vmx.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  52. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  53. #define KVM_GUEST_CR0_MASK \
  54. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  55. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  56. (X86_CR0_WP | X86_CR0_NE | X86_CR0_TS | X86_CR0_MP)
  57. #define KVM_VM_CR0_ALWAYS_ON \
  58. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  59. #define KVM_GUEST_CR4_MASK \
  60. (X86_CR4_VME | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_PGE | X86_CR4_VMXE)
  61. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  62. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  63. /*
  64. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  65. * ple_gap: upper bound on the amount of time between two successive
  66. * executions of PAUSE in a loop. Also indicate if ple enabled.
  67. * According to test, this time is usually small than 41 cycles.
  68. * ple_window: upper bound on the amount of time a guest is allowed to execute
  69. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  70. * less than 2^12 cycles
  71. * Time is measured based on a counter that runs at the same rate as the TSC,
  72. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  73. */
  74. #define KVM_VMX_DEFAULT_PLE_GAP 41
  75. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  76. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  77. module_param(ple_gap, int, S_IRUGO);
  78. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  79. module_param(ple_window, int, S_IRUGO);
  80. struct vmcs {
  81. u32 revision_id;
  82. u32 abort;
  83. char data[0];
  84. };
  85. struct shared_msr_entry {
  86. unsigned index;
  87. u64 data;
  88. u64 mask;
  89. };
  90. struct vcpu_vmx {
  91. struct kvm_vcpu vcpu;
  92. struct list_head local_vcpus_link;
  93. unsigned long host_rsp;
  94. int launched;
  95. u8 fail;
  96. u32 idt_vectoring_info;
  97. struct shared_msr_entry *guest_msrs;
  98. int nmsrs;
  99. int save_nmsrs;
  100. #ifdef CONFIG_X86_64
  101. u64 msr_host_kernel_gs_base;
  102. u64 msr_guest_kernel_gs_base;
  103. #endif
  104. struct vmcs *vmcs;
  105. struct {
  106. int loaded;
  107. u16 fs_sel, gs_sel, ldt_sel;
  108. int gs_ldt_reload_needed;
  109. int fs_reload_needed;
  110. } host_state;
  111. struct {
  112. int vm86_active;
  113. u8 save_iopl;
  114. struct kvm_save_segment {
  115. u16 selector;
  116. unsigned long base;
  117. u32 limit;
  118. u32 ar;
  119. } tr, es, ds, fs, gs;
  120. struct {
  121. bool pending;
  122. u8 vector;
  123. unsigned rip;
  124. } irq;
  125. } rmode;
  126. int vpid;
  127. bool emulation_required;
  128. /* Support for vnmi-less CPUs */
  129. int soft_vnmi_blocked;
  130. ktime_t entry_time;
  131. s64 vnmi_blocked_time;
  132. u32 exit_reason;
  133. };
  134. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  135. {
  136. return container_of(vcpu, struct vcpu_vmx, vcpu);
  137. }
  138. static int init_rmode(struct kvm *kvm);
  139. static u64 construct_eptp(unsigned long root_hpa);
  140. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  141. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  142. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  143. static unsigned long *vmx_io_bitmap_a;
  144. static unsigned long *vmx_io_bitmap_b;
  145. static unsigned long *vmx_msr_bitmap_legacy;
  146. static unsigned long *vmx_msr_bitmap_longmode;
  147. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  148. static DEFINE_SPINLOCK(vmx_vpid_lock);
  149. static struct vmcs_config {
  150. int size;
  151. int order;
  152. u32 revision_id;
  153. u32 pin_based_exec_ctrl;
  154. u32 cpu_based_exec_ctrl;
  155. u32 cpu_based_2nd_exec_ctrl;
  156. u32 vmexit_ctrl;
  157. u32 vmentry_ctrl;
  158. } vmcs_config;
  159. static struct vmx_capability {
  160. u32 ept;
  161. u32 vpid;
  162. } vmx_capability;
  163. #define VMX_SEGMENT_FIELD(seg) \
  164. [VCPU_SREG_##seg] = { \
  165. .selector = GUEST_##seg##_SELECTOR, \
  166. .base = GUEST_##seg##_BASE, \
  167. .limit = GUEST_##seg##_LIMIT, \
  168. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  169. }
  170. static struct kvm_vmx_segment_field {
  171. unsigned selector;
  172. unsigned base;
  173. unsigned limit;
  174. unsigned ar_bytes;
  175. } kvm_vmx_segment_fields[] = {
  176. VMX_SEGMENT_FIELD(CS),
  177. VMX_SEGMENT_FIELD(DS),
  178. VMX_SEGMENT_FIELD(ES),
  179. VMX_SEGMENT_FIELD(FS),
  180. VMX_SEGMENT_FIELD(GS),
  181. VMX_SEGMENT_FIELD(SS),
  182. VMX_SEGMENT_FIELD(TR),
  183. VMX_SEGMENT_FIELD(LDTR),
  184. };
  185. static u64 host_efer;
  186. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  187. /*
  188. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  189. * away by decrementing the array size.
  190. */
  191. static const u32 vmx_msr_index[] = {
  192. #ifdef CONFIG_X86_64
  193. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  194. #endif
  195. MSR_EFER, MSR_K6_STAR,
  196. };
  197. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  198. static inline int is_page_fault(u32 intr_info)
  199. {
  200. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  201. INTR_INFO_VALID_MASK)) ==
  202. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  203. }
  204. static inline int is_no_device(u32 intr_info)
  205. {
  206. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  207. INTR_INFO_VALID_MASK)) ==
  208. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  209. }
  210. static inline int is_invalid_opcode(u32 intr_info)
  211. {
  212. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  213. INTR_INFO_VALID_MASK)) ==
  214. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  215. }
  216. static inline int is_external_interrupt(u32 intr_info)
  217. {
  218. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  219. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  220. }
  221. static inline int is_machine_check(u32 intr_info)
  222. {
  223. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  224. INTR_INFO_VALID_MASK)) ==
  225. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  226. }
  227. static inline int cpu_has_vmx_msr_bitmap(void)
  228. {
  229. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  230. }
  231. static inline int cpu_has_vmx_tpr_shadow(void)
  232. {
  233. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  234. }
  235. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  236. {
  237. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  238. }
  239. static inline int cpu_has_secondary_exec_ctrls(void)
  240. {
  241. return vmcs_config.cpu_based_exec_ctrl &
  242. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  243. }
  244. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  245. {
  246. return vmcs_config.cpu_based_2nd_exec_ctrl &
  247. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  248. }
  249. static inline bool cpu_has_vmx_flexpriority(void)
  250. {
  251. return cpu_has_vmx_tpr_shadow() &&
  252. cpu_has_vmx_virtualize_apic_accesses();
  253. }
  254. static inline bool cpu_has_vmx_ept_execute_only(void)
  255. {
  256. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  257. }
  258. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  259. {
  260. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  261. }
  262. static inline bool cpu_has_vmx_eptp_writeback(void)
  263. {
  264. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  265. }
  266. static inline bool cpu_has_vmx_ept_2m_page(void)
  267. {
  268. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  269. }
  270. static inline int cpu_has_vmx_invept_individual_addr(void)
  271. {
  272. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  273. }
  274. static inline int cpu_has_vmx_invept_context(void)
  275. {
  276. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  277. }
  278. static inline int cpu_has_vmx_invept_global(void)
  279. {
  280. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  281. }
  282. static inline int cpu_has_vmx_ept(void)
  283. {
  284. return vmcs_config.cpu_based_2nd_exec_ctrl &
  285. SECONDARY_EXEC_ENABLE_EPT;
  286. }
  287. static inline int cpu_has_vmx_unrestricted_guest(void)
  288. {
  289. return vmcs_config.cpu_based_2nd_exec_ctrl &
  290. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  291. }
  292. static inline int cpu_has_vmx_ple(void)
  293. {
  294. return vmcs_config.cpu_based_2nd_exec_ctrl &
  295. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  296. }
  297. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  298. {
  299. return flexpriority_enabled &&
  300. (cpu_has_vmx_virtualize_apic_accesses()) &&
  301. (irqchip_in_kernel(kvm));
  302. }
  303. static inline int cpu_has_vmx_vpid(void)
  304. {
  305. return vmcs_config.cpu_based_2nd_exec_ctrl &
  306. SECONDARY_EXEC_ENABLE_VPID;
  307. }
  308. static inline int cpu_has_virtual_nmis(void)
  309. {
  310. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  311. }
  312. static inline bool report_flexpriority(void)
  313. {
  314. return flexpriority_enabled;
  315. }
  316. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  317. {
  318. int i;
  319. for (i = 0; i < vmx->nmsrs; ++i)
  320. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  321. return i;
  322. return -1;
  323. }
  324. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  325. {
  326. struct {
  327. u64 vpid : 16;
  328. u64 rsvd : 48;
  329. u64 gva;
  330. } operand = { vpid, 0, gva };
  331. asm volatile (__ex(ASM_VMX_INVVPID)
  332. /* CF==1 or ZF==1 --> rc = -1 */
  333. "; ja 1f ; ud2 ; 1:"
  334. : : "a"(&operand), "c"(ext) : "cc", "memory");
  335. }
  336. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  337. {
  338. struct {
  339. u64 eptp, gpa;
  340. } operand = {eptp, gpa};
  341. asm volatile (__ex(ASM_VMX_INVEPT)
  342. /* CF==1 or ZF==1 --> rc = -1 */
  343. "; ja 1f ; ud2 ; 1:\n"
  344. : : "a" (&operand), "c" (ext) : "cc", "memory");
  345. }
  346. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  347. {
  348. int i;
  349. i = __find_msr_index(vmx, msr);
  350. if (i >= 0)
  351. return &vmx->guest_msrs[i];
  352. return NULL;
  353. }
  354. static void vmcs_clear(struct vmcs *vmcs)
  355. {
  356. u64 phys_addr = __pa(vmcs);
  357. u8 error;
  358. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  359. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  360. : "cc", "memory");
  361. if (error)
  362. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  363. vmcs, phys_addr);
  364. }
  365. static void __vcpu_clear(void *arg)
  366. {
  367. struct vcpu_vmx *vmx = arg;
  368. int cpu = raw_smp_processor_id();
  369. if (vmx->vcpu.cpu == cpu)
  370. vmcs_clear(vmx->vmcs);
  371. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  372. per_cpu(current_vmcs, cpu) = NULL;
  373. rdtscll(vmx->vcpu.arch.host_tsc);
  374. list_del(&vmx->local_vcpus_link);
  375. vmx->vcpu.cpu = -1;
  376. vmx->launched = 0;
  377. }
  378. static void vcpu_clear(struct vcpu_vmx *vmx)
  379. {
  380. if (vmx->vcpu.cpu == -1)
  381. return;
  382. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  383. }
  384. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  385. {
  386. if (vmx->vpid == 0)
  387. return;
  388. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  389. }
  390. static inline void ept_sync_global(void)
  391. {
  392. if (cpu_has_vmx_invept_global())
  393. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  394. }
  395. static inline void ept_sync_context(u64 eptp)
  396. {
  397. if (enable_ept) {
  398. if (cpu_has_vmx_invept_context())
  399. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  400. else
  401. ept_sync_global();
  402. }
  403. }
  404. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  405. {
  406. if (enable_ept) {
  407. if (cpu_has_vmx_invept_individual_addr())
  408. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  409. eptp, gpa);
  410. else
  411. ept_sync_context(eptp);
  412. }
  413. }
  414. static unsigned long vmcs_readl(unsigned long field)
  415. {
  416. unsigned long value;
  417. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  418. : "=a"(value) : "d"(field) : "cc");
  419. return value;
  420. }
  421. static u16 vmcs_read16(unsigned long field)
  422. {
  423. return vmcs_readl(field);
  424. }
  425. static u32 vmcs_read32(unsigned long field)
  426. {
  427. return vmcs_readl(field);
  428. }
  429. static u64 vmcs_read64(unsigned long field)
  430. {
  431. #ifdef CONFIG_X86_64
  432. return vmcs_readl(field);
  433. #else
  434. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  435. #endif
  436. }
  437. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  438. {
  439. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  440. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  441. dump_stack();
  442. }
  443. static void vmcs_writel(unsigned long field, unsigned long value)
  444. {
  445. u8 error;
  446. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  447. : "=q"(error) : "a"(value), "d"(field) : "cc");
  448. if (unlikely(error))
  449. vmwrite_error(field, value);
  450. }
  451. static void vmcs_write16(unsigned long field, u16 value)
  452. {
  453. vmcs_writel(field, value);
  454. }
  455. static void vmcs_write32(unsigned long field, u32 value)
  456. {
  457. vmcs_writel(field, value);
  458. }
  459. static void vmcs_write64(unsigned long field, u64 value)
  460. {
  461. vmcs_writel(field, value);
  462. #ifndef CONFIG_X86_64
  463. asm volatile ("");
  464. vmcs_writel(field+1, value >> 32);
  465. #endif
  466. }
  467. static void vmcs_clear_bits(unsigned long field, u32 mask)
  468. {
  469. vmcs_writel(field, vmcs_readl(field) & ~mask);
  470. }
  471. static void vmcs_set_bits(unsigned long field, u32 mask)
  472. {
  473. vmcs_writel(field, vmcs_readl(field) | mask);
  474. }
  475. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  476. {
  477. u32 eb;
  478. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  479. if (!vcpu->fpu_active)
  480. eb |= 1u << NM_VECTOR;
  481. /*
  482. * Unconditionally intercept #DB so we can maintain dr6 without
  483. * reading it every exit.
  484. */
  485. eb |= 1u << DB_VECTOR;
  486. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  487. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  488. eb |= 1u << BP_VECTOR;
  489. }
  490. if (to_vmx(vcpu)->rmode.vm86_active)
  491. eb = ~0;
  492. if (enable_ept)
  493. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  494. vmcs_write32(EXCEPTION_BITMAP, eb);
  495. }
  496. static void reload_tss(void)
  497. {
  498. /*
  499. * VT restores TR but not its size. Useless.
  500. */
  501. struct descriptor_table gdt;
  502. struct desc_struct *descs;
  503. kvm_get_gdt(&gdt);
  504. descs = (void *)gdt.base;
  505. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  506. load_TR_desc();
  507. }
  508. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  509. {
  510. u64 guest_efer;
  511. u64 ignore_bits;
  512. guest_efer = vmx->vcpu.arch.shadow_efer;
  513. /*
  514. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  515. * outside long mode
  516. */
  517. ignore_bits = EFER_NX | EFER_SCE;
  518. #ifdef CONFIG_X86_64
  519. ignore_bits |= EFER_LMA | EFER_LME;
  520. /* SCE is meaningful only in long mode on Intel */
  521. if (guest_efer & EFER_LMA)
  522. ignore_bits &= ~(u64)EFER_SCE;
  523. #endif
  524. guest_efer &= ~ignore_bits;
  525. guest_efer |= host_efer & ignore_bits;
  526. vmx->guest_msrs[efer_offset].data = guest_efer;
  527. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  528. return true;
  529. }
  530. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  531. {
  532. struct vcpu_vmx *vmx = to_vmx(vcpu);
  533. int i;
  534. if (vmx->host_state.loaded)
  535. return;
  536. vmx->host_state.loaded = 1;
  537. /*
  538. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  539. * allow segment selectors with cpl > 0 or ti == 1.
  540. */
  541. vmx->host_state.ldt_sel = kvm_read_ldt();
  542. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  543. vmx->host_state.fs_sel = kvm_read_fs();
  544. if (!(vmx->host_state.fs_sel & 7)) {
  545. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  546. vmx->host_state.fs_reload_needed = 0;
  547. } else {
  548. vmcs_write16(HOST_FS_SELECTOR, 0);
  549. vmx->host_state.fs_reload_needed = 1;
  550. }
  551. vmx->host_state.gs_sel = kvm_read_gs();
  552. if (!(vmx->host_state.gs_sel & 7))
  553. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  554. else {
  555. vmcs_write16(HOST_GS_SELECTOR, 0);
  556. vmx->host_state.gs_ldt_reload_needed = 1;
  557. }
  558. #ifdef CONFIG_X86_64
  559. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  560. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  561. #else
  562. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  563. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  564. #endif
  565. #ifdef CONFIG_X86_64
  566. if (is_long_mode(&vmx->vcpu)) {
  567. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  568. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  569. }
  570. #endif
  571. for (i = 0; i < vmx->save_nmsrs; ++i)
  572. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  573. vmx->guest_msrs[i].data,
  574. vmx->guest_msrs[i].mask);
  575. }
  576. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  577. {
  578. unsigned long flags;
  579. if (!vmx->host_state.loaded)
  580. return;
  581. ++vmx->vcpu.stat.host_state_reload;
  582. vmx->host_state.loaded = 0;
  583. if (vmx->host_state.fs_reload_needed)
  584. kvm_load_fs(vmx->host_state.fs_sel);
  585. if (vmx->host_state.gs_ldt_reload_needed) {
  586. kvm_load_ldt(vmx->host_state.ldt_sel);
  587. /*
  588. * If we have to reload gs, we must take care to
  589. * preserve our gs base.
  590. */
  591. local_irq_save(flags);
  592. kvm_load_gs(vmx->host_state.gs_sel);
  593. #ifdef CONFIG_X86_64
  594. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  595. #endif
  596. local_irq_restore(flags);
  597. }
  598. reload_tss();
  599. #ifdef CONFIG_X86_64
  600. if (is_long_mode(&vmx->vcpu)) {
  601. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  602. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  603. }
  604. #endif
  605. }
  606. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  607. {
  608. preempt_disable();
  609. __vmx_load_host_state(vmx);
  610. preempt_enable();
  611. }
  612. /*
  613. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  614. * vcpu mutex is already taken.
  615. */
  616. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  617. {
  618. struct vcpu_vmx *vmx = to_vmx(vcpu);
  619. u64 phys_addr = __pa(vmx->vmcs);
  620. u64 tsc_this, delta, new_offset;
  621. if (vcpu->cpu != cpu) {
  622. vcpu_clear(vmx);
  623. kvm_migrate_timers(vcpu);
  624. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  625. local_irq_disable();
  626. list_add(&vmx->local_vcpus_link,
  627. &per_cpu(vcpus_on_cpu, cpu));
  628. local_irq_enable();
  629. }
  630. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  631. u8 error;
  632. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  633. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  634. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  635. : "cc");
  636. if (error)
  637. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  638. vmx->vmcs, phys_addr);
  639. }
  640. if (vcpu->cpu != cpu) {
  641. struct descriptor_table dt;
  642. unsigned long sysenter_esp;
  643. vcpu->cpu = cpu;
  644. /*
  645. * Linux uses per-cpu TSS and GDT, so set these when switching
  646. * processors.
  647. */
  648. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  649. kvm_get_gdt(&dt);
  650. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  651. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  652. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  653. /*
  654. * Make sure the time stamp counter is monotonous.
  655. */
  656. rdtscll(tsc_this);
  657. if (tsc_this < vcpu->arch.host_tsc) {
  658. delta = vcpu->arch.host_tsc - tsc_this;
  659. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  660. vmcs_write64(TSC_OFFSET, new_offset);
  661. }
  662. }
  663. }
  664. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  665. {
  666. __vmx_load_host_state(to_vmx(vcpu));
  667. }
  668. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  669. {
  670. if (vcpu->fpu_active)
  671. return;
  672. vcpu->fpu_active = 1;
  673. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  674. if (vcpu->arch.cr0 & X86_CR0_TS)
  675. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  676. update_exception_bitmap(vcpu);
  677. }
  678. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  679. {
  680. if (!vcpu->fpu_active)
  681. return;
  682. vcpu->fpu_active = 0;
  683. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  684. update_exception_bitmap(vcpu);
  685. }
  686. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  687. {
  688. unsigned long rflags;
  689. rflags = vmcs_readl(GUEST_RFLAGS);
  690. if (to_vmx(vcpu)->rmode.vm86_active)
  691. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  692. return rflags;
  693. }
  694. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  695. {
  696. if (to_vmx(vcpu)->rmode.vm86_active)
  697. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  698. vmcs_writel(GUEST_RFLAGS, rflags);
  699. }
  700. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  701. {
  702. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  703. int ret = 0;
  704. if (interruptibility & GUEST_INTR_STATE_STI)
  705. ret |= X86_SHADOW_INT_STI;
  706. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  707. ret |= X86_SHADOW_INT_MOV_SS;
  708. return ret & mask;
  709. }
  710. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  711. {
  712. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  713. u32 interruptibility = interruptibility_old;
  714. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  715. if (mask & X86_SHADOW_INT_MOV_SS)
  716. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  717. if (mask & X86_SHADOW_INT_STI)
  718. interruptibility |= GUEST_INTR_STATE_STI;
  719. if ((interruptibility != interruptibility_old))
  720. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  721. }
  722. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  723. {
  724. unsigned long rip;
  725. rip = kvm_rip_read(vcpu);
  726. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  727. kvm_rip_write(vcpu, rip);
  728. /* skipping an emulated instruction also counts */
  729. vmx_set_interrupt_shadow(vcpu, 0);
  730. }
  731. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  732. bool has_error_code, u32 error_code)
  733. {
  734. struct vcpu_vmx *vmx = to_vmx(vcpu);
  735. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  736. if (has_error_code) {
  737. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  738. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  739. }
  740. if (vmx->rmode.vm86_active) {
  741. vmx->rmode.irq.pending = true;
  742. vmx->rmode.irq.vector = nr;
  743. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  744. if (kvm_exception_is_soft(nr))
  745. vmx->rmode.irq.rip +=
  746. vmx->vcpu.arch.event_exit_inst_len;
  747. intr_info |= INTR_TYPE_SOFT_INTR;
  748. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  749. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  750. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  751. return;
  752. }
  753. if (kvm_exception_is_soft(nr)) {
  754. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  755. vmx->vcpu.arch.event_exit_inst_len);
  756. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  757. } else
  758. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  759. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  760. }
  761. /*
  762. * Swap MSR entry in host/guest MSR entry array.
  763. */
  764. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  765. {
  766. struct shared_msr_entry tmp;
  767. tmp = vmx->guest_msrs[to];
  768. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  769. vmx->guest_msrs[from] = tmp;
  770. }
  771. /*
  772. * Set up the vmcs to automatically save and restore system
  773. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  774. * mode, as fiddling with msrs is very expensive.
  775. */
  776. static void setup_msrs(struct vcpu_vmx *vmx)
  777. {
  778. int save_nmsrs, index;
  779. unsigned long *msr_bitmap;
  780. vmx_load_host_state(vmx);
  781. save_nmsrs = 0;
  782. #ifdef CONFIG_X86_64
  783. if (is_long_mode(&vmx->vcpu)) {
  784. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  785. if (index >= 0)
  786. move_msr_up(vmx, index, save_nmsrs++);
  787. index = __find_msr_index(vmx, MSR_LSTAR);
  788. if (index >= 0)
  789. move_msr_up(vmx, index, save_nmsrs++);
  790. index = __find_msr_index(vmx, MSR_CSTAR);
  791. if (index >= 0)
  792. move_msr_up(vmx, index, save_nmsrs++);
  793. /*
  794. * MSR_K6_STAR is only needed on long mode guests, and only
  795. * if efer.sce is enabled.
  796. */
  797. index = __find_msr_index(vmx, MSR_K6_STAR);
  798. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  799. move_msr_up(vmx, index, save_nmsrs++);
  800. }
  801. #endif
  802. index = __find_msr_index(vmx, MSR_EFER);
  803. if (index >= 0 && update_transition_efer(vmx, index))
  804. move_msr_up(vmx, index, save_nmsrs++);
  805. vmx->save_nmsrs = save_nmsrs;
  806. if (cpu_has_vmx_msr_bitmap()) {
  807. if (is_long_mode(&vmx->vcpu))
  808. msr_bitmap = vmx_msr_bitmap_longmode;
  809. else
  810. msr_bitmap = vmx_msr_bitmap_legacy;
  811. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  812. }
  813. }
  814. /*
  815. * reads and returns guest's timestamp counter "register"
  816. * guest_tsc = host_tsc + tsc_offset -- 21.3
  817. */
  818. static u64 guest_read_tsc(void)
  819. {
  820. u64 host_tsc, tsc_offset;
  821. rdtscll(host_tsc);
  822. tsc_offset = vmcs_read64(TSC_OFFSET);
  823. return host_tsc + tsc_offset;
  824. }
  825. /*
  826. * writes 'guest_tsc' into guest's timestamp counter "register"
  827. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  828. */
  829. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  830. {
  831. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  832. }
  833. /*
  834. * Reads an msr value (of 'msr_index') into 'pdata'.
  835. * Returns 0 on success, non-0 otherwise.
  836. * Assumes vcpu_load() was already called.
  837. */
  838. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  839. {
  840. u64 data;
  841. struct shared_msr_entry *msr;
  842. if (!pdata) {
  843. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  844. return -EINVAL;
  845. }
  846. switch (msr_index) {
  847. #ifdef CONFIG_X86_64
  848. case MSR_FS_BASE:
  849. data = vmcs_readl(GUEST_FS_BASE);
  850. break;
  851. case MSR_GS_BASE:
  852. data = vmcs_readl(GUEST_GS_BASE);
  853. break;
  854. case MSR_KERNEL_GS_BASE:
  855. vmx_load_host_state(to_vmx(vcpu));
  856. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  857. break;
  858. #endif
  859. case MSR_EFER:
  860. return kvm_get_msr_common(vcpu, msr_index, pdata);
  861. case MSR_IA32_TSC:
  862. data = guest_read_tsc();
  863. break;
  864. case MSR_IA32_SYSENTER_CS:
  865. data = vmcs_read32(GUEST_SYSENTER_CS);
  866. break;
  867. case MSR_IA32_SYSENTER_EIP:
  868. data = vmcs_readl(GUEST_SYSENTER_EIP);
  869. break;
  870. case MSR_IA32_SYSENTER_ESP:
  871. data = vmcs_readl(GUEST_SYSENTER_ESP);
  872. break;
  873. default:
  874. vmx_load_host_state(to_vmx(vcpu));
  875. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  876. if (msr) {
  877. vmx_load_host_state(to_vmx(vcpu));
  878. data = msr->data;
  879. break;
  880. }
  881. return kvm_get_msr_common(vcpu, msr_index, pdata);
  882. }
  883. *pdata = data;
  884. return 0;
  885. }
  886. /*
  887. * Writes msr value into into the appropriate "register".
  888. * Returns 0 on success, non-0 otherwise.
  889. * Assumes vcpu_load() was already called.
  890. */
  891. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  892. {
  893. struct vcpu_vmx *vmx = to_vmx(vcpu);
  894. struct shared_msr_entry *msr;
  895. u64 host_tsc;
  896. int ret = 0;
  897. switch (msr_index) {
  898. case MSR_EFER:
  899. vmx_load_host_state(vmx);
  900. ret = kvm_set_msr_common(vcpu, msr_index, data);
  901. break;
  902. #ifdef CONFIG_X86_64
  903. case MSR_FS_BASE:
  904. vmcs_writel(GUEST_FS_BASE, data);
  905. break;
  906. case MSR_GS_BASE:
  907. vmcs_writel(GUEST_GS_BASE, data);
  908. break;
  909. case MSR_KERNEL_GS_BASE:
  910. vmx_load_host_state(vmx);
  911. vmx->msr_guest_kernel_gs_base = data;
  912. break;
  913. #endif
  914. case MSR_IA32_SYSENTER_CS:
  915. vmcs_write32(GUEST_SYSENTER_CS, data);
  916. break;
  917. case MSR_IA32_SYSENTER_EIP:
  918. vmcs_writel(GUEST_SYSENTER_EIP, data);
  919. break;
  920. case MSR_IA32_SYSENTER_ESP:
  921. vmcs_writel(GUEST_SYSENTER_ESP, data);
  922. break;
  923. case MSR_IA32_TSC:
  924. rdtscll(host_tsc);
  925. guest_write_tsc(data, host_tsc);
  926. break;
  927. case MSR_IA32_CR_PAT:
  928. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  929. vmcs_write64(GUEST_IA32_PAT, data);
  930. vcpu->arch.pat = data;
  931. break;
  932. }
  933. /* Otherwise falls through to kvm_set_msr_common */
  934. default:
  935. msr = find_msr_entry(vmx, msr_index);
  936. if (msr) {
  937. vmx_load_host_state(vmx);
  938. msr->data = data;
  939. break;
  940. }
  941. ret = kvm_set_msr_common(vcpu, msr_index, data);
  942. }
  943. return ret;
  944. }
  945. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  946. {
  947. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  948. switch (reg) {
  949. case VCPU_REGS_RSP:
  950. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  951. break;
  952. case VCPU_REGS_RIP:
  953. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  954. break;
  955. case VCPU_EXREG_PDPTR:
  956. if (enable_ept)
  957. ept_save_pdptrs(vcpu);
  958. break;
  959. default:
  960. break;
  961. }
  962. }
  963. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  964. {
  965. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  966. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  967. else
  968. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  969. update_exception_bitmap(vcpu);
  970. }
  971. static __init int cpu_has_kvm_support(void)
  972. {
  973. return cpu_has_vmx();
  974. }
  975. static __init int vmx_disabled_by_bios(void)
  976. {
  977. u64 msr;
  978. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  979. return (msr & (FEATURE_CONTROL_LOCKED |
  980. FEATURE_CONTROL_VMXON_ENABLED))
  981. == FEATURE_CONTROL_LOCKED;
  982. /* locked but not enabled */
  983. }
  984. static int hardware_enable(void *garbage)
  985. {
  986. int cpu = raw_smp_processor_id();
  987. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  988. u64 old;
  989. if (read_cr4() & X86_CR4_VMXE)
  990. return -EBUSY;
  991. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  992. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  993. if ((old & (FEATURE_CONTROL_LOCKED |
  994. FEATURE_CONTROL_VMXON_ENABLED))
  995. != (FEATURE_CONTROL_LOCKED |
  996. FEATURE_CONTROL_VMXON_ENABLED))
  997. /* enable and lock */
  998. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  999. FEATURE_CONTROL_LOCKED |
  1000. FEATURE_CONTROL_VMXON_ENABLED);
  1001. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1002. asm volatile (ASM_VMX_VMXON_RAX
  1003. : : "a"(&phys_addr), "m"(phys_addr)
  1004. : "memory", "cc");
  1005. ept_sync_global();
  1006. return 0;
  1007. }
  1008. static void vmclear_local_vcpus(void)
  1009. {
  1010. int cpu = raw_smp_processor_id();
  1011. struct vcpu_vmx *vmx, *n;
  1012. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1013. local_vcpus_link)
  1014. __vcpu_clear(vmx);
  1015. }
  1016. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1017. * tricks.
  1018. */
  1019. static void kvm_cpu_vmxoff(void)
  1020. {
  1021. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1022. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1023. }
  1024. static void hardware_disable(void *garbage)
  1025. {
  1026. vmclear_local_vcpus();
  1027. kvm_cpu_vmxoff();
  1028. }
  1029. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1030. u32 msr, u32 *result)
  1031. {
  1032. u32 vmx_msr_low, vmx_msr_high;
  1033. u32 ctl = ctl_min | ctl_opt;
  1034. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1035. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1036. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1037. /* Ensure minimum (required) set of control bits are supported. */
  1038. if (ctl_min & ~ctl)
  1039. return -EIO;
  1040. *result = ctl;
  1041. return 0;
  1042. }
  1043. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1044. {
  1045. u32 vmx_msr_low, vmx_msr_high;
  1046. u32 min, opt, min2, opt2;
  1047. u32 _pin_based_exec_control = 0;
  1048. u32 _cpu_based_exec_control = 0;
  1049. u32 _cpu_based_2nd_exec_control = 0;
  1050. u32 _vmexit_control = 0;
  1051. u32 _vmentry_control = 0;
  1052. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1053. opt = PIN_BASED_VIRTUAL_NMIS;
  1054. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1055. &_pin_based_exec_control) < 0)
  1056. return -EIO;
  1057. min = CPU_BASED_HLT_EXITING |
  1058. #ifdef CONFIG_X86_64
  1059. CPU_BASED_CR8_LOAD_EXITING |
  1060. CPU_BASED_CR8_STORE_EXITING |
  1061. #endif
  1062. CPU_BASED_CR3_LOAD_EXITING |
  1063. CPU_BASED_CR3_STORE_EXITING |
  1064. CPU_BASED_USE_IO_BITMAPS |
  1065. CPU_BASED_MOV_DR_EXITING |
  1066. CPU_BASED_USE_TSC_OFFSETING |
  1067. CPU_BASED_MWAIT_EXITING |
  1068. CPU_BASED_MONITOR_EXITING |
  1069. CPU_BASED_INVLPG_EXITING;
  1070. opt = CPU_BASED_TPR_SHADOW |
  1071. CPU_BASED_USE_MSR_BITMAPS |
  1072. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1073. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1074. &_cpu_based_exec_control) < 0)
  1075. return -EIO;
  1076. #ifdef CONFIG_X86_64
  1077. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1078. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1079. ~CPU_BASED_CR8_STORE_EXITING;
  1080. #endif
  1081. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1082. min2 = 0;
  1083. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1084. SECONDARY_EXEC_WBINVD_EXITING |
  1085. SECONDARY_EXEC_ENABLE_VPID |
  1086. SECONDARY_EXEC_ENABLE_EPT |
  1087. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1088. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1089. if (adjust_vmx_controls(min2, opt2,
  1090. MSR_IA32_VMX_PROCBASED_CTLS2,
  1091. &_cpu_based_2nd_exec_control) < 0)
  1092. return -EIO;
  1093. }
  1094. #ifndef CONFIG_X86_64
  1095. if (!(_cpu_based_2nd_exec_control &
  1096. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1097. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1098. #endif
  1099. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1100. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1101. enabled */
  1102. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1103. CPU_BASED_CR3_STORE_EXITING |
  1104. CPU_BASED_INVLPG_EXITING);
  1105. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1106. vmx_capability.ept, vmx_capability.vpid);
  1107. }
  1108. min = 0;
  1109. #ifdef CONFIG_X86_64
  1110. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1111. #endif
  1112. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1113. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1114. &_vmexit_control) < 0)
  1115. return -EIO;
  1116. min = 0;
  1117. opt = VM_ENTRY_LOAD_IA32_PAT;
  1118. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1119. &_vmentry_control) < 0)
  1120. return -EIO;
  1121. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1122. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1123. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1124. return -EIO;
  1125. #ifdef CONFIG_X86_64
  1126. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1127. if (vmx_msr_high & (1u<<16))
  1128. return -EIO;
  1129. #endif
  1130. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1131. if (((vmx_msr_high >> 18) & 15) != 6)
  1132. return -EIO;
  1133. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1134. vmcs_conf->order = get_order(vmcs_config.size);
  1135. vmcs_conf->revision_id = vmx_msr_low;
  1136. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1137. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1138. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1139. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1140. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1141. return 0;
  1142. }
  1143. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1144. {
  1145. int node = cpu_to_node(cpu);
  1146. struct page *pages;
  1147. struct vmcs *vmcs;
  1148. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1149. if (!pages)
  1150. return NULL;
  1151. vmcs = page_address(pages);
  1152. memset(vmcs, 0, vmcs_config.size);
  1153. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1154. return vmcs;
  1155. }
  1156. static struct vmcs *alloc_vmcs(void)
  1157. {
  1158. return alloc_vmcs_cpu(raw_smp_processor_id());
  1159. }
  1160. static void free_vmcs(struct vmcs *vmcs)
  1161. {
  1162. free_pages((unsigned long)vmcs, vmcs_config.order);
  1163. }
  1164. static void free_kvm_area(void)
  1165. {
  1166. int cpu;
  1167. for_each_possible_cpu(cpu) {
  1168. free_vmcs(per_cpu(vmxarea, cpu));
  1169. per_cpu(vmxarea, cpu) = NULL;
  1170. }
  1171. }
  1172. static __init int alloc_kvm_area(void)
  1173. {
  1174. int cpu;
  1175. for_each_possible_cpu(cpu) {
  1176. struct vmcs *vmcs;
  1177. vmcs = alloc_vmcs_cpu(cpu);
  1178. if (!vmcs) {
  1179. free_kvm_area();
  1180. return -ENOMEM;
  1181. }
  1182. per_cpu(vmxarea, cpu) = vmcs;
  1183. }
  1184. return 0;
  1185. }
  1186. static __init int hardware_setup(void)
  1187. {
  1188. if (setup_vmcs_config(&vmcs_config) < 0)
  1189. return -EIO;
  1190. if (boot_cpu_has(X86_FEATURE_NX))
  1191. kvm_enable_efer_bits(EFER_NX);
  1192. if (!cpu_has_vmx_vpid())
  1193. enable_vpid = 0;
  1194. if (!cpu_has_vmx_ept()) {
  1195. enable_ept = 0;
  1196. enable_unrestricted_guest = 0;
  1197. }
  1198. if (!cpu_has_vmx_unrestricted_guest())
  1199. enable_unrestricted_guest = 0;
  1200. if (!cpu_has_vmx_flexpriority())
  1201. flexpriority_enabled = 0;
  1202. if (!cpu_has_vmx_tpr_shadow())
  1203. kvm_x86_ops->update_cr8_intercept = NULL;
  1204. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1205. kvm_disable_largepages();
  1206. if (!cpu_has_vmx_ple())
  1207. ple_gap = 0;
  1208. return alloc_kvm_area();
  1209. }
  1210. static __exit void hardware_unsetup(void)
  1211. {
  1212. free_kvm_area();
  1213. }
  1214. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1215. {
  1216. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1217. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1218. vmcs_write16(sf->selector, save->selector);
  1219. vmcs_writel(sf->base, save->base);
  1220. vmcs_write32(sf->limit, save->limit);
  1221. vmcs_write32(sf->ar_bytes, save->ar);
  1222. } else {
  1223. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1224. << AR_DPL_SHIFT;
  1225. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1226. }
  1227. }
  1228. static void enter_pmode(struct kvm_vcpu *vcpu)
  1229. {
  1230. unsigned long flags;
  1231. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1232. vmx->emulation_required = 1;
  1233. vmx->rmode.vm86_active = 0;
  1234. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1235. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1236. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1237. flags = vmcs_readl(GUEST_RFLAGS);
  1238. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1239. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1240. vmcs_writel(GUEST_RFLAGS, flags);
  1241. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1242. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1243. update_exception_bitmap(vcpu);
  1244. if (emulate_invalid_guest_state)
  1245. return;
  1246. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1247. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1248. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1249. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1250. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1251. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1252. vmcs_write16(GUEST_CS_SELECTOR,
  1253. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1254. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1255. }
  1256. static gva_t rmode_tss_base(struct kvm *kvm)
  1257. {
  1258. if (!kvm->arch.tss_addr) {
  1259. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1260. kvm->memslots[0].npages - 3;
  1261. return base_gfn << PAGE_SHIFT;
  1262. }
  1263. return kvm->arch.tss_addr;
  1264. }
  1265. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1266. {
  1267. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1268. save->selector = vmcs_read16(sf->selector);
  1269. save->base = vmcs_readl(sf->base);
  1270. save->limit = vmcs_read32(sf->limit);
  1271. save->ar = vmcs_read32(sf->ar_bytes);
  1272. vmcs_write16(sf->selector, save->base >> 4);
  1273. vmcs_write32(sf->base, save->base & 0xfffff);
  1274. vmcs_write32(sf->limit, 0xffff);
  1275. vmcs_write32(sf->ar_bytes, 0xf3);
  1276. }
  1277. static void enter_rmode(struct kvm_vcpu *vcpu)
  1278. {
  1279. unsigned long flags;
  1280. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1281. if (enable_unrestricted_guest)
  1282. return;
  1283. vmx->emulation_required = 1;
  1284. vmx->rmode.vm86_active = 1;
  1285. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1286. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1287. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1288. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1289. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1290. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1291. flags = vmcs_readl(GUEST_RFLAGS);
  1292. vmx->rmode.save_iopl
  1293. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1294. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1295. vmcs_writel(GUEST_RFLAGS, flags);
  1296. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1297. update_exception_bitmap(vcpu);
  1298. if (emulate_invalid_guest_state)
  1299. goto continue_rmode;
  1300. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1301. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1302. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1303. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1304. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1305. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1306. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1307. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1308. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1309. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1310. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1311. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1312. continue_rmode:
  1313. kvm_mmu_reset_context(vcpu);
  1314. init_rmode(vcpu->kvm);
  1315. }
  1316. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1317. {
  1318. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1319. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1320. if (!msr)
  1321. return;
  1322. /*
  1323. * Force kernel_gs_base reloading before EFER changes, as control
  1324. * of this msr depends on is_long_mode().
  1325. */
  1326. vmx_load_host_state(to_vmx(vcpu));
  1327. vcpu->arch.shadow_efer = efer;
  1328. if (!msr)
  1329. return;
  1330. if (efer & EFER_LMA) {
  1331. vmcs_write32(VM_ENTRY_CONTROLS,
  1332. vmcs_read32(VM_ENTRY_CONTROLS) |
  1333. VM_ENTRY_IA32E_MODE);
  1334. msr->data = efer;
  1335. } else {
  1336. vmcs_write32(VM_ENTRY_CONTROLS,
  1337. vmcs_read32(VM_ENTRY_CONTROLS) &
  1338. ~VM_ENTRY_IA32E_MODE);
  1339. msr->data = efer & ~EFER_LME;
  1340. }
  1341. setup_msrs(vmx);
  1342. }
  1343. #ifdef CONFIG_X86_64
  1344. static void enter_lmode(struct kvm_vcpu *vcpu)
  1345. {
  1346. u32 guest_tr_ar;
  1347. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1348. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1349. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1350. __func__);
  1351. vmcs_write32(GUEST_TR_AR_BYTES,
  1352. (guest_tr_ar & ~AR_TYPE_MASK)
  1353. | AR_TYPE_BUSY_64_TSS);
  1354. }
  1355. vcpu->arch.shadow_efer |= EFER_LMA;
  1356. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1357. }
  1358. static void exit_lmode(struct kvm_vcpu *vcpu)
  1359. {
  1360. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1361. vmcs_write32(VM_ENTRY_CONTROLS,
  1362. vmcs_read32(VM_ENTRY_CONTROLS)
  1363. & ~VM_ENTRY_IA32E_MODE);
  1364. }
  1365. #endif
  1366. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1367. {
  1368. vpid_sync_vcpu_all(to_vmx(vcpu));
  1369. if (enable_ept)
  1370. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1371. }
  1372. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1373. {
  1374. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1375. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1376. }
  1377. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1378. {
  1379. if (!test_bit(VCPU_EXREG_PDPTR,
  1380. (unsigned long *)&vcpu->arch.regs_dirty))
  1381. return;
  1382. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1383. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1384. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1385. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1386. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1387. }
  1388. }
  1389. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1390. {
  1391. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1392. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1393. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1394. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1395. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1396. }
  1397. __set_bit(VCPU_EXREG_PDPTR,
  1398. (unsigned long *)&vcpu->arch.regs_avail);
  1399. __set_bit(VCPU_EXREG_PDPTR,
  1400. (unsigned long *)&vcpu->arch.regs_dirty);
  1401. }
  1402. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1403. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1404. unsigned long cr0,
  1405. struct kvm_vcpu *vcpu)
  1406. {
  1407. if (!(cr0 & X86_CR0_PG)) {
  1408. /* From paging/starting to nonpaging */
  1409. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1410. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1411. (CPU_BASED_CR3_LOAD_EXITING |
  1412. CPU_BASED_CR3_STORE_EXITING));
  1413. vcpu->arch.cr0 = cr0;
  1414. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1415. } else if (!is_paging(vcpu)) {
  1416. /* From nonpaging to paging */
  1417. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1418. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1419. ~(CPU_BASED_CR3_LOAD_EXITING |
  1420. CPU_BASED_CR3_STORE_EXITING));
  1421. vcpu->arch.cr0 = cr0;
  1422. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1423. }
  1424. if (!(cr0 & X86_CR0_WP))
  1425. *hw_cr0 &= ~X86_CR0_WP;
  1426. }
  1427. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1428. struct kvm_vcpu *vcpu)
  1429. {
  1430. if (!is_paging(vcpu)) {
  1431. *hw_cr4 &= ~X86_CR4_PAE;
  1432. *hw_cr4 |= X86_CR4_PSE;
  1433. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1434. *hw_cr4 &= ~X86_CR4_PAE;
  1435. }
  1436. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1437. {
  1438. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1439. unsigned long hw_cr0;
  1440. if (enable_unrestricted_guest)
  1441. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1442. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1443. else
  1444. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1445. vmx_fpu_deactivate(vcpu);
  1446. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1447. enter_pmode(vcpu);
  1448. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1449. enter_rmode(vcpu);
  1450. #ifdef CONFIG_X86_64
  1451. if (vcpu->arch.shadow_efer & EFER_LME) {
  1452. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1453. enter_lmode(vcpu);
  1454. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1455. exit_lmode(vcpu);
  1456. }
  1457. #endif
  1458. if (enable_ept)
  1459. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1460. vmcs_writel(CR0_READ_SHADOW, cr0);
  1461. vmcs_writel(GUEST_CR0, hw_cr0);
  1462. vcpu->arch.cr0 = cr0;
  1463. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1464. vmx_fpu_activate(vcpu);
  1465. }
  1466. static u64 construct_eptp(unsigned long root_hpa)
  1467. {
  1468. u64 eptp;
  1469. /* TODO write the value reading from MSR */
  1470. eptp = VMX_EPT_DEFAULT_MT |
  1471. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1472. eptp |= (root_hpa & PAGE_MASK);
  1473. return eptp;
  1474. }
  1475. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1476. {
  1477. unsigned long guest_cr3;
  1478. u64 eptp;
  1479. guest_cr3 = cr3;
  1480. if (enable_ept) {
  1481. eptp = construct_eptp(cr3);
  1482. vmcs_write64(EPT_POINTER, eptp);
  1483. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1484. vcpu->kvm->arch.ept_identity_map_addr;
  1485. ept_load_pdptrs(vcpu);
  1486. }
  1487. vmx_flush_tlb(vcpu);
  1488. vmcs_writel(GUEST_CR3, guest_cr3);
  1489. if (vcpu->arch.cr0 & X86_CR0_PE)
  1490. vmx_fpu_deactivate(vcpu);
  1491. }
  1492. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1493. {
  1494. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1495. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1496. vcpu->arch.cr4 = cr4;
  1497. if (enable_ept)
  1498. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1499. vmcs_writel(CR4_READ_SHADOW, cr4);
  1500. vmcs_writel(GUEST_CR4, hw_cr4);
  1501. }
  1502. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1503. {
  1504. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1505. return vmcs_readl(sf->base);
  1506. }
  1507. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1508. struct kvm_segment *var, int seg)
  1509. {
  1510. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1511. u32 ar;
  1512. var->base = vmcs_readl(sf->base);
  1513. var->limit = vmcs_read32(sf->limit);
  1514. var->selector = vmcs_read16(sf->selector);
  1515. ar = vmcs_read32(sf->ar_bytes);
  1516. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1517. ar = 0;
  1518. var->type = ar & 15;
  1519. var->s = (ar >> 4) & 1;
  1520. var->dpl = (ar >> 5) & 3;
  1521. var->present = (ar >> 7) & 1;
  1522. var->avl = (ar >> 12) & 1;
  1523. var->l = (ar >> 13) & 1;
  1524. var->db = (ar >> 14) & 1;
  1525. var->g = (ar >> 15) & 1;
  1526. var->unusable = (ar >> 16) & 1;
  1527. }
  1528. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1529. {
  1530. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1531. return 0;
  1532. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1533. return 3;
  1534. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1535. }
  1536. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1537. {
  1538. u32 ar;
  1539. if (var->unusable)
  1540. ar = 1 << 16;
  1541. else {
  1542. ar = var->type & 15;
  1543. ar |= (var->s & 1) << 4;
  1544. ar |= (var->dpl & 3) << 5;
  1545. ar |= (var->present & 1) << 7;
  1546. ar |= (var->avl & 1) << 12;
  1547. ar |= (var->l & 1) << 13;
  1548. ar |= (var->db & 1) << 14;
  1549. ar |= (var->g & 1) << 15;
  1550. }
  1551. if (ar == 0) /* a 0 value means unusable */
  1552. ar = AR_UNUSABLE_MASK;
  1553. return ar;
  1554. }
  1555. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1556. struct kvm_segment *var, int seg)
  1557. {
  1558. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1559. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1560. u32 ar;
  1561. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1562. vmx->rmode.tr.selector = var->selector;
  1563. vmx->rmode.tr.base = var->base;
  1564. vmx->rmode.tr.limit = var->limit;
  1565. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1566. return;
  1567. }
  1568. vmcs_writel(sf->base, var->base);
  1569. vmcs_write32(sf->limit, var->limit);
  1570. vmcs_write16(sf->selector, var->selector);
  1571. if (vmx->rmode.vm86_active && var->s) {
  1572. /*
  1573. * Hack real-mode segments into vm86 compatibility.
  1574. */
  1575. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1576. vmcs_writel(sf->base, 0xf0000);
  1577. ar = 0xf3;
  1578. } else
  1579. ar = vmx_segment_access_rights(var);
  1580. /*
  1581. * Fix the "Accessed" bit in AR field of segment registers for older
  1582. * qemu binaries.
  1583. * IA32 arch specifies that at the time of processor reset the
  1584. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1585. * is setting it to 0 in the usedland code. This causes invalid guest
  1586. * state vmexit when "unrestricted guest" mode is turned on.
  1587. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1588. * tree. Newer qemu binaries with that qemu fix would not need this
  1589. * kvm hack.
  1590. */
  1591. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1592. ar |= 0x1; /* Accessed */
  1593. vmcs_write32(sf->ar_bytes, ar);
  1594. }
  1595. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1596. {
  1597. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1598. *db = (ar >> 14) & 1;
  1599. *l = (ar >> 13) & 1;
  1600. }
  1601. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1602. {
  1603. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1604. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1605. }
  1606. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1607. {
  1608. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1609. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1610. }
  1611. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1612. {
  1613. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1614. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1615. }
  1616. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1617. {
  1618. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1619. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1620. }
  1621. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1622. {
  1623. struct kvm_segment var;
  1624. u32 ar;
  1625. vmx_get_segment(vcpu, &var, seg);
  1626. ar = vmx_segment_access_rights(&var);
  1627. if (var.base != (var.selector << 4))
  1628. return false;
  1629. if (var.limit != 0xffff)
  1630. return false;
  1631. if (ar != 0xf3)
  1632. return false;
  1633. return true;
  1634. }
  1635. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1636. {
  1637. struct kvm_segment cs;
  1638. unsigned int cs_rpl;
  1639. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1640. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1641. if (cs.unusable)
  1642. return false;
  1643. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1644. return false;
  1645. if (!cs.s)
  1646. return false;
  1647. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1648. if (cs.dpl > cs_rpl)
  1649. return false;
  1650. } else {
  1651. if (cs.dpl != cs_rpl)
  1652. return false;
  1653. }
  1654. if (!cs.present)
  1655. return false;
  1656. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1657. return true;
  1658. }
  1659. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1660. {
  1661. struct kvm_segment ss;
  1662. unsigned int ss_rpl;
  1663. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1664. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1665. if (ss.unusable)
  1666. return true;
  1667. if (ss.type != 3 && ss.type != 7)
  1668. return false;
  1669. if (!ss.s)
  1670. return false;
  1671. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1672. return false;
  1673. if (!ss.present)
  1674. return false;
  1675. return true;
  1676. }
  1677. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1678. {
  1679. struct kvm_segment var;
  1680. unsigned int rpl;
  1681. vmx_get_segment(vcpu, &var, seg);
  1682. rpl = var.selector & SELECTOR_RPL_MASK;
  1683. if (var.unusable)
  1684. return true;
  1685. if (!var.s)
  1686. return false;
  1687. if (!var.present)
  1688. return false;
  1689. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1690. if (var.dpl < rpl) /* DPL < RPL */
  1691. return false;
  1692. }
  1693. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1694. * rights flags
  1695. */
  1696. return true;
  1697. }
  1698. static bool tr_valid(struct kvm_vcpu *vcpu)
  1699. {
  1700. struct kvm_segment tr;
  1701. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1702. if (tr.unusable)
  1703. return false;
  1704. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1705. return false;
  1706. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1707. return false;
  1708. if (!tr.present)
  1709. return false;
  1710. return true;
  1711. }
  1712. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1713. {
  1714. struct kvm_segment ldtr;
  1715. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1716. if (ldtr.unusable)
  1717. return true;
  1718. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1719. return false;
  1720. if (ldtr.type != 2)
  1721. return false;
  1722. if (!ldtr.present)
  1723. return false;
  1724. return true;
  1725. }
  1726. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1727. {
  1728. struct kvm_segment cs, ss;
  1729. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1730. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1731. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1732. (ss.selector & SELECTOR_RPL_MASK));
  1733. }
  1734. /*
  1735. * Check if guest state is valid. Returns true if valid, false if
  1736. * not.
  1737. * We assume that registers are always usable
  1738. */
  1739. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1740. {
  1741. /* real mode guest state checks */
  1742. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1743. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1744. return false;
  1745. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1746. return false;
  1747. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1748. return false;
  1749. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1750. return false;
  1751. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1752. return false;
  1753. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1754. return false;
  1755. } else {
  1756. /* protected mode guest state checks */
  1757. if (!cs_ss_rpl_check(vcpu))
  1758. return false;
  1759. if (!code_segment_valid(vcpu))
  1760. return false;
  1761. if (!stack_segment_valid(vcpu))
  1762. return false;
  1763. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1764. return false;
  1765. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1766. return false;
  1767. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1768. return false;
  1769. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1770. return false;
  1771. if (!tr_valid(vcpu))
  1772. return false;
  1773. if (!ldtr_valid(vcpu))
  1774. return false;
  1775. }
  1776. /* TODO:
  1777. * - Add checks on RIP
  1778. * - Add checks on RFLAGS
  1779. */
  1780. return true;
  1781. }
  1782. static int init_rmode_tss(struct kvm *kvm)
  1783. {
  1784. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1785. u16 data = 0;
  1786. int ret = 0;
  1787. int r;
  1788. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1789. if (r < 0)
  1790. goto out;
  1791. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1792. r = kvm_write_guest_page(kvm, fn++, &data,
  1793. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1794. if (r < 0)
  1795. goto out;
  1796. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1797. if (r < 0)
  1798. goto out;
  1799. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1800. if (r < 0)
  1801. goto out;
  1802. data = ~0;
  1803. r = kvm_write_guest_page(kvm, fn, &data,
  1804. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1805. sizeof(u8));
  1806. if (r < 0)
  1807. goto out;
  1808. ret = 1;
  1809. out:
  1810. return ret;
  1811. }
  1812. static int init_rmode_identity_map(struct kvm *kvm)
  1813. {
  1814. int i, r, ret;
  1815. pfn_t identity_map_pfn;
  1816. u32 tmp;
  1817. if (!enable_ept)
  1818. return 1;
  1819. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1820. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1821. "haven't been allocated!\n");
  1822. return 0;
  1823. }
  1824. if (likely(kvm->arch.ept_identity_pagetable_done))
  1825. return 1;
  1826. ret = 0;
  1827. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1828. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1829. if (r < 0)
  1830. goto out;
  1831. /* Set up identity-mapping pagetable for EPT in real mode */
  1832. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1833. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1834. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1835. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1836. &tmp, i * sizeof(tmp), sizeof(tmp));
  1837. if (r < 0)
  1838. goto out;
  1839. }
  1840. kvm->arch.ept_identity_pagetable_done = true;
  1841. ret = 1;
  1842. out:
  1843. return ret;
  1844. }
  1845. static void seg_setup(int seg)
  1846. {
  1847. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1848. unsigned int ar;
  1849. vmcs_write16(sf->selector, 0);
  1850. vmcs_writel(sf->base, 0);
  1851. vmcs_write32(sf->limit, 0xffff);
  1852. if (enable_unrestricted_guest) {
  1853. ar = 0x93;
  1854. if (seg == VCPU_SREG_CS)
  1855. ar |= 0x08; /* code segment */
  1856. } else
  1857. ar = 0xf3;
  1858. vmcs_write32(sf->ar_bytes, ar);
  1859. }
  1860. static int alloc_apic_access_page(struct kvm *kvm)
  1861. {
  1862. struct kvm_userspace_memory_region kvm_userspace_mem;
  1863. int r = 0;
  1864. down_write(&kvm->slots_lock);
  1865. if (kvm->arch.apic_access_page)
  1866. goto out;
  1867. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1868. kvm_userspace_mem.flags = 0;
  1869. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1870. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1871. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1872. if (r)
  1873. goto out;
  1874. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1875. out:
  1876. up_write(&kvm->slots_lock);
  1877. return r;
  1878. }
  1879. static int alloc_identity_pagetable(struct kvm *kvm)
  1880. {
  1881. struct kvm_userspace_memory_region kvm_userspace_mem;
  1882. int r = 0;
  1883. down_write(&kvm->slots_lock);
  1884. if (kvm->arch.ept_identity_pagetable)
  1885. goto out;
  1886. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1887. kvm_userspace_mem.flags = 0;
  1888. kvm_userspace_mem.guest_phys_addr =
  1889. kvm->arch.ept_identity_map_addr;
  1890. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1891. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1892. if (r)
  1893. goto out;
  1894. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1895. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1896. out:
  1897. up_write(&kvm->slots_lock);
  1898. return r;
  1899. }
  1900. static void allocate_vpid(struct vcpu_vmx *vmx)
  1901. {
  1902. int vpid;
  1903. vmx->vpid = 0;
  1904. if (!enable_vpid)
  1905. return;
  1906. spin_lock(&vmx_vpid_lock);
  1907. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1908. if (vpid < VMX_NR_VPIDS) {
  1909. vmx->vpid = vpid;
  1910. __set_bit(vpid, vmx_vpid_bitmap);
  1911. }
  1912. spin_unlock(&vmx_vpid_lock);
  1913. }
  1914. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1915. {
  1916. int f = sizeof(unsigned long);
  1917. if (!cpu_has_vmx_msr_bitmap())
  1918. return;
  1919. /*
  1920. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1921. * have the write-low and read-high bitmap offsets the wrong way round.
  1922. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1923. */
  1924. if (msr <= 0x1fff) {
  1925. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1926. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1927. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1928. msr &= 0x1fff;
  1929. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1930. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1931. }
  1932. }
  1933. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1934. {
  1935. if (!longmode_only)
  1936. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1937. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1938. }
  1939. /*
  1940. * Sets up the vmcs for emulated real mode.
  1941. */
  1942. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1943. {
  1944. u32 host_sysenter_cs, msr_low, msr_high;
  1945. u32 junk;
  1946. u64 host_pat, tsc_this, tsc_base;
  1947. unsigned long a;
  1948. struct descriptor_table dt;
  1949. int i;
  1950. unsigned long kvm_vmx_return;
  1951. u32 exec_control;
  1952. /* I/O */
  1953. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1954. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1955. if (cpu_has_vmx_msr_bitmap())
  1956. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1957. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1958. /* Control */
  1959. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1960. vmcs_config.pin_based_exec_ctrl);
  1961. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1962. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1963. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1964. #ifdef CONFIG_X86_64
  1965. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1966. CPU_BASED_CR8_LOAD_EXITING;
  1967. #endif
  1968. }
  1969. if (!enable_ept)
  1970. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1971. CPU_BASED_CR3_LOAD_EXITING |
  1972. CPU_BASED_INVLPG_EXITING;
  1973. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1974. if (cpu_has_secondary_exec_ctrls()) {
  1975. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1976. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1977. exec_control &=
  1978. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1979. if (vmx->vpid == 0)
  1980. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1981. if (!enable_ept) {
  1982. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1983. enable_unrestricted_guest = 0;
  1984. }
  1985. if (!enable_unrestricted_guest)
  1986. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1987. if (!ple_gap)
  1988. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1989. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1990. }
  1991. if (ple_gap) {
  1992. vmcs_write32(PLE_GAP, ple_gap);
  1993. vmcs_write32(PLE_WINDOW, ple_window);
  1994. }
  1995. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1996. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1997. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1998. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1999. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2000. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2001. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2002. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2003. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2004. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2005. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2006. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2007. #ifdef CONFIG_X86_64
  2008. rdmsrl(MSR_FS_BASE, a);
  2009. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2010. rdmsrl(MSR_GS_BASE, a);
  2011. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2012. #else
  2013. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2014. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2015. #endif
  2016. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2017. kvm_get_idt(&dt);
  2018. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2019. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2020. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2021. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2022. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2023. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2024. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2025. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2026. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2027. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2028. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2029. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2030. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2031. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2032. host_pat = msr_low | ((u64) msr_high << 32);
  2033. vmcs_write64(HOST_IA32_PAT, host_pat);
  2034. }
  2035. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2036. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2037. host_pat = msr_low | ((u64) msr_high << 32);
  2038. /* Write the default value follow host pat */
  2039. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2040. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2041. vmx->vcpu.arch.pat = host_pat;
  2042. }
  2043. for (i = 0; i < NR_VMX_MSR; ++i) {
  2044. u32 index = vmx_msr_index[i];
  2045. u32 data_low, data_high;
  2046. u64 data;
  2047. int j = vmx->nmsrs;
  2048. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2049. continue;
  2050. if (wrmsr_safe(index, data_low, data_high) < 0)
  2051. continue;
  2052. data = data_low | ((u64)data_high << 32);
  2053. vmx->guest_msrs[j].index = i;
  2054. vmx->guest_msrs[j].data = 0;
  2055. vmx->guest_msrs[j].mask = -1ull;
  2056. ++vmx->nmsrs;
  2057. }
  2058. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2059. /* 22.2.1, 20.8.1 */
  2060. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2061. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2062. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2063. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2064. rdtscll(tsc_this);
  2065. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2066. tsc_base = tsc_this;
  2067. guest_write_tsc(0, tsc_base);
  2068. return 0;
  2069. }
  2070. static int init_rmode(struct kvm *kvm)
  2071. {
  2072. if (!init_rmode_tss(kvm))
  2073. return 0;
  2074. if (!init_rmode_identity_map(kvm))
  2075. return 0;
  2076. return 1;
  2077. }
  2078. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2079. {
  2080. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2081. u64 msr;
  2082. int ret;
  2083. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2084. down_read(&vcpu->kvm->slots_lock);
  2085. if (!init_rmode(vmx->vcpu.kvm)) {
  2086. ret = -ENOMEM;
  2087. goto out;
  2088. }
  2089. vmx->rmode.vm86_active = 0;
  2090. vmx->soft_vnmi_blocked = 0;
  2091. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2092. kvm_set_cr8(&vmx->vcpu, 0);
  2093. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2094. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2095. msr |= MSR_IA32_APICBASE_BSP;
  2096. kvm_set_apic_base(&vmx->vcpu, msr);
  2097. fx_init(&vmx->vcpu);
  2098. seg_setup(VCPU_SREG_CS);
  2099. /*
  2100. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2101. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2102. */
  2103. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2104. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2105. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2106. } else {
  2107. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2108. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2109. }
  2110. seg_setup(VCPU_SREG_DS);
  2111. seg_setup(VCPU_SREG_ES);
  2112. seg_setup(VCPU_SREG_FS);
  2113. seg_setup(VCPU_SREG_GS);
  2114. seg_setup(VCPU_SREG_SS);
  2115. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2116. vmcs_writel(GUEST_TR_BASE, 0);
  2117. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2118. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2119. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2120. vmcs_writel(GUEST_LDTR_BASE, 0);
  2121. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2122. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2123. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2124. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2125. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2126. vmcs_writel(GUEST_RFLAGS, 0x02);
  2127. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2128. kvm_rip_write(vcpu, 0xfff0);
  2129. else
  2130. kvm_rip_write(vcpu, 0);
  2131. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2132. vmcs_writel(GUEST_DR7, 0x400);
  2133. vmcs_writel(GUEST_GDTR_BASE, 0);
  2134. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2135. vmcs_writel(GUEST_IDTR_BASE, 0);
  2136. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2137. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2138. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2139. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2140. /* Special registers */
  2141. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2142. setup_msrs(vmx);
  2143. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2144. if (cpu_has_vmx_tpr_shadow()) {
  2145. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2146. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2147. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2148. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2149. vmcs_write32(TPR_THRESHOLD, 0);
  2150. }
  2151. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2152. vmcs_write64(APIC_ACCESS_ADDR,
  2153. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2154. if (vmx->vpid != 0)
  2155. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2156. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2157. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2158. vmx_set_cr4(&vmx->vcpu, 0);
  2159. vmx_set_efer(&vmx->vcpu, 0);
  2160. vmx_fpu_activate(&vmx->vcpu);
  2161. update_exception_bitmap(&vmx->vcpu);
  2162. vpid_sync_vcpu_all(vmx);
  2163. ret = 0;
  2164. /* HACK: Don't enable emulation on guest boot/reset */
  2165. vmx->emulation_required = 0;
  2166. out:
  2167. up_read(&vcpu->kvm->slots_lock);
  2168. return ret;
  2169. }
  2170. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2171. {
  2172. u32 cpu_based_vm_exec_control;
  2173. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2174. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2175. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2176. }
  2177. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2178. {
  2179. u32 cpu_based_vm_exec_control;
  2180. if (!cpu_has_virtual_nmis()) {
  2181. enable_irq_window(vcpu);
  2182. return;
  2183. }
  2184. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2185. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2186. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2187. }
  2188. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2189. {
  2190. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2191. uint32_t intr;
  2192. int irq = vcpu->arch.interrupt.nr;
  2193. trace_kvm_inj_virq(irq);
  2194. ++vcpu->stat.irq_injections;
  2195. if (vmx->rmode.vm86_active) {
  2196. vmx->rmode.irq.pending = true;
  2197. vmx->rmode.irq.vector = irq;
  2198. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2199. if (vcpu->arch.interrupt.soft)
  2200. vmx->rmode.irq.rip +=
  2201. vmx->vcpu.arch.event_exit_inst_len;
  2202. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2203. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2204. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2205. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2206. return;
  2207. }
  2208. intr = irq | INTR_INFO_VALID_MASK;
  2209. if (vcpu->arch.interrupt.soft) {
  2210. intr |= INTR_TYPE_SOFT_INTR;
  2211. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2212. vmx->vcpu.arch.event_exit_inst_len);
  2213. } else
  2214. intr |= INTR_TYPE_EXT_INTR;
  2215. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2216. }
  2217. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2218. {
  2219. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2220. if (!cpu_has_virtual_nmis()) {
  2221. /*
  2222. * Tracking the NMI-blocked state in software is built upon
  2223. * finding the next open IRQ window. This, in turn, depends on
  2224. * well-behaving guests: They have to keep IRQs disabled at
  2225. * least as long as the NMI handler runs. Otherwise we may
  2226. * cause NMI nesting, maybe breaking the guest. But as this is
  2227. * highly unlikely, we can live with the residual risk.
  2228. */
  2229. vmx->soft_vnmi_blocked = 1;
  2230. vmx->vnmi_blocked_time = 0;
  2231. }
  2232. ++vcpu->stat.nmi_injections;
  2233. if (vmx->rmode.vm86_active) {
  2234. vmx->rmode.irq.pending = true;
  2235. vmx->rmode.irq.vector = NMI_VECTOR;
  2236. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2237. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2238. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2239. INTR_INFO_VALID_MASK);
  2240. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2241. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2242. return;
  2243. }
  2244. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2245. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2246. }
  2247. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2248. {
  2249. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2250. return 0;
  2251. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2252. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2253. GUEST_INTR_STATE_NMI));
  2254. }
  2255. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2256. {
  2257. if (!cpu_has_virtual_nmis())
  2258. return to_vmx(vcpu)->soft_vnmi_blocked;
  2259. else
  2260. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2261. GUEST_INTR_STATE_NMI);
  2262. }
  2263. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2264. {
  2265. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2266. if (!cpu_has_virtual_nmis()) {
  2267. if (vmx->soft_vnmi_blocked != masked) {
  2268. vmx->soft_vnmi_blocked = masked;
  2269. vmx->vnmi_blocked_time = 0;
  2270. }
  2271. } else {
  2272. if (masked)
  2273. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2274. GUEST_INTR_STATE_NMI);
  2275. else
  2276. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2277. GUEST_INTR_STATE_NMI);
  2278. }
  2279. }
  2280. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2281. {
  2282. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2283. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2284. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2285. }
  2286. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2287. {
  2288. int ret;
  2289. struct kvm_userspace_memory_region tss_mem = {
  2290. .slot = TSS_PRIVATE_MEMSLOT,
  2291. .guest_phys_addr = addr,
  2292. .memory_size = PAGE_SIZE * 3,
  2293. .flags = 0,
  2294. };
  2295. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2296. if (ret)
  2297. return ret;
  2298. kvm->arch.tss_addr = addr;
  2299. return 0;
  2300. }
  2301. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2302. int vec, u32 err_code)
  2303. {
  2304. /*
  2305. * Instruction with address size override prefix opcode 0x67
  2306. * Cause the #SS fault with 0 error code in VM86 mode.
  2307. */
  2308. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2309. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2310. return 1;
  2311. /*
  2312. * Forward all other exceptions that are valid in real mode.
  2313. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2314. * the required debugging infrastructure rework.
  2315. */
  2316. switch (vec) {
  2317. case DB_VECTOR:
  2318. if (vcpu->guest_debug &
  2319. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2320. return 0;
  2321. kvm_queue_exception(vcpu, vec);
  2322. return 1;
  2323. case BP_VECTOR:
  2324. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2325. return 0;
  2326. /* fall through */
  2327. case DE_VECTOR:
  2328. case OF_VECTOR:
  2329. case BR_VECTOR:
  2330. case UD_VECTOR:
  2331. case DF_VECTOR:
  2332. case SS_VECTOR:
  2333. case GP_VECTOR:
  2334. case MF_VECTOR:
  2335. kvm_queue_exception(vcpu, vec);
  2336. return 1;
  2337. }
  2338. return 0;
  2339. }
  2340. /*
  2341. * Trigger machine check on the host. We assume all the MSRs are already set up
  2342. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2343. * We pass a fake environment to the machine check handler because we want
  2344. * the guest to be always treated like user space, no matter what context
  2345. * it used internally.
  2346. */
  2347. static void kvm_machine_check(void)
  2348. {
  2349. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2350. struct pt_regs regs = {
  2351. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2352. .flags = X86_EFLAGS_IF,
  2353. };
  2354. do_machine_check(&regs, 0);
  2355. #endif
  2356. }
  2357. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2358. {
  2359. /* already handled by vcpu_run */
  2360. return 1;
  2361. }
  2362. static int handle_exception(struct kvm_vcpu *vcpu)
  2363. {
  2364. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2365. struct kvm_run *kvm_run = vcpu->run;
  2366. u32 intr_info, ex_no, error_code;
  2367. unsigned long cr2, rip, dr6;
  2368. u32 vect_info;
  2369. enum emulation_result er;
  2370. vect_info = vmx->idt_vectoring_info;
  2371. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2372. if (is_machine_check(intr_info))
  2373. return handle_machine_check(vcpu);
  2374. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2375. !is_page_fault(intr_info)) {
  2376. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2377. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2378. vcpu->run->internal.ndata = 2;
  2379. vcpu->run->internal.data[0] = vect_info;
  2380. vcpu->run->internal.data[1] = intr_info;
  2381. return 0;
  2382. }
  2383. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2384. return 1; /* already handled by vmx_vcpu_run() */
  2385. if (is_no_device(intr_info)) {
  2386. vmx_fpu_activate(vcpu);
  2387. return 1;
  2388. }
  2389. if (is_invalid_opcode(intr_info)) {
  2390. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2391. if (er != EMULATE_DONE)
  2392. kvm_queue_exception(vcpu, UD_VECTOR);
  2393. return 1;
  2394. }
  2395. error_code = 0;
  2396. rip = kvm_rip_read(vcpu);
  2397. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2398. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2399. if (is_page_fault(intr_info)) {
  2400. /* EPT won't cause page fault directly */
  2401. if (enable_ept)
  2402. BUG();
  2403. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2404. trace_kvm_page_fault(cr2, error_code);
  2405. if (kvm_event_needs_reinjection(vcpu))
  2406. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2407. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2408. }
  2409. if (vmx->rmode.vm86_active &&
  2410. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2411. error_code)) {
  2412. if (vcpu->arch.halt_request) {
  2413. vcpu->arch.halt_request = 0;
  2414. return kvm_emulate_halt(vcpu);
  2415. }
  2416. return 1;
  2417. }
  2418. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2419. switch (ex_no) {
  2420. case DB_VECTOR:
  2421. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2422. if (!(vcpu->guest_debug &
  2423. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2424. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2425. kvm_queue_exception(vcpu, DB_VECTOR);
  2426. return 1;
  2427. }
  2428. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2429. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2430. /* fall through */
  2431. case BP_VECTOR:
  2432. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2433. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2434. kvm_run->debug.arch.exception = ex_no;
  2435. break;
  2436. default:
  2437. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2438. kvm_run->ex.exception = ex_no;
  2439. kvm_run->ex.error_code = error_code;
  2440. break;
  2441. }
  2442. return 0;
  2443. }
  2444. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2445. {
  2446. ++vcpu->stat.irq_exits;
  2447. return 1;
  2448. }
  2449. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2450. {
  2451. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2452. return 0;
  2453. }
  2454. static int handle_io(struct kvm_vcpu *vcpu)
  2455. {
  2456. unsigned long exit_qualification;
  2457. int size, in, string;
  2458. unsigned port;
  2459. ++vcpu->stat.io_exits;
  2460. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2461. string = (exit_qualification & 16) != 0;
  2462. if (string) {
  2463. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2464. return 0;
  2465. return 1;
  2466. }
  2467. size = (exit_qualification & 7) + 1;
  2468. in = (exit_qualification & 8) != 0;
  2469. port = exit_qualification >> 16;
  2470. skip_emulated_instruction(vcpu);
  2471. return kvm_emulate_pio(vcpu, in, size, port);
  2472. }
  2473. static void
  2474. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2475. {
  2476. /*
  2477. * Patch in the VMCALL instruction:
  2478. */
  2479. hypercall[0] = 0x0f;
  2480. hypercall[1] = 0x01;
  2481. hypercall[2] = 0xc1;
  2482. }
  2483. static int handle_cr(struct kvm_vcpu *vcpu)
  2484. {
  2485. unsigned long exit_qualification, val;
  2486. int cr;
  2487. int reg;
  2488. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2489. cr = exit_qualification & 15;
  2490. reg = (exit_qualification >> 8) & 15;
  2491. switch ((exit_qualification >> 4) & 3) {
  2492. case 0: /* mov to cr */
  2493. val = kvm_register_read(vcpu, reg);
  2494. trace_kvm_cr_write(cr, val);
  2495. switch (cr) {
  2496. case 0:
  2497. kvm_set_cr0(vcpu, val);
  2498. skip_emulated_instruction(vcpu);
  2499. return 1;
  2500. case 3:
  2501. kvm_set_cr3(vcpu, val);
  2502. skip_emulated_instruction(vcpu);
  2503. return 1;
  2504. case 4:
  2505. kvm_set_cr4(vcpu, val);
  2506. skip_emulated_instruction(vcpu);
  2507. return 1;
  2508. case 8: {
  2509. u8 cr8_prev = kvm_get_cr8(vcpu);
  2510. u8 cr8 = kvm_register_read(vcpu, reg);
  2511. kvm_set_cr8(vcpu, cr8);
  2512. skip_emulated_instruction(vcpu);
  2513. if (irqchip_in_kernel(vcpu->kvm))
  2514. return 1;
  2515. if (cr8_prev <= cr8)
  2516. return 1;
  2517. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2518. return 0;
  2519. }
  2520. };
  2521. break;
  2522. case 2: /* clts */
  2523. vmx_fpu_deactivate(vcpu);
  2524. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2525. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2526. vmx_fpu_activate(vcpu);
  2527. skip_emulated_instruction(vcpu);
  2528. return 1;
  2529. case 1: /*mov from cr*/
  2530. switch (cr) {
  2531. case 3:
  2532. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2533. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2534. skip_emulated_instruction(vcpu);
  2535. return 1;
  2536. case 8:
  2537. val = kvm_get_cr8(vcpu);
  2538. kvm_register_write(vcpu, reg, val);
  2539. trace_kvm_cr_read(cr, val);
  2540. skip_emulated_instruction(vcpu);
  2541. return 1;
  2542. }
  2543. break;
  2544. case 3: /* lmsw */
  2545. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2546. skip_emulated_instruction(vcpu);
  2547. return 1;
  2548. default:
  2549. break;
  2550. }
  2551. vcpu->run->exit_reason = 0;
  2552. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2553. (int)(exit_qualification >> 4) & 3, cr);
  2554. return 0;
  2555. }
  2556. static int handle_dr(struct kvm_vcpu *vcpu)
  2557. {
  2558. unsigned long exit_qualification;
  2559. unsigned long val;
  2560. int dr, reg;
  2561. if (!kvm_require_cpl(vcpu, 0))
  2562. return 1;
  2563. dr = vmcs_readl(GUEST_DR7);
  2564. if (dr & DR7_GD) {
  2565. /*
  2566. * As the vm-exit takes precedence over the debug trap, we
  2567. * need to emulate the latter, either for the host or the
  2568. * guest debugging itself.
  2569. */
  2570. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2571. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2572. vcpu->run->debug.arch.dr7 = dr;
  2573. vcpu->run->debug.arch.pc =
  2574. vmcs_readl(GUEST_CS_BASE) +
  2575. vmcs_readl(GUEST_RIP);
  2576. vcpu->run->debug.arch.exception = DB_VECTOR;
  2577. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2578. return 0;
  2579. } else {
  2580. vcpu->arch.dr7 &= ~DR7_GD;
  2581. vcpu->arch.dr6 |= DR6_BD;
  2582. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2583. kvm_queue_exception(vcpu, DB_VECTOR);
  2584. return 1;
  2585. }
  2586. }
  2587. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2588. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2589. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2590. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2591. switch (dr) {
  2592. case 0 ... 3:
  2593. val = vcpu->arch.db[dr];
  2594. break;
  2595. case 6:
  2596. val = vcpu->arch.dr6;
  2597. break;
  2598. case 7:
  2599. val = vcpu->arch.dr7;
  2600. break;
  2601. default:
  2602. val = 0;
  2603. }
  2604. kvm_register_write(vcpu, reg, val);
  2605. } else {
  2606. val = vcpu->arch.regs[reg];
  2607. switch (dr) {
  2608. case 0 ... 3:
  2609. vcpu->arch.db[dr] = val;
  2610. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2611. vcpu->arch.eff_db[dr] = val;
  2612. break;
  2613. case 4 ... 5:
  2614. if (vcpu->arch.cr4 & X86_CR4_DE)
  2615. kvm_queue_exception(vcpu, UD_VECTOR);
  2616. break;
  2617. case 6:
  2618. if (val & 0xffffffff00000000ULL) {
  2619. kvm_queue_exception(vcpu, GP_VECTOR);
  2620. break;
  2621. }
  2622. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2623. break;
  2624. case 7:
  2625. if (val & 0xffffffff00000000ULL) {
  2626. kvm_queue_exception(vcpu, GP_VECTOR);
  2627. break;
  2628. }
  2629. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2630. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2631. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2632. vcpu->arch.switch_db_regs =
  2633. (val & DR7_BP_EN_MASK);
  2634. }
  2635. break;
  2636. }
  2637. }
  2638. skip_emulated_instruction(vcpu);
  2639. return 1;
  2640. }
  2641. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2642. {
  2643. kvm_emulate_cpuid(vcpu);
  2644. return 1;
  2645. }
  2646. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2647. {
  2648. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2649. u64 data;
  2650. if (vmx_get_msr(vcpu, ecx, &data)) {
  2651. kvm_inject_gp(vcpu, 0);
  2652. return 1;
  2653. }
  2654. trace_kvm_msr_read(ecx, data);
  2655. /* FIXME: handling of bits 32:63 of rax, rdx */
  2656. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2657. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2658. skip_emulated_instruction(vcpu);
  2659. return 1;
  2660. }
  2661. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2662. {
  2663. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2664. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2665. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2666. trace_kvm_msr_write(ecx, data);
  2667. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2668. kvm_inject_gp(vcpu, 0);
  2669. return 1;
  2670. }
  2671. skip_emulated_instruction(vcpu);
  2672. return 1;
  2673. }
  2674. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2675. {
  2676. return 1;
  2677. }
  2678. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2679. {
  2680. u32 cpu_based_vm_exec_control;
  2681. /* clear pending irq */
  2682. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2683. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2684. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2685. ++vcpu->stat.irq_window_exits;
  2686. /*
  2687. * If the user space waits to inject interrupts, exit as soon as
  2688. * possible
  2689. */
  2690. if (!irqchip_in_kernel(vcpu->kvm) &&
  2691. vcpu->run->request_interrupt_window &&
  2692. !kvm_cpu_has_interrupt(vcpu)) {
  2693. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2694. return 0;
  2695. }
  2696. return 1;
  2697. }
  2698. static int handle_halt(struct kvm_vcpu *vcpu)
  2699. {
  2700. skip_emulated_instruction(vcpu);
  2701. return kvm_emulate_halt(vcpu);
  2702. }
  2703. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2704. {
  2705. skip_emulated_instruction(vcpu);
  2706. kvm_emulate_hypercall(vcpu);
  2707. return 1;
  2708. }
  2709. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2710. {
  2711. kvm_queue_exception(vcpu, UD_VECTOR);
  2712. return 1;
  2713. }
  2714. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2715. {
  2716. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2717. kvm_mmu_invlpg(vcpu, exit_qualification);
  2718. skip_emulated_instruction(vcpu);
  2719. return 1;
  2720. }
  2721. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2722. {
  2723. skip_emulated_instruction(vcpu);
  2724. /* TODO: Add support for VT-d/pass-through device */
  2725. return 1;
  2726. }
  2727. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2728. {
  2729. unsigned long exit_qualification;
  2730. enum emulation_result er;
  2731. unsigned long offset;
  2732. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2733. offset = exit_qualification & 0xffful;
  2734. er = emulate_instruction(vcpu, 0, 0, 0);
  2735. if (er != EMULATE_DONE) {
  2736. printk(KERN_ERR
  2737. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2738. offset);
  2739. return -ENOEXEC;
  2740. }
  2741. return 1;
  2742. }
  2743. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2744. {
  2745. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2746. unsigned long exit_qualification;
  2747. u16 tss_selector;
  2748. int reason, type, idt_v;
  2749. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2750. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2751. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2752. reason = (u32)exit_qualification >> 30;
  2753. if (reason == TASK_SWITCH_GATE && idt_v) {
  2754. switch (type) {
  2755. case INTR_TYPE_NMI_INTR:
  2756. vcpu->arch.nmi_injected = false;
  2757. if (cpu_has_virtual_nmis())
  2758. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2759. GUEST_INTR_STATE_NMI);
  2760. break;
  2761. case INTR_TYPE_EXT_INTR:
  2762. case INTR_TYPE_SOFT_INTR:
  2763. kvm_clear_interrupt_queue(vcpu);
  2764. break;
  2765. case INTR_TYPE_HARD_EXCEPTION:
  2766. case INTR_TYPE_SOFT_EXCEPTION:
  2767. kvm_clear_exception_queue(vcpu);
  2768. break;
  2769. default:
  2770. break;
  2771. }
  2772. }
  2773. tss_selector = exit_qualification;
  2774. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2775. type != INTR_TYPE_EXT_INTR &&
  2776. type != INTR_TYPE_NMI_INTR))
  2777. skip_emulated_instruction(vcpu);
  2778. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2779. return 0;
  2780. /* clear all local breakpoint enable flags */
  2781. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2782. /*
  2783. * TODO: What about debug traps on tss switch?
  2784. * Are we supposed to inject them and update dr6?
  2785. */
  2786. return 1;
  2787. }
  2788. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2789. {
  2790. unsigned long exit_qualification;
  2791. gpa_t gpa;
  2792. int gla_validity;
  2793. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2794. if (exit_qualification & (1 << 6)) {
  2795. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2796. return -EINVAL;
  2797. }
  2798. gla_validity = (exit_qualification >> 7) & 0x3;
  2799. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2800. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2801. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2802. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2803. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2804. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2805. (long unsigned int)exit_qualification);
  2806. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2807. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2808. return 0;
  2809. }
  2810. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2811. trace_kvm_page_fault(gpa, exit_qualification);
  2812. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2813. }
  2814. static u64 ept_rsvd_mask(u64 spte, int level)
  2815. {
  2816. int i;
  2817. u64 mask = 0;
  2818. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2819. mask |= (1ULL << i);
  2820. if (level > 2)
  2821. /* bits 7:3 reserved */
  2822. mask |= 0xf8;
  2823. else if (level == 2) {
  2824. if (spte & (1ULL << 7))
  2825. /* 2MB ref, bits 20:12 reserved */
  2826. mask |= 0x1ff000;
  2827. else
  2828. /* bits 6:3 reserved */
  2829. mask |= 0x78;
  2830. }
  2831. return mask;
  2832. }
  2833. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2834. int level)
  2835. {
  2836. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2837. /* 010b (write-only) */
  2838. WARN_ON((spte & 0x7) == 0x2);
  2839. /* 110b (write/execute) */
  2840. WARN_ON((spte & 0x7) == 0x6);
  2841. /* 100b (execute-only) and value not supported by logical processor */
  2842. if (!cpu_has_vmx_ept_execute_only())
  2843. WARN_ON((spte & 0x7) == 0x4);
  2844. /* not 000b */
  2845. if ((spte & 0x7)) {
  2846. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2847. if (rsvd_bits != 0) {
  2848. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2849. __func__, rsvd_bits);
  2850. WARN_ON(1);
  2851. }
  2852. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2853. u64 ept_mem_type = (spte & 0x38) >> 3;
  2854. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2855. ept_mem_type == 7) {
  2856. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2857. __func__, ept_mem_type);
  2858. WARN_ON(1);
  2859. }
  2860. }
  2861. }
  2862. }
  2863. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2864. {
  2865. u64 sptes[4];
  2866. int nr_sptes, i;
  2867. gpa_t gpa;
  2868. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2869. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2870. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2871. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2872. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2873. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2874. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2875. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2876. return 0;
  2877. }
  2878. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2879. {
  2880. u32 cpu_based_vm_exec_control;
  2881. /* clear pending NMI */
  2882. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2883. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2884. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2885. ++vcpu->stat.nmi_window_exits;
  2886. return 1;
  2887. }
  2888. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2889. {
  2890. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2891. enum emulation_result err = EMULATE_DONE;
  2892. int ret = 1;
  2893. while (!guest_state_valid(vcpu)) {
  2894. err = emulate_instruction(vcpu, 0, 0, 0);
  2895. if (err == EMULATE_DO_MMIO) {
  2896. ret = 0;
  2897. goto out;
  2898. }
  2899. if (err != EMULATE_DONE) {
  2900. kvm_report_emulation_failure(vcpu, "emulation failure");
  2901. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2902. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2903. vcpu->run->internal.ndata = 0;
  2904. ret = 0;
  2905. goto out;
  2906. }
  2907. if (signal_pending(current))
  2908. goto out;
  2909. if (need_resched())
  2910. schedule();
  2911. }
  2912. vmx->emulation_required = 0;
  2913. out:
  2914. return ret;
  2915. }
  2916. /*
  2917. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2918. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2919. */
  2920. static int handle_pause(struct kvm_vcpu *vcpu)
  2921. {
  2922. skip_emulated_instruction(vcpu);
  2923. kvm_vcpu_on_spin(vcpu);
  2924. return 1;
  2925. }
  2926. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2927. {
  2928. kvm_queue_exception(vcpu, UD_VECTOR);
  2929. return 1;
  2930. }
  2931. /*
  2932. * The exit handlers return 1 if the exit was handled fully and guest execution
  2933. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2934. * to be done to userspace and return 0.
  2935. */
  2936. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2937. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2938. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2939. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2940. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2941. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2942. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2943. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2944. [EXIT_REASON_CPUID] = handle_cpuid,
  2945. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2946. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2947. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2948. [EXIT_REASON_HLT] = handle_halt,
  2949. [EXIT_REASON_INVLPG] = handle_invlpg,
  2950. [EXIT_REASON_VMCALL] = handle_vmcall,
  2951. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2952. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2953. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2954. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2955. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2956. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2957. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2958. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2959. [EXIT_REASON_VMON] = handle_vmx_insn,
  2960. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2961. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2962. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2963. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2964. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2965. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2966. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2967. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  2968. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  2969. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  2970. };
  2971. static const int kvm_vmx_max_exit_handlers =
  2972. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2973. /*
  2974. * The guest has exited. See if we can fix it or if we need userspace
  2975. * assistance.
  2976. */
  2977. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  2978. {
  2979. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2980. u32 exit_reason = vmx->exit_reason;
  2981. u32 vectoring_info = vmx->idt_vectoring_info;
  2982. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2983. /* If guest state is invalid, start emulating */
  2984. if (vmx->emulation_required && emulate_invalid_guest_state)
  2985. return handle_invalid_guest_state(vcpu);
  2986. /* Access CR3 don't cause VMExit in paging mode, so we need
  2987. * to sync with guest real CR3. */
  2988. if (enable_ept && is_paging(vcpu))
  2989. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2990. if (unlikely(vmx->fail)) {
  2991. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2992. vcpu->run->fail_entry.hardware_entry_failure_reason
  2993. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2994. return 0;
  2995. }
  2996. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2997. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2998. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2999. exit_reason != EXIT_REASON_TASK_SWITCH))
  3000. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3001. "(0x%x) and exit reason is 0x%x\n",
  3002. __func__, vectoring_info, exit_reason);
  3003. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3004. if (vmx_interrupt_allowed(vcpu)) {
  3005. vmx->soft_vnmi_blocked = 0;
  3006. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3007. vcpu->arch.nmi_pending) {
  3008. /*
  3009. * This CPU don't support us in finding the end of an
  3010. * NMI-blocked window if the guest runs with IRQs
  3011. * disabled. So we pull the trigger after 1 s of
  3012. * futile waiting, but inform the user about this.
  3013. */
  3014. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3015. "state on VCPU %d after 1 s timeout\n",
  3016. __func__, vcpu->vcpu_id);
  3017. vmx->soft_vnmi_blocked = 0;
  3018. }
  3019. }
  3020. if (exit_reason < kvm_vmx_max_exit_handlers
  3021. && kvm_vmx_exit_handlers[exit_reason])
  3022. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3023. else {
  3024. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3025. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3026. }
  3027. return 0;
  3028. }
  3029. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3030. {
  3031. if (irr == -1 || tpr < irr) {
  3032. vmcs_write32(TPR_THRESHOLD, 0);
  3033. return;
  3034. }
  3035. vmcs_write32(TPR_THRESHOLD, irr);
  3036. }
  3037. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3038. {
  3039. u32 exit_intr_info;
  3040. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3041. bool unblock_nmi;
  3042. u8 vector;
  3043. int type;
  3044. bool idtv_info_valid;
  3045. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3046. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3047. /* Handle machine checks before interrupts are enabled */
  3048. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3049. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3050. && is_machine_check(exit_intr_info)))
  3051. kvm_machine_check();
  3052. /* We need to handle NMIs before interrupts are enabled */
  3053. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3054. (exit_intr_info & INTR_INFO_VALID_MASK))
  3055. asm("int $2");
  3056. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3057. if (cpu_has_virtual_nmis()) {
  3058. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3059. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3060. /*
  3061. * SDM 3: 27.7.1.2 (September 2008)
  3062. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3063. * a guest IRET fault.
  3064. * SDM 3: 23.2.2 (September 2008)
  3065. * Bit 12 is undefined in any of the following cases:
  3066. * If the VM exit sets the valid bit in the IDT-vectoring
  3067. * information field.
  3068. * If the VM exit is due to a double fault.
  3069. */
  3070. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3071. vector != DF_VECTOR && !idtv_info_valid)
  3072. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3073. GUEST_INTR_STATE_NMI);
  3074. } else if (unlikely(vmx->soft_vnmi_blocked))
  3075. vmx->vnmi_blocked_time +=
  3076. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3077. vmx->vcpu.arch.nmi_injected = false;
  3078. kvm_clear_exception_queue(&vmx->vcpu);
  3079. kvm_clear_interrupt_queue(&vmx->vcpu);
  3080. if (!idtv_info_valid)
  3081. return;
  3082. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3083. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3084. switch (type) {
  3085. case INTR_TYPE_NMI_INTR:
  3086. vmx->vcpu.arch.nmi_injected = true;
  3087. /*
  3088. * SDM 3: 27.7.1.2 (September 2008)
  3089. * Clear bit "block by NMI" before VM entry if a NMI
  3090. * delivery faulted.
  3091. */
  3092. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3093. GUEST_INTR_STATE_NMI);
  3094. break;
  3095. case INTR_TYPE_SOFT_EXCEPTION:
  3096. vmx->vcpu.arch.event_exit_inst_len =
  3097. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3098. /* fall through */
  3099. case INTR_TYPE_HARD_EXCEPTION:
  3100. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3101. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3102. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3103. } else
  3104. kvm_queue_exception(&vmx->vcpu, vector);
  3105. break;
  3106. case INTR_TYPE_SOFT_INTR:
  3107. vmx->vcpu.arch.event_exit_inst_len =
  3108. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3109. /* fall through */
  3110. case INTR_TYPE_EXT_INTR:
  3111. kvm_queue_interrupt(&vmx->vcpu, vector,
  3112. type == INTR_TYPE_SOFT_INTR);
  3113. break;
  3114. default:
  3115. break;
  3116. }
  3117. }
  3118. /*
  3119. * Failure to inject an interrupt should give us the information
  3120. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3121. * when fetching the interrupt redirection bitmap in the real-mode
  3122. * tss, this doesn't happen. So we do it ourselves.
  3123. */
  3124. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3125. {
  3126. vmx->rmode.irq.pending = 0;
  3127. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3128. return;
  3129. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3130. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3131. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3132. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3133. return;
  3134. }
  3135. vmx->idt_vectoring_info =
  3136. VECTORING_INFO_VALID_MASK
  3137. | INTR_TYPE_EXT_INTR
  3138. | vmx->rmode.irq.vector;
  3139. }
  3140. #ifdef CONFIG_X86_64
  3141. #define R "r"
  3142. #define Q "q"
  3143. #else
  3144. #define R "e"
  3145. #define Q "l"
  3146. #endif
  3147. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3148. {
  3149. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3150. /* Record the guest's net vcpu time for enforced NMI injections. */
  3151. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3152. vmx->entry_time = ktime_get();
  3153. /* Don't enter VMX if guest state is invalid, let the exit handler
  3154. start emulation until we arrive back to a valid state */
  3155. if (vmx->emulation_required && emulate_invalid_guest_state)
  3156. return;
  3157. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3158. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3159. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3160. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3161. /* When single-stepping over STI and MOV SS, we must clear the
  3162. * corresponding interruptibility bits in the guest state. Otherwise
  3163. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3164. * exceptions being set, but that's not correct for the guest debugging
  3165. * case. */
  3166. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3167. vmx_set_interrupt_shadow(vcpu, 0);
  3168. /*
  3169. * Loading guest fpu may have cleared host cr0.ts
  3170. */
  3171. vmcs_writel(HOST_CR0, read_cr0());
  3172. if (vcpu->arch.switch_db_regs)
  3173. set_debugreg(vcpu->arch.dr6, 6);
  3174. asm(
  3175. /* Store host registers */
  3176. "push %%"R"dx; push %%"R"bp;"
  3177. "push %%"R"cx \n\t"
  3178. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3179. "je 1f \n\t"
  3180. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3181. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3182. "1: \n\t"
  3183. /* Reload cr2 if changed */
  3184. "mov %c[cr2](%0), %%"R"ax \n\t"
  3185. "mov %%cr2, %%"R"dx \n\t"
  3186. "cmp %%"R"ax, %%"R"dx \n\t"
  3187. "je 2f \n\t"
  3188. "mov %%"R"ax, %%cr2 \n\t"
  3189. "2: \n\t"
  3190. /* Check if vmlaunch of vmresume is needed */
  3191. "cmpl $0, %c[launched](%0) \n\t"
  3192. /* Load guest registers. Don't clobber flags. */
  3193. "mov %c[rax](%0), %%"R"ax \n\t"
  3194. "mov %c[rbx](%0), %%"R"bx \n\t"
  3195. "mov %c[rdx](%0), %%"R"dx \n\t"
  3196. "mov %c[rsi](%0), %%"R"si \n\t"
  3197. "mov %c[rdi](%0), %%"R"di \n\t"
  3198. "mov %c[rbp](%0), %%"R"bp \n\t"
  3199. #ifdef CONFIG_X86_64
  3200. "mov %c[r8](%0), %%r8 \n\t"
  3201. "mov %c[r9](%0), %%r9 \n\t"
  3202. "mov %c[r10](%0), %%r10 \n\t"
  3203. "mov %c[r11](%0), %%r11 \n\t"
  3204. "mov %c[r12](%0), %%r12 \n\t"
  3205. "mov %c[r13](%0), %%r13 \n\t"
  3206. "mov %c[r14](%0), %%r14 \n\t"
  3207. "mov %c[r15](%0), %%r15 \n\t"
  3208. #endif
  3209. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3210. /* Enter guest mode */
  3211. "jne .Llaunched \n\t"
  3212. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3213. "jmp .Lkvm_vmx_return \n\t"
  3214. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3215. ".Lkvm_vmx_return: "
  3216. /* Save guest registers, load host registers, keep flags */
  3217. "xchg %0, (%%"R"sp) \n\t"
  3218. "mov %%"R"ax, %c[rax](%0) \n\t"
  3219. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3220. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3221. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3222. "mov %%"R"si, %c[rsi](%0) \n\t"
  3223. "mov %%"R"di, %c[rdi](%0) \n\t"
  3224. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3225. #ifdef CONFIG_X86_64
  3226. "mov %%r8, %c[r8](%0) \n\t"
  3227. "mov %%r9, %c[r9](%0) \n\t"
  3228. "mov %%r10, %c[r10](%0) \n\t"
  3229. "mov %%r11, %c[r11](%0) \n\t"
  3230. "mov %%r12, %c[r12](%0) \n\t"
  3231. "mov %%r13, %c[r13](%0) \n\t"
  3232. "mov %%r14, %c[r14](%0) \n\t"
  3233. "mov %%r15, %c[r15](%0) \n\t"
  3234. #endif
  3235. "mov %%cr2, %%"R"ax \n\t"
  3236. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3237. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3238. "setbe %c[fail](%0) \n\t"
  3239. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3240. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3241. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3242. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3243. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3244. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3245. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3246. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3247. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3248. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3249. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3250. #ifdef CONFIG_X86_64
  3251. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3252. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3253. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3254. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3255. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3256. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3257. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3258. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3259. #endif
  3260. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3261. : "cc", "memory"
  3262. , R"bx", R"di", R"si"
  3263. #ifdef CONFIG_X86_64
  3264. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3265. #endif
  3266. );
  3267. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3268. | (1 << VCPU_EXREG_PDPTR));
  3269. vcpu->arch.regs_dirty = 0;
  3270. if (vcpu->arch.switch_db_regs)
  3271. get_debugreg(vcpu->arch.dr6, 6);
  3272. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3273. if (vmx->rmode.irq.pending)
  3274. fixup_rmode_irq(vmx);
  3275. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3276. vmx->launched = 1;
  3277. vmx_complete_interrupts(vmx);
  3278. }
  3279. #undef R
  3280. #undef Q
  3281. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3282. {
  3283. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3284. if (vmx->vmcs) {
  3285. vcpu_clear(vmx);
  3286. free_vmcs(vmx->vmcs);
  3287. vmx->vmcs = NULL;
  3288. }
  3289. }
  3290. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3291. {
  3292. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3293. spin_lock(&vmx_vpid_lock);
  3294. if (vmx->vpid != 0)
  3295. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3296. spin_unlock(&vmx_vpid_lock);
  3297. vmx_free_vmcs(vcpu);
  3298. kfree(vmx->guest_msrs);
  3299. kvm_vcpu_uninit(vcpu);
  3300. kmem_cache_free(kvm_vcpu_cache, vmx);
  3301. }
  3302. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3303. {
  3304. int err;
  3305. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3306. int cpu;
  3307. if (!vmx)
  3308. return ERR_PTR(-ENOMEM);
  3309. allocate_vpid(vmx);
  3310. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3311. if (err)
  3312. goto free_vcpu;
  3313. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3314. if (!vmx->guest_msrs) {
  3315. err = -ENOMEM;
  3316. goto uninit_vcpu;
  3317. }
  3318. vmx->vmcs = alloc_vmcs();
  3319. if (!vmx->vmcs)
  3320. goto free_msrs;
  3321. vmcs_clear(vmx->vmcs);
  3322. cpu = get_cpu();
  3323. vmx_vcpu_load(&vmx->vcpu, cpu);
  3324. err = vmx_vcpu_setup(vmx);
  3325. vmx_vcpu_put(&vmx->vcpu);
  3326. put_cpu();
  3327. if (err)
  3328. goto free_vmcs;
  3329. if (vm_need_virtualize_apic_accesses(kvm))
  3330. if (alloc_apic_access_page(kvm) != 0)
  3331. goto free_vmcs;
  3332. if (enable_ept) {
  3333. if (!kvm->arch.ept_identity_map_addr)
  3334. kvm->arch.ept_identity_map_addr =
  3335. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3336. if (alloc_identity_pagetable(kvm) != 0)
  3337. goto free_vmcs;
  3338. }
  3339. return &vmx->vcpu;
  3340. free_vmcs:
  3341. free_vmcs(vmx->vmcs);
  3342. free_msrs:
  3343. kfree(vmx->guest_msrs);
  3344. uninit_vcpu:
  3345. kvm_vcpu_uninit(&vmx->vcpu);
  3346. free_vcpu:
  3347. kmem_cache_free(kvm_vcpu_cache, vmx);
  3348. return ERR_PTR(err);
  3349. }
  3350. static void __init vmx_check_processor_compat(void *rtn)
  3351. {
  3352. struct vmcs_config vmcs_conf;
  3353. *(int *)rtn = 0;
  3354. if (setup_vmcs_config(&vmcs_conf) < 0)
  3355. *(int *)rtn = -EIO;
  3356. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3357. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3358. smp_processor_id());
  3359. *(int *)rtn = -EIO;
  3360. }
  3361. }
  3362. static int get_ept_level(void)
  3363. {
  3364. return VMX_EPT_DEFAULT_GAW + 1;
  3365. }
  3366. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3367. {
  3368. u64 ret;
  3369. /* For VT-d and EPT combination
  3370. * 1. MMIO: always map as UC
  3371. * 2. EPT with VT-d:
  3372. * a. VT-d without snooping control feature: can't guarantee the
  3373. * result, try to trust guest.
  3374. * b. VT-d with snooping control feature: snooping control feature of
  3375. * VT-d engine can guarantee the cache correctness. Just set it
  3376. * to WB to keep consistent with host. So the same as item 3.
  3377. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3378. * consistent with host MTRR
  3379. */
  3380. if (is_mmio)
  3381. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3382. else if (vcpu->kvm->arch.iommu_domain &&
  3383. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3384. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3385. VMX_EPT_MT_EPTE_SHIFT;
  3386. else
  3387. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3388. | VMX_EPT_IGMT_BIT;
  3389. return ret;
  3390. }
  3391. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3392. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3393. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3394. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3395. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3396. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3397. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3398. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3399. { EXIT_REASON_CPUID, "cpuid" },
  3400. { EXIT_REASON_MSR_READ, "rdmsr" },
  3401. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3402. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3403. { EXIT_REASON_HLT, "halt" },
  3404. { EXIT_REASON_INVLPG, "invlpg" },
  3405. { EXIT_REASON_VMCALL, "hypercall" },
  3406. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3407. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3408. { EXIT_REASON_WBINVD, "wbinvd" },
  3409. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3410. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3411. { -1, NULL }
  3412. };
  3413. static bool vmx_gb_page_enable(void)
  3414. {
  3415. return false;
  3416. }
  3417. static struct kvm_x86_ops vmx_x86_ops = {
  3418. .cpu_has_kvm_support = cpu_has_kvm_support,
  3419. .disabled_by_bios = vmx_disabled_by_bios,
  3420. .hardware_setup = hardware_setup,
  3421. .hardware_unsetup = hardware_unsetup,
  3422. .check_processor_compatibility = vmx_check_processor_compat,
  3423. .hardware_enable = hardware_enable,
  3424. .hardware_disable = hardware_disable,
  3425. .cpu_has_accelerated_tpr = report_flexpriority,
  3426. .vcpu_create = vmx_create_vcpu,
  3427. .vcpu_free = vmx_free_vcpu,
  3428. .vcpu_reset = vmx_vcpu_reset,
  3429. .prepare_guest_switch = vmx_save_host_state,
  3430. .vcpu_load = vmx_vcpu_load,
  3431. .vcpu_put = vmx_vcpu_put,
  3432. .set_guest_debug = set_guest_debug,
  3433. .get_msr = vmx_get_msr,
  3434. .set_msr = vmx_set_msr,
  3435. .get_segment_base = vmx_get_segment_base,
  3436. .get_segment = vmx_get_segment,
  3437. .set_segment = vmx_set_segment,
  3438. .get_cpl = vmx_get_cpl,
  3439. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3440. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3441. .set_cr0 = vmx_set_cr0,
  3442. .set_cr3 = vmx_set_cr3,
  3443. .set_cr4 = vmx_set_cr4,
  3444. .set_efer = vmx_set_efer,
  3445. .get_idt = vmx_get_idt,
  3446. .set_idt = vmx_set_idt,
  3447. .get_gdt = vmx_get_gdt,
  3448. .set_gdt = vmx_set_gdt,
  3449. .cache_reg = vmx_cache_reg,
  3450. .get_rflags = vmx_get_rflags,
  3451. .set_rflags = vmx_set_rflags,
  3452. .tlb_flush = vmx_flush_tlb,
  3453. .run = vmx_vcpu_run,
  3454. .handle_exit = vmx_handle_exit,
  3455. .skip_emulated_instruction = skip_emulated_instruction,
  3456. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3457. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3458. .patch_hypercall = vmx_patch_hypercall,
  3459. .set_irq = vmx_inject_irq,
  3460. .set_nmi = vmx_inject_nmi,
  3461. .queue_exception = vmx_queue_exception,
  3462. .interrupt_allowed = vmx_interrupt_allowed,
  3463. .nmi_allowed = vmx_nmi_allowed,
  3464. .get_nmi_mask = vmx_get_nmi_mask,
  3465. .set_nmi_mask = vmx_set_nmi_mask,
  3466. .enable_nmi_window = enable_nmi_window,
  3467. .enable_irq_window = enable_irq_window,
  3468. .update_cr8_intercept = update_cr8_intercept,
  3469. .set_tss_addr = vmx_set_tss_addr,
  3470. .get_tdp_level = get_ept_level,
  3471. .get_mt_mask = vmx_get_mt_mask,
  3472. .exit_reasons_str = vmx_exit_reasons_str,
  3473. .gb_page_enable = vmx_gb_page_enable,
  3474. };
  3475. static int __init vmx_init(void)
  3476. {
  3477. int r, i;
  3478. rdmsrl_safe(MSR_EFER, &host_efer);
  3479. for (i = 0; i < NR_VMX_MSR; ++i)
  3480. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3481. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3482. if (!vmx_io_bitmap_a)
  3483. return -ENOMEM;
  3484. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3485. if (!vmx_io_bitmap_b) {
  3486. r = -ENOMEM;
  3487. goto out;
  3488. }
  3489. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3490. if (!vmx_msr_bitmap_legacy) {
  3491. r = -ENOMEM;
  3492. goto out1;
  3493. }
  3494. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3495. if (!vmx_msr_bitmap_longmode) {
  3496. r = -ENOMEM;
  3497. goto out2;
  3498. }
  3499. /*
  3500. * Allow direct access to the PC debug port (it is often used for I/O
  3501. * delays, but the vmexits simply slow things down).
  3502. */
  3503. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3504. clear_bit(0x80, vmx_io_bitmap_a);
  3505. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3506. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3507. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3508. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3509. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3510. if (r)
  3511. goto out3;
  3512. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3513. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3514. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3515. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3516. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3517. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3518. if (enable_ept) {
  3519. bypass_guest_pf = 0;
  3520. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3521. VMX_EPT_WRITABLE_MASK);
  3522. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3523. VMX_EPT_EXECUTABLE_MASK);
  3524. kvm_enable_tdp();
  3525. } else
  3526. kvm_disable_tdp();
  3527. if (bypass_guest_pf)
  3528. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3529. return 0;
  3530. out3:
  3531. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3532. out2:
  3533. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3534. out1:
  3535. free_page((unsigned long)vmx_io_bitmap_b);
  3536. out:
  3537. free_page((unsigned long)vmx_io_bitmap_a);
  3538. return r;
  3539. }
  3540. static void __exit vmx_exit(void)
  3541. {
  3542. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3543. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3544. free_page((unsigned long)vmx_io_bitmap_b);
  3545. free_page((unsigned long)vmx_io_bitmap_a);
  3546. kvm_exit();
  3547. }
  3548. module_init(vmx_init)
  3549. module_exit(vmx_exit)