perf_event_intel.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535
  1. #ifdef CONFIG_CPU_SUP_INTEL
  2. /*
  3. * Per core/cpu state
  4. *
  5. * Used to coordinate shared registers between HT threads or
  6. * among events on a single PMU.
  7. */
  8. struct intel_shared_regs {
  9. struct er_account regs[EXTRA_REG_MAX];
  10. int refcnt; /* per-core: #HT threads */
  11. unsigned core_id; /* per-core: core id */
  12. };
  13. /*
  14. * Intel PerfMon, used on Core and later.
  15. */
  16. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  17. {
  18. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  19. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  20. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  21. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  22. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  23. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  24. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  25. };
  26. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  27. {
  28. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  29. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  30. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  31. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  32. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  33. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  34. EVENT_CONSTRAINT_END
  35. };
  36. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  37. {
  38. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  39. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  40. /*
  41. * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
  42. * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
  43. * ratio between these counters.
  44. */
  45. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  46. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  47. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  48. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  49. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  50. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  51. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  52. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  53. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  54. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  55. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  56. EVENT_CONSTRAINT_END
  57. };
  58. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  59. {
  60. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  61. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  62. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  63. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  64. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  65. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  66. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  67. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  68. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  69. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  70. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  71. EVENT_CONSTRAINT_END
  72. };
  73. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  74. {
  75. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  76. EVENT_EXTRA_END
  77. };
  78. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  79. {
  80. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  81. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  82. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  83. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  84. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  85. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  86. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  87. EVENT_CONSTRAINT_END
  88. };
  89. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  90. {
  91. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  92. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  93. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  94. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  95. INTEL_EVENT_CONSTRAINT(0xb7, 0x1), /* OFF_CORE_RESPONSE_0 */
  96. INTEL_EVENT_CONSTRAINT(0xbb, 0x8), /* OFF_CORE_RESPONSE_1 */
  97. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  98. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  99. EVENT_CONSTRAINT_END
  100. };
  101. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  102. {
  103. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  104. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  105. EVENT_EXTRA_END
  106. };
  107. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  108. {
  109. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  110. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  111. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  112. EVENT_CONSTRAINT_END
  113. };
  114. static u64 intel_pmu_event_map(int hw_event)
  115. {
  116. return intel_perfmon_event_map[hw_event];
  117. }
  118. static __initconst const u64 snb_hw_cache_event_ids
  119. [PERF_COUNT_HW_CACHE_MAX]
  120. [PERF_COUNT_HW_CACHE_OP_MAX]
  121. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  122. {
  123. [ C(L1D) ] = {
  124. [ C(OP_READ) ] = {
  125. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  126. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  127. },
  128. [ C(OP_WRITE) ] = {
  129. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  130. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  131. },
  132. [ C(OP_PREFETCH) ] = {
  133. [ C(RESULT_ACCESS) ] = 0x0,
  134. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  135. },
  136. },
  137. [ C(L1I ) ] = {
  138. [ C(OP_READ) ] = {
  139. [ C(RESULT_ACCESS) ] = 0x0,
  140. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  141. },
  142. [ C(OP_WRITE) ] = {
  143. [ C(RESULT_ACCESS) ] = -1,
  144. [ C(RESULT_MISS) ] = -1,
  145. },
  146. [ C(OP_PREFETCH) ] = {
  147. [ C(RESULT_ACCESS) ] = 0x0,
  148. [ C(RESULT_MISS) ] = 0x0,
  149. },
  150. },
  151. [ C(LL ) ] = {
  152. [ C(OP_READ) ] = {
  153. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  154. [ C(RESULT_ACCESS) ] = 0x01b7,
  155. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  156. [ C(RESULT_MISS) ] = 0x01b7,
  157. },
  158. [ C(OP_WRITE) ] = {
  159. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  160. [ C(RESULT_ACCESS) ] = 0x01b7,
  161. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  162. [ C(RESULT_MISS) ] = 0x01b7,
  163. },
  164. [ C(OP_PREFETCH) ] = {
  165. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  166. [ C(RESULT_ACCESS) ] = 0x01b7,
  167. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  168. [ C(RESULT_MISS) ] = 0x01b7,
  169. },
  170. },
  171. [ C(DTLB) ] = {
  172. [ C(OP_READ) ] = {
  173. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  174. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  175. },
  176. [ C(OP_WRITE) ] = {
  177. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  178. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  179. },
  180. [ C(OP_PREFETCH) ] = {
  181. [ C(RESULT_ACCESS) ] = 0x0,
  182. [ C(RESULT_MISS) ] = 0x0,
  183. },
  184. },
  185. [ C(ITLB) ] = {
  186. [ C(OP_READ) ] = {
  187. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  188. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  189. },
  190. [ C(OP_WRITE) ] = {
  191. [ C(RESULT_ACCESS) ] = -1,
  192. [ C(RESULT_MISS) ] = -1,
  193. },
  194. [ C(OP_PREFETCH) ] = {
  195. [ C(RESULT_ACCESS) ] = -1,
  196. [ C(RESULT_MISS) ] = -1,
  197. },
  198. },
  199. [ C(BPU ) ] = {
  200. [ C(OP_READ) ] = {
  201. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  202. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  203. },
  204. [ C(OP_WRITE) ] = {
  205. [ C(RESULT_ACCESS) ] = -1,
  206. [ C(RESULT_MISS) ] = -1,
  207. },
  208. [ C(OP_PREFETCH) ] = {
  209. [ C(RESULT_ACCESS) ] = -1,
  210. [ C(RESULT_MISS) ] = -1,
  211. },
  212. },
  213. };
  214. static __initconst const u64 westmere_hw_cache_event_ids
  215. [PERF_COUNT_HW_CACHE_MAX]
  216. [PERF_COUNT_HW_CACHE_OP_MAX]
  217. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  218. {
  219. [ C(L1D) ] = {
  220. [ C(OP_READ) ] = {
  221. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  222. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  223. },
  224. [ C(OP_WRITE) ] = {
  225. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  226. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  227. },
  228. [ C(OP_PREFETCH) ] = {
  229. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  230. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  231. },
  232. },
  233. [ C(L1I ) ] = {
  234. [ C(OP_READ) ] = {
  235. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  236. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  237. },
  238. [ C(OP_WRITE) ] = {
  239. [ C(RESULT_ACCESS) ] = -1,
  240. [ C(RESULT_MISS) ] = -1,
  241. },
  242. [ C(OP_PREFETCH) ] = {
  243. [ C(RESULT_ACCESS) ] = 0x0,
  244. [ C(RESULT_MISS) ] = 0x0,
  245. },
  246. },
  247. [ C(LL ) ] = {
  248. [ C(OP_READ) ] = {
  249. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  250. [ C(RESULT_ACCESS) ] = 0x01b7,
  251. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  252. [ C(RESULT_MISS) ] = 0x01b7,
  253. },
  254. /*
  255. * Use RFO, not WRITEBACK, because a write miss would typically occur
  256. * on RFO.
  257. */
  258. [ C(OP_WRITE) ] = {
  259. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  260. [ C(RESULT_ACCESS) ] = 0x01b7,
  261. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  262. [ C(RESULT_MISS) ] = 0x01b7,
  263. },
  264. [ C(OP_PREFETCH) ] = {
  265. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  266. [ C(RESULT_ACCESS) ] = 0x01b7,
  267. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  268. [ C(RESULT_MISS) ] = 0x01b7,
  269. },
  270. },
  271. [ C(DTLB) ] = {
  272. [ C(OP_READ) ] = {
  273. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  274. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  275. },
  276. [ C(OP_WRITE) ] = {
  277. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  278. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  279. },
  280. [ C(OP_PREFETCH) ] = {
  281. [ C(RESULT_ACCESS) ] = 0x0,
  282. [ C(RESULT_MISS) ] = 0x0,
  283. },
  284. },
  285. [ C(ITLB) ] = {
  286. [ C(OP_READ) ] = {
  287. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  288. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  289. },
  290. [ C(OP_WRITE) ] = {
  291. [ C(RESULT_ACCESS) ] = -1,
  292. [ C(RESULT_MISS) ] = -1,
  293. },
  294. [ C(OP_PREFETCH) ] = {
  295. [ C(RESULT_ACCESS) ] = -1,
  296. [ C(RESULT_MISS) ] = -1,
  297. },
  298. },
  299. [ C(BPU ) ] = {
  300. [ C(OP_READ) ] = {
  301. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  302. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  303. },
  304. [ C(OP_WRITE) ] = {
  305. [ C(RESULT_ACCESS) ] = -1,
  306. [ C(RESULT_MISS) ] = -1,
  307. },
  308. [ C(OP_PREFETCH) ] = {
  309. [ C(RESULT_ACCESS) ] = -1,
  310. [ C(RESULT_MISS) ] = -1,
  311. },
  312. },
  313. };
  314. /*
  315. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  316. * See IA32 SDM Vol 3B 30.6.1.3
  317. */
  318. #define NHM_DMND_DATA_RD (1 << 0)
  319. #define NHM_DMND_RFO (1 << 1)
  320. #define NHM_DMND_IFETCH (1 << 2)
  321. #define NHM_DMND_WB (1 << 3)
  322. #define NHM_PF_DATA_RD (1 << 4)
  323. #define NHM_PF_DATA_RFO (1 << 5)
  324. #define NHM_PF_IFETCH (1 << 6)
  325. #define NHM_OFFCORE_OTHER (1 << 7)
  326. #define NHM_UNCORE_HIT (1 << 8)
  327. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  328. #define NHM_OTHER_CORE_HITM (1 << 10)
  329. /* reserved */
  330. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  331. #define NHM_REMOTE_DRAM (1 << 13)
  332. #define NHM_LOCAL_DRAM (1 << 14)
  333. #define NHM_NON_DRAM (1 << 15)
  334. #define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
  335. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  336. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  337. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  338. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  339. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
  340. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  341. static __initconst const u64 nehalem_hw_cache_extra_regs
  342. [PERF_COUNT_HW_CACHE_MAX]
  343. [PERF_COUNT_HW_CACHE_OP_MAX]
  344. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  345. {
  346. [ C(LL ) ] = {
  347. [ C(OP_READ) ] = {
  348. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  349. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  350. },
  351. [ C(OP_WRITE) ] = {
  352. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  353. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  354. },
  355. [ C(OP_PREFETCH) ] = {
  356. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  357. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  358. },
  359. }
  360. };
  361. static __initconst const u64 nehalem_hw_cache_event_ids
  362. [PERF_COUNT_HW_CACHE_MAX]
  363. [PERF_COUNT_HW_CACHE_OP_MAX]
  364. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  365. {
  366. [ C(L1D) ] = {
  367. [ C(OP_READ) ] = {
  368. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  369. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  370. },
  371. [ C(OP_WRITE) ] = {
  372. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  373. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  374. },
  375. [ C(OP_PREFETCH) ] = {
  376. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  377. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  378. },
  379. },
  380. [ C(L1I ) ] = {
  381. [ C(OP_READ) ] = {
  382. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  383. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  384. },
  385. [ C(OP_WRITE) ] = {
  386. [ C(RESULT_ACCESS) ] = -1,
  387. [ C(RESULT_MISS) ] = -1,
  388. },
  389. [ C(OP_PREFETCH) ] = {
  390. [ C(RESULT_ACCESS) ] = 0x0,
  391. [ C(RESULT_MISS) ] = 0x0,
  392. },
  393. },
  394. [ C(LL ) ] = {
  395. [ C(OP_READ) ] = {
  396. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  397. [ C(RESULT_ACCESS) ] = 0x01b7,
  398. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  399. [ C(RESULT_MISS) ] = 0x01b7,
  400. },
  401. /*
  402. * Use RFO, not WRITEBACK, because a write miss would typically occur
  403. * on RFO.
  404. */
  405. [ C(OP_WRITE) ] = {
  406. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  407. [ C(RESULT_ACCESS) ] = 0x01b7,
  408. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  409. [ C(RESULT_MISS) ] = 0x01b7,
  410. },
  411. [ C(OP_PREFETCH) ] = {
  412. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  413. [ C(RESULT_ACCESS) ] = 0x01b7,
  414. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  415. [ C(RESULT_MISS) ] = 0x01b7,
  416. },
  417. },
  418. [ C(DTLB) ] = {
  419. [ C(OP_READ) ] = {
  420. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  421. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  422. },
  423. [ C(OP_WRITE) ] = {
  424. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  425. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  426. },
  427. [ C(OP_PREFETCH) ] = {
  428. [ C(RESULT_ACCESS) ] = 0x0,
  429. [ C(RESULT_MISS) ] = 0x0,
  430. },
  431. },
  432. [ C(ITLB) ] = {
  433. [ C(OP_READ) ] = {
  434. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  435. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  436. },
  437. [ C(OP_WRITE) ] = {
  438. [ C(RESULT_ACCESS) ] = -1,
  439. [ C(RESULT_MISS) ] = -1,
  440. },
  441. [ C(OP_PREFETCH) ] = {
  442. [ C(RESULT_ACCESS) ] = -1,
  443. [ C(RESULT_MISS) ] = -1,
  444. },
  445. },
  446. [ C(BPU ) ] = {
  447. [ C(OP_READ) ] = {
  448. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  449. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  450. },
  451. [ C(OP_WRITE) ] = {
  452. [ C(RESULT_ACCESS) ] = -1,
  453. [ C(RESULT_MISS) ] = -1,
  454. },
  455. [ C(OP_PREFETCH) ] = {
  456. [ C(RESULT_ACCESS) ] = -1,
  457. [ C(RESULT_MISS) ] = -1,
  458. },
  459. },
  460. };
  461. static __initconst const u64 core2_hw_cache_event_ids
  462. [PERF_COUNT_HW_CACHE_MAX]
  463. [PERF_COUNT_HW_CACHE_OP_MAX]
  464. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  465. {
  466. [ C(L1D) ] = {
  467. [ C(OP_READ) ] = {
  468. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  469. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  470. },
  471. [ C(OP_WRITE) ] = {
  472. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  473. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  474. },
  475. [ C(OP_PREFETCH) ] = {
  476. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  477. [ C(RESULT_MISS) ] = 0,
  478. },
  479. },
  480. [ C(L1I ) ] = {
  481. [ C(OP_READ) ] = {
  482. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  483. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  484. },
  485. [ C(OP_WRITE) ] = {
  486. [ C(RESULT_ACCESS) ] = -1,
  487. [ C(RESULT_MISS) ] = -1,
  488. },
  489. [ C(OP_PREFETCH) ] = {
  490. [ C(RESULT_ACCESS) ] = 0,
  491. [ C(RESULT_MISS) ] = 0,
  492. },
  493. },
  494. [ C(LL ) ] = {
  495. [ C(OP_READ) ] = {
  496. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  497. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  498. },
  499. [ C(OP_WRITE) ] = {
  500. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  501. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  502. },
  503. [ C(OP_PREFETCH) ] = {
  504. [ C(RESULT_ACCESS) ] = 0,
  505. [ C(RESULT_MISS) ] = 0,
  506. },
  507. },
  508. [ C(DTLB) ] = {
  509. [ C(OP_READ) ] = {
  510. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  511. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  512. },
  513. [ C(OP_WRITE) ] = {
  514. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  515. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  516. },
  517. [ C(OP_PREFETCH) ] = {
  518. [ C(RESULT_ACCESS) ] = 0,
  519. [ C(RESULT_MISS) ] = 0,
  520. },
  521. },
  522. [ C(ITLB) ] = {
  523. [ C(OP_READ) ] = {
  524. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  525. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  526. },
  527. [ C(OP_WRITE) ] = {
  528. [ C(RESULT_ACCESS) ] = -1,
  529. [ C(RESULT_MISS) ] = -1,
  530. },
  531. [ C(OP_PREFETCH) ] = {
  532. [ C(RESULT_ACCESS) ] = -1,
  533. [ C(RESULT_MISS) ] = -1,
  534. },
  535. },
  536. [ C(BPU ) ] = {
  537. [ C(OP_READ) ] = {
  538. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  539. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  540. },
  541. [ C(OP_WRITE) ] = {
  542. [ C(RESULT_ACCESS) ] = -1,
  543. [ C(RESULT_MISS) ] = -1,
  544. },
  545. [ C(OP_PREFETCH) ] = {
  546. [ C(RESULT_ACCESS) ] = -1,
  547. [ C(RESULT_MISS) ] = -1,
  548. },
  549. },
  550. };
  551. static __initconst const u64 atom_hw_cache_event_ids
  552. [PERF_COUNT_HW_CACHE_MAX]
  553. [PERF_COUNT_HW_CACHE_OP_MAX]
  554. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  555. {
  556. [ C(L1D) ] = {
  557. [ C(OP_READ) ] = {
  558. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  559. [ C(RESULT_MISS) ] = 0,
  560. },
  561. [ C(OP_WRITE) ] = {
  562. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  563. [ C(RESULT_MISS) ] = 0,
  564. },
  565. [ C(OP_PREFETCH) ] = {
  566. [ C(RESULT_ACCESS) ] = 0x0,
  567. [ C(RESULT_MISS) ] = 0,
  568. },
  569. },
  570. [ C(L1I ) ] = {
  571. [ C(OP_READ) ] = {
  572. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  573. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  574. },
  575. [ C(OP_WRITE) ] = {
  576. [ C(RESULT_ACCESS) ] = -1,
  577. [ C(RESULT_MISS) ] = -1,
  578. },
  579. [ C(OP_PREFETCH) ] = {
  580. [ C(RESULT_ACCESS) ] = 0,
  581. [ C(RESULT_MISS) ] = 0,
  582. },
  583. },
  584. [ C(LL ) ] = {
  585. [ C(OP_READ) ] = {
  586. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  587. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  588. },
  589. [ C(OP_WRITE) ] = {
  590. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  591. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  592. },
  593. [ C(OP_PREFETCH) ] = {
  594. [ C(RESULT_ACCESS) ] = 0,
  595. [ C(RESULT_MISS) ] = 0,
  596. },
  597. },
  598. [ C(DTLB) ] = {
  599. [ C(OP_READ) ] = {
  600. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  601. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  602. },
  603. [ C(OP_WRITE) ] = {
  604. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  605. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  606. },
  607. [ C(OP_PREFETCH) ] = {
  608. [ C(RESULT_ACCESS) ] = 0,
  609. [ C(RESULT_MISS) ] = 0,
  610. },
  611. },
  612. [ C(ITLB) ] = {
  613. [ C(OP_READ) ] = {
  614. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  615. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  616. },
  617. [ C(OP_WRITE) ] = {
  618. [ C(RESULT_ACCESS) ] = -1,
  619. [ C(RESULT_MISS) ] = -1,
  620. },
  621. [ C(OP_PREFETCH) ] = {
  622. [ C(RESULT_ACCESS) ] = -1,
  623. [ C(RESULT_MISS) ] = -1,
  624. },
  625. },
  626. [ C(BPU ) ] = {
  627. [ C(OP_READ) ] = {
  628. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  629. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  630. },
  631. [ C(OP_WRITE) ] = {
  632. [ C(RESULT_ACCESS) ] = -1,
  633. [ C(RESULT_MISS) ] = -1,
  634. },
  635. [ C(OP_PREFETCH) ] = {
  636. [ C(RESULT_ACCESS) ] = -1,
  637. [ C(RESULT_MISS) ] = -1,
  638. },
  639. },
  640. };
  641. static void intel_pmu_disable_all(void)
  642. {
  643. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  644. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  645. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  646. intel_pmu_disable_bts();
  647. intel_pmu_pebs_disable_all();
  648. intel_pmu_lbr_disable_all();
  649. }
  650. static void intel_pmu_enable_all(int added)
  651. {
  652. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  653. intel_pmu_pebs_enable_all();
  654. intel_pmu_lbr_enable_all();
  655. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  656. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  657. struct perf_event *event =
  658. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  659. if (WARN_ON_ONCE(!event))
  660. return;
  661. intel_pmu_enable_bts(event->hw.config);
  662. }
  663. }
  664. /*
  665. * Workaround for:
  666. * Intel Errata AAK100 (model 26)
  667. * Intel Errata AAP53 (model 30)
  668. * Intel Errata BD53 (model 44)
  669. *
  670. * The official story:
  671. * These chips need to be 'reset' when adding counters by programming the
  672. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  673. * in sequence on the same PMC or on different PMCs.
  674. *
  675. * In practise it appears some of these events do in fact count, and
  676. * we need to programm all 4 events.
  677. */
  678. static void intel_pmu_nhm_workaround(void)
  679. {
  680. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  681. static const unsigned long nhm_magic[4] = {
  682. 0x4300B5,
  683. 0x4300D2,
  684. 0x4300B1,
  685. 0x4300B1
  686. };
  687. struct perf_event *event;
  688. int i;
  689. /*
  690. * The Errata requires below steps:
  691. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  692. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  693. * the corresponding PMCx;
  694. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  695. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  696. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  697. */
  698. /*
  699. * The real steps we choose are a little different from above.
  700. * A) To reduce MSR operations, we don't run step 1) as they
  701. * are already cleared before this function is called;
  702. * B) Call x86_perf_event_update to save PMCx before configuring
  703. * PERFEVTSELx with magic number;
  704. * C) With step 5), we do clear only when the PERFEVTSELx is
  705. * not used currently.
  706. * D) Call x86_perf_event_set_period to restore PMCx;
  707. */
  708. /* We always operate 4 pairs of PERF Counters */
  709. for (i = 0; i < 4; i++) {
  710. event = cpuc->events[i];
  711. if (event)
  712. x86_perf_event_update(event);
  713. }
  714. for (i = 0; i < 4; i++) {
  715. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  716. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  717. }
  718. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  719. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  720. for (i = 0; i < 4; i++) {
  721. event = cpuc->events[i];
  722. if (event) {
  723. x86_perf_event_set_period(event);
  724. __x86_pmu_enable_event(&event->hw,
  725. ARCH_PERFMON_EVENTSEL_ENABLE);
  726. } else
  727. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  728. }
  729. }
  730. static void intel_pmu_nhm_enable_all(int added)
  731. {
  732. if (added)
  733. intel_pmu_nhm_workaround();
  734. intel_pmu_enable_all(added);
  735. }
  736. static inline u64 intel_pmu_get_status(void)
  737. {
  738. u64 status;
  739. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  740. return status;
  741. }
  742. static inline void intel_pmu_ack_status(u64 ack)
  743. {
  744. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  745. }
  746. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  747. {
  748. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  749. u64 ctrl_val, mask;
  750. mask = 0xfULL << (idx * 4);
  751. rdmsrl(hwc->config_base, ctrl_val);
  752. ctrl_val &= ~mask;
  753. wrmsrl(hwc->config_base, ctrl_val);
  754. }
  755. static void intel_pmu_disable_event(struct perf_event *event)
  756. {
  757. struct hw_perf_event *hwc = &event->hw;
  758. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  759. intel_pmu_disable_bts();
  760. intel_pmu_drain_bts_buffer();
  761. return;
  762. }
  763. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  764. intel_pmu_disable_fixed(hwc);
  765. return;
  766. }
  767. x86_pmu_disable_event(event);
  768. if (unlikely(event->attr.precise_ip))
  769. intel_pmu_pebs_disable(event);
  770. }
  771. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  772. {
  773. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  774. u64 ctrl_val, bits, mask;
  775. /*
  776. * Enable IRQ generation (0x8),
  777. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  778. * if requested:
  779. */
  780. bits = 0x8ULL;
  781. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  782. bits |= 0x2;
  783. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  784. bits |= 0x1;
  785. /*
  786. * ANY bit is supported in v3 and up
  787. */
  788. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  789. bits |= 0x4;
  790. bits <<= (idx * 4);
  791. mask = 0xfULL << (idx * 4);
  792. rdmsrl(hwc->config_base, ctrl_val);
  793. ctrl_val &= ~mask;
  794. ctrl_val |= bits;
  795. wrmsrl(hwc->config_base, ctrl_val);
  796. }
  797. static void intel_pmu_enable_event(struct perf_event *event)
  798. {
  799. struct hw_perf_event *hwc = &event->hw;
  800. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  801. if (!__this_cpu_read(cpu_hw_events.enabled))
  802. return;
  803. intel_pmu_enable_bts(hwc->config);
  804. return;
  805. }
  806. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  807. intel_pmu_enable_fixed(hwc);
  808. return;
  809. }
  810. if (unlikely(event->attr.precise_ip))
  811. intel_pmu_pebs_enable(event);
  812. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  813. }
  814. /*
  815. * Save and restart an expired event. Called by NMI contexts,
  816. * so it has to be careful about preempting normal event ops:
  817. */
  818. static int intel_pmu_save_and_restart(struct perf_event *event)
  819. {
  820. x86_perf_event_update(event);
  821. return x86_perf_event_set_period(event);
  822. }
  823. static void intel_pmu_reset(void)
  824. {
  825. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  826. unsigned long flags;
  827. int idx;
  828. if (!x86_pmu.num_counters)
  829. return;
  830. local_irq_save(flags);
  831. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  832. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  833. checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
  834. checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
  835. }
  836. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  837. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  838. if (ds)
  839. ds->bts_index = ds->bts_buffer_base;
  840. local_irq_restore(flags);
  841. }
  842. /*
  843. * This handler is triggered by the local APIC, so the APIC IRQ handling
  844. * rules apply:
  845. */
  846. static int intel_pmu_handle_irq(struct pt_regs *regs)
  847. {
  848. struct perf_sample_data data;
  849. struct cpu_hw_events *cpuc;
  850. int bit, loops;
  851. u64 status;
  852. int handled;
  853. perf_sample_data_init(&data, 0);
  854. cpuc = &__get_cpu_var(cpu_hw_events);
  855. /*
  856. * Some chipsets need to unmask the LVTPC in a particular spot
  857. * inside the nmi handler. As a result, the unmasking was pushed
  858. * into all the nmi handlers.
  859. *
  860. * This handler doesn't seem to have any issues with the unmasking
  861. * so it was left at the top.
  862. */
  863. apic_write(APIC_LVTPC, APIC_DM_NMI);
  864. intel_pmu_disable_all();
  865. handled = intel_pmu_drain_bts_buffer();
  866. status = intel_pmu_get_status();
  867. if (!status) {
  868. intel_pmu_enable_all(0);
  869. return handled;
  870. }
  871. loops = 0;
  872. again:
  873. intel_pmu_ack_status(status);
  874. if (++loops > 100) {
  875. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  876. perf_event_print_debug();
  877. intel_pmu_reset();
  878. goto done;
  879. }
  880. inc_irq_stat(apic_perf_irqs);
  881. intel_pmu_lbr_read();
  882. /*
  883. * PEBS overflow sets bit 62 in the global status register
  884. */
  885. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  886. handled++;
  887. x86_pmu.drain_pebs(regs);
  888. }
  889. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  890. struct perf_event *event = cpuc->events[bit];
  891. handled++;
  892. if (!test_bit(bit, cpuc->active_mask))
  893. continue;
  894. if (!intel_pmu_save_and_restart(event))
  895. continue;
  896. data.period = event->hw.last_period;
  897. if (perf_event_overflow(event, &data, regs))
  898. x86_pmu_stop(event, 0);
  899. }
  900. /*
  901. * Repeat if there is more work to be done:
  902. */
  903. status = intel_pmu_get_status();
  904. if (status)
  905. goto again;
  906. done:
  907. intel_pmu_enable_all(0);
  908. return handled;
  909. }
  910. static struct event_constraint *
  911. intel_bts_constraints(struct perf_event *event)
  912. {
  913. struct hw_perf_event *hwc = &event->hw;
  914. unsigned int hw_event, bts_event;
  915. if (event->attr.freq)
  916. return NULL;
  917. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  918. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  919. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  920. return &bts_constraint;
  921. return NULL;
  922. }
  923. /*
  924. * manage allocation of shared extra msr for certain events
  925. *
  926. * sharing can be:
  927. * per-cpu: to be shared between the various events on a single PMU
  928. * per-core: per-cpu + shared by HT threads
  929. */
  930. static struct event_constraint *
  931. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  932. struct hw_perf_event_extra *reg)
  933. {
  934. struct event_constraint *c = &emptyconstraint;
  935. struct er_account *era;
  936. unsigned long flags;
  937. /* already allocated shared msr */
  938. if (reg->alloc)
  939. return &unconstrained;
  940. era = &cpuc->shared_regs->regs[reg->idx];
  941. /*
  942. * we use spin_lock_irqsave() to avoid lockdep issues when
  943. * passing a fake cpuc
  944. */
  945. raw_spin_lock_irqsave(&era->lock, flags);
  946. if (!atomic_read(&era->ref) || era->config == reg->config) {
  947. /* lock in msr value */
  948. era->config = reg->config;
  949. era->reg = reg->reg;
  950. /* one more user */
  951. atomic_inc(&era->ref);
  952. /* no need to reallocate during incremental event scheduling */
  953. reg->alloc = 1;
  954. /*
  955. * All events using extra_reg are unconstrained.
  956. * Avoids calling x86_get_event_constraints()
  957. *
  958. * Must revisit if extra_reg controlling events
  959. * ever have constraints. Worst case we go through
  960. * the regular event constraint table.
  961. */
  962. c = &unconstrained;
  963. }
  964. raw_spin_unlock_irqrestore(&era->lock, flags);
  965. return c;
  966. }
  967. static void
  968. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  969. struct hw_perf_event_extra *reg)
  970. {
  971. struct er_account *era;
  972. /*
  973. * only put constraint if extra reg was actually
  974. * allocated. Also takes care of event which do
  975. * not use an extra shared reg
  976. */
  977. if (!reg->alloc)
  978. return;
  979. era = &cpuc->shared_regs->regs[reg->idx];
  980. /* one fewer user */
  981. atomic_dec(&era->ref);
  982. /* allocate again next time */
  983. reg->alloc = 0;
  984. }
  985. static struct event_constraint *
  986. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  987. struct perf_event *event)
  988. {
  989. struct event_constraint *c = NULL;
  990. struct hw_perf_event_extra *xreg;
  991. xreg = &event->hw.extra_reg;
  992. if (xreg->idx != EXTRA_REG_NONE)
  993. c = __intel_shared_reg_get_constraints(cpuc, xreg);
  994. return c;
  995. }
  996. static struct event_constraint *
  997. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  998. {
  999. struct event_constraint *c;
  1000. c = intel_bts_constraints(event);
  1001. if (c)
  1002. return c;
  1003. c = intel_pebs_constraints(event);
  1004. if (c)
  1005. return c;
  1006. c = intel_shared_regs_constraints(cpuc, event);
  1007. if (c)
  1008. return c;
  1009. return x86_get_event_constraints(cpuc, event);
  1010. }
  1011. static void
  1012. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  1013. struct perf_event *event)
  1014. {
  1015. struct hw_perf_event_extra *reg;
  1016. reg = &event->hw.extra_reg;
  1017. if (reg->idx != EXTRA_REG_NONE)
  1018. __intel_shared_reg_put_constraints(cpuc, reg);
  1019. }
  1020. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  1021. struct perf_event *event)
  1022. {
  1023. intel_put_shared_regs_event_constraints(cpuc, event);
  1024. }
  1025. static int intel_pmu_hw_config(struct perf_event *event)
  1026. {
  1027. int ret = x86_pmu_hw_config(event);
  1028. if (ret)
  1029. return ret;
  1030. if (event->attr.precise_ip &&
  1031. (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  1032. /*
  1033. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  1034. * (0x003c) so that we can use it with PEBS.
  1035. *
  1036. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  1037. * PEBS capable. However we can use INST_RETIRED.ANY_P
  1038. * (0x00c0), which is a PEBS capable event, to get the same
  1039. * count.
  1040. *
  1041. * INST_RETIRED.ANY_P counts the number of cycles that retires
  1042. * CNTMASK instructions. By setting CNTMASK to a value (16)
  1043. * larger than the maximum number of instructions that can be
  1044. * retired per cycle (4) and then inverting the condition, we
  1045. * count all cycles that retire 16 or less instructions, which
  1046. * is every cycle.
  1047. *
  1048. * Thereby we gain a PEBS capable cycle counter.
  1049. */
  1050. u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
  1051. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  1052. event->hw.config = alt_config;
  1053. }
  1054. if (event->attr.type != PERF_TYPE_RAW)
  1055. return 0;
  1056. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  1057. return 0;
  1058. if (x86_pmu.version < 3)
  1059. return -EINVAL;
  1060. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1061. return -EACCES;
  1062. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  1063. return 0;
  1064. }
  1065. static __initconst const struct x86_pmu core_pmu = {
  1066. .name = "core",
  1067. .handle_irq = x86_pmu_handle_irq,
  1068. .disable_all = x86_pmu_disable_all,
  1069. .enable_all = x86_pmu_enable_all,
  1070. .enable = x86_pmu_enable_event,
  1071. .disable = x86_pmu_disable_event,
  1072. .hw_config = x86_pmu_hw_config,
  1073. .schedule_events = x86_schedule_events,
  1074. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1075. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1076. .event_map = intel_pmu_event_map,
  1077. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1078. .apic = 1,
  1079. /*
  1080. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1081. * so we install an artificial 1<<31 period regardless of
  1082. * the generic event period:
  1083. */
  1084. .max_period = (1ULL << 31) - 1,
  1085. .get_event_constraints = intel_get_event_constraints,
  1086. .put_event_constraints = intel_put_event_constraints,
  1087. .event_constraints = intel_core_event_constraints,
  1088. };
  1089. static struct intel_shared_regs *allocate_shared_regs(int cpu)
  1090. {
  1091. struct intel_shared_regs *regs;
  1092. int i;
  1093. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  1094. GFP_KERNEL, cpu_to_node(cpu));
  1095. if (regs) {
  1096. /*
  1097. * initialize the locks to keep lockdep happy
  1098. */
  1099. for (i = 0; i < EXTRA_REG_MAX; i++)
  1100. raw_spin_lock_init(&regs->regs[i].lock);
  1101. regs->core_id = -1;
  1102. }
  1103. return regs;
  1104. }
  1105. static int intel_pmu_cpu_prepare(int cpu)
  1106. {
  1107. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1108. if (!x86_pmu.extra_regs)
  1109. return NOTIFY_OK;
  1110. cpuc->shared_regs = allocate_shared_regs(cpu);
  1111. if (!cpuc->shared_regs)
  1112. return NOTIFY_BAD;
  1113. return NOTIFY_OK;
  1114. }
  1115. static void intel_pmu_cpu_starting(int cpu)
  1116. {
  1117. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1118. int core_id = topology_core_id(cpu);
  1119. int i;
  1120. init_debug_store_on_cpu(cpu);
  1121. /*
  1122. * Deal with CPUs that don't clear their LBRs on power-up.
  1123. */
  1124. intel_pmu_lbr_reset();
  1125. if (!cpuc->shared_regs)
  1126. return;
  1127. for_each_cpu(i, topology_thread_cpumask(cpu)) {
  1128. struct intel_shared_regs *pc;
  1129. pc = per_cpu(cpu_hw_events, i).shared_regs;
  1130. if (pc && pc->core_id == core_id) {
  1131. kfree(cpuc->shared_regs);
  1132. cpuc->shared_regs = pc;
  1133. break;
  1134. }
  1135. }
  1136. cpuc->shared_regs->core_id = core_id;
  1137. cpuc->shared_regs->refcnt++;
  1138. }
  1139. static void intel_pmu_cpu_dying(int cpu)
  1140. {
  1141. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1142. struct intel_shared_regs *pc;
  1143. pc = cpuc->shared_regs;
  1144. if (pc) {
  1145. if (pc->core_id == -1 || --pc->refcnt == 0)
  1146. kfree(pc);
  1147. cpuc->shared_regs = NULL;
  1148. }
  1149. fini_debug_store_on_cpu(cpu);
  1150. }
  1151. static __initconst const struct x86_pmu intel_pmu = {
  1152. .name = "Intel",
  1153. .handle_irq = intel_pmu_handle_irq,
  1154. .disable_all = intel_pmu_disable_all,
  1155. .enable_all = intel_pmu_enable_all,
  1156. .enable = intel_pmu_enable_event,
  1157. .disable = intel_pmu_disable_event,
  1158. .hw_config = intel_pmu_hw_config,
  1159. .schedule_events = x86_schedule_events,
  1160. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1161. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1162. .event_map = intel_pmu_event_map,
  1163. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1164. .apic = 1,
  1165. /*
  1166. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1167. * so we install an artificial 1<<31 period regardless of
  1168. * the generic event period:
  1169. */
  1170. .max_period = (1ULL << 31) - 1,
  1171. .get_event_constraints = intel_get_event_constraints,
  1172. .put_event_constraints = intel_put_event_constraints,
  1173. .cpu_prepare = intel_pmu_cpu_prepare,
  1174. .cpu_starting = intel_pmu_cpu_starting,
  1175. .cpu_dying = intel_pmu_cpu_dying,
  1176. };
  1177. static void intel_clovertown_quirks(void)
  1178. {
  1179. /*
  1180. * PEBS is unreliable due to:
  1181. *
  1182. * AJ67 - PEBS may experience CPL leaks
  1183. * AJ68 - PEBS PMI may be delayed by one event
  1184. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  1185. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  1186. *
  1187. * AJ67 could be worked around by restricting the OS/USR flags.
  1188. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  1189. *
  1190. * AJ106 could possibly be worked around by not allowing LBR
  1191. * usage from PEBS, including the fixup.
  1192. * AJ68 could possibly be worked around by always programming
  1193. * a pebs_event_reset[0] value and coping with the lost events.
  1194. *
  1195. * But taken together it might just make sense to not enable PEBS on
  1196. * these chips.
  1197. */
  1198. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1199. x86_pmu.pebs = 0;
  1200. x86_pmu.pebs_constraints = NULL;
  1201. }
  1202. static __init int intel_pmu_init(void)
  1203. {
  1204. union cpuid10_edx edx;
  1205. union cpuid10_eax eax;
  1206. unsigned int unused;
  1207. unsigned int ebx;
  1208. int version;
  1209. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  1210. switch (boot_cpu_data.x86) {
  1211. case 0x6:
  1212. return p6_pmu_init();
  1213. case 0xf:
  1214. return p4_pmu_init();
  1215. }
  1216. return -ENODEV;
  1217. }
  1218. /*
  1219. * Check whether the Architectural PerfMon supports
  1220. * Branch Misses Retired hw_event or not.
  1221. */
  1222. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  1223. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  1224. return -ENODEV;
  1225. version = eax.split.version_id;
  1226. if (version < 2)
  1227. x86_pmu = core_pmu;
  1228. else
  1229. x86_pmu = intel_pmu;
  1230. x86_pmu.version = version;
  1231. x86_pmu.num_counters = eax.split.num_counters;
  1232. x86_pmu.cntval_bits = eax.split.bit_width;
  1233. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  1234. /*
  1235. * Quirk: v2 perfmon does not report fixed-purpose events, so
  1236. * assume at least 3 events:
  1237. */
  1238. if (version > 1)
  1239. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1240. /*
  1241. * v2 and above have a perf capabilities MSR
  1242. */
  1243. if (version > 1) {
  1244. u64 capabilities;
  1245. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  1246. x86_pmu.intel_cap.capabilities = capabilities;
  1247. }
  1248. intel_ds_init();
  1249. /*
  1250. * Install the hw-cache-events table:
  1251. */
  1252. switch (boot_cpu_data.x86_model) {
  1253. case 14: /* 65 nm core solo/duo, "Yonah" */
  1254. pr_cont("Core events, ");
  1255. break;
  1256. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  1257. x86_pmu.quirks = intel_clovertown_quirks;
  1258. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  1259. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  1260. case 29: /* six-core 45 nm xeon "Dunnington" */
  1261. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1262. sizeof(hw_cache_event_ids));
  1263. intel_pmu_lbr_init_core();
  1264. x86_pmu.event_constraints = intel_core2_event_constraints;
  1265. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  1266. pr_cont("Core2 events, ");
  1267. break;
  1268. case 26: /* 45 nm nehalem, "Bloomfield" */
  1269. case 30: /* 45 nm nehalem, "Lynnfield" */
  1270. case 46: /* 45 nm nehalem-ex, "Beckton" */
  1271. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1272. sizeof(hw_cache_event_ids));
  1273. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1274. sizeof(hw_cache_extra_regs));
  1275. intel_pmu_lbr_init_nhm();
  1276. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  1277. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  1278. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1279. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  1280. /* UOPS_ISSUED.STALLED_CYCLES */
  1281. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1282. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1283. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1284. if (ebx & 0x40) {
  1285. /*
  1286. * Erratum AAJ80 detected, we work it around by using
  1287. * the BR_MISP_EXEC.ANY event. This will over-count
  1288. * branch-misses, but it's still much better than the
  1289. * architectural event which is often completely bogus:
  1290. */
  1291. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  1292. pr_cont("erratum AAJ80 worked around, ");
  1293. }
  1294. pr_cont("Nehalem events, ");
  1295. break;
  1296. case 28: /* Atom */
  1297. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1298. sizeof(hw_cache_event_ids));
  1299. intel_pmu_lbr_init_atom();
  1300. x86_pmu.event_constraints = intel_gen_event_constraints;
  1301. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  1302. pr_cont("Atom events, ");
  1303. break;
  1304. case 37: /* 32 nm nehalem, "Clarkdale" */
  1305. case 44: /* 32 nm nehalem, "Gulftown" */
  1306. case 47: /* 32 nm Xeon E7 */
  1307. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  1308. sizeof(hw_cache_event_ids));
  1309. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1310. sizeof(hw_cache_extra_regs));
  1311. intel_pmu_lbr_init_nhm();
  1312. x86_pmu.event_constraints = intel_westmere_event_constraints;
  1313. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1314. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  1315. x86_pmu.extra_regs = intel_westmere_extra_regs;
  1316. /* UOPS_ISSUED.STALLED_CYCLES */
  1317. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1318. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1319. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1320. pr_cont("Westmere events, ");
  1321. break;
  1322. case 42: /* SandyBridge */
  1323. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  1324. sizeof(hw_cache_event_ids));
  1325. intel_pmu_lbr_init_nhm();
  1326. x86_pmu.event_constraints = intel_snb_event_constraints;
  1327. x86_pmu.pebs_constraints = intel_snb_pebs_events;
  1328. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  1329. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1330. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  1331. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
  1332. pr_cont("SandyBridge events, ");
  1333. break;
  1334. default:
  1335. /*
  1336. * default constraints for v2 and up
  1337. */
  1338. x86_pmu.event_constraints = intel_gen_event_constraints;
  1339. pr_cont("generic architected perfmon, ");
  1340. }
  1341. return 0;
  1342. }
  1343. #else /* CONFIG_CPU_SUP_INTEL */
  1344. static int intel_pmu_init(void)
  1345. {
  1346. return 0;
  1347. }
  1348. static struct intel_shared_regs *allocate_shared_regs(int cpu)
  1349. {
  1350. return NULL;
  1351. }
  1352. #endif /* CONFIG_CPU_SUP_INTEL */