process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. /* arch/sparc64/kernel/process.c
  2. *
  3. * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/errno.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/fs.h>
  17. #include <linux/smp.h>
  18. #include <linux/stddef.h>
  19. #include <linux/ptrace.h>
  20. #include <linux/slab.h>
  21. #include <linux/user.h>
  22. #include <linux/delay.h>
  23. #include <linux/compat.h>
  24. #include <linux/tick.h>
  25. #include <linux/init.h>
  26. #include <linux/cpu.h>
  27. #include <linux/elfcore.h>
  28. #include <linux/sysrq.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/system.h>
  31. #include <asm/page.h>
  32. #include <asm/pgalloc.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #include <asm/pstate.h>
  36. #include <asm/elf.h>
  37. #include <asm/fpumacro.h>
  38. #include <asm/head.h>
  39. #include <asm/cpudata.h>
  40. #include <asm/mmu_context.h>
  41. #include <asm/unistd.h>
  42. #include <asm/hypervisor.h>
  43. #include <asm/syscalls.h>
  44. #include <asm/irq_regs.h>
  45. #include <asm/smp.h>
  46. #include "kstack.h"
  47. static void sparc64_yield(int cpu)
  48. {
  49. if (tlb_type != hypervisor)
  50. return;
  51. clear_thread_flag(TIF_POLLING_NRFLAG);
  52. smp_mb__after_clear_bit();
  53. while (!need_resched() && !cpu_is_offline(cpu)) {
  54. unsigned long pstate;
  55. /* Disable interrupts. */
  56. __asm__ __volatile__(
  57. "rdpr %%pstate, %0\n\t"
  58. "andn %0, %1, %0\n\t"
  59. "wrpr %0, %%g0, %%pstate"
  60. : "=&r" (pstate)
  61. : "i" (PSTATE_IE));
  62. if (!need_resched() && !cpu_is_offline(cpu))
  63. sun4v_cpu_yield();
  64. /* Re-enable interrupts. */
  65. __asm__ __volatile__(
  66. "rdpr %%pstate, %0\n\t"
  67. "or %0, %1, %0\n\t"
  68. "wrpr %0, %%g0, %%pstate"
  69. : "=&r" (pstate)
  70. : "i" (PSTATE_IE));
  71. }
  72. set_thread_flag(TIF_POLLING_NRFLAG);
  73. }
  74. /* The idle loop on sparc64. */
  75. void cpu_idle(void)
  76. {
  77. int cpu = smp_processor_id();
  78. set_thread_flag(TIF_POLLING_NRFLAG);
  79. while(1) {
  80. tick_nohz_stop_sched_tick(1);
  81. while (!need_resched() && !cpu_is_offline(cpu))
  82. sparc64_yield(cpu);
  83. tick_nohz_restart_sched_tick();
  84. preempt_enable_no_resched();
  85. #ifdef CONFIG_HOTPLUG_CPU
  86. if (cpu_is_offline(cpu))
  87. cpu_play_dead();
  88. #endif
  89. schedule();
  90. preempt_disable();
  91. }
  92. }
  93. #ifdef CONFIG_COMPAT
  94. static void show_regwindow32(struct pt_regs *regs)
  95. {
  96. struct reg_window32 __user *rw;
  97. struct reg_window32 r_w;
  98. mm_segment_t old_fs;
  99. __asm__ __volatile__ ("flushw");
  100. rw = compat_ptr((unsigned)regs->u_regs[14]);
  101. old_fs = get_fs();
  102. set_fs (USER_DS);
  103. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  104. set_fs (old_fs);
  105. return;
  106. }
  107. set_fs (old_fs);
  108. printk("l0: %08x l1: %08x l2: %08x l3: %08x "
  109. "l4: %08x l5: %08x l6: %08x l7: %08x\n",
  110. r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
  111. r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
  112. printk("i0: %08x i1: %08x i2: %08x i3: %08x "
  113. "i4: %08x i5: %08x i6: %08x i7: %08x\n",
  114. r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
  115. r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
  116. }
  117. #else
  118. #define show_regwindow32(regs) do { } while (0)
  119. #endif
  120. static void show_regwindow(struct pt_regs *regs)
  121. {
  122. struct reg_window __user *rw;
  123. struct reg_window *rwk;
  124. struct reg_window r_w;
  125. mm_segment_t old_fs;
  126. if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
  127. __asm__ __volatile__ ("flushw");
  128. rw = (struct reg_window __user *)
  129. (regs->u_regs[14] + STACK_BIAS);
  130. rwk = (struct reg_window *)
  131. (regs->u_regs[14] + STACK_BIAS);
  132. if (!(regs->tstate & TSTATE_PRIV)) {
  133. old_fs = get_fs();
  134. set_fs (USER_DS);
  135. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  136. set_fs (old_fs);
  137. return;
  138. }
  139. rwk = &r_w;
  140. set_fs (old_fs);
  141. }
  142. } else {
  143. show_regwindow32(regs);
  144. return;
  145. }
  146. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
  147. rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
  148. printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  149. rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
  150. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
  151. rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
  152. printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
  153. rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
  154. if (regs->tstate & TSTATE_PRIV)
  155. printk("I7: <%pS>\n", (void *) rwk->ins[7]);
  156. }
  157. void show_regs(struct pt_regs *regs)
  158. {
  159. printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
  160. regs->tpc, regs->tnpc, regs->y, print_tainted());
  161. printk("TPC: <%pS>\n", (void *) regs->tpc);
  162. printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
  163. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  164. regs->u_regs[3]);
  165. printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
  166. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  167. regs->u_regs[7]);
  168. printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
  169. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  170. regs->u_regs[11]);
  171. printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
  172. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  173. regs->u_regs[15]);
  174. printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
  175. show_regwindow(regs);
  176. }
  177. struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
  178. static DEFINE_SPINLOCK(global_reg_snapshot_lock);
  179. static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
  180. int this_cpu)
  181. {
  182. flushw_all();
  183. global_reg_snapshot[this_cpu].tstate = regs->tstate;
  184. global_reg_snapshot[this_cpu].tpc = regs->tpc;
  185. global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
  186. global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
  187. if (regs->tstate & TSTATE_PRIV) {
  188. struct thread_info *tp = current_thread_info();
  189. struct reg_window *rw;
  190. rw = (struct reg_window *)
  191. (regs->u_regs[UREG_FP] + STACK_BIAS);
  192. if (kstack_valid(tp, (unsigned long) rw)) {
  193. global_reg_snapshot[this_cpu].i7 = rw->ins[7];
  194. rw = (struct reg_window *)
  195. (rw->ins[6] + STACK_BIAS);
  196. if (kstack_valid(tp, (unsigned long) rw))
  197. global_reg_snapshot[this_cpu].rpc = rw->ins[7];
  198. }
  199. } else {
  200. global_reg_snapshot[this_cpu].i7 = 0;
  201. global_reg_snapshot[this_cpu].rpc = 0;
  202. }
  203. global_reg_snapshot[this_cpu].thread = tp;
  204. }
  205. /* In order to avoid hangs we do not try to synchronize with the
  206. * global register dump client cpus. The last store they make is to
  207. * the thread pointer, so do a short poll waiting for that to become
  208. * non-NULL.
  209. */
  210. static void __global_reg_poll(struct global_reg_snapshot *gp)
  211. {
  212. int limit = 0;
  213. while (!gp->thread && ++limit < 100) {
  214. barrier();
  215. udelay(1);
  216. }
  217. }
  218. void __trigger_all_cpu_backtrace(void)
  219. {
  220. struct thread_info *tp = current_thread_info();
  221. struct pt_regs *regs = get_irq_regs();
  222. unsigned long flags;
  223. int this_cpu, cpu;
  224. if (!regs)
  225. regs = tp->kregs;
  226. spin_lock_irqsave(&global_reg_snapshot_lock, flags);
  227. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  228. this_cpu = raw_smp_processor_id();
  229. __global_reg_self(tp, regs, this_cpu);
  230. smp_fetch_global_regs();
  231. for_each_online_cpu(cpu) {
  232. struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
  233. struct thread_info *tp;
  234. __global_reg_poll(gp);
  235. tp = gp->thread;
  236. printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
  237. (cpu == this_cpu ? '*' : ' '), cpu,
  238. gp->tstate, gp->tpc, gp->tnpc,
  239. ((tp && tp->task) ? tp->task->comm : "NULL"),
  240. ((tp && tp->task) ? tp->task->pid : -1));
  241. if (gp->tstate & TSTATE_PRIV) {
  242. printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
  243. (void *) gp->tpc,
  244. (void *) gp->o7,
  245. (void *) gp->i7,
  246. (void *) gp->rpc);
  247. } else {
  248. printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
  249. gp->tpc, gp->o7, gp->i7, gp->rpc);
  250. }
  251. }
  252. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  253. spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
  254. }
  255. #ifdef CONFIG_MAGIC_SYSRQ
  256. static void sysrq_handle_globreg(int key, struct tty_struct *tty)
  257. {
  258. __trigger_all_cpu_backtrace();
  259. }
  260. static struct sysrq_key_op sparc_globalreg_op = {
  261. .handler = sysrq_handle_globreg,
  262. .help_msg = "Globalregs",
  263. .action_msg = "Show Global CPU Regs",
  264. };
  265. static int __init sparc_globreg_init(void)
  266. {
  267. return register_sysrq_key('y', &sparc_globalreg_op);
  268. }
  269. core_initcall(sparc_globreg_init);
  270. #endif
  271. unsigned long thread_saved_pc(struct task_struct *tsk)
  272. {
  273. struct thread_info *ti = task_thread_info(tsk);
  274. unsigned long ret = 0xdeadbeefUL;
  275. if (ti && ti->ksp) {
  276. unsigned long *sp;
  277. sp = (unsigned long *)(ti->ksp + STACK_BIAS);
  278. if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
  279. sp[14]) {
  280. unsigned long *fp;
  281. fp = (unsigned long *)(sp[14] + STACK_BIAS);
  282. if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
  283. ret = fp[15];
  284. }
  285. }
  286. return ret;
  287. }
  288. /* Free current thread data structures etc.. */
  289. void exit_thread(void)
  290. {
  291. struct thread_info *t = current_thread_info();
  292. if (t->utraps) {
  293. if (t->utraps[0] < 2)
  294. kfree (t->utraps);
  295. else
  296. t->utraps[0]--;
  297. }
  298. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  299. t->user_cntd0 = t->user_cntd1 = NULL;
  300. t->pcr_reg = 0;
  301. write_pcr(0);
  302. }
  303. }
  304. void flush_thread(void)
  305. {
  306. struct thread_info *t = current_thread_info();
  307. struct mm_struct *mm;
  308. if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
  309. clear_ti_thread_flag(t, TIF_ABI_PENDING);
  310. if (test_ti_thread_flag(t, TIF_32BIT))
  311. clear_ti_thread_flag(t, TIF_32BIT);
  312. else
  313. set_ti_thread_flag(t, TIF_32BIT);
  314. }
  315. mm = t->task->mm;
  316. if (mm)
  317. tsb_context_switch(mm);
  318. set_thread_wsaved(0);
  319. /* Turn off performance counters if on. */
  320. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  321. t->user_cntd0 = t->user_cntd1 = NULL;
  322. t->pcr_reg = 0;
  323. write_pcr(0);
  324. }
  325. /* Clear FPU register state. */
  326. t->fpsaved[0] = 0;
  327. if (get_thread_current_ds() != ASI_AIUS)
  328. set_fs(USER_DS);
  329. }
  330. /* It's a bit more tricky when 64-bit tasks are involved... */
  331. static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
  332. {
  333. unsigned long fp, distance, rval;
  334. if (!(test_thread_flag(TIF_32BIT))) {
  335. csp += STACK_BIAS;
  336. psp += STACK_BIAS;
  337. __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
  338. fp += STACK_BIAS;
  339. } else
  340. __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
  341. /* Now 8-byte align the stack as this is mandatory in the
  342. * Sparc ABI due to how register windows work. This hides
  343. * the restriction from thread libraries etc. -DaveM
  344. */
  345. csp &= ~7UL;
  346. distance = fp - psp;
  347. rval = (csp - distance);
  348. if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
  349. rval = 0;
  350. else if (test_thread_flag(TIF_32BIT)) {
  351. if (put_user(((u32)csp),
  352. &(((struct reg_window32 __user *)rval)->ins[6])))
  353. rval = 0;
  354. } else {
  355. if (put_user(((u64)csp - STACK_BIAS),
  356. &(((struct reg_window __user *)rval)->ins[6])))
  357. rval = 0;
  358. else
  359. rval = rval - STACK_BIAS;
  360. }
  361. return rval;
  362. }
  363. /* Standard stuff. */
  364. static inline void shift_window_buffer(int first_win, int last_win,
  365. struct thread_info *t)
  366. {
  367. int i;
  368. for (i = first_win; i < last_win; i++) {
  369. t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
  370. memcpy(&t->reg_window[i], &t->reg_window[i+1],
  371. sizeof(struct reg_window));
  372. }
  373. }
  374. void synchronize_user_stack(void)
  375. {
  376. struct thread_info *t = current_thread_info();
  377. unsigned long window;
  378. flush_user_windows();
  379. if ((window = get_thread_wsaved()) != 0) {
  380. int winsize = sizeof(struct reg_window);
  381. int bias = 0;
  382. if (test_thread_flag(TIF_32BIT))
  383. winsize = sizeof(struct reg_window32);
  384. else
  385. bias = STACK_BIAS;
  386. window -= 1;
  387. do {
  388. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  389. struct reg_window *rwin = &t->reg_window[window];
  390. if (!copy_to_user((char __user *)sp, rwin, winsize)) {
  391. shift_window_buffer(window, get_thread_wsaved() - 1, t);
  392. set_thread_wsaved(get_thread_wsaved() - 1);
  393. }
  394. } while (window--);
  395. }
  396. }
  397. static void stack_unaligned(unsigned long sp)
  398. {
  399. siginfo_t info;
  400. info.si_signo = SIGBUS;
  401. info.si_errno = 0;
  402. info.si_code = BUS_ADRALN;
  403. info.si_addr = (void __user *) sp;
  404. info.si_trapno = 0;
  405. force_sig_info(SIGBUS, &info, current);
  406. }
  407. void fault_in_user_windows(void)
  408. {
  409. struct thread_info *t = current_thread_info();
  410. unsigned long window;
  411. int winsize = sizeof(struct reg_window);
  412. int bias = 0;
  413. if (test_thread_flag(TIF_32BIT))
  414. winsize = sizeof(struct reg_window32);
  415. else
  416. bias = STACK_BIAS;
  417. flush_user_windows();
  418. window = get_thread_wsaved();
  419. if (likely(window != 0)) {
  420. window -= 1;
  421. do {
  422. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  423. struct reg_window *rwin = &t->reg_window[window];
  424. if (unlikely(sp & 0x7UL))
  425. stack_unaligned(sp);
  426. if (unlikely(copy_to_user((char __user *)sp,
  427. rwin, winsize)))
  428. goto barf;
  429. } while (window--);
  430. }
  431. set_thread_wsaved(0);
  432. return;
  433. barf:
  434. set_thread_wsaved(window + 1);
  435. do_exit(SIGILL);
  436. }
  437. asmlinkage long sparc_do_fork(unsigned long clone_flags,
  438. unsigned long stack_start,
  439. struct pt_regs *regs,
  440. unsigned long stack_size)
  441. {
  442. int __user *parent_tid_ptr, *child_tid_ptr;
  443. unsigned long orig_i1 = regs->u_regs[UREG_I1];
  444. long ret;
  445. #ifdef CONFIG_COMPAT
  446. if (test_thread_flag(TIF_32BIT)) {
  447. parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
  448. child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
  449. } else
  450. #endif
  451. {
  452. parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
  453. child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
  454. }
  455. ret = do_fork(clone_flags, stack_start,
  456. regs, stack_size,
  457. parent_tid_ptr, child_tid_ptr);
  458. /* If we get an error and potentially restart the system
  459. * call, we're screwed because copy_thread() clobbered
  460. * the parent's %o1. So detect that case and restore it
  461. * here.
  462. */
  463. if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
  464. regs->u_regs[UREG_I1] = orig_i1;
  465. return ret;
  466. }
  467. /* Copy a Sparc thread. The fork() return value conventions
  468. * under SunOS are nothing short of bletcherous:
  469. * Parent --> %o0 == childs pid, %o1 == 0
  470. * Child --> %o0 == parents pid, %o1 == 1
  471. */
  472. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  473. unsigned long unused,
  474. struct task_struct *p, struct pt_regs *regs)
  475. {
  476. struct thread_info *t = task_thread_info(p);
  477. struct sparc_stackf *parent_sf;
  478. unsigned long child_stack_sz;
  479. char *child_trap_frame;
  480. int kernel_thread;
  481. kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
  482. parent_sf = ((struct sparc_stackf *) regs) - 1;
  483. /* Calculate offset to stack_frame & pt_regs */
  484. child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
  485. (kernel_thread ? STACKFRAME_SZ : 0));
  486. child_trap_frame = (task_stack_page(p) +
  487. (THREAD_SIZE - child_stack_sz));
  488. memcpy(child_trap_frame, parent_sf, child_stack_sz);
  489. t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
  490. (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
  491. (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
  492. t->new_child = 1;
  493. t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
  494. t->kregs = (struct pt_regs *) (child_trap_frame +
  495. sizeof(struct sparc_stackf));
  496. t->fpsaved[0] = 0;
  497. if (kernel_thread) {
  498. struct sparc_stackf *child_sf = (struct sparc_stackf *)
  499. (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
  500. /* Zero terminate the stack backtrace. */
  501. child_sf->fp = NULL;
  502. t->kregs->u_regs[UREG_FP] =
  503. ((unsigned long) child_sf) - STACK_BIAS;
  504. /* Special case, if we are spawning a kernel thread from
  505. * a userspace task (usermode helper, NFS or similar), we
  506. * must disable performance counters in the child because
  507. * the address space and protection realm are changing.
  508. */
  509. if (t->flags & _TIF_PERFCTR) {
  510. t->user_cntd0 = t->user_cntd1 = NULL;
  511. t->pcr_reg = 0;
  512. t->flags &= ~_TIF_PERFCTR;
  513. }
  514. t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
  515. t->kregs->u_regs[UREG_G6] = (unsigned long) t;
  516. t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
  517. } else {
  518. if (t->flags & _TIF_32BIT) {
  519. sp &= 0x00000000ffffffffUL;
  520. regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
  521. }
  522. t->kregs->u_regs[UREG_FP] = sp;
  523. t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
  524. if (sp != regs->u_regs[UREG_FP]) {
  525. unsigned long csp;
  526. csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
  527. if (!csp)
  528. return -EFAULT;
  529. t->kregs->u_regs[UREG_FP] = csp;
  530. }
  531. if (t->utraps)
  532. t->utraps[0]++;
  533. }
  534. /* Set the return value for the child. */
  535. t->kregs->u_regs[UREG_I0] = current->pid;
  536. t->kregs->u_regs[UREG_I1] = 1;
  537. /* Set the second return value for the parent. */
  538. regs->u_regs[UREG_I1] = 0;
  539. if (clone_flags & CLONE_SETTLS)
  540. t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  541. return 0;
  542. }
  543. /*
  544. * This is the mechanism for creating a new kernel thread.
  545. *
  546. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  547. * who haven't done an "execve()") should use this: it will work within
  548. * a system call from a "real" process, but the process memory space will
  549. * not be freed until both the parent and the child have exited.
  550. */
  551. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  552. {
  553. long retval;
  554. /* If the parent runs before fn(arg) is called by the child,
  555. * the input registers of this function can be clobbered.
  556. * So we stash 'fn' and 'arg' into global registers which
  557. * will not be modified by the parent.
  558. */
  559. __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
  560. "mov %5, %%g3\n\t" /* Save ARG into global */
  561. "mov %1, %%g1\n\t" /* Clone syscall nr. */
  562. "mov %2, %%o0\n\t" /* Clone flags. */
  563. "mov 0, %%o1\n\t" /* usp arg == 0 */
  564. "t 0x6d\n\t" /* Linux/Sparc clone(). */
  565. "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
  566. " mov %%o0, %0\n\t"
  567. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  568. " mov %%g3, %%o0\n\t" /* Set arg in delay. */
  569. "mov %3, %%g1\n\t"
  570. "t 0x6d\n\t" /* Linux/Sparc exit(). */
  571. /* Notreached by child. */
  572. "1:" :
  573. "=r" (retval) :
  574. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  575. "i" (__NR_exit), "r" (fn), "r" (arg) :
  576. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  577. return retval;
  578. }
  579. typedef struct {
  580. union {
  581. unsigned int pr_regs[32];
  582. unsigned long pr_dregs[16];
  583. } pr_fr;
  584. unsigned int __unused;
  585. unsigned int pr_fsr;
  586. unsigned char pr_qcnt;
  587. unsigned char pr_q_entrysize;
  588. unsigned char pr_en;
  589. unsigned int pr_q[64];
  590. } elf_fpregset_t32;
  591. /*
  592. * fill in the fpu structure for a core dump.
  593. */
  594. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  595. {
  596. unsigned long *kfpregs = current_thread_info()->fpregs;
  597. unsigned long fprs = current_thread_info()->fpsaved[0];
  598. if (test_thread_flag(TIF_32BIT)) {
  599. elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
  600. if (fprs & FPRS_DL)
  601. memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
  602. sizeof(unsigned int) * 32);
  603. else
  604. memset(&fpregs32->pr_fr.pr_regs[0], 0,
  605. sizeof(unsigned int) * 32);
  606. fpregs32->pr_qcnt = 0;
  607. fpregs32->pr_q_entrysize = 8;
  608. memset(&fpregs32->pr_q[0], 0,
  609. (sizeof(unsigned int) * 64));
  610. if (fprs & FPRS_FEF) {
  611. fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
  612. fpregs32->pr_en = 1;
  613. } else {
  614. fpregs32->pr_fsr = 0;
  615. fpregs32->pr_en = 0;
  616. }
  617. } else {
  618. if(fprs & FPRS_DL)
  619. memcpy(&fpregs->pr_regs[0], kfpregs,
  620. sizeof(unsigned int) * 32);
  621. else
  622. memset(&fpregs->pr_regs[0], 0,
  623. sizeof(unsigned int) * 32);
  624. if(fprs & FPRS_DU)
  625. memcpy(&fpregs->pr_regs[16], kfpregs+16,
  626. sizeof(unsigned int) * 32);
  627. else
  628. memset(&fpregs->pr_regs[16], 0,
  629. sizeof(unsigned int) * 32);
  630. if(fprs & FPRS_FEF) {
  631. fpregs->pr_fsr = current_thread_info()->xfsr[0];
  632. fpregs->pr_gsr = current_thread_info()->gsr[0];
  633. } else {
  634. fpregs->pr_fsr = fpregs->pr_gsr = 0;
  635. }
  636. fpregs->pr_fprs = fprs;
  637. }
  638. return 1;
  639. }
  640. /*
  641. * sparc_execve() executes a new program after the asm stub has set
  642. * things up for us. This should basically do what I want it to.
  643. */
  644. asmlinkage int sparc_execve(struct pt_regs *regs)
  645. {
  646. int error, base = 0;
  647. char *filename;
  648. /* User register window flush is done by entry.S */
  649. /* Check for indirect call. */
  650. if (regs->u_regs[UREG_G1] == 0)
  651. base = 1;
  652. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  653. error = PTR_ERR(filename);
  654. if (IS_ERR(filename))
  655. goto out;
  656. error = do_execve(filename,
  657. (char __user * __user *)
  658. regs->u_regs[base + UREG_I1],
  659. (char __user * __user *)
  660. regs->u_regs[base + UREG_I2], regs);
  661. putname(filename);
  662. if (!error) {
  663. fprs_write(0);
  664. current_thread_info()->xfsr[0] = 0;
  665. current_thread_info()->fpsaved[0] = 0;
  666. regs->tstate &= ~TSTATE_PEF;
  667. }
  668. out:
  669. return error;
  670. }
  671. unsigned long get_wchan(struct task_struct *task)
  672. {
  673. unsigned long pc, fp, bias = 0;
  674. struct thread_info *tp;
  675. struct reg_window *rw;
  676. unsigned long ret = 0;
  677. int count = 0;
  678. if (!task || task == current ||
  679. task->state == TASK_RUNNING)
  680. goto out;
  681. tp = task_thread_info(task);
  682. bias = STACK_BIAS;
  683. fp = task_thread_info(task)->ksp + bias;
  684. do {
  685. if (!kstack_valid(tp, fp))
  686. break;
  687. rw = (struct reg_window *) fp;
  688. pc = rw->ins[7];
  689. if (!in_sched_functions(pc)) {
  690. ret = pc;
  691. goto out;
  692. }
  693. fp = rw->ins[6] + bias;
  694. } while (++count < 16);
  695. out:
  696. return ret;
  697. }