;
  8210. goto err_out_free_res;
  8211. }
  8212. np = netdev_priv(dev);
  8213. memset(&parent_id, 0, sizeof(parent_id));
  8214. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8215. parent_id.pci.bus = pdev->bus->number;
  8216. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8217. np->parent = niu_get_parent(np, &parent_id,
  8218. PLAT_TYPE_ATLAS);
  8219. if (!np->parent) {
  8220. err = -ENOMEM;
  8221. goto err_out_free_dev;
  8222. }
  8223. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8224. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8225. val16 |= (PCI_EXP_DEVCTL_CERE |
  8226. PCI_EXP_DEVCTL_NFERE |
  8227. PCI_EXP_DEVCTL_FERE |
  8228. PCI_EXP_DEVCTL_URRE |
  8229. PCI_EXP_DEVCTL_RELAX_EN);
  8230. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8231. dma_mask = DMA_44BIT_MASK;
  8232. err = pci_set_dma_mask(pdev, dma_mask);
  8233. if (!err) {
  8234. dev->features |= NETIF_F_HIGHDMA;
  8235. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8236. if (err) {
  8237. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  8238. "DMA for consistent allocations, "
  8239. "aborting.\n");
  8240. goto err_out_release_parent;
  8241. }
  8242. }
  8243. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8244. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8245. if (err) {
  8246. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  8247. "aborting.\n");
  8248. goto err_out_release_parent;
  8249. }
  8250. }
  8251. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8252. np->regs = pci_ioremap_bar(pdev, 0);
  8253. if (!np->regs) {
  8254. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  8255. "aborting.\n");
  8256. err = -ENOMEM;
  8257. goto err_out_release_parent;
  8258. }
  8259. pci_set_master(pdev);
  8260. pci_save_state(pdev);
  8261. dev->irq = pdev->irq;
  8262. niu_assign_netdev_ops(dev);
  8263. err = niu_get_invariants(np);
  8264. if (err) {
  8265. if (err != -ENODEV)
  8266. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  8267. "of chip, aborting.\n");
  8268. goto err_out_iounmap;
  8269. }
  8270. err = register_netdev(dev);
  8271. if (err) {
  8272. dev_err(&pdev->dev, PFX "Cannot register net device, "
  8273. "aborting.\n");
  8274. goto err_out_iounmap;
  8275. }
  8276. pci_set_drvdata(pdev, dev);
  8277. niu_device_announce(np);
  8278. return 0;
  8279. err_out_iounmap:
  8280. if (np->regs) {
  8281. iounmap(np->regs);
  8282. np->regs = NULL;
  8283. }
  8284. err_out_release_parent:
  8285. niu_put_parent(np);
  8286. err_out_free_dev:
  8287. free_netdev(dev);
  8288. err_out_free_res:
  8289. pci_release_regions(pdev);
  8290. err_out_disable_pdev:
  8291. pci_disable_device(pdev);
  8292. pci_set_drvdata(pdev, NULL);
  8293. return err;
  8294. }
  8295. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8296. {
  8297. struct net_device *dev = pci_get_drvdata(pdev);
  8298. if (dev) {
  8299. struct niu *np = netdev_priv(dev);
  8300. unregister_netdev(dev);
  8301. if (np->regs) {
  8302. iounmap(np->regs);
  8303. np->regs = NULL;
  8304. }
  8305. niu_ldg_free(np);
  8306. niu_put_parent(np);
  8307. free_netdev(dev);
  8308. pci_release_regions(pdev);
  8309. pci_disable_device(pdev);
  8310. pci_set_drvdata(pdev, NULL);
  8311. }
  8312. }
  8313. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8314. {
  8315. struct net_device *dev = pci_get_drvdata(pdev);
  8316. struct niu *np = netdev_priv(dev);
  8317. unsigned long flags;
  8318. if (!netif_running(dev))
  8319. return 0;
  8320. flush_scheduled_work();
  8321. niu_netif_stop(np);
  8322. del_timer_sync(&np->timer);
  8323. spin_lock_irqsave(&np->lock, flags);
  8324. niu_enable_interrupts(np, 0);
  8325. spin_unlock_irqrestore(&np->lock, flags);
  8326. netif_device_detach(dev);
  8327. spin_lock_irqsave(&np->lock, flags);
  8328. niu_stop_hw(np);
  8329. spin_unlock_irqrestore(&np->lock, flags);
  8330. pci_save_state(pdev);
  8331. return 0;
  8332. }
  8333. static int niu_resume(struct pci_dev *pdev)
  8334. {
  8335. struct net_device *dev = pci_get_drvdata(pdev);
  8336. struct niu *np = netdev_priv(dev);
  8337. unsigned long flags;
  8338. int err;
  8339. if (!netif_running(dev))
  8340. return 0;
  8341. pci_restore_state(pdev);
  8342. netif_device_attach(dev);
  8343. spin_lock_irqsave(&np->lock, flags);
  8344. err = niu_init_hw(np);
  8345. if (!err) {
  8346. np->timer.expires = jiffies + HZ;
  8347. add_timer(&np->timer);
  8348. niu_netif_start(np);
  8349. }
  8350. spin_unlock_irqrestore(&np->lock, flags);
  8351. return err;
  8352. }
  8353. static struct pci_driver niu_pci_driver = {
  8354. .name = DRV_MODULE_NAME,
  8355. .id_table = niu_pci_tbl,
  8356. .probe = niu_pci_init_one,
  8357. .remove = __devexit_p(niu_pci_remove_one),
  8358. .suspend = niu_suspend,
  8359. .resume = niu_resume,
  8360. };
  8361. #ifdef CONFIG_SPARC64
  8362. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8363. u64 *dma_addr, gfp_t flag)
  8364. {
  8365. unsigned long order = get_order(size);
  8366. unsigned long page = __get_free_pages(flag, order);
  8367. if (page == 0UL)
  8368. return NULL;
  8369. memset((char *)page, 0, PAGE_SIZE << order);
  8370. *dma_addr = __pa(page);
  8371. return (void *) page;
  8372. }
  8373. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8374. void *cpu_addr, u64 handle)
  8375. {
  8376. unsigned long order = get_order(size);
  8377. free_pages((unsigned long) cpu_addr, order);
  8378. }
  8379. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8380. unsigned long offset, size_t size,
  8381. enum dma_data_direction direction)
  8382. {
  8383. return page_to_phys(page) + offset;
  8384. }
  8385. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8386. size_t size, enum dma_data_direction direction)
  8387. {
  8388. /* Nothing to do. */
  8389. }
  8390. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8391. size_t size,
  8392. enum dma_data_direction direction)
  8393. {
  8394. return __pa(cpu_addr);
  8395. }
  8396. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8397. size_t size,
  8398. enum dma_data_direction direction)
  8399. {
  8400. /* Nothing to do. */
  8401. }
  8402. static const struct niu_ops niu_phys_ops = {
  8403. .alloc_coherent = niu_phys_alloc_coherent,
  8404. .free_coherent = niu_phys_free_coherent,
  8405. .map_page = niu_phys_map_page,
  8406. .unmap_page = niu_phys_unmap_page,
  8407. .map_single = niu_phys_map_single,
  8408. .unmap_single = niu_phys_unmap_single,
  8409. };
  8410. static unsigned long res_size(struct resource *r)
  8411. {
  8412. return r->end - r->start + 1UL;
  8413. }
  8414. static int __devinit niu_of_probe(struct of_device *op,
  8415. const struct of_device_id *match)
  8416. {
  8417. union niu_parent_id parent_id;
  8418. struct net_device *dev;
  8419. struct niu *np;
  8420. const u32 *reg;
  8421. int err;
  8422. niu_driver_version();
  8423. reg = of_get_property(op->node, "reg", NULL);
  8424. if (!reg) {
  8425. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  8426. op->node->full_name);
  8427. return -ENODEV;
  8428. }
  8429. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8430. &niu_phys_ops, reg[0] & 0x1);
  8431. if (!dev) {
  8432. err = -ENOMEM;
  8433. goto err_out;
  8434. }
  8435. np = netdev_priv(dev);
  8436. memset(&parent_id, 0, sizeof(parent_id));
  8437. parent_id.of = of_get_parent(op->node);
  8438. np->parent = niu_get_parent(np, &parent_id,
  8439. PLAT_TYPE_NIU);
  8440. if (!np->parent) {
  8441. err = -ENOMEM;
  8442. goto err_out_free_dev;
  8443. }
  8444. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8445. np->regs = of_ioremap(&op->resource[1], 0,
  8446. res_size(&op->resource[1]),
  8447. "niu regs");
  8448. if (!np->regs) {
  8449. dev_err(&op->dev, PFX "Cannot map device registers, "
  8450. "aborting.\n");
  8451. err = -ENOMEM;
  8452. goto err_out_release_parent;
  8453. }
  8454. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8455. res_size(&op->resource[2]),
  8456. "niu vregs-1");
  8457. if (!np->vir_regs_1) {
  8458. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  8459. "aborting.\n");
  8460. err = -ENOMEM;
  8461. goto err_out_iounmap;
  8462. }
  8463. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8464. res_size(&op->resource[3]),
  8465. "niu vregs-2");
  8466. if (!np->vir_regs_2) {
  8467. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  8468. "aborting.\n");
  8469. err = -ENOMEM;
  8470. goto err_out_iounmap;
  8471. }
  8472. niu_assign_netdev_ops(dev);
  8473. err = niu_get_invariants(np);
  8474. if (err) {
  8475. if (err != -ENODEV)
  8476. dev_err(&op->dev, PFX "Problem fetching invariants "
  8477. "of chip, aborting.\n");
  8478. goto err_out_iounmap;
  8479. }
  8480. err = register_netdev(dev);
  8481. if (err) {
  8482. dev_err(&op->dev, PFX "Cannot register net device, "
  8483. "aborting.\n");
  8484. goto err_out_iounmap;
  8485. }
  8486. dev_set_drvdata(&op->dev, dev);
  8487. niu_device_announce(np);
  8488. return 0;
  8489. err_out_iounmap:
  8490. if (np->vir_regs_1) {
  8491. of_iounmap(&op->resource[2], np->vir_regs_1,
  8492. res_size(&op->resource[2]));
  8493. np->vir_regs_1 = NULL;
  8494. }
  8495. if (np->vir_regs_2) {
  8496. of_iounmap(&op->resource[3], np->vir_regs_2,
  8497. res_size(&op->resource[3]));
  8498. np->vir_regs_2 = NULL;
  8499. }
  8500. if (np->regs) {
  8501. of_iounmap(&op->resource[1], np->regs,
  8502. res_size(&op->resource[1]));
  8503. np->regs = NULL;
  8504. }
  8505. err_out_release_parent:
  8506. niu_put_parent(np);
  8507. err_out_free_dev:
  8508. free_netdev(dev);
  8509. err_out:
  8510. return err;
  8511. }
  8512. static int __devexit niu_of_remove(struct of_device *op)
  8513. {
  8514. struct net_device *dev = dev_get_drvdata(&op->dev);
  8515. if (dev) {
  8516. struct niu *np = netdev_priv(dev);
  8517. unregister_netdev(dev);
  8518. if (np->vir_regs_1) {
  8519. of_iounmap(&op->resource[2], np->vir_regs_1,
  8520. res_size(&op->resource[2]));
  8521. np->vir_regs_1 = NULL;
  8522. }
  8523. if (np->vir_regs_2) {
  8524. of_iounmap(&op->resource[3], np->vir_regs_2,
  8525. res_size(&op->resource[3]));
  8526. np->vir_regs_2 = NULL;
  8527. }
  8528. if (np->regs) {
  8529. of_iounmap(&op->resource[1], np->regs,
  8530. res_size(&op->resource[1]));
  8531. np->regs = NULL;
  8532. }
  8533. niu_ldg_free(np);
  8534. niu_put_parent(np);
  8535. free_netdev(dev);
  8536. dev_set_drvdata(&op->dev, NULL);
  8537. }
  8538. return 0;
  8539. }
  8540. static const struct of_device_id niu_match[] = {
  8541. {
  8542. .name = "network",
  8543. .compatible = "SUNW,niusl",
  8544. },
  8545. {},
  8546. };
  8547. MODULE_DEVICE_TABLE(of, niu_match);
  8548. static struct of_platform_driver niu_of_driver = {
  8549. .name = "niu",
  8550. .match_table = niu_match,
  8551. .probe = niu_of_probe,
  8552. .remove = __devexit_p(niu_of_remove),
  8553. };
  8554. #endif /* CONFIG_SPARC64 */
  8555. static int __init niu_init(void)
  8556. {
  8557. int err = 0;
  8558. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8559. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8560. #ifdef CONFIG_SPARC64
  8561. err = of_register_driver(&niu_of_driver, &of_bus_type);
  8562. #endif
  8563. if (!err) {
  8564. err = pci_register_driver(&niu_pci_driver);
  8565. #ifdef CONFIG_SPARC64
  8566. if (err)
  8567. of_unregister_driver(&niu_of_driver);
  8568. #endif
  8569. }
  8570. return err;
  8571. }
  8572. static void __exit niu_exit(void)
  8573. {
  8574. pci_unregister_driver(&niu_pci_driver);
  8575. #ifdef CONFIG_SPARC64
  8576. of_unregister_driver(&niu_of_driver);
  8577. #endif
  8578. }
  8579. module_init(niu_init);
  8580. module_exit(niu_exit);