bnx2.c 209 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2010 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  38. #define BCM_VLAN 1
  39. #endif
  40. #include <net/ip.h>
  41. #include <net/tcp.h>
  42. #include <net/checksum.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/crc32.h>
  45. #include <linux/prefetch.h>
  46. #include <linux/cache.h>
  47. #include <linux/firmware.h>
  48. #include <linux/log2.h>
  49. #include <linux/aer.h>
  50. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  51. #define BCM_CNIC 1
  52. #include "cnic_if.h"
  53. #endif
  54. #include "bnx2.h"
  55. #include "bnx2_fw.h"
  56. #define DRV_MODULE_NAME "bnx2"
  57. #define DRV_MODULE_VERSION "2.0.17"
  58. #define DRV_MODULE_RELDATE "July 18, 2010"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j15.fw"
  62. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
  63. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
  64. #define RUN_AT(x) (jiffies + (x))
  65. /* Time in jiffies before concluding the transmitter is hung. */
  66. #define TX_TIMEOUT (5*HZ)
  67. static char version[] __devinitdata =
  68. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  69. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  70. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_MODULE_VERSION);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  75. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  77. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  78. static int disable_msi = 0;
  79. module_param(disable_msi, int, 0);
  80. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  81. typedef enum {
  82. BCM5706 = 0,
  83. NC370T,
  84. NC370I,
  85. BCM5706S,
  86. NC370F,
  87. BCM5708,
  88. BCM5708S,
  89. BCM5709,
  90. BCM5709S,
  91. BCM5716,
  92. BCM5716S,
  93. } board_t;
  94. /* indexed by board_t, above */
  95. static struct {
  96. char *name;
  97. } board_info[] __devinitdata = {
  98. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  99. { "HP NC370T Multifunction Gigabit Server Adapter" },
  100. { "HP NC370i Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  102. { "HP NC370F Multifunction Gigabit Server Adapter" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  108. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  109. };
  110. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  127. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  131. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  132. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  133. { 0, }
  134. };
  135. static const struct flash_spec flash_table[] =
  136. {
  137. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  138. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  139. /* Slow EEPROM */
  140. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  141. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  142. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  143. "EEPROM - slow"},
  144. /* Expansion entry 0001 */
  145. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  148. "Entry 0001"},
  149. /* Saifun SA25F010 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  154. "Non-buffered flash (128kB)"},
  155. /* Saifun SA25F020 (non-buffered flash) */
  156. /* strap, cfg1, & write1 need updates */
  157. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  158. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  159. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  160. "Non-buffered flash (256kB)"},
  161. /* Expansion entry 0100 */
  162. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  163. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  164. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  165. "Entry 0100"},
  166. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  167. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  168. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  169. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  170. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  171. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  172. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  174. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  175. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  176. /* Saifun SA25F005 (non-buffered flash) */
  177. /* strap, cfg1, & write1 need updates */
  178. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  179. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  181. "Non-buffered flash (64kB)"},
  182. /* Fast EEPROM */
  183. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  184. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  185. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  186. "EEPROM - fast"},
  187. /* Expansion entry 1001 */
  188. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  189. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  190. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1001"},
  192. /* Expansion entry 1010 */
  193. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  194. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  196. "Entry 1010"},
  197. /* ATMEL AT45DB011B (buffered flash) */
  198. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  199. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  200. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  201. "Buffered flash (128kB)"},
  202. /* Expansion entry 1100 */
  203. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  204. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  205. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  206. "Entry 1100"},
  207. /* Expansion entry 1101 */
  208. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  209. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  210. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  211. "Entry 1101"},
  212. /* Ateml Expansion entry 1110 */
  213. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  214. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  215. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  216. "Entry 1110 (Atmel)"},
  217. /* ATMEL AT45DB021B (buffered flash) */
  218. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  219. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  220. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  221. "Buffered flash (256kB)"},
  222. };
  223. static const struct flash_spec flash_5709 = {
  224. .flags = BNX2_NV_BUFFERED,
  225. .page_bits = BCM5709_FLASH_PAGE_BITS,
  226. .page_size = BCM5709_FLASH_PAGE_SIZE,
  227. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  228. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  229. .name = "5709 Buffered flash (256kB)",
  230. };
  231. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  232. static void bnx2_init_napi(struct bnx2 *bp);
  233. static void bnx2_del_napi(struct bnx2 *bp);
  234. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  235. {
  236. u32 diff;
  237. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  238. barrier();
  239. /* The ring uses 256 indices for 255 entries, one of them
  240. * needs to be skipped.
  241. */
  242. diff = txr->tx_prod - txr->tx_cons;
  243. if (unlikely(diff >= TX_DESC_CNT)) {
  244. diff &= 0xffff;
  245. if (diff == TX_DESC_CNT)
  246. diff = MAX_TX_DESC_CNT;
  247. }
  248. return (bp->tx_ring_size - diff);
  249. }
  250. static u32
  251. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  252. {
  253. u32 val;
  254. spin_lock_bh(&bp->indirect_lock);
  255. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  256. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  257. spin_unlock_bh(&bp->indirect_lock);
  258. return val;
  259. }
  260. static void
  261. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  262. {
  263. spin_lock_bh(&bp->indirect_lock);
  264. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  265. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  266. spin_unlock_bh(&bp->indirect_lock);
  267. }
  268. static void
  269. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  270. {
  271. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  272. }
  273. static u32
  274. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  275. {
  276. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  277. }
  278. static void
  279. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  280. {
  281. offset += cid_addr;
  282. spin_lock_bh(&bp->indirect_lock);
  283. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  284. int i;
  285. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  286. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  287. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  288. for (i = 0; i < 5; i++) {
  289. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  290. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  291. break;
  292. udelay(5);
  293. }
  294. } else {
  295. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  296. REG_WR(bp, BNX2_CTX_DATA, val);
  297. }
  298. spin_unlock_bh(&bp->indirect_lock);
  299. }
  300. #ifdef BCM_CNIC
  301. static int
  302. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  303. {
  304. struct bnx2 *bp = netdev_priv(dev);
  305. struct drv_ctl_io *io = &info->data.io;
  306. switch (info->cmd) {
  307. case DRV_CTL_IO_WR_CMD:
  308. bnx2_reg_wr_ind(bp, io->offset, io->data);
  309. break;
  310. case DRV_CTL_IO_RD_CMD:
  311. io->data = bnx2_reg_rd_ind(bp, io->offset);
  312. break;
  313. case DRV_CTL_CTX_WR_CMD:
  314. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  315. break;
  316. default:
  317. return -EINVAL;
  318. }
  319. return 0;
  320. }
  321. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  322. {
  323. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  324. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  325. int sb_id;
  326. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  327. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  328. bnapi->cnic_present = 0;
  329. sb_id = bp->irq_nvecs;
  330. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  331. } else {
  332. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  333. bnapi->cnic_tag = bnapi->last_status_idx;
  334. bnapi->cnic_present = 1;
  335. sb_id = 0;
  336. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  337. }
  338. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  339. cp->irq_arr[0].status_blk = (void *)
  340. ((unsigned long) bnapi->status_blk.msi +
  341. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  342. cp->irq_arr[0].status_blk_num = sb_id;
  343. cp->num_irq = 1;
  344. }
  345. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  346. void *data)
  347. {
  348. struct bnx2 *bp = netdev_priv(dev);
  349. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  350. if (ops == NULL)
  351. return -EINVAL;
  352. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  353. return -EBUSY;
  354. bp->cnic_data = data;
  355. rcu_assign_pointer(bp->cnic_ops, ops);
  356. cp->num_irq = 0;
  357. cp->drv_state = CNIC_DRV_STATE_REGD;
  358. bnx2_setup_cnic_irq_info(bp);
  359. return 0;
  360. }
  361. static int bnx2_unregister_cnic(struct net_device *dev)
  362. {
  363. struct bnx2 *bp = netdev_priv(dev);
  364. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  365. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  366. mutex_lock(&bp->cnic_lock);
  367. cp->drv_state = 0;
  368. bnapi->cnic_present = 0;
  369. rcu_assign_pointer(bp->cnic_ops, NULL);
  370. mutex_unlock(&bp->cnic_lock);
  371. synchronize_rcu();
  372. return 0;
  373. }
  374. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  375. {
  376. struct bnx2 *bp = netdev_priv(dev);
  377. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  378. cp->drv_owner = THIS_MODULE;
  379. cp->chip_id = bp->chip_id;
  380. cp->pdev = bp->pdev;
  381. cp->io_base = bp->regview;
  382. cp->drv_ctl = bnx2_drv_ctl;
  383. cp->drv_register_cnic = bnx2_register_cnic;
  384. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  385. return cp;
  386. }
  387. EXPORT_SYMBOL(bnx2_cnic_probe);
  388. static void
  389. bnx2_cnic_stop(struct bnx2 *bp)
  390. {
  391. struct cnic_ops *c_ops;
  392. struct cnic_ctl_info info;
  393. mutex_lock(&bp->cnic_lock);
  394. c_ops = bp->cnic_ops;
  395. if (c_ops) {
  396. info.cmd = CNIC_CTL_STOP_CMD;
  397. c_ops->cnic_ctl(bp->cnic_data, &info);
  398. }
  399. mutex_unlock(&bp->cnic_lock);
  400. }
  401. static void
  402. bnx2_cnic_start(struct bnx2 *bp)
  403. {
  404. struct cnic_ops *c_ops;
  405. struct cnic_ctl_info info;
  406. mutex_lock(&bp->cnic_lock);
  407. c_ops = bp->cnic_ops;
  408. if (c_ops) {
  409. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  410. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  411. bnapi->cnic_tag = bnapi->last_status_idx;
  412. }
  413. info.cmd = CNIC_CTL_START_CMD;
  414. c_ops->cnic_ctl(bp->cnic_data, &info);
  415. }
  416. mutex_unlock(&bp->cnic_lock);
  417. }
  418. #else
  419. static void
  420. bnx2_cnic_stop(struct bnx2 *bp)
  421. {
  422. }
  423. static void
  424. bnx2_cnic_start(struct bnx2 *bp)
  425. {
  426. }
  427. #endif
  428. static int
  429. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  430. {
  431. u32 val1;
  432. int i, ret;
  433. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  434. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  436. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  437. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  438. udelay(40);
  439. }
  440. val1 = (bp->phy_addr << 21) | (reg << 16) |
  441. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  442. BNX2_EMAC_MDIO_COMM_START_BUSY;
  443. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  444. for (i = 0; i < 50; i++) {
  445. udelay(10);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  448. udelay(5);
  449. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  450. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  451. break;
  452. }
  453. }
  454. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  455. *val = 0x0;
  456. ret = -EBUSY;
  457. }
  458. else {
  459. *val = val1;
  460. ret = 0;
  461. }
  462. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  463. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  465. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  466. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  467. udelay(40);
  468. }
  469. return ret;
  470. }
  471. static int
  472. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  473. {
  474. u32 val1;
  475. int i, ret;
  476. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  477. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  479. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  480. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  481. udelay(40);
  482. }
  483. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  484. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  485. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  486. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  487. for (i = 0; i < 50; i++) {
  488. udelay(10);
  489. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  490. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  491. udelay(5);
  492. break;
  493. }
  494. }
  495. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  496. ret = -EBUSY;
  497. else
  498. ret = 0;
  499. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  500. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  502. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  503. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  504. udelay(40);
  505. }
  506. return ret;
  507. }
  508. static void
  509. bnx2_disable_int(struct bnx2 *bp)
  510. {
  511. int i;
  512. struct bnx2_napi *bnapi;
  513. for (i = 0; i < bp->irq_nvecs; i++) {
  514. bnapi = &bp->bnx2_napi[i];
  515. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  516. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  517. }
  518. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  519. }
  520. static void
  521. bnx2_enable_int(struct bnx2 *bp)
  522. {
  523. int i;
  524. struct bnx2_napi *bnapi;
  525. for (i = 0; i < bp->irq_nvecs; i++) {
  526. bnapi = &bp->bnx2_napi[i];
  527. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  528. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  529. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  530. bnapi->last_status_idx);
  531. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  532. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  533. bnapi->last_status_idx);
  534. }
  535. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  536. }
  537. static void
  538. bnx2_disable_int_sync(struct bnx2 *bp)
  539. {
  540. int i;
  541. atomic_inc(&bp->intr_sem);
  542. if (!netif_running(bp->dev))
  543. return;
  544. bnx2_disable_int(bp);
  545. for (i = 0; i < bp->irq_nvecs; i++)
  546. synchronize_irq(bp->irq_tbl[i].vector);
  547. }
  548. static void
  549. bnx2_napi_disable(struct bnx2 *bp)
  550. {
  551. int i;
  552. for (i = 0; i < bp->irq_nvecs; i++)
  553. napi_disable(&bp->bnx2_napi[i].napi);
  554. }
  555. static void
  556. bnx2_napi_enable(struct bnx2 *bp)
  557. {
  558. int i;
  559. for (i = 0; i < bp->irq_nvecs; i++)
  560. napi_enable(&bp->bnx2_napi[i].napi);
  561. }
  562. static void
  563. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  564. {
  565. if (stop_cnic)
  566. bnx2_cnic_stop(bp);
  567. if (netif_running(bp->dev)) {
  568. bnx2_napi_disable(bp);
  569. netif_tx_disable(bp->dev);
  570. }
  571. bnx2_disable_int_sync(bp);
  572. netif_carrier_off(bp->dev); /* prevent tx timeout */
  573. }
  574. static void
  575. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  576. {
  577. if (atomic_dec_and_test(&bp->intr_sem)) {
  578. if (netif_running(bp->dev)) {
  579. netif_tx_wake_all_queues(bp->dev);
  580. spin_lock_bh(&bp->phy_lock);
  581. if (bp->link_up)
  582. netif_carrier_on(bp->dev);
  583. spin_unlock_bh(&bp->phy_lock);
  584. bnx2_napi_enable(bp);
  585. bnx2_enable_int(bp);
  586. if (start_cnic)
  587. bnx2_cnic_start(bp);
  588. }
  589. }
  590. }
  591. static void
  592. bnx2_free_tx_mem(struct bnx2 *bp)
  593. {
  594. int i;
  595. for (i = 0; i < bp->num_tx_rings; i++) {
  596. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  597. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  598. if (txr->tx_desc_ring) {
  599. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  600. txr->tx_desc_ring,
  601. txr->tx_desc_mapping);
  602. txr->tx_desc_ring = NULL;
  603. }
  604. kfree(txr->tx_buf_ring);
  605. txr->tx_buf_ring = NULL;
  606. }
  607. }
  608. static void
  609. bnx2_free_rx_mem(struct bnx2 *bp)
  610. {
  611. int i;
  612. for (i = 0; i < bp->num_rx_rings; i++) {
  613. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  614. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  615. int j;
  616. for (j = 0; j < bp->rx_max_ring; j++) {
  617. if (rxr->rx_desc_ring[j])
  618. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  619. rxr->rx_desc_ring[j],
  620. rxr->rx_desc_mapping[j]);
  621. rxr->rx_desc_ring[j] = NULL;
  622. }
  623. vfree(rxr->rx_buf_ring);
  624. rxr->rx_buf_ring = NULL;
  625. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  626. if (rxr->rx_pg_desc_ring[j])
  627. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  628. rxr->rx_pg_desc_ring[j],
  629. rxr->rx_pg_desc_mapping[j]);
  630. rxr->rx_pg_desc_ring[j] = NULL;
  631. }
  632. vfree(rxr->rx_pg_ring);
  633. rxr->rx_pg_ring = NULL;
  634. }
  635. }
  636. static int
  637. bnx2_alloc_tx_mem(struct bnx2 *bp)
  638. {
  639. int i;
  640. for (i = 0; i < bp->num_tx_rings; i++) {
  641. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  642. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  643. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  644. if (txr->tx_buf_ring == NULL)
  645. return -ENOMEM;
  646. txr->tx_desc_ring =
  647. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  648. &txr->tx_desc_mapping, GFP_KERNEL);
  649. if (txr->tx_desc_ring == NULL)
  650. return -ENOMEM;
  651. }
  652. return 0;
  653. }
  654. static int
  655. bnx2_alloc_rx_mem(struct bnx2 *bp)
  656. {
  657. int i;
  658. for (i = 0; i < bp->num_rx_rings; i++) {
  659. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  660. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  661. int j;
  662. rxr->rx_buf_ring =
  663. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  664. if (rxr->rx_buf_ring == NULL)
  665. return -ENOMEM;
  666. memset(rxr->rx_buf_ring, 0,
  667. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  668. for (j = 0; j < bp->rx_max_ring; j++) {
  669. rxr->rx_desc_ring[j] =
  670. dma_alloc_coherent(&bp->pdev->dev,
  671. RXBD_RING_SIZE,
  672. &rxr->rx_desc_mapping[j],
  673. GFP_KERNEL);
  674. if (rxr->rx_desc_ring[j] == NULL)
  675. return -ENOMEM;
  676. }
  677. if (bp->rx_pg_ring_size) {
  678. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  679. bp->rx_max_pg_ring);
  680. if (rxr->rx_pg_ring == NULL)
  681. return -ENOMEM;
  682. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  683. bp->rx_max_pg_ring);
  684. }
  685. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  686. rxr->rx_pg_desc_ring[j] =
  687. dma_alloc_coherent(&bp->pdev->dev,
  688. RXBD_RING_SIZE,
  689. &rxr->rx_pg_desc_mapping[j],
  690. GFP_KERNEL);
  691. if (rxr->rx_pg_desc_ring[j] == NULL)
  692. return -ENOMEM;
  693. }
  694. }
  695. return 0;
  696. }
  697. static void
  698. bnx2_free_mem(struct bnx2 *bp)
  699. {
  700. int i;
  701. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  702. bnx2_free_tx_mem(bp);
  703. bnx2_free_rx_mem(bp);
  704. for (i = 0; i < bp->ctx_pages; i++) {
  705. if (bp->ctx_blk[i]) {
  706. dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
  707. bp->ctx_blk[i],
  708. bp->ctx_blk_mapping[i]);
  709. bp->ctx_blk[i] = NULL;
  710. }
  711. }
  712. if (bnapi->status_blk.msi) {
  713. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  714. bnapi->status_blk.msi,
  715. bp->status_blk_mapping);
  716. bnapi->status_blk.msi = NULL;
  717. bp->stats_blk = NULL;
  718. }
  719. }
  720. static int
  721. bnx2_alloc_mem(struct bnx2 *bp)
  722. {
  723. int i, status_blk_size, err;
  724. struct bnx2_napi *bnapi;
  725. void *status_blk;
  726. /* Combine status and statistics blocks into one allocation. */
  727. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  728. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  729. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  730. BNX2_SBLK_MSIX_ALIGN_SIZE);
  731. bp->status_stats_size = status_blk_size +
  732. sizeof(struct statistics_block);
  733. status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  734. &bp->status_blk_mapping, GFP_KERNEL);
  735. if (status_blk == NULL)
  736. goto alloc_mem_err;
  737. memset(status_blk, 0, bp->status_stats_size);
  738. bnapi = &bp->bnx2_napi[0];
  739. bnapi->status_blk.msi = status_blk;
  740. bnapi->hw_tx_cons_ptr =
  741. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  742. bnapi->hw_rx_cons_ptr =
  743. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  744. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  745. for (i = 1; i < bp->irq_nvecs; i++) {
  746. struct status_block_msix *sblk;
  747. bnapi = &bp->bnx2_napi[i];
  748. sblk = (void *) (status_blk +
  749. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  750. bnapi->status_blk.msix = sblk;
  751. bnapi->hw_tx_cons_ptr =
  752. &sblk->status_tx_quick_consumer_index;
  753. bnapi->hw_rx_cons_ptr =
  754. &sblk->status_rx_quick_consumer_index;
  755. bnapi->int_num = i << 24;
  756. }
  757. }
  758. bp->stats_blk = status_blk + status_blk_size;
  759. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  760. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  761. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  762. if (bp->ctx_pages == 0)
  763. bp->ctx_pages = 1;
  764. for (i = 0; i < bp->ctx_pages; i++) {
  765. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  766. BCM_PAGE_SIZE,
  767. &bp->ctx_blk_mapping[i],
  768. GFP_KERNEL);
  769. if (bp->ctx_blk[i] == NULL)
  770. goto alloc_mem_err;
  771. }
  772. }
  773. err = bnx2_alloc_rx_mem(bp);
  774. if (err)
  775. goto alloc_mem_err;
  776. err = bnx2_alloc_tx_mem(bp);
  777. if (err)
  778. goto alloc_mem_err;
  779. return 0;
  780. alloc_mem_err:
  781. bnx2_free_mem(bp);
  782. return -ENOMEM;
  783. }
  784. static void
  785. bnx2_report_fw_link(struct bnx2 *bp)
  786. {
  787. u32 fw_link_status = 0;
  788. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  789. return;
  790. if (bp->link_up) {
  791. u32 bmsr;
  792. switch (bp->line_speed) {
  793. case SPEED_10:
  794. if (bp->duplex == DUPLEX_HALF)
  795. fw_link_status = BNX2_LINK_STATUS_10HALF;
  796. else
  797. fw_link_status = BNX2_LINK_STATUS_10FULL;
  798. break;
  799. case SPEED_100:
  800. if (bp->duplex == DUPLEX_HALF)
  801. fw_link_status = BNX2_LINK_STATUS_100HALF;
  802. else
  803. fw_link_status = BNX2_LINK_STATUS_100FULL;
  804. break;
  805. case SPEED_1000:
  806. if (bp->duplex == DUPLEX_HALF)
  807. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  808. else
  809. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  810. break;
  811. case SPEED_2500:
  812. if (bp->duplex == DUPLEX_HALF)
  813. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  814. else
  815. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  816. break;
  817. }
  818. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  819. if (bp->autoneg) {
  820. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  821. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  822. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  823. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  824. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  825. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  826. else
  827. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  828. }
  829. }
  830. else
  831. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  832. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  833. }
  834. static char *
  835. bnx2_xceiver_str(struct bnx2 *bp)
  836. {
  837. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  838. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  839. "Copper"));
  840. }
  841. static void
  842. bnx2_report_link(struct bnx2 *bp)
  843. {
  844. if (bp->link_up) {
  845. netif_carrier_on(bp->dev);
  846. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  847. bnx2_xceiver_str(bp),
  848. bp->line_speed,
  849. bp->duplex == DUPLEX_FULL ? "full" : "half");
  850. if (bp->flow_ctrl) {
  851. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  852. pr_cont(", receive ");
  853. if (bp->flow_ctrl & FLOW_CTRL_TX)
  854. pr_cont("& transmit ");
  855. }
  856. else {
  857. pr_cont(", transmit ");
  858. }
  859. pr_cont("flow control ON");
  860. }
  861. pr_cont("\n");
  862. } else {
  863. netif_carrier_off(bp->dev);
  864. netdev_err(bp->dev, "NIC %s Link is Down\n",
  865. bnx2_xceiver_str(bp));
  866. }
  867. bnx2_report_fw_link(bp);
  868. }
  869. static void
  870. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  871. {
  872. u32 local_adv, remote_adv;
  873. bp->flow_ctrl = 0;
  874. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  875. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  876. if (bp->duplex == DUPLEX_FULL) {
  877. bp->flow_ctrl = bp->req_flow_ctrl;
  878. }
  879. return;
  880. }
  881. if (bp->duplex != DUPLEX_FULL) {
  882. return;
  883. }
  884. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  885. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  886. u32 val;
  887. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  888. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  889. bp->flow_ctrl |= FLOW_CTRL_TX;
  890. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  891. bp->flow_ctrl |= FLOW_CTRL_RX;
  892. return;
  893. }
  894. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  895. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  896. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  897. u32 new_local_adv = 0;
  898. u32 new_remote_adv = 0;
  899. if (local_adv & ADVERTISE_1000XPAUSE)
  900. new_local_adv |= ADVERTISE_PAUSE_CAP;
  901. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  902. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  903. if (remote_adv & ADVERTISE_1000XPAUSE)
  904. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  905. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  906. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  907. local_adv = new_local_adv;
  908. remote_adv = new_remote_adv;
  909. }
  910. /* See Table 28B-3 of 802.3ab-1999 spec. */
  911. if (local_adv & ADVERTISE_PAUSE_CAP) {
  912. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  913. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  914. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  915. }
  916. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  917. bp->flow_ctrl = FLOW_CTRL_RX;
  918. }
  919. }
  920. else {
  921. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  922. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  923. }
  924. }
  925. }
  926. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  927. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  928. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  929. bp->flow_ctrl = FLOW_CTRL_TX;
  930. }
  931. }
  932. }
  933. static int
  934. bnx2_5709s_linkup(struct bnx2 *bp)
  935. {
  936. u32 val, speed;
  937. bp->link_up = 1;
  938. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  939. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  940. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  941. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  942. bp->line_speed = bp->req_line_speed;
  943. bp->duplex = bp->req_duplex;
  944. return 0;
  945. }
  946. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  947. switch (speed) {
  948. case MII_BNX2_GP_TOP_AN_SPEED_10:
  949. bp->line_speed = SPEED_10;
  950. break;
  951. case MII_BNX2_GP_TOP_AN_SPEED_100:
  952. bp->line_speed = SPEED_100;
  953. break;
  954. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  955. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  956. bp->line_speed = SPEED_1000;
  957. break;
  958. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  959. bp->line_speed = SPEED_2500;
  960. break;
  961. }
  962. if (val & MII_BNX2_GP_TOP_AN_FD)
  963. bp->duplex = DUPLEX_FULL;
  964. else
  965. bp->duplex = DUPLEX_HALF;
  966. return 0;
  967. }
  968. static int
  969. bnx2_5708s_linkup(struct bnx2 *bp)
  970. {
  971. u32 val;
  972. bp->link_up = 1;
  973. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  974. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  975. case BCM5708S_1000X_STAT1_SPEED_10:
  976. bp->line_speed = SPEED_10;
  977. break;
  978. case BCM5708S_1000X_STAT1_SPEED_100:
  979. bp->line_speed = SPEED_100;
  980. break;
  981. case BCM5708S_1000X_STAT1_SPEED_1G:
  982. bp->line_speed = SPEED_1000;
  983. break;
  984. case BCM5708S_1000X_STAT1_SPEED_2G5:
  985. bp->line_speed = SPEED_2500;
  986. break;
  987. }
  988. if (val & BCM5708S_1000X_STAT1_FD)
  989. bp->duplex = DUPLEX_FULL;
  990. else
  991. bp->duplex = DUPLEX_HALF;
  992. return 0;
  993. }
  994. static int
  995. bnx2_5706s_linkup(struct bnx2 *bp)
  996. {
  997. u32 bmcr, local_adv, remote_adv, common;
  998. bp->link_up = 1;
  999. bp->line_speed = SPEED_1000;
  1000. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1001. if (bmcr & BMCR_FULLDPLX) {
  1002. bp->duplex = DUPLEX_FULL;
  1003. }
  1004. else {
  1005. bp->duplex = DUPLEX_HALF;
  1006. }
  1007. if (!(bmcr & BMCR_ANENABLE)) {
  1008. return 0;
  1009. }
  1010. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1011. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1012. common = local_adv & remote_adv;
  1013. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1014. if (common & ADVERTISE_1000XFULL) {
  1015. bp->duplex = DUPLEX_FULL;
  1016. }
  1017. else {
  1018. bp->duplex = DUPLEX_HALF;
  1019. }
  1020. }
  1021. return 0;
  1022. }
  1023. static int
  1024. bnx2_copper_linkup(struct bnx2 *bp)
  1025. {
  1026. u32 bmcr;
  1027. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1028. if (bmcr & BMCR_ANENABLE) {
  1029. u32 local_adv, remote_adv, common;
  1030. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1031. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1032. common = local_adv & (remote_adv >> 2);
  1033. if (common & ADVERTISE_1000FULL) {
  1034. bp->line_speed = SPEED_1000;
  1035. bp->duplex = DUPLEX_FULL;
  1036. }
  1037. else if (common & ADVERTISE_1000HALF) {
  1038. bp->line_speed = SPEED_1000;
  1039. bp->duplex = DUPLEX_HALF;
  1040. }
  1041. else {
  1042. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1043. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1044. common = local_adv & remote_adv;
  1045. if (common & ADVERTISE_100FULL) {
  1046. bp->line_speed = SPEED_100;
  1047. bp->duplex = DUPLEX_FULL;
  1048. }
  1049. else if (common & ADVERTISE_100HALF) {
  1050. bp->line_speed = SPEED_100;
  1051. bp->duplex = DUPLEX_HALF;
  1052. }
  1053. else if (common & ADVERTISE_10FULL) {
  1054. bp->line_speed = SPEED_10;
  1055. bp->duplex = DUPLEX_FULL;
  1056. }
  1057. else if (common & ADVERTISE_10HALF) {
  1058. bp->line_speed = SPEED_10;
  1059. bp->duplex = DUPLEX_HALF;
  1060. }
  1061. else {
  1062. bp->line_speed = 0;
  1063. bp->link_up = 0;
  1064. }
  1065. }
  1066. }
  1067. else {
  1068. if (bmcr & BMCR_SPEED100) {
  1069. bp->line_speed = SPEED_100;
  1070. }
  1071. else {
  1072. bp->line_speed = SPEED_10;
  1073. }
  1074. if (bmcr & BMCR_FULLDPLX) {
  1075. bp->duplex = DUPLEX_FULL;
  1076. }
  1077. else {
  1078. bp->duplex = DUPLEX_HALF;
  1079. }
  1080. }
  1081. return 0;
  1082. }
  1083. static void
  1084. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1085. {
  1086. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1087. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1088. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1089. val |= 0x02 << 8;
  1090. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1091. u32 lo_water, hi_water;
  1092. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1093. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1094. else
  1095. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1096. if (lo_water >= bp->rx_ring_size)
  1097. lo_water = 0;
  1098. hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
  1099. if (hi_water <= lo_water)
  1100. lo_water = 0;
  1101. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1102. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1103. if (hi_water > 0xf)
  1104. hi_water = 0xf;
  1105. else if (hi_water == 0)
  1106. lo_water = 0;
  1107. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1108. }
  1109. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1110. }
  1111. static void
  1112. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1113. {
  1114. int i;
  1115. u32 cid;
  1116. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1117. if (i == 1)
  1118. cid = RX_RSS_CID;
  1119. bnx2_init_rx_context(bp, cid);
  1120. }
  1121. }
  1122. static void
  1123. bnx2_set_mac_link(struct bnx2 *bp)
  1124. {
  1125. u32 val;
  1126. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1127. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1128. (bp->duplex == DUPLEX_HALF)) {
  1129. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1130. }
  1131. /* Configure the EMAC mode register. */
  1132. val = REG_RD(bp, BNX2_EMAC_MODE);
  1133. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1134. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1135. BNX2_EMAC_MODE_25G_MODE);
  1136. if (bp->link_up) {
  1137. switch (bp->line_speed) {
  1138. case SPEED_10:
  1139. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1140. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1141. break;
  1142. }
  1143. /* fall through */
  1144. case SPEED_100:
  1145. val |= BNX2_EMAC_MODE_PORT_MII;
  1146. break;
  1147. case SPEED_2500:
  1148. val |= BNX2_EMAC_MODE_25G_MODE;
  1149. /* fall through */
  1150. case SPEED_1000:
  1151. val |= BNX2_EMAC_MODE_PORT_GMII;
  1152. break;
  1153. }
  1154. }
  1155. else {
  1156. val |= BNX2_EMAC_MODE_PORT_GMII;
  1157. }
  1158. /* Set the MAC to operate in the appropriate duplex mode. */
  1159. if (bp->duplex == DUPLEX_HALF)
  1160. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1161. REG_WR(bp, BNX2_EMAC_MODE, val);
  1162. /* Enable/disable rx PAUSE. */
  1163. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1164. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1165. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1166. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1167. /* Enable/disable tx PAUSE. */
  1168. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1169. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1170. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1171. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1172. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1173. /* Acknowledge the interrupt. */
  1174. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1175. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1176. bnx2_init_all_rx_contexts(bp);
  1177. }
  1178. static void
  1179. bnx2_enable_bmsr1(struct bnx2 *bp)
  1180. {
  1181. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1182. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1183. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1184. MII_BNX2_BLK_ADDR_GP_STATUS);
  1185. }
  1186. static void
  1187. bnx2_disable_bmsr1(struct bnx2 *bp)
  1188. {
  1189. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1190. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1191. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1192. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1193. }
  1194. static int
  1195. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1196. {
  1197. u32 up1;
  1198. int ret = 1;
  1199. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1200. return 0;
  1201. if (bp->autoneg & AUTONEG_SPEED)
  1202. bp->advertising |= ADVERTISED_2500baseX_Full;
  1203. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1204. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1205. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1206. if (!(up1 & BCM5708S_UP1_2G5)) {
  1207. up1 |= BCM5708S_UP1_2G5;
  1208. bnx2_write_phy(bp, bp->mii_up1, up1);
  1209. ret = 0;
  1210. }
  1211. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1212. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1213. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1214. return ret;
  1215. }
  1216. static int
  1217. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1218. {
  1219. u32 up1;
  1220. int ret = 0;
  1221. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1222. return 0;
  1223. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1224. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1225. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1226. if (up1 & BCM5708S_UP1_2G5) {
  1227. up1 &= ~BCM5708S_UP1_2G5;
  1228. bnx2_write_phy(bp, bp->mii_up1, up1);
  1229. ret = 1;
  1230. }
  1231. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1232. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1233. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1234. return ret;
  1235. }
  1236. static void
  1237. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1238. {
  1239. u32 uninitialized_var(bmcr);
  1240. int err;
  1241. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1242. return;
  1243. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1244. u32 val;
  1245. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1246. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1247. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1248. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1249. val |= MII_BNX2_SD_MISC1_FORCE |
  1250. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1251. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1252. }
  1253. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1254. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1255. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1256. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1257. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1258. if (!err)
  1259. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1260. } else {
  1261. return;
  1262. }
  1263. if (err)
  1264. return;
  1265. if (bp->autoneg & AUTONEG_SPEED) {
  1266. bmcr &= ~BMCR_ANENABLE;
  1267. if (bp->req_duplex == DUPLEX_FULL)
  1268. bmcr |= BMCR_FULLDPLX;
  1269. }
  1270. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1271. }
  1272. static void
  1273. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1274. {
  1275. u32 uninitialized_var(bmcr);
  1276. int err;
  1277. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1278. return;
  1279. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1280. u32 val;
  1281. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1282. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1283. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1284. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1285. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1286. }
  1287. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1288. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1289. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1290. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1291. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1292. if (!err)
  1293. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1294. } else {
  1295. return;
  1296. }
  1297. if (err)
  1298. return;
  1299. if (bp->autoneg & AUTONEG_SPEED)
  1300. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1301. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1302. }
  1303. static void
  1304. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1305. {
  1306. u32 val;
  1307. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1308. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1309. if (start)
  1310. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1311. else
  1312. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1313. }
  1314. static int
  1315. bnx2_set_link(struct bnx2 *bp)
  1316. {
  1317. u32 bmsr;
  1318. u8 link_up;
  1319. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1320. bp->link_up = 1;
  1321. return 0;
  1322. }
  1323. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1324. return 0;
  1325. link_up = bp->link_up;
  1326. bnx2_enable_bmsr1(bp);
  1327. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1328. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1329. bnx2_disable_bmsr1(bp);
  1330. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1331. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1332. u32 val, an_dbg;
  1333. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1334. bnx2_5706s_force_link_dn(bp, 0);
  1335. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1336. }
  1337. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1338. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1339. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1340. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1341. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1342. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1343. bmsr |= BMSR_LSTATUS;
  1344. else
  1345. bmsr &= ~BMSR_LSTATUS;
  1346. }
  1347. if (bmsr & BMSR_LSTATUS) {
  1348. bp->link_up = 1;
  1349. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1350. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1351. bnx2_5706s_linkup(bp);
  1352. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1353. bnx2_5708s_linkup(bp);
  1354. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1355. bnx2_5709s_linkup(bp);
  1356. }
  1357. else {
  1358. bnx2_copper_linkup(bp);
  1359. }
  1360. bnx2_resolve_flow_ctrl(bp);
  1361. }
  1362. else {
  1363. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1364. (bp->autoneg & AUTONEG_SPEED))
  1365. bnx2_disable_forced_2g5(bp);
  1366. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1367. u32 bmcr;
  1368. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1369. bmcr |= BMCR_ANENABLE;
  1370. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1371. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1372. }
  1373. bp->link_up = 0;
  1374. }
  1375. if (bp->link_up != link_up) {
  1376. bnx2_report_link(bp);
  1377. }
  1378. bnx2_set_mac_link(bp);
  1379. return 0;
  1380. }
  1381. static int
  1382. bnx2_reset_phy(struct bnx2 *bp)
  1383. {
  1384. int i;
  1385. u32 reg;
  1386. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1387. #define PHY_RESET_MAX_WAIT 100
  1388. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1389. udelay(10);
  1390. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1391. if (!(reg & BMCR_RESET)) {
  1392. udelay(20);
  1393. break;
  1394. }
  1395. }
  1396. if (i == PHY_RESET_MAX_WAIT) {
  1397. return -EBUSY;
  1398. }
  1399. return 0;
  1400. }
  1401. static u32
  1402. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1403. {
  1404. u32 adv = 0;
  1405. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1406. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1407. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1408. adv = ADVERTISE_1000XPAUSE;
  1409. }
  1410. else {
  1411. adv = ADVERTISE_PAUSE_CAP;
  1412. }
  1413. }
  1414. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1415. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1416. adv = ADVERTISE_1000XPSE_ASYM;
  1417. }
  1418. else {
  1419. adv = ADVERTISE_PAUSE_ASYM;
  1420. }
  1421. }
  1422. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1423. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1424. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1425. }
  1426. else {
  1427. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1428. }
  1429. }
  1430. return adv;
  1431. }
  1432. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1433. static int
  1434. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1435. __releases(&bp->phy_lock)
  1436. __acquires(&bp->phy_lock)
  1437. {
  1438. u32 speed_arg = 0, pause_adv;
  1439. pause_adv = bnx2_phy_get_pause_adv(bp);
  1440. if (bp->autoneg & AUTONEG_SPEED) {
  1441. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1442. if (bp->advertising & ADVERTISED_10baseT_Half)
  1443. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1444. if (bp->advertising & ADVERTISED_10baseT_Full)
  1445. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1446. if (bp->advertising & ADVERTISED_100baseT_Half)
  1447. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1448. if (bp->advertising & ADVERTISED_100baseT_Full)
  1449. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1450. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1451. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1452. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1453. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1454. } else {
  1455. if (bp->req_line_speed == SPEED_2500)
  1456. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1457. else if (bp->req_line_speed == SPEED_1000)
  1458. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1459. else if (bp->req_line_speed == SPEED_100) {
  1460. if (bp->req_duplex == DUPLEX_FULL)
  1461. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1462. else
  1463. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1464. } else if (bp->req_line_speed == SPEED_10) {
  1465. if (bp->req_duplex == DUPLEX_FULL)
  1466. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1467. else
  1468. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1469. }
  1470. }
  1471. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1472. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1473. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1474. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1475. if (port == PORT_TP)
  1476. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1477. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1478. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1479. spin_unlock_bh(&bp->phy_lock);
  1480. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1481. spin_lock_bh(&bp->phy_lock);
  1482. return 0;
  1483. }
  1484. static int
  1485. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1486. __releases(&bp->phy_lock)
  1487. __acquires(&bp->phy_lock)
  1488. {
  1489. u32 adv, bmcr;
  1490. u32 new_adv = 0;
  1491. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1492. return (bnx2_setup_remote_phy(bp, port));
  1493. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1494. u32 new_bmcr;
  1495. int force_link_down = 0;
  1496. if (bp->req_line_speed == SPEED_2500) {
  1497. if (!bnx2_test_and_enable_2g5(bp))
  1498. force_link_down = 1;
  1499. } else if (bp->req_line_speed == SPEED_1000) {
  1500. if (bnx2_test_and_disable_2g5(bp))
  1501. force_link_down = 1;
  1502. }
  1503. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1504. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1505. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1506. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1507. new_bmcr |= BMCR_SPEED1000;
  1508. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1509. if (bp->req_line_speed == SPEED_2500)
  1510. bnx2_enable_forced_2g5(bp);
  1511. else if (bp->req_line_speed == SPEED_1000) {
  1512. bnx2_disable_forced_2g5(bp);
  1513. new_bmcr &= ~0x2000;
  1514. }
  1515. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1516. if (bp->req_line_speed == SPEED_2500)
  1517. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1518. else
  1519. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1520. }
  1521. if (bp->req_duplex == DUPLEX_FULL) {
  1522. adv |= ADVERTISE_1000XFULL;
  1523. new_bmcr |= BMCR_FULLDPLX;
  1524. }
  1525. else {
  1526. adv |= ADVERTISE_1000XHALF;
  1527. new_bmcr &= ~BMCR_FULLDPLX;
  1528. }
  1529. if ((new_bmcr != bmcr) || (force_link_down)) {
  1530. /* Force a link down visible on the other side */
  1531. if (bp->link_up) {
  1532. bnx2_write_phy(bp, bp->mii_adv, adv &
  1533. ~(ADVERTISE_1000XFULL |
  1534. ADVERTISE_1000XHALF));
  1535. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1536. BMCR_ANRESTART | BMCR_ANENABLE);
  1537. bp->link_up = 0;
  1538. netif_carrier_off(bp->dev);
  1539. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1540. bnx2_report_link(bp);
  1541. }
  1542. bnx2_write_phy(bp, bp->mii_adv, adv);
  1543. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1544. } else {
  1545. bnx2_resolve_flow_ctrl(bp);
  1546. bnx2_set_mac_link(bp);
  1547. }
  1548. return 0;
  1549. }
  1550. bnx2_test_and_enable_2g5(bp);
  1551. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1552. new_adv |= ADVERTISE_1000XFULL;
  1553. new_adv |= bnx2_phy_get_pause_adv(bp);
  1554. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1555. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1556. bp->serdes_an_pending = 0;
  1557. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1558. /* Force a link down visible on the other side */
  1559. if (bp->link_up) {
  1560. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1561. spin_unlock_bh(&bp->phy_lock);
  1562. msleep(20);
  1563. spin_lock_bh(&bp->phy_lock);
  1564. }
  1565. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1566. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1567. BMCR_ANENABLE);
  1568. /* Speed up link-up time when the link partner
  1569. * does not autonegotiate which is very common
  1570. * in blade servers. Some blade servers use
  1571. * IPMI for kerboard input and it's important
  1572. * to minimize link disruptions. Autoneg. involves
  1573. * exchanging base pages plus 3 next pages and
  1574. * normally completes in about 120 msec.
  1575. */
  1576. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1577. bp->serdes_an_pending = 1;
  1578. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1579. } else {
  1580. bnx2_resolve_flow_ctrl(bp);
  1581. bnx2_set_mac_link(bp);
  1582. }
  1583. return 0;
  1584. }
  1585. #define ETHTOOL_ALL_FIBRE_SPEED \
  1586. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1587. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1588. (ADVERTISED_1000baseT_Full)
  1589. #define ETHTOOL_ALL_COPPER_SPEED \
  1590. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1591. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1592. ADVERTISED_1000baseT_Full)
  1593. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1594. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1595. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1596. static void
  1597. bnx2_set_default_remote_link(struct bnx2 *bp)
  1598. {
  1599. u32 link;
  1600. if (bp->phy_port == PORT_TP)
  1601. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1602. else
  1603. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1604. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1605. bp->req_line_speed = 0;
  1606. bp->autoneg |= AUTONEG_SPEED;
  1607. bp->advertising = ADVERTISED_Autoneg;
  1608. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1609. bp->advertising |= ADVERTISED_10baseT_Half;
  1610. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1611. bp->advertising |= ADVERTISED_10baseT_Full;
  1612. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1613. bp->advertising |= ADVERTISED_100baseT_Half;
  1614. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1615. bp->advertising |= ADVERTISED_100baseT_Full;
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1617. bp->advertising |= ADVERTISED_1000baseT_Full;
  1618. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1619. bp->advertising |= ADVERTISED_2500baseX_Full;
  1620. } else {
  1621. bp->autoneg = 0;
  1622. bp->advertising = 0;
  1623. bp->req_duplex = DUPLEX_FULL;
  1624. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1625. bp->req_line_speed = SPEED_10;
  1626. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1627. bp->req_duplex = DUPLEX_HALF;
  1628. }
  1629. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1630. bp->req_line_speed = SPEED_100;
  1631. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1632. bp->req_duplex = DUPLEX_HALF;
  1633. }
  1634. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1635. bp->req_line_speed = SPEED_1000;
  1636. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1637. bp->req_line_speed = SPEED_2500;
  1638. }
  1639. }
  1640. static void
  1641. bnx2_set_default_link(struct bnx2 *bp)
  1642. {
  1643. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1644. bnx2_set_default_remote_link(bp);
  1645. return;
  1646. }
  1647. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1648. bp->req_line_speed = 0;
  1649. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1650. u32 reg;
  1651. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1652. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1653. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1654. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1655. bp->autoneg = 0;
  1656. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1657. bp->req_duplex = DUPLEX_FULL;
  1658. }
  1659. } else
  1660. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1661. }
  1662. static void
  1663. bnx2_send_heart_beat(struct bnx2 *bp)
  1664. {
  1665. u32 msg;
  1666. u32 addr;
  1667. spin_lock(&bp->indirect_lock);
  1668. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1669. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1670. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1671. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1672. spin_unlock(&bp->indirect_lock);
  1673. }
  1674. static void
  1675. bnx2_remote_phy_event(struct bnx2 *bp)
  1676. {
  1677. u32 msg;
  1678. u8 link_up = bp->link_up;
  1679. u8 old_port;
  1680. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1681. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1682. bnx2_send_heart_beat(bp);
  1683. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1684. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1685. bp->link_up = 0;
  1686. else {
  1687. u32 speed;
  1688. bp->link_up = 1;
  1689. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1690. bp->duplex = DUPLEX_FULL;
  1691. switch (speed) {
  1692. case BNX2_LINK_STATUS_10HALF:
  1693. bp->duplex = DUPLEX_HALF;
  1694. case BNX2_LINK_STATUS_10FULL:
  1695. bp->line_speed = SPEED_10;
  1696. break;
  1697. case BNX2_LINK_STATUS_100HALF:
  1698. bp->duplex = DUPLEX_HALF;
  1699. case BNX2_LINK_STATUS_100BASE_T4:
  1700. case BNX2_LINK_STATUS_100FULL:
  1701. bp->line_speed = SPEED_100;
  1702. break;
  1703. case BNX2_LINK_STATUS_1000HALF:
  1704. bp->duplex = DUPLEX_HALF;
  1705. case BNX2_LINK_STATUS_1000FULL:
  1706. bp->line_speed = SPEED_1000;
  1707. break;
  1708. case BNX2_LINK_STATUS_2500HALF:
  1709. bp->duplex = DUPLEX_HALF;
  1710. case BNX2_LINK_STATUS_2500FULL:
  1711. bp->line_speed = SPEED_2500;
  1712. break;
  1713. default:
  1714. bp->line_speed = 0;
  1715. break;
  1716. }
  1717. bp->flow_ctrl = 0;
  1718. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1719. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1720. if (bp->duplex == DUPLEX_FULL)
  1721. bp->flow_ctrl = bp->req_flow_ctrl;
  1722. } else {
  1723. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1724. bp->flow_ctrl |= FLOW_CTRL_TX;
  1725. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1726. bp->flow_ctrl |= FLOW_CTRL_RX;
  1727. }
  1728. old_port = bp->phy_port;
  1729. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1730. bp->phy_port = PORT_FIBRE;
  1731. else
  1732. bp->phy_port = PORT_TP;
  1733. if (old_port != bp->phy_port)
  1734. bnx2_set_default_link(bp);
  1735. }
  1736. if (bp->link_up != link_up)
  1737. bnx2_report_link(bp);
  1738. bnx2_set_mac_link(bp);
  1739. }
  1740. static int
  1741. bnx2_set_remote_link(struct bnx2 *bp)
  1742. {
  1743. u32 evt_code;
  1744. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1745. switch (evt_code) {
  1746. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1747. bnx2_remote_phy_event(bp);
  1748. break;
  1749. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1750. default:
  1751. bnx2_send_heart_beat(bp);
  1752. break;
  1753. }
  1754. return 0;
  1755. }
  1756. static int
  1757. bnx2_setup_copper_phy(struct bnx2 *bp)
  1758. __releases(&bp->phy_lock)
  1759. __acquires(&bp->phy_lock)
  1760. {
  1761. u32 bmcr;
  1762. u32 new_bmcr;
  1763. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1764. if (bp->autoneg & AUTONEG_SPEED) {
  1765. u32 adv_reg, adv1000_reg;
  1766. u32 new_adv_reg = 0;
  1767. u32 new_adv1000_reg = 0;
  1768. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1769. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1770. ADVERTISE_PAUSE_ASYM);
  1771. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1772. adv1000_reg &= PHY_ALL_1000_SPEED;
  1773. if (bp->advertising & ADVERTISED_10baseT_Half)
  1774. new_adv_reg |= ADVERTISE_10HALF;
  1775. if (bp->advertising & ADVERTISED_10baseT_Full)
  1776. new_adv_reg |= ADVERTISE_10FULL;
  1777. if (bp->advertising & ADVERTISED_100baseT_Half)
  1778. new_adv_reg |= ADVERTISE_100HALF;
  1779. if (bp->advertising & ADVERTISED_100baseT_Full)
  1780. new_adv_reg |= ADVERTISE_100FULL;
  1781. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1782. new_adv1000_reg |= ADVERTISE_1000FULL;
  1783. new_adv_reg |= ADVERTISE_CSMA;
  1784. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1785. if ((adv1000_reg != new_adv1000_reg) ||
  1786. (adv_reg != new_adv_reg) ||
  1787. ((bmcr & BMCR_ANENABLE) == 0)) {
  1788. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1789. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1790. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1791. BMCR_ANENABLE);
  1792. }
  1793. else if (bp->link_up) {
  1794. /* Flow ctrl may have changed from auto to forced */
  1795. /* or vice-versa. */
  1796. bnx2_resolve_flow_ctrl(bp);
  1797. bnx2_set_mac_link(bp);
  1798. }
  1799. return 0;
  1800. }
  1801. new_bmcr = 0;
  1802. if (bp->req_line_speed == SPEED_100) {
  1803. new_bmcr |= BMCR_SPEED100;
  1804. }
  1805. if (bp->req_duplex == DUPLEX_FULL) {
  1806. new_bmcr |= BMCR_FULLDPLX;
  1807. }
  1808. if (new_bmcr != bmcr) {
  1809. u32 bmsr;
  1810. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1811. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1812. if (bmsr & BMSR_LSTATUS) {
  1813. /* Force link down */
  1814. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1815. spin_unlock_bh(&bp->phy_lock);
  1816. msleep(50);
  1817. spin_lock_bh(&bp->phy_lock);
  1818. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1819. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1820. }
  1821. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1822. /* Normally, the new speed is setup after the link has
  1823. * gone down and up again. In some cases, link will not go
  1824. * down so we need to set up the new speed here.
  1825. */
  1826. if (bmsr & BMSR_LSTATUS) {
  1827. bp->line_speed = bp->req_line_speed;
  1828. bp->duplex = bp->req_duplex;
  1829. bnx2_resolve_flow_ctrl(bp);
  1830. bnx2_set_mac_link(bp);
  1831. }
  1832. } else {
  1833. bnx2_resolve_flow_ctrl(bp);
  1834. bnx2_set_mac_link(bp);
  1835. }
  1836. return 0;
  1837. }
  1838. static int
  1839. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1840. __releases(&bp->phy_lock)
  1841. __acquires(&bp->phy_lock)
  1842. {
  1843. if (bp->loopback == MAC_LOOPBACK)
  1844. return 0;
  1845. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1846. return (bnx2_setup_serdes_phy(bp, port));
  1847. }
  1848. else {
  1849. return (bnx2_setup_copper_phy(bp));
  1850. }
  1851. }
  1852. static int
  1853. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1854. {
  1855. u32 val;
  1856. bp->mii_bmcr = MII_BMCR + 0x10;
  1857. bp->mii_bmsr = MII_BMSR + 0x10;
  1858. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1859. bp->mii_adv = MII_ADVERTISE + 0x10;
  1860. bp->mii_lpa = MII_LPA + 0x10;
  1861. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1862. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1863. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1864. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1865. if (reset_phy)
  1866. bnx2_reset_phy(bp);
  1867. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1868. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1869. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1870. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1871. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1872. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1873. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1874. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1875. val |= BCM5708S_UP1_2G5;
  1876. else
  1877. val &= ~BCM5708S_UP1_2G5;
  1878. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1879. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1880. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1881. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1882. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1883. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1884. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1885. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1886. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1887. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1888. return 0;
  1889. }
  1890. static int
  1891. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1892. {
  1893. u32 val;
  1894. if (reset_phy)
  1895. bnx2_reset_phy(bp);
  1896. bp->mii_up1 = BCM5708S_UP1;
  1897. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1898. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1899. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1900. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1901. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1902. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1903. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1904. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1905. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1906. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1907. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1908. val |= BCM5708S_UP1_2G5;
  1909. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1910. }
  1911. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1912. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1913. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1914. /* increase tx signal amplitude */
  1915. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1916. BCM5708S_BLK_ADDR_TX_MISC);
  1917. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1918. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1919. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1920. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1921. }
  1922. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1923. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1924. if (val) {
  1925. u32 is_backplane;
  1926. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1927. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1928. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1929. BCM5708S_BLK_ADDR_TX_MISC);
  1930. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1931. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1932. BCM5708S_BLK_ADDR_DIG);
  1933. }
  1934. }
  1935. return 0;
  1936. }
  1937. static int
  1938. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1939. {
  1940. if (reset_phy)
  1941. bnx2_reset_phy(bp);
  1942. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1943. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1944. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1945. if (bp->dev->mtu > 1500) {
  1946. u32 val;
  1947. /* Set extended packet length bit */
  1948. bnx2_write_phy(bp, 0x18, 0x7);
  1949. bnx2_read_phy(bp, 0x18, &val);
  1950. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1951. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1952. bnx2_read_phy(bp, 0x1c, &val);
  1953. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1954. }
  1955. else {
  1956. u32 val;
  1957. bnx2_write_phy(bp, 0x18, 0x7);
  1958. bnx2_read_phy(bp, 0x18, &val);
  1959. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1960. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1961. bnx2_read_phy(bp, 0x1c, &val);
  1962. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1963. }
  1964. return 0;
  1965. }
  1966. static int
  1967. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1968. {
  1969. u32 val;
  1970. if (reset_phy)
  1971. bnx2_reset_phy(bp);
  1972. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1973. bnx2_write_phy(bp, 0x18, 0x0c00);
  1974. bnx2_write_phy(bp, 0x17, 0x000a);
  1975. bnx2_write_phy(bp, 0x15, 0x310b);
  1976. bnx2_write_phy(bp, 0x17, 0x201f);
  1977. bnx2_write_phy(bp, 0x15, 0x9506);
  1978. bnx2_write_phy(bp, 0x17, 0x401f);
  1979. bnx2_write_phy(bp, 0x15, 0x14e2);
  1980. bnx2_write_phy(bp, 0x18, 0x0400);
  1981. }
  1982. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1983. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1984. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1985. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1986. val &= ~(1 << 8);
  1987. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1988. }
  1989. if (bp->dev->mtu > 1500) {
  1990. /* Set extended packet length bit */
  1991. bnx2_write_phy(bp, 0x18, 0x7);
  1992. bnx2_read_phy(bp, 0x18, &val);
  1993. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1994. bnx2_read_phy(bp, 0x10, &val);
  1995. bnx2_write_phy(bp, 0x10, val | 0x1);
  1996. }
  1997. else {
  1998. bnx2_write_phy(bp, 0x18, 0x7);
  1999. bnx2_read_phy(bp, 0x18, &val);
  2000. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  2001. bnx2_read_phy(bp, 0x10, &val);
  2002. bnx2_write_phy(bp, 0x10, val & ~0x1);
  2003. }
  2004. /* ethernet@wirespeed */
  2005. bnx2_write_phy(bp, 0x18, 0x7007);
  2006. bnx2_read_phy(bp, 0x18, &val);
  2007. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  2008. return 0;
  2009. }
  2010. static int
  2011. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  2012. __releases(&bp->phy_lock)
  2013. __acquires(&bp->phy_lock)
  2014. {
  2015. u32 val;
  2016. int rc = 0;
  2017. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2018. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2019. bp->mii_bmcr = MII_BMCR;
  2020. bp->mii_bmsr = MII_BMSR;
  2021. bp->mii_bmsr1 = MII_BMSR;
  2022. bp->mii_adv = MII_ADVERTISE;
  2023. bp->mii_lpa = MII_LPA;
  2024. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2025. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2026. goto setup_phy;
  2027. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2028. bp->phy_id = val << 16;
  2029. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2030. bp->phy_id |= val & 0xffff;
  2031. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2032. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2033. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2034. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2035. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2036. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2037. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2038. }
  2039. else {
  2040. rc = bnx2_init_copper_phy(bp, reset_phy);
  2041. }
  2042. setup_phy:
  2043. if (!rc)
  2044. rc = bnx2_setup_phy(bp, bp->phy_port);
  2045. return rc;
  2046. }
  2047. static int
  2048. bnx2_set_mac_loopback(struct bnx2 *bp)
  2049. {
  2050. u32 mac_mode;
  2051. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2052. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2053. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2054. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2055. bp->link_up = 1;
  2056. return 0;
  2057. }
  2058. static int bnx2_test_link(struct bnx2 *);
  2059. static int
  2060. bnx2_set_phy_loopback(struct bnx2 *bp)
  2061. {
  2062. u32 mac_mode;
  2063. int rc, i;
  2064. spin_lock_bh(&bp->phy_lock);
  2065. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2066. BMCR_SPEED1000);
  2067. spin_unlock_bh(&bp->phy_lock);
  2068. if (rc)
  2069. return rc;
  2070. for (i = 0; i < 10; i++) {
  2071. if (bnx2_test_link(bp) == 0)
  2072. break;
  2073. msleep(100);
  2074. }
  2075. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2076. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2077. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2078. BNX2_EMAC_MODE_25G_MODE);
  2079. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2080. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2081. bp->link_up = 1;
  2082. return 0;
  2083. }
  2084. static int
  2085. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2086. {
  2087. int i;
  2088. u32 val;
  2089. bp->fw_wr_seq++;
  2090. msg_data |= bp->fw_wr_seq;
  2091. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2092. if (!ack)
  2093. return 0;
  2094. /* wait for an acknowledgement. */
  2095. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2096. msleep(10);
  2097. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2098. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2099. break;
  2100. }
  2101. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2102. return 0;
  2103. /* If we timed out, inform the firmware that this is the case. */
  2104. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2105. if (!silent)
  2106. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2107. msg_data &= ~BNX2_DRV_MSG_CODE;
  2108. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2109. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2110. return -EBUSY;
  2111. }
  2112. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2113. return -EIO;
  2114. return 0;
  2115. }
  2116. static int
  2117. bnx2_init_5709_context(struct bnx2 *bp)
  2118. {
  2119. int i, ret = 0;
  2120. u32 val;
  2121. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2122. val |= (BCM_PAGE_BITS - 8) << 16;
  2123. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2124. for (i = 0; i < 10; i++) {
  2125. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2126. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2127. break;
  2128. udelay(2);
  2129. }
  2130. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2131. return -EBUSY;
  2132. for (i = 0; i < bp->ctx_pages; i++) {
  2133. int j;
  2134. if (bp->ctx_blk[i])
  2135. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2136. else
  2137. return -ENOMEM;
  2138. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2139. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2140. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2141. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2142. (u64) bp->ctx_blk_mapping[i] >> 32);
  2143. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2144. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2145. for (j = 0; j < 10; j++) {
  2146. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2147. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2148. break;
  2149. udelay(5);
  2150. }
  2151. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2152. ret = -EBUSY;
  2153. break;
  2154. }
  2155. }
  2156. return ret;
  2157. }
  2158. static void
  2159. bnx2_init_context(struct bnx2 *bp)
  2160. {
  2161. u32 vcid;
  2162. vcid = 96;
  2163. while (vcid) {
  2164. u32 vcid_addr, pcid_addr, offset;
  2165. int i;
  2166. vcid--;
  2167. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2168. u32 new_vcid;
  2169. vcid_addr = GET_PCID_ADDR(vcid);
  2170. if (vcid & 0x8) {
  2171. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2172. }
  2173. else {
  2174. new_vcid = vcid;
  2175. }
  2176. pcid_addr = GET_PCID_ADDR(new_vcid);
  2177. }
  2178. else {
  2179. vcid_addr = GET_CID_ADDR(vcid);
  2180. pcid_addr = vcid_addr;
  2181. }
  2182. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2183. vcid_addr += (i << PHY_CTX_SHIFT);
  2184. pcid_addr += (i << PHY_CTX_SHIFT);
  2185. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2186. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2187. /* Zero out the context. */
  2188. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2189. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2190. }
  2191. }
  2192. }
  2193. static int
  2194. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2195. {
  2196. u16 *good_mbuf;
  2197. u32 good_mbuf_cnt;
  2198. u32 val;
  2199. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2200. if (good_mbuf == NULL) {
  2201. pr_err("Failed to allocate memory in %s\n", __func__);
  2202. return -ENOMEM;
  2203. }
  2204. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2205. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2206. good_mbuf_cnt = 0;
  2207. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2208. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2209. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2210. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2211. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2212. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2213. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2214. /* The addresses with Bit 9 set are bad memory blocks. */
  2215. if (!(val & (1 << 9))) {
  2216. good_mbuf[good_mbuf_cnt] = (u16) val;
  2217. good_mbuf_cnt++;
  2218. }
  2219. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2220. }
  2221. /* Free the good ones back to the mbuf pool thus discarding
  2222. * all the bad ones. */
  2223. while (good_mbuf_cnt) {
  2224. good_mbuf_cnt--;
  2225. val = good_mbuf[good_mbuf_cnt];
  2226. val = (val << 9) | val | 1;
  2227. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2228. }
  2229. kfree(good_mbuf);
  2230. return 0;
  2231. }
  2232. static void
  2233. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2234. {
  2235. u32 val;
  2236. val = (mac_addr[0] << 8) | mac_addr[1];
  2237. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2238. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2239. (mac_addr[4] << 8) | mac_addr[5];
  2240. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2241. }
  2242. static inline int
  2243. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2244. {
  2245. dma_addr_t mapping;
  2246. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2247. struct rx_bd *rxbd =
  2248. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2249. struct page *page = alloc_page(gfp);
  2250. if (!page)
  2251. return -ENOMEM;
  2252. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2253. PCI_DMA_FROMDEVICE);
  2254. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2255. __free_page(page);
  2256. return -EIO;
  2257. }
  2258. rx_pg->page = page;
  2259. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2260. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2261. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2262. return 0;
  2263. }
  2264. static void
  2265. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2266. {
  2267. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2268. struct page *page = rx_pg->page;
  2269. if (!page)
  2270. return;
  2271. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2272. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2273. __free_page(page);
  2274. rx_pg->page = NULL;
  2275. }
  2276. static inline int
  2277. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2278. {
  2279. struct sk_buff *skb;
  2280. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2281. dma_addr_t mapping;
  2282. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2283. unsigned long align;
  2284. skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
  2285. if (skb == NULL) {
  2286. return -ENOMEM;
  2287. }
  2288. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2289. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2290. mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
  2291. PCI_DMA_FROMDEVICE);
  2292. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2293. dev_kfree_skb(skb);
  2294. return -EIO;
  2295. }
  2296. rx_buf->skb = skb;
  2297. rx_buf->desc = (struct l2_fhdr *) skb->data;
  2298. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2299. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2300. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2301. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2302. return 0;
  2303. }
  2304. static int
  2305. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2306. {
  2307. struct status_block *sblk = bnapi->status_blk.msi;
  2308. u32 new_link_state, old_link_state;
  2309. int is_set = 1;
  2310. new_link_state = sblk->status_attn_bits & event;
  2311. old_link_state = sblk->status_attn_bits_ack & event;
  2312. if (new_link_state != old_link_state) {
  2313. if (new_link_state)
  2314. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2315. else
  2316. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2317. } else
  2318. is_set = 0;
  2319. return is_set;
  2320. }
  2321. static void
  2322. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2323. {
  2324. spin_lock(&bp->phy_lock);
  2325. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2326. bnx2_set_link(bp);
  2327. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2328. bnx2_set_remote_link(bp);
  2329. spin_unlock(&bp->phy_lock);
  2330. }
  2331. static inline u16
  2332. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2333. {
  2334. u16 cons;
  2335. /* Tell compiler that status block fields can change. */
  2336. barrier();
  2337. cons = *bnapi->hw_tx_cons_ptr;
  2338. barrier();
  2339. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2340. cons++;
  2341. return cons;
  2342. }
  2343. static int
  2344. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2345. {
  2346. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2347. u16 hw_cons, sw_cons, sw_ring_cons;
  2348. int tx_pkt = 0, index;
  2349. struct netdev_queue *txq;
  2350. index = (bnapi - bp->bnx2_napi);
  2351. txq = netdev_get_tx_queue(bp->dev, index);
  2352. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2353. sw_cons = txr->tx_cons;
  2354. while (sw_cons != hw_cons) {
  2355. struct sw_tx_bd *tx_buf;
  2356. struct sk_buff *skb;
  2357. int i, last;
  2358. sw_ring_cons = TX_RING_IDX(sw_cons);
  2359. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2360. skb = tx_buf->skb;
  2361. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2362. prefetch(&skb->end);
  2363. /* partial BD completions possible with TSO packets */
  2364. if (tx_buf->is_gso) {
  2365. u16 last_idx, last_ring_idx;
  2366. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2367. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2368. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2369. last_idx++;
  2370. }
  2371. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2372. break;
  2373. }
  2374. }
  2375. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2376. skb_headlen(skb), PCI_DMA_TODEVICE);
  2377. tx_buf->skb = NULL;
  2378. last = tx_buf->nr_frags;
  2379. for (i = 0; i < last; i++) {
  2380. sw_cons = NEXT_TX_BD(sw_cons);
  2381. dma_unmap_page(&bp->pdev->dev,
  2382. dma_unmap_addr(
  2383. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2384. mapping),
  2385. skb_shinfo(skb)->frags[i].size,
  2386. PCI_DMA_TODEVICE);
  2387. }
  2388. sw_cons = NEXT_TX_BD(sw_cons);
  2389. dev_kfree_skb(skb);
  2390. tx_pkt++;
  2391. if (tx_pkt == budget)
  2392. break;
  2393. if (hw_cons == sw_cons)
  2394. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2395. }
  2396. txr->hw_tx_cons = hw_cons;
  2397. txr->tx_cons = sw_cons;
  2398. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2399. * before checking for netif_tx_queue_stopped(). Without the
  2400. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2401. * will miss it and cause the queue to be stopped forever.
  2402. */
  2403. smp_mb();
  2404. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2405. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2406. __netif_tx_lock(txq, smp_processor_id());
  2407. if ((netif_tx_queue_stopped(txq)) &&
  2408. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2409. netif_tx_wake_queue(txq);
  2410. __netif_tx_unlock(txq);
  2411. }
  2412. return tx_pkt;
  2413. }
  2414. static void
  2415. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2416. struct sk_buff *skb, int count)
  2417. {
  2418. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2419. struct rx_bd *cons_bd, *prod_bd;
  2420. int i;
  2421. u16 hw_prod, prod;
  2422. u16 cons = rxr->rx_pg_cons;
  2423. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2424. /* The caller was unable to allocate a new page to replace the
  2425. * last one in the frags array, so we need to recycle that page
  2426. * and then free the skb.
  2427. */
  2428. if (skb) {
  2429. struct page *page;
  2430. struct skb_shared_info *shinfo;
  2431. shinfo = skb_shinfo(skb);
  2432. shinfo->nr_frags--;
  2433. page = shinfo->frags[shinfo->nr_frags].page;
  2434. shinfo->frags[shinfo->nr_frags].page = NULL;
  2435. cons_rx_pg->page = page;
  2436. dev_kfree_skb(skb);
  2437. }
  2438. hw_prod = rxr->rx_pg_prod;
  2439. for (i = 0; i < count; i++) {
  2440. prod = RX_PG_RING_IDX(hw_prod);
  2441. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2442. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2443. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2444. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2445. if (prod != cons) {
  2446. prod_rx_pg->page = cons_rx_pg->page;
  2447. cons_rx_pg->page = NULL;
  2448. dma_unmap_addr_set(prod_rx_pg, mapping,
  2449. dma_unmap_addr(cons_rx_pg, mapping));
  2450. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2451. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2452. }
  2453. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2454. hw_prod = NEXT_RX_BD(hw_prod);
  2455. }
  2456. rxr->rx_pg_prod = hw_prod;
  2457. rxr->rx_pg_cons = cons;
  2458. }
  2459. static inline void
  2460. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2461. struct sk_buff *skb, u16 cons, u16 prod)
  2462. {
  2463. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2464. struct rx_bd *cons_bd, *prod_bd;
  2465. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2466. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2467. dma_sync_single_for_device(&bp->pdev->dev,
  2468. dma_unmap_addr(cons_rx_buf, mapping),
  2469. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2470. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2471. prod_rx_buf->skb = skb;
  2472. prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
  2473. if (cons == prod)
  2474. return;
  2475. dma_unmap_addr_set(prod_rx_buf, mapping,
  2476. dma_unmap_addr(cons_rx_buf, mapping));
  2477. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2478. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2479. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2480. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2481. }
  2482. static int
  2483. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2484. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2485. u32 ring_idx)
  2486. {
  2487. int err;
  2488. u16 prod = ring_idx & 0xffff;
  2489. err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
  2490. if (unlikely(err)) {
  2491. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2492. if (hdr_len) {
  2493. unsigned int raw_len = len + 4;
  2494. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2495. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2496. }
  2497. return err;
  2498. }
  2499. skb_reserve(skb, BNX2_RX_OFFSET);
  2500. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2501. PCI_DMA_FROMDEVICE);
  2502. if (hdr_len == 0) {
  2503. skb_put(skb, len);
  2504. return 0;
  2505. } else {
  2506. unsigned int i, frag_len, frag_size, pages;
  2507. struct sw_pg *rx_pg;
  2508. u16 pg_cons = rxr->rx_pg_cons;
  2509. u16 pg_prod = rxr->rx_pg_prod;
  2510. frag_size = len + 4 - hdr_len;
  2511. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2512. skb_put(skb, hdr_len);
  2513. for (i = 0; i < pages; i++) {
  2514. dma_addr_t mapping_old;
  2515. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2516. if (unlikely(frag_len <= 4)) {
  2517. unsigned int tail = 4 - frag_len;
  2518. rxr->rx_pg_cons = pg_cons;
  2519. rxr->rx_pg_prod = pg_prod;
  2520. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2521. pages - i);
  2522. skb->len -= tail;
  2523. if (i == 0) {
  2524. skb->tail -= tail;
  2525. } else {
  2526. skb_frag_t *frag =
  2527. &skb_shinfo(skb)->frags[i - 1];
  2528. frag->size -= tail;
  2529. skb->data_len -= tail;
  2530. skb->truesize -= tail;
  2531. }
  2532. return 0;
  2533. }
  2534. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2535. /* Don't unmap yet. If we're unable to allocate a new
  2536. * page, we need to recycle the page and the DMA addr.
  2537. */
  2538. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2539. if (i == pages - 1)
  2540. frag_len -= 4;
  2541. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2542. rx_pg->page = NULL;
  2543. err = bnx2_alloc_rx_page(bp, rxr,
  2544. RX_PG_RING_IDX(pg_prod),
  2545. GFP_ATOMIC);
  2546. if (unlikely(err)) {
  2547. rxr->rx_pg_cons = pg_cons;
  2548. rxr->rx_pg_prod = pg_prod;
  2549. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2550. pages - i);
  2551. return err;
  2552. }
  2553. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2554. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2555. frag_size -= frag_len;
  2556. skb->data_len += frag_len;
  2557. skb->truesize += frag_len;
  2558. skb->len += frag_len;
  2559. pg_prod = NEXT_RX_BD(pg_prod);
  2560. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2561. }
  2562. rxr->rx_pg_prod = pg_prod;
  2563. rxr->rx_pg_cons = pg_cons;
  2564. }
  2565. return 0;
  2566. }
  2567. static inline u16
  2568. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2569. {
  2570. u16 cons;
  2571. /* Tell compiler that status block fields can change. */
  2572. barrier();
  2573. cons = *bnapi->hw_rx_cons_ptr;
  2574. barrier();
  2575. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2576. cons++;
  2577. return cons;
  2578. }
  2579. static int
  2580. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2581. {
  2582. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2583. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2584. struct l2_fhdr *rx_hdr;
  2585. int rx_pkt = 0, pg_ring_used = 0;
  2586. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2587. sw_cons = rxr->rx_cons;
  2588. sw_prod = rxr->rx_prod;
  2589. /* Memory barrier necessary as speculative reads of the rx
  2590. * buffer can be ahead of the index in the status block
  2591. */
  2592. rmb();
  2593. while (sw_cons != hw_cons) {
  2594. unsigned int len, hdr_len;
  2595. u32 status;
  2596. struct sw_bd *rx_buf, *next_rx_buf;
  2597. struct sk_buff *skb;
  2598. dma_addr_t dma_addr;
  2599. u16 vtag = 0;
  2600. int hw_vlan __maybe_unused = 0;
  2601. sw_ring_cons = RX_RING_IDX(sw_cons);
  2602. sw_ring_prod = RX_RING_IDX(sw_prod);
  2603. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2604. skb = rx_buf->skb;
  2605. prefetchw(skb);
  2606. next_rx_buf =
  2607. &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
  2608. prefetch(next_rx_buf->desc);
  2609. rx_buf->skb = NULL;
  2610. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2611. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2612. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2613. PCI_DMA_FROMDEVICE);
  2614. rx_hdr = rx_buf->desc;
  2615. len = rx_hdr->l2_fhdr_pkt_len;
  2616. status = rx_hdr->l2_fhdr_status;
  2617. hdr_len = 0;
  2618. if (status & L2_FHDR_STATUS_SPLIT) {
  2619. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2620. pg_ring_used = 1;
  2621. } else if (len > bp->rx_jumbo_thresh) {
  2622. hdr_len = bp->rx_jumbo_thresh;
  2623. pg_ring_used = 1;
  2624. }
  2625. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2626. L2_FHDR_ERRORS_PHY_DECODE |
  2627. L2_FHDR_ERRORS_ALIGNMENT |
  2628. L2_FHDR_ERRORS_TOO_SHORT |
  2629. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2630. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2631. sw_ring_prod);
  2632. if (pg_ring_used) {
  2633. int pages;
  2634. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2635. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2636. }
  2637. goto next_rx;
  2638. }
  2639. len -= 4;
  2640. if (len <= bp->rx_copy_thresh) {
  2641. struct sk_buff *new_skb;
  2642. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2643. if (new_skb == NULL) {
  2644. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2645. sw_ring_prod);
  2646. goto next_rx;
  2647. }
  2648. /* aligned copy */
  2649. skb_copy_from_linear_data_offset(skb,
  2650. BNX2_RX_OFFSET - 6,
  2651. new_skb->data, len + 6);
  2652. skb_reserve(new_skb, 6);
  2653. skb_put(new_skb, len);
  2654. bnx2_reuse_rx_skb(bp, rxr, skb,
  2655. sw_ring_cons, sw_ring_prod);
  2656. skb = new_skb;
  2657. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2658. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2659. goto next_rx;
  2660. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2661. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2662. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2663. #ifdef BCM_VLAN
  2664. if (bp->vlgrp)
  2665. hw_vlan = 1;
  2666. else
  2667. #endif
  2668. {
  2669. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2670. __skb_push(skb, 4);
  2671. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2672. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2673. ve->h_vlan_TCI = htons(vtag);
  2674. len += 4;
  2675. }
  2676. }
  2677. skb->protocol = eth_type_trans(skb, bp->dev);
  2678. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2679. (ntohs(skb->protocol) != 0x8100)) {
  2680. dev_kfree_skb(skb);
  2681. goto next_rx;
  2682. }
  2683. skb->ip_summed = CHECKSUM_NONE;
  2684. if (bp->rx_csum &&
  2685. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2686. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2687. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2688. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2689. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2690. }
  2691. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2692. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2693. L2_FHDR_STATUS_USE_RXHASH))
  2694. skb->rxhash = rx_hdr->l2_fhdr_hash;
  2695. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2696. #ifdef BCM_VLAN
  2697. if (hw_vlan)
  2698. vlan_gro_receive(&bnapi->napi, bp->vlgrp, vtag, skb);
  2699. else
  2700. #endif
  2701. napi_gro_receive(&bnapi->napi, skb);
  2702. rx_pkt++;
  2703. next_rx:
  2704. sw_cons = NEXT_RX_BD(sw_cons);
  2705. sw_prod = NEXT_RX_BD(sw_prod);
  2706. if ((rx_pkt == budget))
  2707. break;
  2708. /* Refresh hw_cons to see if there is new work */
  2709. if (sw_cons == hw_cons) {
  2710. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2711. rmb();
  2712. }
  2713. }
  2714. rxr->rx_cons = sw_cons;
  2715. rxr->rx_prod = sw_prod;
  2716. if (pg_ring_used)
  2717. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2718. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2719. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2720. mmiowb();
  2721. return rx_pkt;
  2722. }
  2723. /* MSI ISR - The only difference between this and the INTx ISR
  2724. * is that the MSI interrupt is always serviced.
  2725. */
  2726. static irqreturn_t
  2727. bnx2_msi(int irq, void *dev_instance)
  2728. {
  2729. struct bnx2_napi *bnapi = dev_instance;
  2730. struct bnx2 *bp = bnapi->bp;
  2731. prefetch(bnapi->status_blk.msi);
  2732. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2733. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2734. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2735. /* Return here if interrupt is disabled. */
  2736. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2737. return IRQ_HANDLED;
  2738. napi_schedule(&bnapi->napi);
  2739. return IRQ_HANDLED;
  2740. }
  2741. static irqreturn_t
  2742. bnx2_msi_1shot(int irq, void *dev_instance)
  2743. {
  2744. struct bnx2_napi *bnapi = dev_instance;
  2745. struct bnx2 *bp = bnapi->bp;
  2746. prefetch(bnapi->status_blk.msi);
  2747. /* Return here if interrupt is disabled. */
  2748. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2749. return IRQ_HANDLED;
  2750. napi_schedule(&bnapi->napi);
  2751. return IRQ_HANDLED;
  2752. }
  2753. static irqreturn_t
  2754. bnx2_interrupt(int irq, void *dev_instance)
  2755. {
  2756. struct bnx2_napi *bnapi = dev_instance;
  2757. struct bnx2 *bp = bnapi->bp;
  2758. struct status_block *sblk = bnapi->status_blk.msi;
  2759. /* When using INTx, it is possible for the interrupt to arrive
  2760. * at the CPU before the status block posted prior to the
  2761. * interrupt. Reading a register will flush the status block.
  2762. * When using MSI, the MSI message will always complete after
  2763. * the status block write.
  2764. */
  2765. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2766. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2767. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2768. return IRQ_NONE;
  2769. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2770. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2771. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2772. /* Read back to deassert IRQ immediately to avoid too many
  2773. * spurious interrupts.
  2774. */
  2775. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2776. /* Return here if interrupt is shared and is disabled. */
  2777. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2778. return IRQ_HANDLED;
  2779. if (napi_schedule_prep(&bnapi->napi)) {
  2780. bnapi->last_status_idx = sblk->status_idx;
  2781. __napi_schedule(&bnapi->napi);
  2782. }
  2783. return IRQ_HANDLED;
  2784. }
  2785. static inline int
  2786. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2787. {
  2788. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2789. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2790. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2791. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2792. return 1;
  2793. return 0;
  2794. }
  2795. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2796. STATUS_ATTN_BITS_TIMER_ABORT)
  2797. static inline int
  2798. bnx2_has_work(struct bnx2_napi *bnapi)
  2799. {
  2800. struct status_block *sblk = bnapi->status_blk.msi;
  2801. if (bnx2_has_fast_work(bnapi))
  2802. return 1;
  2803. #ifdef BCM_CNIC
  2804. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2805. return 1;
  2806. #endif
  2807. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2808. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2809. return 1;
  2810. return 0;
  2811. }
  2812. static void
  2813. bnx2_chk_missed_msi(struct bnx2 *bp)
  2814. {
  2815. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2816. u32 msi_ctrl;
  2817. if (bnx2_has_work(bnapi)) {
  2818. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2819. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2820. return;
  2821. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2822. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2823. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2824. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2825. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2826. }
  2827. }
  2828. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2829. }
  2830. #ifdef BCM_CNIC
  2831. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2832. {
  2833. struct cnic_ops *c_ops;
  2834. if (!bnapi->cnic_present)
  2835. return;
  2836. rcu_read_lock();
  2837. c_ops = rcu_dereference(bp->cnic_ops);
  2838. if (c_ops)
  2839. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2840. bnapi->status_blk.msi);
  2841. rcu_read_unlock();
  2842. }
  2843. #endif
  2844. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2845. {
  2846. struct status_block *sblk = bnapi->status_blk.msi;
  2847. u32 status_attn_bits = sblk->status_attn_bits;
  2848. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2849. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2850. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2851. bnx2_phy_int(bp, bnapi);
  2852. /* This is needed to take care of transient status
  2853. * during link changes.
  2854. */
  2855. REG_WR(bp, BNX2_HC_COMMAND,
  2856. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2857. REG_RD(bp, BNX2_HC_COMMAND);
  2858. }
  2859. }
  2860. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2861. int work_done, int budget)
  2862. {
  2863. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2864. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2865. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2866. bnx2_tx_int(bp, bnapi, 0);
  2867. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2868. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2869. return work_done;
  2870. }
  2871. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2872. {
  2873. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2874. struct bnx2 *bp = bnapi->bp;
  2875. int work_done = 0;
  2876. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2877. while (1) {
  2878. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2879. if (unlikely(work_done >= budget))
  2880. break;
  2881. bnapi->last_status_idx = sblk->status_idx;
  2882. /* status idx must be read before checking for more work. */
  2883. rmb();
  2884. if (likely(!bnx2_has_fast_work(bnapi))) {
  2885. napi_complete(napi);
  2886. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2887. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2888. bnapi->last_status_idx);
  2889. break;
  2890. }
  2891. }
  2892. return work_done;
  2893. }
  2894. static int bnx2_poll(struct napi_struct *napi, int budget)
  2895. {
  2896. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2897. struct bnx2 *bp = bnapi->bp;
  2898. int work_done = 0;
  2899. struct status_block *sblk = bnapi->status_blk.msi;
  2900. while (1) {
  2901. bnx2_poll_link(bp, bnapi);
  2902. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2903. #ifdef BCM_CNIC
  2904. bnx2_poll_cnic(bp, bnapi);
  2905. #endif
  2906. /* bnapi->last_status_idx is used below to tell the hw how
  2907. * much work has been processed, so we must read it before
  2908. * checking for more work.
  2909. */
  2910. bnapi->last_status_idx = sblk->status_idx;
  2911. if (unlikely(work_done >= budget))
  2912. break;
  2913. rmb();
  2914. if (likely(!bnx2_has_work(bnapi))) {
  2915. napi_complete(napi);
  2916. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2917. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2918. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2919. bnapi->last_status_idx);
  2920. break;
  2921. }
  2922. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2923. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2924. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2925. bnapi->last_status_idx);
  2926. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2927. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2928. bnapi->last_status_idx);
  2929. break;
  2930. }
  2931. }
  2932. return work_done;
  2933. }
  2934. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2935. * from set_multicast.
  2936. */
  2937. static void
  2938. bnx2_set_rx_mode(struct net_device *dev)
  2939. {
  2940. struct bnx2 *bp = netdev_priv(dev);
  2941. u32 rx_mode, sort_mode;
  2942. struct netdev_hw_addr *ha;
  2943. int i;
  2944. if (!netif_running(dev))
  2945. return;
  2946. spin_lock_bh(&bp->phy_lock);
  2947. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2948. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2949. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2950. #ifdef BCM_VLAN
  2951. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2952. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2953. #else
  2954. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2955. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2956. #endif
  2957. if (dev->flags & IFF_PROMISC) {
  2958. /* Promiscuous mode. */
  2959. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2960. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2961. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2962. }
  2963. else if (dev->flags & IFF_ALLMULTI) {
  2964. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2965. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2966. 0xffffffff);
  2967. }
  2968. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2969. }
  2970. else {
  2971. /* Accept one or more multicast(s). */
  2972. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2973. u32 regidx;
  2974. u32 bit;
  2975. u32 crc;
  2976. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2977. netdev_for_each_mc_addr(ha, dev) {
  2978. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2979. bit = crc & 0xff;
  2980. regidx = (bit & 0xe0) >> 5;
  2981. bit &= 0x1f;
  2982. mc_filter[regidx] |= (1 << bit);
  2983. }
  2984. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2985. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2986. mc_filter[i]);
  2987. }
  2988. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2989. }
  2990. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2991. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2992. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2993. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2994. } else if (!(dev->flags & IFF_PROMISC)) {
  2995. /* Add all entries into to the match filter list */
  2996. i = 0;
  2997. netdev_for_each_uc_addr(ha, dev) {
  2998. bnx2_set_mac_addr(bp, ha->addr,
  2999. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  3000. sort_mode |= (1 <<
  3001. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3002. i++;
  3003. }
  3004. }
  3005. if (rx_mode != bp->rx_mode) {
  3006. bp->rx_mode = rx_mode;
  3007. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3008. }
  3009. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3010. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3011. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3012. spin_unlock_bh(&bp->phy_lock);
  3013. }
  3014. static int __devinit
  3015. check_fw_section(const struct firmware *fw,
  3016. const struct bnx2_fw_file_section *section,
  3017. u32 alignment, bool non_empty)
  3018. {
  3019. u32 offset = be32_to_cpu(section->offset);
  3020. u32 len = be32_to_cpu(section->len);
  3021. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3022. return -EINVAL;
  3023. if ((non_empty && len == 0) || len > fw->size - offset ||
  3024. len & (alignment - 1))
  3025. return -EINVAL;
  3026. return 0;
  3027. }
  3028. static int __devinit
  3029. check_mips_fw_entry(const struct firmware *fw,
  3030. const struct bnx2_mips_fw_file_entry *entry)
  3031. {
  3032. if (check_fw_section(fw, &entry->text, 4, true) ||
  3033. check_fw_section(fw, &entry->data, 4, false) ||
  3034. check_fw_section(fw, &entry->rodata, 4, false))
  3035. return -EINVAL;
  3036. return 0;
  3037. }
  3038. static int __devinit
  3039. bnx2_request_firmware(struct bnx2 *bp)
  3040. {
  3041. const char *mips_fw_file, *rv2p_fw_file;
  3042. const struct bnx2_mips_fw_file *mips_fw;
  3043. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3044. int rc;
  3045. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3046. mips_fw_file = FW_MIPS_FILE_09;
  3047. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3048. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3049. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3050. else
  3051. rv2p_fw_file = FW_RV2P_FILE_09;
  3052. } else {
  3053. mips_fw_file = FW_MIPS_FILE_06;
  3054. rv2p_fw_file = FW_RV2P_FILE_06;
  3055. }
  3056. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3057. if (rc) {
  3058. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3059. return rc;
  3060. }
  3061. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3062. if (rc) {
  3063. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3064. return rc;
  3065. }
  3066. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3067. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3068. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3069. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3070. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3071. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3072. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3073. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3074. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3075. return -EINVAL;
  3076. }
  3077. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3078. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3079. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3080. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3081. return -EINVAL;
  3082. }
  3083. return 0;
  3084. }
  3085. static u32
  3086. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3087. {
  3088. switch (idx) {
  3089. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3090. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3091. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3092. break;
  3093. }
  3094. return rv2p_code;
  3095. }
  3096. static int
  3097. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3098. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3099. {
  3100. u32 rv2p_code_len, file_offset;
  3101. __be32 *rv2p_code;
  3102. int i;
  3103. u32 val, cmd, addr;
  3104. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3105. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3106. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3107. if (rv2p_proc == RV2P_PROC1) {
  3108. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3109. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3110. } else {
  3111. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3112. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3113. }
  3114. for (i = 0; i < rv2p_code_len; i += 8) {
  3115. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3116. rv2p_code++;
  3117. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3118. rv2p_code++;
  3119. val = (i / 8) | cmd;
  3120. REG_WR(bp, addr, val);
  3121. }
  3122. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3123. for (i = 0; i < 8; i++) {
  3124. u32 loc, code;
  3125. loc = be32_to_cpu(fw_entry->fixup[i]);
  3126. if (loc && ((loc * 4) < rv2p_code_len)) {
  3127. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3128. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3129. code = be32_to_cpu(*(rv2p_code + loc));
  3130. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3131. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3132. val = (loc / 2) | cmd;
  3133. REG_WR(bp, addr, val);
  3134. }
  3135. }
  3136. /* Reset the processor, un-stall is done later. */
  3137. if (rv2p_proc == RV2P_PROC1) {
  3138. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3139. }
  3140. else {
  3141. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3142. }
  3143. return 0;
  3144. }
  3145. static int
  3146. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3147. const struct bnx2_mips_fw_file_entry *fw_entry)
  3148. {
  3149. u32 addr, len, file_offset;
  3150. __be32 *data;
  3151. u32 offset;
  3152. u32 val;
  3153. /* Halt the CPU. */
  3154. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3155. val |= cpu_reg->mode_value_halt;
  3156. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3157. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3158. /* Load the Text area. */
  3159. addr = be32_to_cpu(fw_entry->text.addr);
  3160. len = be32_to_cpu(fw_entry->text.len);
  3161. file_offset = be32_to_cpu(fw_entry->text.offset);
  3162. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3163. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3164. if (len) {
  3165. int j;
  3166. for (j = 0; j < (len / 4); j++, offset += 4)
  3167. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3168. }
  3169. /* Load the Data area. */
  3170. addr = be32_to_cpu(fw_entry->data.addr);
  3171. len = be32_to_cpu(fw_entry->data.len);
  3172. file_offset = be32_to_cpu(fw_entry->data.offset);
  3173. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3174. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3175. if (len) {
  3176. int j;
  3177. for (j = 0; j < (len / 4); j++, offset += 4)
  3178. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3179. }
  3180. /* Load the Read-Only area. */
  3181. addr = be32_to_cpu(fw_entry->rodata.addr);
  3182. len = be32_to_cpu(fw_entry->rodata.len);
  3183. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3184. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3185. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3186. if (len) {
  3187. int j;
  3188. for (j = 0; j < (len / 4); j++, offset += 4)
  3189. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3190. }
  3191. /* Clear the pre-fetch instruction. */
  3192. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3193. val = be32_to_cpu(fw_entry->start_addr);
  3194. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3195. /* Start the CPU. */
  3196. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3197. val &= ~cpu_reg->mode_value_halt;
  3198. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3199. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3200. return 0;
  3201. }
  3202. static int
  3203. bnx2_init_cpus(struct bnx2 *bp)
  3204. {
  3205. const struct bnx2_mips_fw_file *mips_fw =
  3206. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3207. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3208. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3209. int rc;
  3210. /* Initialize the RV2P processor. */
  3211. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3212. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3213. /* Initialize the RX Processor. */
  3214. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3215. if (rc)
  3216. goto init_cpu_err;
  3217. /* Initialize the TX Processor. */
  3218. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3219. if (rc)
  3220. goto init_cpu_err;
  3221. /* Initialize the TX Patch-up Processor. */
  3222. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3223. if (rc)
  3224. goto init_cpu_err;
  3225. /* Initialize the Completion Processor. */
  3226. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3227. if (rc)
  3228. goto init_cpu_err;
  3229. /* Initialize the Command Processor. */
  3230. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3231. init_cpu_err:
  3232. return rc;
  3233. }
  3234. static int
  3235. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3236. {
  3237. u16 pmcsr;
  3238. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3239. switch (state) {
  3240. case PCI_D0: {
  3241. u32 val;
  3242. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3243. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3244. PCI_PM_CTRL_PME_STATUS);
  3245. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3246. /* delay required during transition out of D3hot */
  3247. msleep(20);
  3248. val = REG_RD(bp, BNX2_EMAC_MODE);
  3249. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3250. val &= ~BNX2_EMAC_MODE_MPKT;
  3251. REG_WR(bp, BNX2_EMAC_MODE, val);
  3252. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3253. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3254. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3255. break;
  3256. }
  3257. case PCI_D3hot: {
  3258. int i;
  3259. u32 val, wol_msg;
  3260. if (bp->wol) {
  3261. u32 advertising;
  3262. u8 autoneg;
  3263. autoneg = bp->autoneg;
  3264. advertising = bp->advertising;
  3265. if (bp->phy_port == PORT_TP) {
  3266. bp->autoneg = AUTONEG_SPEED;
  3267. bp->advertising = ADVERTISED_10baseT_Half |
  3268. ADVERTISED_10baseT_Full |
  3269. ADVERTISED_100baseT_Half |
  3270. ADVERTISED_100baseT_Full |
  3271. ADVERTISED_Autoneg;
  3272. }
  3273. spin_lock_bh(&bp->phy_lock);
  3274. bnx2_setup_phy(bp, bp->phy_port);
  3275. spin_unlock_bh(&bp->phy_lock);
  3276. bp->autoneg = autoneg;
  3277. bp->advertising = advertising;
  3278. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3279. val = REG_RD(bp, BNX2_EMAC_MODE);
  3280. /* Enable port mode. */
  3281. val &= ~BNX2_EMAC_MODE_PORT;
  3282. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3283. BNX2_EMAC_MODE_ACPI_RCVD |
  3284. BNX2_EMAC_MODE_MPKT;
  3285. if (bp->phy_port == PORT_TP)
  3286. val |= BNX2_EMAC_MODE_PORT_MII;
  3287. else {
  3288. val |= BNX2_EMAC_MODE_PORT_GMII;
  3289. if (bp->line_speed == SPEED_2500)
  3290. val |= BNX2_EMAC_MODE_25G_MODE;
  3291. }
  3292. REG_WR(bp, BNX2_EMAC_MODE, val);
  3293. /* receive all multicast */
  3294. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3295. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3296. 0xffffffff);
  3297. }
  3298. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3299. BNX2_EMAC_RX_MODE_SORT_MODE);
  3300. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3301. BNX2_RPM_SORT_USER0_MC_EN;
  3302. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3303. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3304. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3305. BNX2_RPM_SORT_USER0_ENA);
  3306. /* Need to enable EMAC and RPM for WOL. */
  3307. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3308. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3309. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3310. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3311. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3312. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3313. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3314. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3315. }
  3316. else {
  3317. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3318. }
  3319. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3320. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3321. 1, 0);
  3322. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3323. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3324. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3325. if (bp->wol)
  3326. pmcsr |= 3;
  3327. }
  3328. else {
  3329. pmcsr |= 3;
  3330. }
  3331. if (bp->wol) {
  3332. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3333. }
  3334. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3335. pmcsr);
  3336. /* No more memory access after this point until
  3337. * device is brought back to D0.
  3338. */
  3339. udelay(50);
  3340. break;
  3341. }
  3342. default:
  3343. return -EINVAL;
  3344. }
  3345. return 0;
  3346. }
  3347. static int
  3348. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3349. {
  3350. u32 val;
  3351. int j;
  3352. /* Request access to the flash interface. */
  3353. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3354. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3355. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3356. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3357. break;
  3358. udelay(5);
  3359. }
  3360. if (j >= NVRAM_TIMEOUT_COUNT)
  3361. return -EBUSY;
  3362. return 0;
  3363. }
  3364. static int
  3365. bnx2_release_nvram_lock(struct bnx2 *bp)
  3366. {
  3367. int j;
  3368. u32 val;
  3369. /* Relinquish nvram interface. */
  3370. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3371. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3372. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3373. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3374. break;
  3375. udelay(5);
  3376. }
  3377. if (j >= NVRAM_TIMEOUT_COUNT)
  3378. return -EBUSY;
  3379. return 0;
  3380. }
  3381. static int
  3382. bnx2_enable_nvram_write(struct bnx2 *bp)
  3383. {
  3384. u32 val;
  3385. val = REG_RD(bp, BNX2_MISC_CFG);
  3386. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3387. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3388. int j;
  3389. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3390. REG_WR(bp, BNX2_NVM_COMMAND,
  3391. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3392. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3393. udelay(5);
  3394. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3395. if (val & BNX2_NVM_COMMAND_DONE)
  3396. break;
  3397. }
  3398. if (j >= NVRAM_TIMEOUT_COUNT)
  3399. return -EBUSY;
  3400. }
  3401. return 0;
  3402. }
  3403. static void
  3404. bnx2_disable_nvram_write(struct bnx2 *bp)
  3405. {
  3406. u32 val;
  3407. val = REG_RD(bp, BNX2_MISC_CFG);
  3408. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3409. }
  3410. static void
  3411. bnx2_enable_nvram_access(struct bnx2 *bp)
  3412. {
  3413. u32 val;
  3414. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3415. /* Enable both bits, even on read. */
  3416. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3417. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3418. }
  3419. static void
  3420. bnx2_disable_nvram_access(struct bnx2 *bp)
  3421. {
  3422. u32 val;
  3423. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3424. /* Disable both bits, even after read. */
  3425. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3426. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3427. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3428. }
  3429. static int
  3430. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3431. {
  3432. u32 cmd;
  3433. int j;
  3434. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3435. /* Buffered flash, no erase needed */
  3436. return 0;
  3437. /* Build an erase command */
  3438. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3439. BNX2_NVM_COMMAND_DOIT;
  3440. /* Need to clear DONE bit separately. */
  3441. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3442. /* Address of the NVRAM to read from. */
  3443. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3444. /* Issue an erase command. */
  3445. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3446. /* Wait for completion. */
  3447. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3448. u32 val;
  3449. udelay(5);
  3450. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3451. if (val & BNX2_NVM_COMMAND_DONE)
  3452. break;
  3453. }
  3454. if (j >= NVRAM_TIMEOUT_COUNT)
  3455. return -EBUSY;
  3456. return 0;
  3457. }
  3458. static int
  3459. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3460. {
  3461. u32 cmd;
  3462. int j;
  3463. /* Build the command word. */
  3464. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3465. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3466. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3467. offset = ((offset / bp->flash_info->page_size) <<
  3468. bp->flash_info->page_bits) +
  3469. (offset % bp->flash_info->page_size);
  3470. }
  3471. /* Need to clear DONE bit separately. */
  3472. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3473. /* Address of the NVRAM to read from. */
  3474. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3475. /* Issue a read command. */
  3476. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3477. /* Wait for completion. */
  3478. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3479. u32 val;
  3480. udelay(5);
  3481. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3482. if (val & BNX2_NVM_COMMAND_DONE) {
  3483. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3484. memcpy(ret_val, &v, 4);
  3485. break;
  3486. }
  3487. }
  3488. if (j >= NVRAM_TIMEOUT_COUNT)
  3489. return -EBUSY;
  3490. return 0;
  3491. }
  3492. static int
  3493. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3494. {
  3495. u32 cmd;
  3496. __be32 val32;
  3497. int j;
  3498. /* Build the command word. */
  3499. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3500. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3501. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3502. offset = ((offset / bp->flash_info->page_size) <<
  3503. bp->flash_info->page_bits) +
  3504. (offset % bp->flash_info->page_size);
  3505. }
  3506. /* Need to clear DONE bit separately. */
  3507. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3508. memcpy(&val32, val, 4);
  3509. /* Write the data. */
  3510. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3511. /* Address of the NVRAM to write to. */
  3512. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3513. /* Issue the write command. */
  3514. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3515. /* Wait for completion. */
  3516. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3517. udelay(5);
  3518. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3519. break;
  3520. }
  3521. if (j >= NVRAM_TIMEOUT_COUNT)
  3522. return -EBUSY;
  3523. return 0;
  3524. }
  3525. static int
  3526. bnx2_init_nvram(struct bnx2 *bp)
  3527. {
  3528. u32 val;
  3529. int j, entry_count, rc = 0;
  3530. const struct flash_spec *flash;
  3531. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3532. bp->flash_info = &flash_5709;
  3533. goto get_flash_size;
  3534. }
  3535. /* Determine the selected interface. */
  3536. val = REG_RD(bp, BNX2_NVM_CFG1);
  3537. entry_count = ARRAY_SIZE(flash_table);
  3538. if (val & 0x40000000) {
  3539. /* Flash interface has been reconfigured */
  3540. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3541. j++, flash++) {
  3542. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3543. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3544. bp->flash_info = flash;
  3545. break;
  3546. }
  3547. }
  3548. }
  3549. else {
  3550. u32 mask;
  3551. /* Not yet been reconfigured */
  3552. if (val & (1 << 23))
  3553. mask = FLASH_BACKUP_STRAP_MASK;
  3554. else
  3555. mask = FLASH_STRAP_MASK;
  3556. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3557. j++, flash++) {
  3558. if ((val & mask) == (flash->strapping & mask)) {
  3559. bp->flash_info = flash;
  3560. /* Request access to the flash interface. */
  3561. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3562. return rc;
  3563. /* Enable access to flash interface */
  3564. bnx2_enable_nvram_access(bp);
  3565. /* Reconfigure the flash interface */
  3566. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3567. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3568. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3569. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3570. /* Disable access to flash interface */
  3571. bnx2_disable_nvram_access(bp);
  3572. bnx2_release_nvram_lock(bp);
  3573. break;
  3574. }
  3575. }
  3576. } /* if (val & 0x40000000) */
  3577. if (j == entry_count) {
  3578. bp->flash_info = NULL;
  3579. pr_alert("Unknown flash/EEPROM type\n");
  3580. return -ENODEV;
  3581. }
  3582. get_flash_size:
  3583. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3584. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3585. if (val)
  3586. bp->flash_size = val;
  3587. else
  3588. bp->flash_size = bp->flash_info->total_size;
  3589. return rc;
  3590. }
  3591. static int
  3592. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3593. int buf_size)
  3594. {
  3595. int rc = 0;
  3596. u32 cmd_flags, offset32, len32, extra;
  3597. if (buf_size == 0)
  3598. return 0;
  3599. /* Request access to the flash interface. */
  3600. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3601. return rc;
  3602. /* Enable access to flash interface */
  3603. bnx2_enable_nvram_access(bp);
  3604. len32 = buf_size;
  3605. offset32 = offset;
  3606. extra = 0;
  3607. cmd_flags = 0;
  3608. if (offset32 & 3) {
  3609. u8 buf[4];
  3610. u32 pre_len;
  3611. offset32 &= ~3;
  3612. pre_len = 4 - (offset & 3);
  3613. if (pre_len >= len32) {
  3614. pre_len = len32;
  3615. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3616. BNX2_NVM_COMMAND_LAST;
  3617. }
  3618. else {
  3619. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3620. }
  3621. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3622. if (rc)
  3623. return rc;
  3624. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3625. offset32 += 4;
  3626. ret_buf += pre_len;
  3627. len32 -= pre_len;
  3628. }
  3629. if (len32 & 3) {
  3630. extra = 4 - (len32 & 3);
  3631. len32 = (len32 + 4) & ~3;
  3632. }
  3633. if (len32 == 4) {
  3634. u8 buf[4];
  3635. if (cmd_flags)
  3636. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3637. else
  3638. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3639. BNX2_NVM_COMMAND_LAST;
  3640. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3641. memcpy(ret_buf, buf, 4 - extra);
  3642. }
  3643. else if (len32 > 0) {
  3644. u8 buf[4];
  3645. /* Read the first word. */
  3646. if (cmd_flags)
  3647. cmd_flags = 0;
  3648. else
  3649. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3650. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3651. /* Advance to the next dword. */
  3652. offset32 += 4;
  3653. ret_buf += 4;
  3654. len32 -= 4;
  3655. while (len32 > 4 && rc == 0) {
  3656. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3657. /* Advance to the next dword. */
  3658. offset32 += 4;
  3659. ret_buf += 4;
  3660. len32 -= 4;
  3661. }
  3662. if (rc)
  3663. return rc;
  3664. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3665. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3666. memcpy(ret_buf, buf, 4 - extra);
  3667. }
  3668. /* Disable access to flash interface */
  3669. bnx2_disable_nvram_access(bp);
  3670. bnx2_release_nvram_lock(bp);
  3671. return rc;
  3672. }
  3673. static int
  3674. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3675. int buf_size)
  3676. {
  3677. u32 written, offset32, len32;
  3678. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3679. int rc = 0;
  3680. int align_start, align_end;
  3681. buf = data_buf;
  3682. offset32 = offset;
  3683. len32 = buf_size;
  3684. align_start = align_end = 0;
  3685. if ((align_start = (offset32 & 3))) {
  3686. offset32 &= ~3;
  3687. len32 += align_start;
  3688. if (len32 < 4)
  3689. len32 = 4;
  3690. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3691. return rc;
  3692. }
  3693. if (len32 & 3) {
  3694. align_end = 4 - (len32 & 3);
  3695. len32 += align_end;
  3696. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3697. return rc;
  3698. }
  3699. if (align_start || align_end) {
  3700. align_buf = kmalloc(len32, GFP_KERNEL);
  3701. if (align_buf == NULL)
  3702. return -ENOMEM;
  3703. if (align_start) {
  3704. memcpy(align_buf, start, 4);
  3705. }
  3706. if (align_end) {
  3707. memcpy(align_buf + len32 - 4, end, 4);
  3708. }
  3709. memcpy(align_buf + align_start, data_buf, buf_size);
  3710. buf = align_buf;
  3711. }
  3712. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3713. flash_buffer = kmalloc(264, GFP_KERNEL);
  3714. if (flash_buffer == NULL) {
  3715. rc = -ENOMEM;
  3716. goto nvram_write_end;
  3717. }
  3718. }
  3719. written = 0;
  3720. while ((written < len32) && (rc == 0)) {
  3721. u32 page_start, page_end, data_start, data_end;
  3722. u32 addr, cmd_flags;
  3723. int i;
  3724. /* Find the page_start addr */
  3725. page_start = offset32 + written;
  3726. page_start -= (page_start % bp->flash_info->page_size);
  3727. /* Find the page_end addr */
  3728. page_end = page_start + bp->flash_info->page_size;
  3729. /* Find the data_start addr */
  3730. data_start = (written == 0) ? offset32 : page_start;
  3731. /* Find the data_end addr */
  3732. data_end = (page_end > offset32 + len32) ?
  3733. (offset32 + len32) : page_end;
  3734. /* Request access to the flash interface. */
  3735. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3736. goto nvram_write_end;
  3737. /* Enable access to flash interface */
  3738. bnx2_enable_nvram_access(bp);
  3739. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3740. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3741. int j;
  3742. /* Read the whole page into the buffer
  3743. * (non-buffer flash only) */
  3744. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3745. if (j == (bp->flash_info->page_size - 4)) {
  3746. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3747. }
  3748. rc = bnx2_nvram_read_dword(bp,
  3749. page_start + j,
  3750. &flash_buffer[j],
  3751. cmd_flags);
  3752. if (rc)
  3753. goto nvram_write_end;
  3754. cmd_flags = 0;
  3755. }
  3756. }
  3757. /* Enable writes to flash interface (unlock write-protect) */
  3758. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3759. goto nvram_write_end;
  3760. /* Loop to write back the buffer data from page_start to
  3761. * data_start */
  3762. i = 0;
  3763. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3764. /* Erase the page */
  3765. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3766. goto nvram_write_end;
  3767. /* Re-enable the write again for the actual write */
  3768. bnx2_enable_nvram_write(bp);
  3769. for (addr = page_start; addr < data_start;
  3770. addr += 4, i += 4) {
  3771. rc = bnx2_nvram_write_dword(bp, addr,
  3772. &flash_buffer[i], cmd_flags);
  3773. if (rc != 0)
  3774. goto nvram_write_end;
  3775. cmd_flags = 0;
  3776. }
  3777. }
  3778. /* Loop to write the new data from data_start to data_end */
  3779. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3780. if ((addr == page_end - 4) ||
  3781. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3782. (addr == data_end - 4))) {
  3783. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3784. }
  3785. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3786. cmd_flags);
  3787. if (rc != 0)
  3788. goto nvram_write_end;
  3789. cmd_flags = 0;
  3790. buf += 4;
  3791. }
  3792. /* Loop to write back the buffer data from data_end
  3793. * to page_end */
  3794. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3795. for (addr = data_end; addr < page_end;
  3796. addr += 4, i += 4) {
  3797. if (addr == page_end-4) {
  3798. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3799. }
  3800. rc = bnx2_nvram_write_dword(bp, addr,
  3801. &flash_buffer[i], cmd_flags);
  3802. if (rc != 0)
  3803. goto nvram_write_end;
  3804. cmd_flags = 0;
  3805. }
  3806. }
  3807. /* Disable writes to flash interface (lock write-protect) */
  3808. bnx2_disable_nvram_write(bp);
  3809. /* Disable access to flash interface */
  3810. bnx2_disable_nvram_access(bp);
  3811. bnx2_release_nvram_lock(bp);
  3812. /* Increment written */
  3813. written += data_end - data_start;
  3814. }
  3815. nvram_write_end:
  3816. kfree(flash_buffer);
  3817. kfree(align_buf);
  3818. return rc;
  3819. }
  3820. static void
  3821. bnx2_init_fw_cap(struct bnx2 *bp)
  3822. {
  3823. u32 val, sig = 0;
  3824. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3825. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3826. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3827. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3828. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3829. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3830. return;
  3831. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3832. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3833. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3834. }
  3835. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3836. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3837. u32 link;
  3838. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3839. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3840. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3841. bp->phy_port = PORT_FIBRE;
  3842. else
  3843. bp->phy_port = PORT_TP;
  3844. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3845. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3846. }
  3847. if (netif_running(bp->dev) && sig)
  3848. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3849. }
  3850. static void
  3851. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3852. {
  3853. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3854. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3855. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3856. }
  3857. static int
  3858. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3859. {
  3860. u32 val;
  3861. int i, rc = 0;
  3862. u8 old_port;
  3863. /* Wait for the current PCI transaction to complete before
  3864. * issuing a reset. */
  3865. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3866. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3867. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3868. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3869. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3870. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3871. udelay(5);
  3872. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3873. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3874. /* Deposit a driver reset signature so the firmware knows that
  3875. * this is a soft reset. */
  3876. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3877. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3878. /* Do a dummy read to force the chip to complete all current transaction
  3879. * before we issue a reset. */
  3880. val = REG_RD(bp, BNX2_MISC_ID);
  3881. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3882. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3883. REG_RD(bp, BNX2_MISC_COMMAND);
  3884. udelay(5);
  3885. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3886. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3887. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3888. } else {
  3889. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3890. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3891. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3892. /* Chip reset. */
  3893. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3894. /* Reading back any register after chip reset will hang the
  3895. * bus on 5706 A0 and A1. The msleep below provides plenty
  3896. * of margin for write posting.
  3897. */
  3898. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3899. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3900. msleep(20);
  3901. /* Reset takes approximate 30 usec */
  3902. for (i = 0; i < 10; i++) {
  3903. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3904. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3905. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3906. break;
  3907. udelay(10);
  3908. }
  3909. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3910. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3911. pr_err("Chip reset did not complete\n");
  3912. return -EBUSY;
  3913. }
  3914. }
  3915. /* Make sure byte swapping is properly configured. */
  3916. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3917. if (val != 0x01020304) {
  3918. pr_err("Chip not in correct endian mode\n");
  3919. return -ENODEV;
  3920. }
  3921. /* Wait for the firmware to finish its initialization. */
  3922. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3923. if (rc)
  3924. return rc;
  3925. spin_lock_bh(&bp->phy_lock);
  3926. old_port = bp->phy_port;
  3927. bnx2_init_fw_cap(bp);
  3928. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3929. old_port != bp->phy_port)
  3930. bnx2_set_default_remote_link(bp);
  3931. spin_unlock_bh(&bp->phy_lock);
  3932. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3933. /* Adjust the voltage regular to two steps lower. The default
  3934. * of this register is 0x0000000e. */
  3935. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3936. /* Remove bad rbuf memory from the free pool. */
  3937. rc = bnx2_alloc_bad_rbuf(bp);
  3938. }
  3939. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3940. bnx2_setup_msix_tbl(bp);
  3941. /* Prevent MSIX table reads and write from timing out */
  3942. REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3943. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3944. }
  3945. return rc;
  3946. }
  3947. static int
  3948. bnx2_init_chip(struct bnx2 *bp)
  3949. {
  3950. u32 val, mtu;
  3951. int rc, i;
  3952. /* Make sure the interrupt is not active. */
  3953. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3954. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3955. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3956. #ifdef __BIG_ENDIAN
  3957. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3958. #endif
  3959. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3960. DMA_READ_CHANS << 12 |
  3961. DMA_WRITE_CHANS << 16;
  3962. val |= (0x2 << 20) | (1 << 11);
  3963. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3964. val |= (1 << 23);
  3965. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3966. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3967. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3968. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3969. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3970. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3971. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3972. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3973. }
  3974. if (bp->flags & BNX2_FLAG_PCIX) {
  3975. u16 val16;
  3976. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3977. &val16);
  3978. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3979. val16 & ~PCI_X_CMD_ERO);
  3980. }
  3981. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3982. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3983. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3984. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3985. /* Initialize context mapping and zero out the quick contexts. The
  3986. * context block must have already been enabled. */
  3987. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3988. rc = bnx2_init_5709_context(bp);
  3989. if (rc)
  3990. return rc;
  3991. } else
  3992. bnx2_init_context(bp);
  3993. if ((rc = bnx2_init_cpus(bp)) != 0)
  3994. return rc;
  3995. bnx2_init_nvram(bp);
  3996. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3997. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3998. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3999. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4000. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4001. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4002. if (CHIP_REV(bp) == CHIP_REV_Ax)
  4003. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4004. }
  4005. REG_WR(bp, BNX2_MQ_CONFIG, val);
  4006. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4007. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4008. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4009. val = (BCM_PAGE_BITS - 8) << 24;
  4010. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  4011. /* Configure page size. */
  4012. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  4013. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4014. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  4015. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  4016. val = bp->mac_addr[0] +
  4017. (bp->mac_addr[1] << 8) +
  4018. (bp->mac_addr[2] << 16) +
  4019. bp->mac_addr[3] +
  4020. (bp->mac_addr[4] << 8) +
  4021. (bp->mac_addr[5] << 16);
  4022. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4023. /* Program the MTU. Also include 4 bytes for CRC32. */
  4024. mtu = bp->dev->mtu;
  4025. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4026. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4027. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4028. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4029. if (mtu < 1500)
  4030. mtu = 1500;
  4031. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4032. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4033. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4034. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4035. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4036. bp->bnx2_napi[i].last_status_idx = 0;
  4037. bp->idle_chk_status_idx = 0xffff;
  4038. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4039. /* Set up how to generate a link change interrupt. */
  4040. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4041. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4042. (u64) bp->status_blk_mapping & 0xffffffff);
  4043. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4044. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4045. (u64) bp->stats_blk_mapping & 0xffffffff);
  4046. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4047. (u64) bp->stats_blk_mapping >> 32);
  4048. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4049. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4050. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4051. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4052. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4053. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4054. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4055. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4056. REG_WR(bp, BNX2_HC_COM_TICKS,
  4057. (bp->com_ticks_int << 16) | bp->com_ticks);
  4058. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4059. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4060. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4061. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4062. else
  4063. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4064. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4065. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4066. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4067. else {
  4068. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4069. BNX2_HC_CONFIG_COLLECT_STATS;
  4070. }
  4071. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4072. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4073. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4074. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4075. }
  4076. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4077. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4078. REG_WR(bp, BNX2_HC_CONFIG, val);
  4079. for (i = 1; i < bp->irq_nvecs; i++) {
  4080. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4081. BNX2_HC_SB_CONFIG_1;
  4082. REG_WR(bp, base,
  4083. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4084. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4085. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4086. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4087. (bp->tx_quick_cons_trip_int << 16) |
  4088. bp->tx_quick_cons_trip);
  4089. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4090. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4091. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4092. (bp->rx_quick_cons_trip_int << 16) |
  4093. bp->rx_quick_cons_trip);
  4094. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4095. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4096. }
  4097. /* Clear internal stats counters. */
  4098. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4099. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4100. /* Initialize the receive filter. */
  4101. bnx2_set_rx_mode(bp->dev);
  4102. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4103. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4104. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4105. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4106. }
  4107. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4108. 1, 0);
  4109. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4110. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4111. udelay(20);
  4112. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4113. return rc;
  4114. }
  4115. static void
  4116. bnx2_clear_ring_states(struct bnx2 *bp)
  4117. {
  4118. struct bnx2_napi *bnapi;
  4119. struct bnx2_tx_ring_info *txr;
  4120. struct bnx2_rx_ring_info *rxr;
  4121. int i;
  4122. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4123. bnapi = &bp->bnx2_napi[i];
  4124. txr = &bnapi->tx_ring;
  4125. rxr = &bnapi->rx_ring;
  4126. txr->tx_cons = 0;
  4127. txr->hw_tx_cons = 0;
  4128. rxr->rx_prod_bseq = 0;
  4129. rxr->rx_prod = 0;
  4130. rxr->rx_cons = 0;
  4131. rxr->rx_pg_prod = 0;
  4132. rxr->rx_pg_cons = 0;
  4133. }
  4134. }
  4135. static void
  4136. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4137. {
  4138. u32 val, offset0, offset1, offset2, offset3;
  4139. u32 cid_addr = GET_CID_ADDR(cid);
  4140. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4141. offset0 = BNX2_L2CTX_TYPE_XI;
  4142. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4143. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4144. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4145. } else {
  4146. offset0 = BNX2_L2CTX_TYPE;
  4147. offset1 = BNX2_L2CTX_CMD_TYPE;
  4148. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4149. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4150. }
  4151. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4152. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4153. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4154. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4155. val = (u64) txr->tx_desc_mapping >> 32;
  4156. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4157. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4158. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4159. }
  4160. static void
  4161. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4162. {
  4163. struct tx_bd *txbd;
  4164. u32 cid = TX_CID;
  4165. struct bnx2_napi *bnapi;
  4166. struct bnx2_tx_ring_info *txr;
  4167. bnapi = &bp->bnx2_napi[ring_num];
  4168. txr = &bnapi->tx_ring;
  4169. if (ring_num == 0)
  4170. cid = TX_CID;
  4171. else
  4172. cid = TX_TSS_CID + ring_num - 1;
  4173. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4174. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4175. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4176. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4177. txr->tx_prod = 0;
  4178. txr->tx_prod_bseq = 0;
  4179. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4180. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4181. bnx2_init_tx_context(bp, cid, txr);
  4182. }
  4183. static void
  4184. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4185. int num_rings)
  4186. {
  4187. int i;
  4188. struct rx_bd *rxbd;
  4189. for (i = 0; i < num_rings; i++) {
  4190. int j;
  4191. rxbd = &rx_ring[i][0];
  4192. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4193. rxbd->rx_bd_len = buf_size;
  4194. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4195. }
  4196. if (i == (num_rings - 1))
  4197. j = 0;
  4198. else
  4199. j = i + 1;
  4200. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4201. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4202. }
  4203. }
  4204. static void
  4205. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4206. {
  4207. int i;
  4208. u16 prod, ring_prod;
  4209. u32 cid, rx_cid_addr, val;
  4210. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4211. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4212. if (ring_num == 0)
  4213. cid = RX_CID;
  4214. else
  4215. cid = RX_RSS_CID + ring_num - 1;
  4216. rx_cid_addr = GET_CID_ADDR(cid);
  4217. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4218. bp->rx_buf_use_size, bp->rx_max_ring);
  4219. bnx2_init_rx_context(bp, cid);
  4220. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4221. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4222. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4223. }
  4224. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4225. if (bp->rx_pg_ring_size) {
  4226. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4227. rxr->rx_pg_desc_mapping,
  4228. PAGE_SIZE, bp->rx_max_pg_ring);
  4229. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4230. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4231. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4232. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4233. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4234. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4235. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4236. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4237. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4238. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4239. }
  4240. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4241. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4242. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4243. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4244. ring_prod = prod = rxr->rx_pg_prod;
  4245. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4246. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4247. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4248. ring_num, i, bp->rx_pg_ring_size);
  4249. break;
  4250. }
  4251. prod = NEXT_RX_BD(prod);
  4252. ring_prod = RX_PG_RING_IDX(prod);
  4253. }
  4254. rxr->rx_pg_prod = prod;
  4255. ring_prod = prod = rxr->rx_prod;
  4256. for (i = 0; i < bp->rx_ring_size; i++) {
  4257. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4258. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4259. ring_num, i, bp->rx_ring_size);
  4260. break;
  4261. }
  4262. prod = NEXT_RX_BD(prod);
  4263. ring_prod = RX_RING_IDX(prod);
  4264. }
  4265. rxr->rx_prod = prod;
  4266. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4267. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4268. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4269. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4270. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4271. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4272. }
  4273. static void
  4274. bnx2_init_all_rings(struct bnx2 *bp)
  4275. {
  4276. int i;
  4277. u32 val;
  4278. bnx2_clear_ring_states(bp);
  4279. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4280. for (i = 0; i < bp->num_tx_rings; i++)
  4281. bnx2_init_tx_ring(bp, i);
  4282. if (bp->num_tx_rings > 1)
  4283. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4284. (TX_TSS_CID << 7));
  4285. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4286. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4287. for (i = 0; i < bp->num_rx_rings; i++)
  4288. bnx2_init_rx_ring(bp, i);
  4289. if (bp->num_rx_rings > 1) {
  4290. u32 tbl_32;
  4291. u8 *tbl = (u8 *) &tbl_32;
  4292. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4293. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4294. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4295. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4296. if ((i % 4) == 3)
  4297. bnx2_reg_wr_ind(bp,
  4298. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4299. cpu_to_be32(tbl_32));
  4300. }
  4301. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4302. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4303. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4304. }
  4305. }
  4306. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4307. {
  4308. u32 max, num_rings = 1;
  4309. while (ring_size > MAX_RX_DESC_CNT) {
  4310. ring_size -= MAX_RX_DESC_CNT;
  4311. num_rings++;
  4312. }
  4313. /* round to next power of 2 */
  4314. max = max_size;
  4315. while ((max & num_rings) == 0)
  4316. max >>= 1;
  4317. if (num_rings != max)
  4318. max <<= 1;
  4319. return max;
  4320. }
  4321. static void
  4322. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4323. {
  4324. u32 rx_size, rx_space, jumbo_size;
  4325. /* 8 for CRC and VLAN */
  4326. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4327. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4328. sizeof(struct skb_shared_info);
  4329. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4330. bp->rx_pg_ring_size = 0;
  4331. bp->rx_max_pg_ring = 0;
  4332. bp->rx_max_pg_ring_idx = 0;
  4333. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4334. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4335. jumbo_size = size * pages;
  4336. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4337. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4338. bp->rx_pg_ring_size = jumbo_size;
  4339. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4340. MAX_RX_PG_RINGS);
  4341. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4342. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4343. bp->rx_copy_thresh = 0;
  4344. }
  4345. bp->rx_buf_use_size = rx_size;
  4346. /* hw alignment */
  4347. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4348. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4349. bp->rx_ring_size = size;
  4350. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4351. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4352. }
  4353. static void
  4354. bnx2_free_tx_skbs(struct bnx2 *bp)
  4355. {
  4356. int i;
  4357. for (i = 0; i < bp->num_tx_rings; i++) {
  4358. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4359. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4360. int j;
  4361. if (txr->tx_buf_ring == NULL)
  4362. continue;
  4363. for (j = 0; j < TX_DESC_CNT; ) {
  4364. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4365. struct sk_buff *skb = tx_buf->skb;
  4366. int k, last;
  4367. if (skb == NULL) {
  4368. j++;
  4369. continue;
  4370. }
  4371. dma_unmap_single(&bp->pdev->dev,
  4372. dma_unmap_addr(tx_buf, mapping),
  4373. skb_headlen(skb),
  4374. PCI_DMA_TODEVICE);
  4375. tx_buf->skb = NULL;
  4376. last = tx_buf->nr_frags;
  4377. j++;
  4378. for (k = 0; k < last; k++, j++) {
  4379. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4380. dma_unmap_page(&bp->pdev->dev,
  4381. dma_unmap_addr(tx_buf, mapping),
  4382. skb_shinfo(skb)->frags[k].size,
  4383. PCI_DMA_TODEVICE);
  4384. }
  4385. dev_kfree_skb(skb);
  4386. }
  4387. }
  4388. }
  4389. static void
  4390. bnx2_free_rx_skbs(struct bnx2 *bp)
  4391. {
  4392. int i;
  4393. for (i = 0; i < bp->num_rx_rings; i++) {
  4394. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4395. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4396. int j;
  4397. if (rxr->rx_buf_ring == NULL)
  4398. return;
  4399. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4400. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4401. struct sk_buff *skb = rx_buf->skb;
  4402. if (skb == NULL)
  4403. continue;
  4404. dma_unmap_single(&bp->pdev->dev,
  4405. dma_unmap_addr(rx_buf, mapping),
  4406. bp->rx_buf_use_size,
  4407. PCI_DMA_FROMDEVICE);
  4408. rx_buf->skb = NULL;
  4409. dev_kfree_skb(skb);
  4410. }
  4411. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4412. bnx2_free_rx_page(bp, rxr, j);
  4413. }
  4414. }
  4415. static void
  4416. bnx2_free_skbs(struct bnx2 *bp)
  4417. {
  4418. bnx2_free_tx_skbs(bp);
  4419. bnx2_free_rx_skbs(bp);
  4420. }
  4421. static int
  4422. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4423. {
  4424. int rc;
  4425. rc = bnx2_reset_chip(bp, reset_code);
  4426. bnx2_free_skbs(bp);
  4427. if (rc)
  4428. return rc;
  4429. if ((rc = bnx2_init_chip(bp)) != 0)
  4430. return rc;
  4431. bnx2_init_all_rings(bp);
  4432. return 0;
  4433. }
  4434. static int
  4435. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4436. {
  4437. int rc;
  4438. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4439. return rc;
  4440. spin_lock_bh(&bp->phy_lock);
  4441. bnx2_init_phy(bp, reset_phy);
  4442. bnx2_set_link(bp);
  4443. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4444. bnx2_remote_phy_event(bp);
  4445. spin_unlock_bh(&bp->phy_lock);
  4446. return 0;
  4447. }
  4448. static int
  4449. bnx2_shutdown_chip(struct bnx2 *bp)
  4450. {
  4451. u32 reset_code;
  4452. if (bp->flags & BNX2_FLAG_NO_WOL)
  4453. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4454. else if (bp->wol)
  4455. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4456. else
  4457. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4458. return bnx2_reset_chip(bp, reset_code);
  4459. }
  4460. static int
  4461. bnx2_test_registers(struct bnx2 *bp)
  4462. {
  4463. int ret;
  4464. int i, is_5709;
  4465. static const struct {
  4466. u16 offset;
  4467. u16 flags;
  4468. #define BNX2_FL_NOT_5709 1
  4469. u32 rw_mask;
  4470. u32 ro_mask;
  4471. } reg_tbl[] = {
  4472. { 0x006c, 0, 0x00000000, 0x0000003f },
  4473. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4474. { 0x0094, 0, 0x00000000, 0x00000000 },
  4475. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4476. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4477. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4478. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4479. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4480. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4481. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4482. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4483. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4484. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4485. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4486. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4487. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4488. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4489. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4490. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4491. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4492. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4493. { 0x1000, 0, 0x00000000, 0x00000001 },
  4494. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4495. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4496. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4497. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4498. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4499. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4500. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4501. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4502. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4503. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4504. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4505. { 0x1800, 0, 0x00000000, 0x00000001 },
  4506. { 0x1804, 0, 0x00000000, 0x00000003 },
  4507. { 0x2800, 0, 0x00000000, 0x00000001 },
  4508. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4509. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4510. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4511. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4512. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4513. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4514. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4515. { 0x2840, 0, 0x00000000, 0xffffffff },
  4516. { 0x2844, 0, 0x00000000, 0xffffffff },
  4517. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4518. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4519. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4520. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4521. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4522. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4523. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4524. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4525. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4526. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4527. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4528. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4529. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4530. { 0x5004, 0, 0x00000000, 0x0000007f },
  4531. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4532. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4533. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4534. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4535. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4536. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4537. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4538. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4539. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4540. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4541. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4542. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4543. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4544. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4545. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4546. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4547. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4548. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4549. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4550. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4551. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4552. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4553. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4554. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4555. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4556. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4557. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4558. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4559. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4560. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4561. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4562. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4563. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4564. { 0xffff, 0, 0x00000000, 0x00000000 },
  4565. };
  4566. ret = 0;
  4567. is_5709 = 0;
  4568. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4569. is_5709 = 1;
  4570. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4571. u32 offset, rw_mask, ro_mask, save_val, val;
  4572. u16 flags = reg_tbl[i].flags;
  4573. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4574. continue;
  4575. offset = (u32) reg_tbl[i].offset;
  4576. rw_mask = reg_tbl[i].rw_mask;
  4577. ro_mask = reg_tbl[i].ro_mask;
  4578. save_val = readl(bp->regview + offset);
  4579. writel(0, bp->regview + offset);
  4580. val = readl(bp->regview + offset);
  4581. if ((val & rw_mask) != 0) {
  4582. goto reg_test_err;
  4583. }
  4584. if ((val & ro_mask) != (save_val & ro_mask)) {
  4585. goto reg_test_err;
  4586. }
  4587. writel(0xffffffff, bp->regview + offset);
  4588. val = readl(bp->regview + offset);
  4589. if ((val & rw_mask) != rw_mask) {
  4590. goto reg_test_err;
  4591. }
  4592. if ((val & ro_mask) != (save_val & ro_mask)) {
  4593. goto reg_test_err;
  4594. }
  4595. writel(save_val, bp->regview + offset);
  4596. continue;
  4597. reg_test_err:
  4598. writel(save_val, bp->regview + offset);
  4599. ret = -ENODEV;
  4600. break;
  4601. }
  4602. return ret;
  4603. }
  4604. static int
  4605. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4606. {
  4607. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4608. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4609. int i;
  4610. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4611. u32 offset;
  4612. for (offset = 0; offset < size; offset += 4) {
  4613. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4614. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4615. test_pattern[i]) {
  4616. return -ENODEV;
  4617. }
  4618. }
  4619. }
  4620. return 0;
  4621. }
  4622. static int
  4623. bnx2_test_memory(struct bnx2 *bp)
  4624. {
  4625. int ret = 0;
  4626. int i;
  4627. static struct mem_entry {
  4628. u32 offset;
  4629. u32 len;
  4630. } mem_tbl_5706[] = {
  4631. { 0x60000, 0x4000 },
  4632. { 0xa0000, 0x3000 },
  4633. { 0xe0000, 0x4000 },
  4634. { 0x120000, 0x4000 },
  4635. { 0x1a0000, 0x4000 },
  4636. { 0x160000, 0x4000 },
  4637. { 0xffffffff, 0 },
  4638. },
  4639. mem_tbl_5709[] = {
  4640. { 0x60000, 0x4000 },
  4641. { 0xa0000, 0x3000 },
  4642. { 0xe0000, 0x4000 },
  4643. { 0x120000, 0x4000 },
  4644. { 0x1a0000, 0x4000 },
  4645. { 0xffffffff, 0 },
  4646. };
  4647. struct mem_entry *mem_tbl;
  4648. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4649. mem_tbl = mem_tbl_5709;
  4650. else
  4651. mem_tbl = mem_tbl_5706;
  4652. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4653. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4654. mem_tbl[i].len)) != 0) {
  4655. return ret;
  4656. }
  4657. }
  4658. return ret;
  4659. }
  4660. #define BNX2_MAC_LOOPBACK 0
  4661. #define BNX2_PHY_LOOPBACK 1
  4662. static int
  4663. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4664. {
  4665. unsigned int pkt_size, num_pkts, i;
  4666. struct sk_buff *skb, *rx_skb;
  4667. unsigned char *packet;
  4668. u16 rx_start_idx, rx_idx;
  4669. dma_addr_t map;
  4670. struct tx_bd *txbd;
  4671. struct sw_bd *rx_buf;
  4672. struct l2_fhdr *rx_hdr;
  4673. int ret = -ENODEV;
  4674. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4675. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4676. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4677. tx_napi = bnapi;
  4678. txr = &tx_napi->tx_ring;
  4679. rxr = &bnapi->rx_ring;
  4680. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4681. bp->loopback = MAC_LOOPBACK;
  4682. bnx2_set_mac_loopback(bp);
  4683. }
  4684. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4685. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4686. return 0;
  4687. bp->loopback = PHY_LOOPBACK;
  4688. bnx2_set_phy_loopback(bp);
  4689. }
  4690. else
  4691. return -EINVAL;
  4692. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4693. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4694. if (!skb)
  4695. return -ENOMEM;
  4696. packet = skb_put(skb, pkt_size);
  4697. memcpy(packet, bp->dev->dev_addr, 6);
  4698. memset(packet + 6, 0x0, 8);
  4699. for (i = 14; i < pkt_size; i++)
  4700. packet[i] = (unsigned char) (i & 0xff);
  4701. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4702. PCI_DMA_TODEVICE);
  4703. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4704. dev_kfree_skb(skb);
  4705. return -EIO;
  4706. }
  4707. REG_WR(bp, BNX2_HC_COMMAND,
  4708. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4709. REG_RD(bp, BNX2_HC_COMMAND);
  4710. udelay(5);
  4711. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4712. num_pkts = 0;
  4713. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4714. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4715. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4716. txbd->tx_bd_mss_nbytes = pkt_size;
  4717. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4718. num_pkts++;
  4719. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4720. txr->tx_prod_bseq += pkt_size;
  4721. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4722. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4723. udelay(100);
  4724. REG_WR(bp, BNX2_HC_COMMAND,
  4725. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4726. REG_RD(bp, BNX2_HC_COMMAND);
  4727. udelay(5);
  4728. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4729. dev_kfree_skb(skb);
  4730. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4731. goto loopback_test_done;
  4732. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4733. if (rx_idx != rx_start_idx + num_pkts) {
  4734. goto loopback_test_done;
  4735. }
  4736. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4737. rx_skb = rx_buf->skb;
  4738. rx_hdr = rx_buf->desc;
  4739. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4740. dma_sync_single_for_cpu(&bp->pdev->dev,
  4741. dma_unmap_addr(rx_buf, mapping),
  4742. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4743. if (rx_hdr->l2_fhdr_status &
  4744. (L2_FHDR_ERRORS_BAD_CRC |
  4745. L2_FHDR_ERRORS_PHY_DECODE |
  4746. L2_FHDR_ERRORS_ALIGNMENT |
  4747. L2_FHDR_ERRORS_TOO_SHORT |
  4748. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4749. goto loopback_test_done;
  4750. }
  4751. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4752. goto loopback_test_done;
  4753. }
  4754. for (i = 14; i < pkt_size; i++) {
  4755. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4756. goto loopback_test_done;
  4757. }
  4758. }
  4759. ret = 0;
  4760. loopback_test_done:
  4761. bp->loopback = 0;
  4762. return ret;
  4763. }
  4764. #define BNX2_MAC_LOOPBACK_FAILED 1
  4765. #define BNX2_PHY_LOOPBACK_FAILED 2
  4766. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4767. BNX2_PHY_LOOPBACK_FAILED)
  4768. static int
  4769. bnx2_test_loopback(struct bnx2 *bp)
  4770. {
  4771. int rc = 0;
  4772. if (!netif_running(bp->dev))
  4773. return BNX2_LOOPBACK_FAILED;
  4774. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4775. spin_lock_bh(&bp->phy_lock);
  4776. bnx2_init_phy(bp, 1);
  4777. spin_unlock_bh(&bp->phy_lock);
  4778. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4779. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4780. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4781. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4782. return rc;
  4783. }
  4784. #define NVRAM_SIZE 0x200
  4785. #define CRC32_RESIDUAL 0xdebb20e3
  4786. static int
  4787. bnx2_test_nvram(struct bnx2 *bp)
  4788. {
  4789. __be32 buf[NVRAM_SIZE / 4];
  4790. u8 *data = (u8 *) buf;
  4791. int rc = 0;
  4792. u32 magic, csum;
  4793. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4794. goto test_nvram_done;
  4795. magic = be32_to_cpu(buf[0]);
  4796. if (magic != 0x669955aa) {
  4797. rc = -ENODEV;
  4798. goto test_nvram_done;
  4799. }
  4800. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4801. goto test_nvram_done;
  4802. csum = ether_crc_le(0x100, data);
  4803. if (csum != CRC32_RESIDUAL) {
  4804. rc = -ENODEV;
  4805. goto test_nvram_done;
  4806. }
  4807. csum = ether_crc_le(0x100, data + 0x100);
  4808. if (csum != CRC32_RESIDUAL) {
  4809. rc = -ENODEV;
  4810. }
  4811. test_nvram_done:
  4812. return rc;
  4813. }
  4814. static int
  4815. bnx2_test_link(struct bnx2 *bp)
  4816. {
  4817. u32 bmsr;
  4818. if (!netif_running(bp->dev))
  4819. return -ENODEV;
  4820. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4821. if (bp->link_up)
  4822. return 0;
  4823. return -ENODEV;
  4824. }
  4825. spin_lock_bh(&bp->phy_lock);
  4826. bnx2_enable_bmsr1(bp);
  4827. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4828. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4829. bnx2_disable_bmsr1(bp);
  4830. spin_unlock_bh(&bp->phy_lock);
  4831. if (bmsr & BMSR_LSTATUS) {
  4832. return 0;
  4833. }
  4834. return -ENODEV;
  4835. }
  4836. static int
  4837. bnx2_test_intr(struct bnx2 *bp)
  4838. {
  4839. int i;
  4840. u16 status_idx;
  4841. if (!netif_running(bp->dev))
  4842. return -ENODEV;
  4843. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4844. /* This register is not touched during run-time. */
  4845. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4846. REG_RD(bp, BNX2_HC_COMMAND);
  4847. for (i = 0; i < 10; i++) {
  4848. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4849. status_idx) {
  4850. break;
  4851. }
  4852. msleep_interruptible(10);
  4853. }
  4854. if (i < 10)
  4855. return 0;
  4856. return -ENODEV;
  4857. }
  4858. /* Determining link for parallel detection. */
  4859. static int
  4860. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4861. {
  4862. u32 mode_ctl, an_dbg, exp;
  4863. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4864. return 0;
  4865. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4866. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4867. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4868. return 0;
  4869. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4870. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4871. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4872. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4873. return 0;
  4874. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4875. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4876. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4877. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4878. return 0;
  4879. return 1;
  4880. }
  4881. static void
  4882. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4883. {
  4884. int check_link = 1;
  4885. spin_lock(&bp->phy_lock);
  4886. if (bp->serdes_an_pending) {
  4887. bp->serdes_an_pending--;
  4888. check_link = 0;
  4889. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4890. u32 bmcr;
  4891. bp->current_interval = BNX2_TIMER_INTERVAL;
  4892. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4893. if (bmcr & BMCR_ANENABLE) {
  4894. if (bnx2_5706_serdes_has_link(bp)) {
  4895. bmcr &= ~BMCR_ANENABLE;
  4896. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4897. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4898. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4899. }
  4900. }
  4901. }
  4902. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4903. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4904. u32 phy2;
  4905. bnx2_write_phy(bp, 0x17, 0x0f01);
  4906. bnx2_read_phy(bp, 0x15, &phy2);
  4907. if (phy2 & 0x20) {
  4908. u32 bmcr;
  4909. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4910. bmcr |= BMCR_ANENABLE;
  4911. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4912. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4913. }
  4914. } else
  4915. bp->current_interval = BNX2_TIMER_INTERVAL;
  4916. if (check_link) {
  4917. u32 val;
  4918. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4919. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4920. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4921. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4922. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4923. bnx2_5706s_force_link_dn(bp, 1);
  4924. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4925. } else
  4926. bnx2_set_link(bp);
  4927. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4928. bnx2_set_link(bp);
  4929. }
  4930. spin_unlock(&bp->phy_lock);
  4931. }
  4932. static void
  4933. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4934. {
  4935. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4936. return;
  4937. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4938. bp->serdes_an_pending = 0;
  4939. return;
  4940. }
  4941. spin_lock(&bp->phy_lock);
  4942. if (bp->serdes_an_pending)
  4943. bp->serdes_an_pending--;
  4944. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4945. u32 bmcr;
  4946. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4947. if (bmcr & BMCR_ANENABLE) {
  4948. bnx2_enable_forced_2g5(bp);
  4949. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4950. } else {
  4951. bnx2_disable_forced_2g5(bp);
  4952. bp->serdes_an_pending = 2;
  4953. bp->current_interval = BNX2_TIMER_INTERVAL;
  4954. }
  4955. } else
  4956. bp->current_interval = BNX2_TIMER_INTERVAL;
  4957. spin_unlock(&bp->phy_lock);
  4958. }
  4959. static void
  4960. bnx2_timer(unsigned long data)
  4961. {
  4962. struct bnx2 *bp = (struct bnx2 *) data;
  4963. if (!netif_running(bp->dev))
  4964. return;
  4965. if (atomic_read(&bp->intr_sem) != 0)
  4966. goto bnx2_restart_timer;
  4967. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4968. BNX2_FLAG_USING_MSI)
  4969. bnx2_chk_missed_msi(bp);
  4970. bnx2_send_heart_beat(bp);
  4971. bp->stats_blk->stat_FwRxDrop =
  4972. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4973. /* workaround occasional corrupted counters */
  4974. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4975. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4976. BNX2_HC_COMMAND_STATS_NOW);
  4977. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4978. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4979. bnx2_5706_serdes_timer(bp);
  4980. else
  4981. bnx2_5708_serdes_timer(bp);
  4982. }
  4983. bnx2_restart_timer:
  4984. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4985. }
  4986. static int
  4987. bnx2_request_irq(struct bnx2 *bp)
  4988. {
  4989. unsigned long flags;
  4990. struct bnx2_irq *irq;
  4991. int rc = 0, i;
  4992. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4993. flags = 0;
  4994. else
  4995. flags = IRQF_SHARED;
  4996. for (i = 0; i < bp->irq_nvecs; i++) {
  4997. irq = &bp->irq_tbl[i];
  4998. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4999. &bp->bnx2_napi[i]);
  5000. if (rc)
  5001. break;
  5002. irq->requested = 1;
  5003. }
  5004. return rc;
  5005. }
  5006. static void
  5007. bnx2_free_irq(struct bnx2 *bp)
  5008. {
  5009. struct bnx2_irq *irq;
  5010. int i;
  5011. for (i = 0; i < bp->irq_nvecs; i++) {
  5012. irq = &bp->irq_tbl[i];
  5013. if (irq->requested)
  5014. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5015. irq->requested = 0;
  5016. }
  5017. if (bp->flags & BNX2_FLAG_USING_MSI)
  5018. pci_disable_msi(bp->pdev);
  5019. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5020. pci_disable_msix(bp->pdev);
  5021. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5022. }
  5023. static void
  5024. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5025. {
  5026. int i, total_vecs, rc;
  5027. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5028. struct net_device *dev = bp->dev;
  5029. const int len = sizeof(bp->irq_tbl[0].name);
  5030. bnx2_setup_msix_tbl(bp);
  5031. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5032. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5033. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5034. /* Need to flush the previous three writes to ensure MSI-X
  5035. * is setup properly */
  5036. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5037. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5038. msix_ent[i].entry = i;
  5039. msix_ent[i].vector = 0;
  5040. }
  5041. total_vecs = msix_vecs;
  5042. #ifdef BCM_CNIC
  5043. total_vecs++;
  5044. #endif
  5045. rc = -ENOSPC;
  5046. while (total_vecs >= BNX2_MIN_MSIX_VEC) {
  5047. rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
  5048. if (rc <= 0)
  5049. break;
  5050. if (rc > 0)
  5051. total_vecs = rc;
  5052. }
  5053. if (rc != 0)
  5054. return;
  5055. msix_vecs = total_vecs;
  5056. #ifdef BCM_CNIC
  5057. msix_vecs--;
  5058. #endif
  5059. bp->irq_nvecs = msix_vecs;
  5060. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5061. for (i = 0; i < total_vecs; i++) {
  5062. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5063. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5064. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5065. }
  5066. }
  5067. static void
  5068. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5069. {
  5070. int cpus = num_online_cpus();
  5071. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5072. bp->irq_tbl[0].handler = bnx2_interrupt;
  5073. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5074. bp->irq_nvecs = 1;
  5075. bp->irq_tbl[0].vector = bp->pdev->irq;
  5076. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5077. bnx2_enable_msix(bp, msix_vecs);
  5078. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5079. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5080. if (pci_enable_msi(bp->pdev) == 0) {
  5081. bp->flags |= BNX2_FLAG_USING_MSI;
  5082. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5083. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5084. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5085. } else
  5086. bp->irq_tbl[0].handler = bnx2_msi;
  5087. bp->irq_tbl[0].vector = bp->pdev->irq;
  5088. }
  5089. }
  5090. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5091. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5092. bp->num_rx_rings = bp->irq_nvecs;
  5093. }
  5094. /* Called with rtnl_lock */
  5095. static int
  5096. bnx2_open(struct net_device *dev)
  5097. {
  5098. struct bnx2 *bp = netdev_priv(dev);
  5099. int rc;
  5100. netif_carrier_off(dev);
  5101. bnx2_set_power_state(bp, PCI_D0);
  5102. bnx2_disable_int(bp);
  5103. bnx2_setup_int_mode(bp, disable_msi);
  5104. bnx2_init_napi(bp);
  5105. bnx2_napi_enable(bp);
  5106. rc = bnx2_alloc_mem(bp);
  5107. if (rc)
  5108. goto open_err;
  5109. rc = bnx2_request_irq(bp);
  5110. if (rc)
  5111. goto open_err;
  5112. rc = bnx2_init_nic(bp, 1);
  5113. if (rc)
  5114. goto open_err;
  5115. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5116. atomic_set(&bp->intr_sem, 0);
  5117. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5118. bnx2_enable_int(bp);
  5119. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5120. /* Test MSI to make sure it is working
  5121. * If MSI test fails, go back to INTx mode
  5122. */
  5123. if (bnx2_test_intr(bp) != 0) {
  5124. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5125. bnx2_disable_int(bp);
  5126. bnx2_free_irq(bp);
  5127. bnx2_setup_int_mode(bp, 1);
  5128. rc = bnx2_init_nic(bp, 0);
  5129. if (!rc)
  5130. rc = bnx2_request_irq(bp);
  5131. if (rc) {
  5132. del_timer_sync(&bp->timer);
  5133. goto open_err;
  5134. }
  5135. bnx2_enable_int(bp);
  5136. }
  5137. }
  5138. if (bp->flags & BNX2_FLAG_USING_MSI)
  5139. netdev_info(dev, "using MSI\n");
  5140. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5141. netdev_info(dev, "using MSIX\n");
  5142. netif_tx_start_all_queues(dev);
  5143. return 0;
  5144. open_err:
  5145. bnx2_napi_disable(bp);
  5146. bnx2_free_skbs(bp);
  5147. bnx2_free_irq(bp);
  5148. bnx2_free_mem(bp);
  5149. bnx2_del_napi(bp);
  5150. return rc;
  5151. }
  5152. static void
  5153. bnx2_reset_task(struct work_struct *work)
  5154. {
  5155. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5156. rtnl_lock();
  5157. if (!netif_running(bp->dev)) {
  5158. rtnl_unlock();
  5159. return;
  5160. }
  5161. bnx2_netif_stop(bp, true);
  5162. bnx2_init_nic(bp, 1);
  5163. atomic_set(&bp->intr_sem, 1);
  5164. bnx2_netif_start(bp, true);
  5165. rtnl_unlock();
  5166. }
  5167. static void
  5168. bnx2_dump_state(struct bnx2 *bp)
  5169. {
  5170. struct net_device *dev = bp->dev;
  5171. u32 mcp_p0, mcp_p1, val1, val2;
  5172. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5173. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5174. atomic_read(&bp->intr_sem), val1);
  5175. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5176. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5177. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5178. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5179. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5180. REG_RD(bp, BNX2_EMAC_RX_STATUS));
  5181. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5182. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5183. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5184. mcp_p0 = BNX2_MCP_STATE_P0;
  5185. mcp_p1 = BNX2_MCP_STATE_P1;
  5186. } else {
  5187. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  5188. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  5189. }
  5190. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5191. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  5192. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5193. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5194. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5195. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5196. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5197. }
  5198. static void
  5199. bnx2_tx_timeout(struct net_device *dev)
  5200. {
  5201. struct bnx2 *bp = netdev_priv(dev);
  5202. bnx2_dump_state(bp);
  5203. /* This allows the netif to be shutdown gracefully before resetting */
  5204. schedule_work(&bp->reset_task);
  5205. }
  5206. #ifdef BCM_VLAN
  5207. /* Called with rtnl_lock */
  5208. static void
  5209. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5210. {
  5211. struct bnx2 *bp = netdev_priv(dev);
  5212. if (netif_running(dev))
  5213. bnx2_netif_stop(bp, false);
  5214. bp->vlgrp = vlgrp;
  5215. if (!netif_running(dev))
  5216. return;
  5217. bnx2_set_rx_mode(dev);
  5218. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5219. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5220. bnx2_netif_start(bp, false);
  5221. }
  5222. #endif
  5223. /* Called with netif_tx_lock.
  5224. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5225. * netif_wake_queue().
  5226. */
  5227. static netdev_tx_t
  5228. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5229. {
  5230. struct bnx2 *bp = netdev_priv(dev);
  5231. dma_addr_t mapping;
  5232. struct tx_bd *txbd;
  5233. struct sw_tx_bd *tx_buf;
  5234. u32 len, vlan_tag_flags, last_frag, mss;
  5235. u16 prod, ring_prod;
  5236. int i;
  5237. struct bnx2_napi *bnapi;
  5238. struct bnx2_tx_ring_info *txr;
  5239. struct netdev_queue *txq;
  5240. /* Determine which tx ring we will be placed on */
  5241. i = skb_get_queue_mapping(skb);
  5242. bnapi = &bp->bnx2_napi[i];
  5243. txr = &bnapi->tx_ring;
  5244. txq = netdev_get_tx_queue(dev, i);
  5245. if (unlikely(bnx2_tx_avail(bp, txr) <
  5246. (skb_shinfo(skb)->nr_frags + 1))) {
  5247. netif_tx_stop_queue(txq);
  5248. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5249. return NETDEV_TX_BUSY;
  5250. }
  5251. len = skb_headlen(skb);
  5252. prod = txr->tx_prod;
  5253. ring_prod = TX_RING_IDX(prod);
  5254. vlan_tag_flags = 0;
  5255. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5256. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5257. }
  5258. #ifdef BCM_VLAN
  5259. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5260. vlan_tag_flags |=
  5261. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5262. }
  5263. #endif
  5264. if ((mss = skb_shinfo(skb)->gso_size)) {
  5265. u32 tcp_opt_len;
  5266. struct iphdr *iph;
  5267. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5268. tcp_opt_len = tcp_optlen(skb);
  5269. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5270. u32 tcp_off = skb_transport_offset(skb) -
  5271. sizeof(struct ipv6hdr) - ETH_HLEN;
  5272. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5273. TX_BD_FLAGS_SW_FLAGS;
  5274. if (likely(tcp_off == 0))
  5275. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5276. else {
  5277. tcp_off >>= 3;
  5278. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5279. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5280. ((tcp_off & 0x10) <<
  5281. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5282. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5283. }
  5284. } else {
  5285. iph = ip_hdr(skb);
  5286. if (tcp_opt_len || (iph->ihl > 5)) {
  5287. vlan_tag_flags |= ((iph->ihl - 5) +
  5288. (tcp_opt_len >> 2)) << 8;
  5289. }
  5290. }
  5291. } else
  5292. mss = 0;
  5293. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5294. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5295. dev_kfree_skb(skb);
  5296. return NETDEV_TX_OK;
  5297. }
  5298. tx_buf = &txr->tx_buf_ring[ring_prod];
  5299. tx_buf->skb = skb;
  5300. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5301. txbd = &txr->tx_desc_ring[ring_prod];
  5302. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5303. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5304. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5305. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5306. last_frag = skb_shinfo(skb)->nr_frags;
  5307. tx_buf->nr_frags = last_frag;
  5308. tx_buf->is_gso = skb_is_gso(skb);
  5309. for (i = 0; i < last_frag; i++) {
  5310. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5311. prod = NEXT_TX_BD(prod);
  5312. ring_prod = TX_RING_IDX(prod);
  5313. txbd = &txr->tx_desc_ring[ring_prod];
  5314. len = frag->size;
  5315. mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
  5316. len, PCI_DMA_TODEVICE);
  5317. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5318. goto dma_error;
  5319. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5320. mapping);
  5321. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5322. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5323. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5324. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5325. }
  5326. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5327. prod = NEXT_TX_BD(prod);
  5328. txr->tx_prod_bseq += skb->len;
  5329. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5330. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5331. mmiowb();
  5332. txr->tx_prod = prod;
  5333. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5334. netif_tx_stop_queue(txq);
  5335. /* netif_tx_stop_queue() must be done before checking
  5336. * tx index in bnx2_tx_avail() below, because in
  5337. * bnx2_tx_int(), we update tx index before checking for
  5338. * netif_tx_queue_stopped().
  5339. */
  5340. smp_mb();
  5341. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5342. netif_tx_wake_queue(txq);
  5343. }
  5344. return NETDEV_TX_OK;
  5345. dma_error:
  5346. /* save value of frag that failed */
  5347. last_frag = i;
  5348. /* start back at beginning and unmap skb */
  5349. prod = txr->tx_prod;
  5350. ring_prod = TX_RING_IDX(prod);
  5351. tx_buf = &txr->tx_buf_ring[ring_prod];
  5352. tx_buf->skb = NULL;
  5353. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5354. skb_headlen(skb), PCI_DMA_TODEVICE);
  5355. /* unmap remaining mapped pages */
  5356. for (i = 0; i < last_frag; i++) {
  5357. prod = NEXT_TX_BD(prod);
  5358. ring_prod = TX_RING_IDX(prod);
  5359. tx_buf = &txr->tx_buf_ring[ring_prod];
  5360. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5361. skb_shinfo(skb)->frags[i].size,
  5362. PCI_DMA_TODEVICE);
  5363. }
  5364. dev_kfree_skb(skb);
  5365. return NETDEV_TX_OK;
  5366. }
  5367. /* Called with rtnl_lock */
  5368. static int
  5369. bnx2_close(struct net_device *dev)
  5370. {
  5371. struct bnx2 *bp = netdev_priv(dev);
  5372. cancel_work_sync(&bp->reset_task);
  5373. bnx2_disable_int_sync(bp);
  5374. bnx2_napi_disable(bp);
  5375. del_timer_sync(&bp->timer);
  5376. bnx2_shutdown_chip(bp);
  5377. bnx2_free_irq(bp);
  5378. bnx2_free_skbs(bp);
  5379. bnx2_free_mem(bp);
  5380. bnx2_del_napi(bp);
  5381. bp->link_up = 0;
  5382. netif_carrier_off(bp->dev);
  5383. bnx2_set_power_state(bp, PCI_D3hot);
  5384. return 0;
  5385. }
  5386. static void
  5387. bnx2_save_stats(struct bnx2 *bp)
  5388. {
  5389. u32 *hw_stats = (u32 *) bp->stats_blk;
  5390. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5391. int i;
  5392. /* The 1st 10 counters are 64-bit counters */
  5393. for (i = 0; i < 20; i += 2) {
  5394. u32 hi;
  5395. u64 lo;
  5396. hi = temp_stats[i] + hw_stats[i];
  5397. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5398. if (lo > 0xffffffff)
  5399. hi++;
  5400. temp_stats[i] = hi;
  5401. temp_stats[i + 1] = lo & 0xffffffff;
  5402. }
  5403. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5404. temp_stats[i] += hw_stats[i];
  5405. }
  5406. #define GET_64BIT_NET_STATS64(ctr) \
  5407. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5408. #define GET_64BIT_NET_STATS(ctr) \
  5409. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5410. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5411. #define GET_32BIT_NET_STATS(ctr) \
  5412. (unsigned long) (bp->stats_blk->ctr + \
  5413. bp->temp_stats_blk->ctr)
  5414. static struct rtnl_link_stats64 *
  5415. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5416. {
  5417. struct bnx2 *bp = netdev_priv(dev);
  5418. if (bp->stats_blk == NULL)
  5419. return net_stats;
  5420. net_stats->rx_packets =
  5421. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5422. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5423. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5424. net_stats->tx_packets =
  5425. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5426. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5427. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5428. net_stats->rx_bytes =
  5429. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5430. net_stats->tx_bytes =
  5431. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5432. net_stats->multicast =
  5433. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5434. net_stats->collisions =
  5435. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5436. net_stats->rx_length_errors =
  5437. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5438. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5439. net_stats->rx_over_errors =
  5440. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5441. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5442. net_stats->rx_frame_errors =
  5443. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5444. net_stats->rx_crc_errors =
  5445. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5446. net_stats->rx_errors = net_stats->rx_length_errors +
  5447. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5448. net_stats->rx_crc_errors;
  5449. net_stats->tx_aborted_errors =
  5450. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5451. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5452. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5453. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5454. net_stats->tx_carrier_errors = 0;
  5455. else {
  5456. net_stats->tx_carrier_errors =
  5457. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5458. }
  5459. net_stats->tx_errors =
  5460. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5461. net_stats->tx_aborted_errors +
  5462. net_stats->tx_carrier_errors;
  5463. net_stats->rx_missed_errors =
  5464. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5465. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5466. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5467. return net_stats;
  5468. }
  5469. /* All ethtool functions called with rtnl_lock */
  5470. static int
  5471. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5472. {
  5473. struct bnx2 *bp = netdev_priv(dev);
  5474. int support_serdes = 0, support_copper = 0;
  5475. cmd->supported = SUPPORTED_Autoneg;
  5476. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5477. support_serdes = 1;
  5478. support_copper = 1;
  5479. } else if (bp->phy_port == PORT_FIBRE)
  5480. support_serdes = 1;
  5481. else
  5482. support_copper = 1;
  5483. if (support_serdes) {
  5484. cmd->supported |= SUPPORTED_1000baseT_Full |
  5485. SUPPORTED_FIBRE;
  5486. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5487. cmd->supported |= SUPPORTED_2500baseX_Full;
  5488. }
  5489. if (support_copper) {
  5490. cmd->supported |= SUPPORTED_10baseT_Half |
  5491. SUPPORTED_10baseT_Full |
  5492. SUPPORTED_100baseT_Half |
  5493. SUPPORTED_100baseT_Full |
  5494. SUPPORTED_1000baseT_Full |
  5495. SUPPORTED_TP;
  5496. }
  5497. spin_lock_bh(&bp->phy_lock);
  5498. cmd->port = bp->phy_port;
  5499. cmd->advertising = bp->advertising;
  5500. if (bp->autoneg & AUTONEG_SPEED) {
  5501. cmd->autoneg = AUTONEG_ENABLE;
  5502. }
  5503. else {
  5504. cmd->autoneg = AUTONEG_DISABLE;
  5505. }
  5506. if (netif_carrier_ok(dev)) {
  5507. cmd->speed = bp->line_speed;
  5508. cmd->duplex = bp->duplex;
  5509. }
  5510. else {
  5511. cmd->speed = -1;
  5512. cmd->duplex = -1;
  5513. }
  5514. spin_unlock_bh(&bp->phy_lock);
  5515. cmd->transceiver = XCVR_INTERNAL;
  5516. cmd->phy_address = bp->phy_addr;
  5517. return 0;
  5518. }
  5519. static int
  5520. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5521. {
  5522. struct bnx2 *bp = netdev_priv(dev);
  5523. u8 autoneg = bp->autoneg;
  5524. u8 req_duplex = bp->req_duplex;
  5525. u16 req_line_speed = bp->req_line_speed;
  5526. u32 advertising = bp->advertising;
  5527. int err = -EINVAL;
  5528. spin_lock_bh(&bp->phy_lock);
  5529. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5530. goto err_out_unlock;
  5531. if (cmd->port != bp->phy_port &&
  5532. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5533. goto err_out_unlock;
  5534. /* If device is down, we can store the settings only if the user
  5535. * is setting the currently active port.
  5536. */
  5537. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5538. goto err_out_unlock;
  5539. if (cmd->autoneg == AUTONEG_ENABLE) {
  5540. autoneg |= AUTONEG_SPEED;
  5541. advertising = cmd->advertising;
  5542. if (cmd->port == PORT_TP) {
  5543. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5544. if (!advertising)
  5545. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5546. } else {
  5547. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5548. if (!advertising)
  5549. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5550. }
  5551. advertising |= ADVERTISED_Autoneg;
  5552. }
  5553. else {
  5554. if (cmd->port == PORT_FIBRE) {
  5555. if ((cmd->speed != SPEED_1000 &&
  5556. cmd->speed != SPEED_2500) ||
  5557. (cmd->duplex != DUPLEX_FULL))
  5558. goto err_out_unlock;
  5559. if (cmd->speed == SPEED_2500 &&
  5560. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5561. goto err_out_unlock;
  5562. }
  5563. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5564. goto err_out_unlock;
  5565. autoneg &= ~AUTONEG_SPEED;
  5566. req_line_speed = cmd->speed;
  5567. req_duplex = cmd->duplex;
  5568. advertising = 0;
  5569. }
  5570. bp->autoneg = autoneg;
  5571. bp->advertising = advertising;
  5572. bp->req_line_speed = req_line_speed;
  5573. bp->req_duplex = req_duplex;
  5574. err = 0;
  5575. /* If device is down, the new settings will be picked up when it is
  5576. * brought up.
  5577. */
  5578. if (netif_running(dev))
  5579. err = bnx2_setup_phy(bp, cmd->port);
  5580. err_out_unlock:
  5581. spin_unlock_bh(&bp->phy_lock);
  5582. return err;
  5583. }
  5584. static void
  5585. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5586. {
  5587. struct bnx2 *bp = netdev_priv(dev);
  5588. strcpy(info->driver, DRV_MODULE_NAME);
  5589. strcpy(info->version, DRV_MODULE_VERSION);
  5590. strcpy(info->bus_info, pci_name(bp->pdev));
  5591. strcpy(info->fw_version, bp->fw_version);
  5592. }
  5593. #define BNX2_REGDUMP_LEN (32 * 1024)
  5594. static int
  5595. bnx2_get_regs_len(struct net_device *dev)
  5596. {
  5597. return BNX2_REGDUMP_LEN;
  5598. }
  5599. static void
  5600. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5601. {
  5602. u32 *p = _p, i, offset;
  5603. u8 *orig_p = _p;
  5604. struct bnx2 *bp = netdev_priv(dev);
  5605. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5606. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5607. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5608. 0x1040, 0x1048, 0x1080, 0x10a4,
  5609. 0x1400, 0x1490, 0x1498, 0x14f0,
  5610. 0x1500, 0x155c, 0x1580, 0x15dc,
  5611. 0x1600, 0x1658, 0x1680, 0x16d8,
  5612. 0x1800, 0x1820, 0x1840, 0x1854,
  5613. 0x1880, 0x1894, 0x1900, 0x1984,
  5614. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5615. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5616. 0x2000, 0x2030, 0x23c0, 0x2400,
  5617. 0x2800, 0x2820, 0x2830, 0x2850,
  5618. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5619. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5620. 0x4080, 0x4090, 0x43c0, 0x4458,
  5621. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5622. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5623. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5624. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5625. 0x6800, 0x6848, 0x684c, 0x6860,
  5626. 0x6888, 0x6910, 0x8000 };
  5627. regs->version = 0;
  5628. memset(p, 0, BNX2_REGDUMP_LEN);
  5629. if (!netif_running(bp->dev))
  5630. return;
  5631. i = 0;
  5632. offset = reg_boundaries[0];
  5633. p += offset;
  5634. while (offset < BNX2_REGDUMP_LEN) {
  5635. *p++ = REG_RD(bp, offset);
  5636. offset += 4;
  5637. if (offset == reg_boundaries[i + 1]) {
  5638. offset = reg_boundaries[i + 2];
  5639. p = (u32 *) (orig_p + offset);
  5640. i += 2;
  5641. }
  5642. }
  5643. }
  5644. static void
  5645. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5646. {
  5647. struct bnx2 *bp = netdev_priv(dev);
  5648. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5649. wol->supported = 0;
  5650. wol->wolopts = 0;
  5651. }
  5652. else {
  5653. wol->supported = WAKE_MAGIC;
  5654. if (bp->wol)
  5655. wol->wolopts = WAKE_MAGIC;
  5656. else
  5657. wol->wolopts = 0;
  5658. }
  5659. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5660. }
  5661. static int
  5662. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5663. {
  5664. struct bnx2 *bp = netdev_priv(dev);
  5665. if (wol->wolopts & ~WAKE_MAGIC)
  5666. return -EINVAL;
  5667. if (wol->wolopts & WAKE_MAGIC) {
  5668. if (bp->flags & BNX2_FLAG_NO_WOL)
  5669. return -EINVAL;
  5670. bp->wol = 1;
  5671. }
  5672. else {
  5673. bp->wol = 0;
  5674. }
  5675. return 0;
  5676. }
  5677. static int
  5678. bnx2_nway_reset(struct net_device *dev)
  5679. {
  5680. struct bnx2 *bp = netdev_priv(dev);
  5681. u32 bmcr;
  5682. if (!netif_running(dev))
  5683. return -EAGAIN;
  5684. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5685. return -EINVAL;
  5686. }
  5687. spin_lock_bh(&bp->phy_lock);
  5688. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5689. int rc;
  5690. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5691. spin_unlock_bh(&bp->phy_lock);
  5692. return rc;
  5693. }
  5694. /* Force a link down visible on the other side */
  5695. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5696. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5697. spin_unlock_bh(&bp->phy_lock);
  5698. msleep(20);
  5699. spin_lock_bh(&bp->phy_lock);
  5700. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5701. bp->serdes_an_pending = 1;
  5702. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5703. }
  5704. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5705. bmcr &= ~BMCR_LOOPBACK;
  5706. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5707. spin_unlock_bh(&bp->phy_lock);
  5708. return 0;
  5709. }
  5710. static u32
  5711. bnx2_get_link(struct net_device *dev)
  5712. {
  5713. struct bnx2 *bp = netdev_priv(dev);
  5714. return bp->link_up;
  5715. }
  5716. static int
  5717. bnx2_get_eeprom_len(struct net_device *dev)
  5718. {
  5719. struct bnx2 *bp = netdev_priv(dev);
  5720. if (bp->flash_info == NULL)
  5721. return 0;
  5722. return (int) bp->flash_size;
  5723. }
  5724. static int
  5725. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5726. u8 *eebuf)
  5727. {
  5728. struct bnx2 *bp = netdev_priv(dev);
  5729. int rc;
  5730. if (!netif_running(dev))
  5731. return -EAGAIN;
  5732. /* parameters already validated in ethtool_get_eeprom */
  5733. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5734. return rc;
  5735. }
  5736. static int
  5737. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5738. u8 *eebuf)
  5739. {
  5740. struct bnx2 *bp = netdev_priv(dev);
  5741. int rc;
  5742. if (!netif_running(dev))
  5743. return -EAGAIN;
  5744. /* parameters already validated in ethtool_set_eeprom */
  5745. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5746. return rc;
  5747. }
  5748. static int
  5749. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5750. {
  5751. struct bnx2 *bp = netdev_priv(dev);
  5752. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5753. coal->rx_coalesce_usecs = bp->rx_ticks;
  5754. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5755. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5756. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5757. coal->tx_coalesce_usecs = bp->tx_ticks;
  5758. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5759. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5760. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5761. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5762. return 0;
  5763. }
  5764. static int
  5765. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5766. {
  5767. struct bnx2 *bp = netdev_priv(dev);
  5768. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5769. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5770. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5771. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5772. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5773. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5774. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5775. if (bp->rx_quick_cons_trip_int > 0xff)
  5776. bp->rx_quick_cons_trip_int = 0xff;
  5777. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5778. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5779. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5780. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5781. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5782. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5783. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5784. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5785. 0xff;
  5786. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5787. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5788. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5789. bp->stats_ticks = USEC_PER_SEC;
  5790. }
  5791. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5792. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5793. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5794. if (netif_running(bp->dev)) {
  5795. bnx2_netif_stop(bp, true);
  5796. bnx2_init_nic(bp, 0);
  5797. bnx2_netif_start(bp, true);
  5798. }
  5799. return 0;
  5800. }
  5801. static void
  5802. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5803. {
  5804. struct bnx2 *bp = netdev_priv(dev);
  5805. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5806. ering->rx_mini_max_pending = 0;
  5807. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5808. ering->rx_pending = bp->rx_ring_size;
  5809. ering->rx_mini_pending = 0;
  5810. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5811. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5812. ering->tx_pending = bp->tx_ring_size;
  5813. }
  5814. static int
  5815. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5816. {
  5817. if (netif_running(bp->dev)) {
  5818. /* Reset will erase chipset stats; save them */
  5819. bnx2_save_stats(bp);
  5820. bnx2_netif_stop(bp, true);
  5821. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5822. bnx2_free_skbs(bp);
  5823. bnx2_free_mem(bp);
  5824. }
  5825. bnx2_set_rx_ring_size(bp, rx);
  5826. bp->tx_ring_size = tx;
  5827. if (netif_running(bp->dev)) {
  5828. int rc;
  5829. rc = bnx2_alloc_mem(bp);
  5830. if (!rc)
  5831. rc = bnx2_init_nic(bp, 0);
  5832. if (rc) {
  5833. bnx2_napi_enable(bp);
  5834. dev_close(bp->dev);
  5835. return rc;
  5836. }
  5837. #ifdef BCM_CNIC
  5838. mutex_lock(&bp->cnic_lock);
  5839. /* Let cnic know about the new status block. */
  5840. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5841. bnx2_setup_cnic_irq_info(bp);
  5842. mutex_unlock(&bp->cnic_lock);
  5843. #endif
  5844. bnx2_netif_start(bp, true);
  5845. }
  5846. return 0;
  5847. }
  5848. static int
  5849. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5850. {
  5851. struct bnx2 *bp = netdev_priv(dev);
  5852. int rc;
  5853. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5854. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5855. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5856. return -EINVAL;
  5857. }
  5858. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5859. return rc;
  5860. }
  5861. static void
  5862. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5863. {
  5864. struct bnx2 *bp = netdev_priv(dev);
  5865. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5866. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5867. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5868. }
  5869. static int
  5870. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5871. {
  5872. struct bnx2 *bp = netdev_priv(dev);
  5873. bp->req_flow_ctrl = 0;
  5874. if (epause->rx_pause)
  5875. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5876. if (epause->tx_pause)
  5877. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5878. if (epause->autoneg) {
  5879. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5880. }
  5881. else {
  5882. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5883. }
  5884. if (netif_running(dev)) {
  5885. spin_lock_bh(&bp->phy_lock);
  5886. bnx2_setup_phy(bp, bp->phy_port);
  5887. spin_unlock_bh(&bp->phy_lock);
  5888. }
  5889. return 0;
  5890. }
  5891. static u32
  5892. bnx2_get_rx_csum(struct net_device *dev)
  5893. {
  5894. struct bnx2 *bp = netdev_priv(dev);
  5895. return bp->rx_csum;
  5896. }
  5897. static int
  5898. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5899. {
  5900. struct bnx2 *bp = netdev_priv(dev);
  5901. bp->rx_csum = data;
  5902. return 0;
  5903. }
  5904. static int
  5905. bnx2_set_tso(struct net_device *dev, u32 data)
  5906. {
  5907. struct bnx2 *bp = netdev_priv(dev);
  5908. if (data) {
  5909. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5910. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5911. dev->features |= NETIF_F_TSO6;
  5912. } else
  5913. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5914. NETIF_F_TSO_ECN);
  5915. return 0;
  5916. }
  5917. static struct {
  5918. char string[ETH_GSTRING_LEN];
  5919. } bnx2_stats_str_arr[] = {
  5920. { "rx_bytes" },
  5921. { "rx_error_bytes" },
  5922. { "tx_bytes" },
  5923. { "tx_error_bytes" },
  5924. { "rx_ucast_packets" },
  5925. { "rx_mcast_packets" },
  5926. { "rx_bcast_packets" },
  5927. { "tx_ucast_packets" },
  5928. { "tx_mcast_packets" },
  5929. { "tx_bcast_packets" },
  5930. { "tx_mac_errors" },
  5931. { "tx_carrier_errors" },
  5932. { "rx_crc_errors" },
  5933. { "rx_align_errors" },
  5934. { "tx_single_collisions" },
  5935. { "tx_multi_collisions" },
  5936. { "tx_deferred" },
  5937. { "tx_excess_collisions" },
  5938. { "tx_late_collisions" },
  5939. { "tx_total_collisions" },
  5940. { "rx_fragments" },
  5941. { "rx_jabbers" },
  5942. { "rx_undersize_packets" },
  5943. { "rx_oversize_packets" },
  5944. { "rx_64_byte_packets" },
  5945. { "rx_65_to_127_byte_packets" },
  5946. { "rx_128_to_255_byte_packets" },
  5947. { "rx_256_to_511_byte_packets" },
  5948. { "rx_512_to_1023_byte_packets" },
  5949. { "rx_1024_to_1522_byte_packets" },
  5950. { "rx_1523_to_9022_byte_packets" },
  5951. { "tx_64_byte_packets" },
  5952. { "tx_65_to_127_byte_packets" },
  5953. { "tx_128_to_255_byte_packets" },
  5954. { "tx_256_to_511_byte_packets" },
  5955. { "tx_512_to_1023_byte_packets" },
  5956. { "tx_1024_to_1522_byte_packets" },
  5957. { "tx_1523_to_9022_byte_packets" },
  5958. { "rx_xon_frames" },
  5959. { "rx_xoff_frames" },
  5960. { "tx_xon_frames" },
  5961. { "tx_xoff_frames" },
  5962. { "rx_mac_ctrl_frames" },
  5963. { "rx_filtered_packets" },
  5964. { "rx_ftq_discards" },
  5965. { "rx_discards" },
  5966. { "rx_fw_discards" },
  5967. };
  5968. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5969. sizeof(bnx2_stats_str_arr[0]))
  5970. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5971. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5972. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5973. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5974. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5975. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5976. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5977. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5978. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5979. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5980. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5981. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5982. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5983. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5984. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5985. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5986. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5987. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5988. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5989. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5990. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5991. STATS_OFFSET32(stat_EtherStatsCollisions),
  5992. STATS_OFFSET32(stat_EtherStatsFragments),
  5993. STATS_OFFSET32(stat_EtherStatsJabbers),
  5994. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5995. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5996. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5997. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5998. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5999. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6000. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6001. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6002. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6003. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6004. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6005. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6006. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6007. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6008. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6009. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6010. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6011. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6012. STATS_OFFSET32(stat_OutXonSent),
  6013. STATS_OFFSET32(stat_OutXoffSent),
  6014. STATS_OFFSET32(stat_MacControlFramesReceived),
  6015. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6016. STATS_OFFSET32(stat_IfInFTQDiscards),
  6017. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6018. STATS_OFFSET32(stat_FwRxDrop),
  6019. };
  6020. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6021. * skipped because of errata.
  6022. */
  6023. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6024. 8,0,8,8,8,8,8,8,8,8,
  6025. 4,0,4,4,4,4,4,4,4,4,
  6026. 4,4,4,4,4,4,4,4,4,4,
  6027. 4,4,4,4,4,4,4,4,4,4,
  6028. 4,4,4,4,4,4,4,
  6029. };
  6030. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6031. 8,0,8,8,8,8,8,8,8,8,
  6032. 4,4,4,4,4,4,4,4,4,4,
  6033. 4,4,4,4,4,4,4,4,4,4,
  6034. 4,4,4,4,4,4,4,4,4,4,
  6035. 4,4,4,4,4,4,4,
  6036. };
  6037. #define BNX2_NUM_TESTS 6
  6038. static struct {
  6039. char string[ETH_GSTRING_LEN];
  6040. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6041. { "register_test (offline)" },
  6042. { "memory_test (offline)" },
  6043. { "loopback_test (offline)" },
  6044. { "nvram_test (online)" },
  6045. { "interrupt_test (online)" },
  6046. { "link_test (online)" },
  6047. };
  6048. static int
  6049. bnx2_get_sset_count(struct net_device *dev, int sset)
  6050. {
  6051. switch (sset) {
  6052. case ETH_SS_TEST:
  6053. return BNX2_NUM_TESTS;
  6054. case ETH_SS_STATS:
  6055. return BNX2_NUM_STATS;
  6056. default:
  6057. return -EOPNOTSUPP;
  6058. }
  6059. }
  6060. static void
  6061. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6062. {
  6063. struct bnx2 *bp = netdev_priv(dev);
  6064. bnx2_set_power_state(bp, PCI_D0);
  6065. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6066. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6067. int i;
  6068. bnx2_netif_stop(bp, true);
  6069. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6070. bnx2_free_skbs(bp);
  6071. if (bnx2_test_registers(bp) != 0) {
  6072. buf[0] = 1;
  6073. etest->flags |= ETH_TEST_FL_FAILED;
  6074. }
  6075. if (bnx2_test_memory(bp) != 0) {
  6076. buf[1] = 1;
  6077. etest->flags |= ETH_TEST_FL_FAILED;
  6078. }
  6079. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6080. etest->flags |= ETH_TEST_FL_FAILED;
  6081. if (!netif_running(bp->dev))
  6082. bnx2_shutdown_chip(bp);
  6083. else {
  6084. bnx2_init_nic(bp, 1);
  6085. bnx2_netif_start(bp, true);
  6086. }
  6087. /* wait for link up */
  6088. for (i = 0; i < 7; i++) {
  6089. if (bp->link_up)
  6090. break;
  6091. msleep_interruptible(1000);
  6092. }
  6093. }
  6094. if (bnx2_test_nvram(bp) != 0) {
  6095. buf[3] = 1;
  6096. etest->flags |= ETH_TEST_FL_FAILED;
  6097. }
  6098. if (bnx2_test_intr(bp) != 0) {
  6099. buf[4] = 1;
  6100. etest->flags |= ETH_TEST_FL_FAILED;
  6101. }
  6102. if (bnx2_test_link(bp) != 0) {
  6103. buf[5] = 1;
  6104. etest->flags |= ETH_TEST_FL_FAILED;
  6105. }
  6106. if (!netif_running(bp->dev))
  6107. bnx2_set_power_state(bp, PCI_D3hot);
  6108. }
  6109. static void
  6110. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6111. {
  6112. switch (stringset) {
  6113. case ETH_SS_STATS:
  6114. memcpy(buf, bnx2_stats_str_arr,
  6115. sizeof(bnx2_stats_str_arr));
  6116. break;
  6117. case ETH_SS_TEST:
  6118. memcpy(buf, bnx2_tests_str_arr,
  6119. sizeof(bnx2_tests_str_arr));
  6120. break;
  6121. }
  6122. }
  6123. static void
  6124. bnx2_get_ethtool_stats(struct net_device *dev,
  6125. struct ethtool_stats *stats, u64 *buf)
  6126. {
  6127. struct bnx2 *bp = netdev_priv(dev);
  6128. int i;
  6129. u32 *hw_stats = (u32 *) bp->stats_blk;
  6130. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6131. u8 *stats_len_arr = NULL;
  6132. if (hw_stats == NULL) {
  6133. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6134. return;
  6135. }
  6136. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6137. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6138. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6139. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6140. stats_len_arr = bnx2_5706_stats_len_arr;
  6141. else
  6142. stats_len_arr = bnx2_5708_stats_len_arr;
  6143. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6144. unsigned long offset;
  6145. if (stats_len_arr[i] == 0) {
  6146. /* skip this counter */
  6147. buf[i] = 0;
  6148. continue;
  6149. }
  6150. offset = bnx2_stats_offset_arr[i];
  6151. if (stats_len_arr[i] == 4) {
  6152. /* 4-byte counter */
  6153. buf[i] = (u64) *(hw_stats + offset) +
  6154. *(temp_stats + offset);
  6155. continue;
  6156. }
  6157. /* 8-byte counter */
  6158. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6159. *(hw_stats + offset + 1) +
  6160. (((u64) *(temp_stats + offset)) << 32) +
  6161. *(temp_stats + offset + 1);
  6162. }
  6163. }
  6164. static int
  6165. bnx2_phys_id(struct net_device *dev, u32 data)
  6166. {
  6167. struct bnx2 *bp = netdev_priv(dev);
  6168. int i;
  6169. u32 save;
  6170. bnx2_set_power_state(bp, PCI_D0);
  6171. if (data == 0)
  6172. data = 2;
  6173. save = REG_RD(bp, BNX2_MISC_CFG);
  6174. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6175. for (i = 0; i < (data * 2); i++) {
  6176. if ((i % 2) == 0) {
  6177. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6178. }
  6179. else {
  6180. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6181. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6182. BNX2_EMAC_LED_100MB_OVERRIDE |
  6183. BNX2_EMAC_LED_10MB_OVERRIDE |
  6184. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6185. BNX2_EMAC_LED_TRAFFIC);
  6186. }
  6187. msleep_interruptible(500);
  6188. if (signal_pending(current))
  6189. break;
  6190. }
  6191. REG_WR(bp, BNX2_EMAC_LED, 0);
  6192. REG_WR(bp, BNX2_MISC_CFG, save);
  6193. if (!netif_running(dev))
  6194. bnx2_set_power_state(bp, PCI_D3hot);
  6195. return 0;
  6196. }
  6197. static int
  6198. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6199. {
  6200. struct bnx2 *bp = netdev_priv(dev);
  6201. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6202. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6203. else
  6204. return (ethtool_op_set_tx_csum(dev, data));
  6205. }
  6206. static int
  6207. bnx2_set_flags(struct net_device *dev, u32 data)
  6208. {
  6209. return ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH);
  6210. }
  6211. static const struct ethtool_ops bnx2_ethtool_ops = {
  6212. .get_settings = bnx2_get_settings,
  6213. .set_settings = bnx2_set_settings,
  6214. .get_drvinfo = bnx2_get_drvinfo,
  6215. .get_regs_len = bnx2_get_regs_len,
  6216. .get_regs = bnx2_get_regs,
  6217. .get_wol = bnx2_get_wol,
  6218. .set_wol = bnx2_set_wol,
  6219. .nway_reset = bnx2_nway_reset,
  6220. .get_link = bnx2_get_link,
  6221. .get_eeprom_len = bnx2_get_eeprom_len,
  6222. .get_eeprom = bnx2_get_eeprom,
  6223. .set_eeprom = bnx2_set_eeprom,
  6224. .get_coalesce = bnx2_get_coalesce,
  6225. .set_coalesce = bnx2_set_coalesce,
  6226. .get_ringparam = bnx2_get_ringparam,
  6227. .set_ringparam = bnx2_set_ringparam,
  6228. .get_pauseparam = bnx2_get_pauseparam,
  6229. .set_pauseparam = bnx2_set_pauseparam,
  6230. .get_rx_csum = bnx2_get_rx_csum,
  6231. .set_rx_csum = bnx2_set_rx_csum,
  6232. .set_tx_csum = bnx2_set_tx_csum,
  6233. .set_sg = ethtool_op_set_sg,
  6234. .set_tso = bnx2_set_tso,
  6235. .self_test = bnx2_self_test,
  6236. .get_strings = bnx2_get_strings,
  6237. .phys_id = bnx2_phys_id,
  6238. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6239. .get_sset_count = bnx2_get_sset_count,
  6240. .set_flags = bnx2_set_flags,
  6241. .get_flags = ethtool_op_get_flags,
  6242. };
  6243. /* Called with rtnl_lock */
  6244. static int
  6245. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6246. {
  6247. struct mii_ioctl_data *data = if_mii(ifr);
  6248. struct bnx2 *bp = netdev_priv(dev);
  6249. int err;
  6250. switch(cmd) {
  6251. case SIOCGMIIPHY:
  6252. data->phy_id = bp->phy_addr;
  6253. /* fallthru */
  6254. case SIOCGMIIREG: {
  6255. u32 mii_regval;
  6256. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6257. return -EOPNOTSUPP;
  6258. if (!netif_running(dev))
  6259. return -EAGAIN;
  6260. spin_lock_bh(&bp->phy_lock);
  6261. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6262. spin_unlock_bh(&bp->phy_lock);
  6263. data->val_out = mii_regval;
  6264. return err;
  6265. }
  6266. case SIOCSMIIREG:
  6267. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6268. return -EOPNOTSUPP;
  6269. if (!netif_running(dev))
  6270. return -EAGAIN;
  6271. spin_lock_bh(&bp->phy_lock);
  6272. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6273. spin_unlock_bh(&bp->phy_lock);
  6274. return err;
  6275. default:
  6276. /* do nothing */
  6277. break;
  6278. }
  6279. return -EOPNOTSUPP;
  6280. }
  6281. /* Called with rtnl_lock */
  6282. static int
  6283. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6284. {
  6285. struct sockaddr *addr = p;
  6286. struct bnx2 *bp = netdev_priv(dev);
  6287. if (!is_valid_ether_addr(addr->sa_data))
  6288. return -EINVAL;
  6289. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6290. if (netif_running(dev))
  6291. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6292. return 0;
  6293. }
  6294. /* Called with rtnl_lock */
  6295. static int
  6296. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6297. {
  6298. struct bnx2 *bp = netdev_priv(dev);
  6299. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6300. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6301. return -EINVAL;
  6302. dev->mtu = new_mtu;
  6303. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6304. }
  6305. #ifdef CONFIG_NET_POLL_CONTROLLER
  6306. static void
  6307. poll_bnx2(struct net_device *dev)
  6308. {
  6309. struct bnx2 *bp = netdev_priv(dev);
  6310. int i;
  6311. for (i = 0; i < bp->irq_nvecs; i++) {
  6312. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6313. disable_irq(irq->vector);
  6314. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6315. enable_irq(irq->vector);
  6316. }
  6317. }
  6318. #endif
  6319. static void __devinit
  6320. bnx2_get_5709_media(struct bnx2 *bp)
  6321. {
  6322. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6323. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6324. u32 strap;
  6325. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6326. return;
  6327. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6328. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6329. return;
  6330. }
  6331. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6332. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6333. else
  6334. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6335. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6336. switch (strap) {
  6337. case 0x4:
  6338. case 0x5:
  6339. case 0x6:
  6340. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6341. return;
  6342. }
  6343. } else {
  6344. switch (strap) {
  6345. case 0x1:
  6346. case 0x2:
  6347. case 0x4:
  6348. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6349. return;
  6350. }
  6351. }
  6352. }
  6353. static void __devinit
  6354. bnx2_get_pci_speed(struct bnx2 *bp)
  6355. {
  6356. u32 reg;
  6357. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6358. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6359. u32 clkreg;
  6360. bp->flags |= BNX2_FLAG_PCIX;
  6361. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6362. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6363. switch (clkreg) {
  6364. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6365. bp->bus_speed_mhz = 133;
  6366. break;
  6367. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6368. bp->bus_speed_mhz = 100;
  6369. break;
  6370. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6371. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6372. bp->bus_speed_mhz = 66;
  6373. break;
  6374. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6375. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6376. bp->bus_speed_mhz = 50;
  6377. break;
  6378. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6379. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6380. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6381. bp->bus_speed_mhz = 33;
  6382. break;
  6383. }
  6384. }
  6385. else {
  6386. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6387. bp->bus_speed_mhz = 66;
  6388. else
  6389. bp->bus_speed_mhz = 33;
  6390. }
  6391. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6392. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6393. }
  6394. static void __devinit
  6395. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6396. {
  6397. int rc, i, j;
  6398. u8 *data;
  6399. unsigned int block_end, rosize, len;
  6400. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6401. #define BNX2_VPD_LEN 128
  6402. #define BNX2_MAX_VER_SLEN 30
  6403. data = kmalloc(256, GFP_KERNEL);
  6404. if (!data)
  6405. return;
  6406. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6407. BNX2_VPD_LEN);
  6408. if (rc)
  6409. goto vpd_done;
  6410. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6411. data[i] = data[i + BNX2_VPD_LEN + 3];
  6412. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6413. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6414. data[i + 3] = data[i + BNX2_VPD_LEN];
  6415. }
  6416. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6417. if (i < 0)
  6418. goto vpd_done;
  6419. rosize = pci_vpd_lrdt_size(&data[i]);
  6420. i += PCI_VPD_LRDT_TAG_SIZE;
  6421. block_end = i + rosize;
  6422. if (block_end > BNX2_VPD_LEN)
  6423. goto vpd_done;
  6424. j = pci_vpd_find_info_keyword(data, i, rosize,
  6425. PCI_VPD_RO_KEYWORD_MFR_ID);
  6426. if (j < 0)
  6427. goto vpd_done;
  6428. len = pci_vpd_info_field_size(&data[j]);
  6429. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6430. if (j + len > block_end || len != 4 ||
  6431. memcmp(&data[j], "1028", 4))
  6432. goto vpd_done;
  6433. j = pci_vpd_find_info_keyword(data, i, rosize,
  6434. PCI_VPD_RO_KEYWORD_VENDOR0);
  6435. if (j < 0)
  6436. goto vpd_done;
  6437. len = pci_vpd_info_field_size(&data[j]);
  6438. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6439. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6440. goto vpd_done;
  6441. memcpy(bp->fw_version, &data[j], len);
  6442. bp->fw_version[len] = ' ';
  6443. vpd_done:
  6444. kfree(data);
  6445. }
  6446. static int __devinit
  6447. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6448. {
  6449. struct bnx2 *bp;
  6450. unsigned long mem_len;
  6451. int rc, i, j;
  6452. u32 reg;
  6453. u64 dma_mask, persist_dma_mask;
  6454. int err;
  6455. SET_NETDEV_DEV(dev, &pdev->dev);
  6456. bp = netdev_priv(dev);
  6457. bp->flags = 0;
  6458. bp->phy_flags = 0;
  6459. bp->temp_stats_blk =
  6460. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6461. if (bp->temp_stats_blk == NULL) {
  6462. rc = -ENOMEM;
  6463. goto err_out;
  6464. }
  6465. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6466. rc = pci_enable_device(pdev);
  6467. if (rc) {
  6468. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6469. goto err_out;
  6470. }
  6471. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6472. dev_err(&pdev->dev,
  6473. "Cannot find PCI device base address, aborting\n");
  6474. rc = -ENODEV;
  6475. goto err_out_disable;
  6476. }
  6477. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6478. if (rc) {
  6479. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6480. goto err_out_disable;
  6481. }
  6482. /* AER (Advanced Error Reporting) hooks */
  6483. err = pci_enable_pcie_error_reporting(pdev);
  6484. if (err) {
  6485. dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
  6486. "0x%x\n", err);
  6487. /* non-fatal, continue */
  6488. }
  6489. pci_set_master(pdev);
  6490. pci_save_state(pdev);
  6491. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6492. if (bp->pm_cap == 0) {
  6493. dev_err(&pdev->dev,
  6494. "Cannot find power management capability, aborting\n");
  6495. rc = -EIO;
  6496. goto err_out_release;
  6497. }
  6498. bp->dev = dev;
  6499. bp->pdev = pdev;
  6500. spin_lock_init(&bp->phy_lock);
  6501. spin_lock_init(&bp->indirect_lock);
  6502. #ifdef BCM_CNIC
  6503. mutex_init(&bp->cnic_lock);
  6504. #endif
  6505. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6506. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6507. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6508. dev->mem_end = dev->mem_start + mem_len;
  6509. dev->irq = pdev->irq;
  6510. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6511. if (!bp->regview) {
  6512. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6513. rc = -ENOMEM;
  6514. goto err_out_release;
  6515. }
  6516. /* Configure byte swap and enable write to the reg_window registers.
  6517. * Rely on CPU to do target byte swapping on big endian systems
  6518. * The chip's target access swapping will not swap all accesses
  6519. */
  6520. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6521. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6522. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6523. bnx2_set_power_state(bp, PCI_D0);
  6524. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6525. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6526. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6527. dev_err(&pdev->dev,
  6528. "Cannot find PCIE capability, aborting\n");
  6529. rc = -EIO;
  6530. goto err_out_unmap;
  6531. }
  6532. bp->flags |= BNX2_FLAG_PCIE;
  6533. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6534. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6535. } else {
  6536. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6537. if (bp->pcix_cap == 0) {
  6538. dev_err(&pdev->dev,
  6539. "Cannot find PCIX capability, aborting\n");
  6540. rc = -EIO;
  6541. goto err_out_unmap;
  6542. }
  6543. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6544. }
  6545. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6546. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6547. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6548. }
  6549. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6550. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6551. bp->flags |= BNX2_FLAG_MSI_CAP;
  6552. }
  6553. /* 5708 cannot support DMA addresses > 40-bit. */
  6554. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6555. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6556. else
  6557. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6558. /* Configure DMA attributes. */
  6559. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6560. dev->features |= NETIF_F_HIGHDMA;
  6561. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6562. if (rc) {
  6563. dev_err(&pdev->dev,
  6564. "pci_set_consistent_dma_mask failed, aborting\n");
  6565. goto err_out_unmap;
  6566. }
  6567. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6568. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6569. goto err_out_unmap;
  6570. }
  6571. if (!(bp->flags & BNX2_FLAG_PCIE))
  6572. bnx2_get_pci_speed(bp);
  6573. /* 5706A0 may falsely detect SERR and PERR. */
  6574. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6575. reg = REG_RD(bp, PCI_COMMAND);
  6576. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6577. REG_WR(bp, PCI_COMMAND, reg);
  6578. }
  6579. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6580. !(bp->flags & BNX2_FLAG_PCIX)) {
  6581. dev_err(&pdev->dev,
  6582. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6583. goto err_out_unmap;
  6584. }
  6585. bnx2_init_nvram(bp);
  6586. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6587. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6588. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6589. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6590. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6591. } else
  6592. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6593. /* Get the permanent MAC address. First we need to make sure the
  6594. * firmware is actually running.
  6595. */
  6596. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6597. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6598. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6599. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6600. rc = -ENODEV;
  6601. goto err_out_unmap;
  6602. }
  6603. bnx2_read_vpd_fw_ver(bp);
  6604. j = strlen(bp->fw_version);
  6605. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6606. for (i = 0; i < 3 && j < 24; i++) {
  6607. u8 num, k, skip0;
  6608. if (i == 0) {
  6609. bp->fw_version[j++] = 'b';
  6610. bp->fw_version[j++] = 'c';
  6611. bp->fw_version[j++] = ' ';
  6612. }
  6613. num = (u8) (reg >> (24 - (i * 8)));
  6614. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6615. if (num >= k || !skip0 || k == 1) {
  6616. bp->fw_version[j++] = (num / k) + '0';
  6617. skip0 = 0;
  6618. }
  6619. }
  6620. if (i != 2)
  6621. bp->fw_version[j++] = '.';
  6622. }
  6623. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6624. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6625. bp->wol = 1;
  6626. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6627. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6628. for (i = 0; i < 30; i++) {
  6629. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6630. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6631. break;
  6632. msleep(10);
  6633. }
  6634. }
  6635. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6636. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6637. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6638. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6639. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6640. if (j < 32)
  6641. bp->fw_version[j++] = ' ';
  6642. for (i = 0; i < 3 && j < 28; i++) {
  6643. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6644. reg = swab32(reg);
  6645. memcpy(&bp->fw_version[j], &reg, 4);
  6646. j += 4;
  6647. }
  6648. }
  6649. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6650. bp->mac_addr[0] = (u8) (reg >> 8);
  6651. bp->mac_addr[1] = (u8) reg;
  6652. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6653. bp->mac_addr[2] = (u8) (reg >> 24);
  6654. bp->mac_addr[3] = (u8) (reg >> 16);
  6655. bp->mac_addr[4] = (u8) (reg >> 8);
  6656. bp->mac_addr[5] = (u8) reg;
  6657. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6658. bnx2_set_rx_ring_size(bp, 255);
  6659. bp->rx_csum = 1;
  6660. bp->tx_quick_cons_trip_int = 2;
  6661. bp->tx_quick_cons_trip = 20;
  6662. bp->tx_ticks_int = 18;
  6663. bp->tx_ticks = 80;
  6664. bp->rx_quick_cons_trip_int = 2;
  6665. bp->rx_quick_cons_trip = 12;
  6666. bp->rx_ticks_int = 18;
  6667. bp->rx_ticks = 18;
  6668. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6669. bp->current_interval = BNX2_TIMER_INTERVAL;
  6670. bp->phy_addr = 1;
  6671. /* Disable WOL support if we are running on a SERDES chip. */
  6672. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6673. bnx2_get_5709_media(bp);
  6674. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6675. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6676. bp->phy_port = PORT_TP;
  6677. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6678. bp->phy_port = PORT_FIBRE;
  6679. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6680. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6681. bp->flags |= BNX2_FLAG_NO_WOL;
  6682. bp->wol = 0;
  6683. }
  6684. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6685. /* Don't do parallel detect on this board because of
  6686. * some board problems. The link will not go down
  6687. * if we do parallel detect.
  6688. */
  6689. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6690. pdev->subsystem_device == 0x310c)
  6691. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6692. } else {
  6693. bp->phy_addr = 2;
  6694. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6695. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6696. }
  6697. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6698. CHIP_NUM(bp) == CHIP_NUM_5708)
  6699. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6700. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6701. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6702. CHIP_REV(bp) == CHIP_REV_Bx))
  6703. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6704. bnx2_init_fw_cap(bp);
  6705. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6706. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6707. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6708. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6709. bp->flags |= BNX2_FLAG_NO_WOL;
  6710. bp->wol = 0;
  6711. }
  6712. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6713. bp->tx_quick_cons_trip_int =
  6714. bp->tx_quick_cons_trip;
  6715. bp->tx_ticks_int = bp->tx_ticks;
  6716. bp->rx_quick_cons_trip_int =
  6717. bp->rx_quick_cons_trip;
  6718. bp->rx_ticks_int = bp->rx_ticks;
  6719. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6720. bp->com_ticks_int = bp->com_ticks;
  6721. bp->cmd_ticks_int = bp->cmd_ticks;
  6722. }
  6723. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6724. *
  6725. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6726. * with byte enables disabled on the unused 32-bit word. This is legal
  6727. * but causes problems on the AMD 8132 which will eventually stop
  6728. * responding after a while.
  6729. *
  6730. * AMD believes this incompatibility is unique to the 5706, and
  6731. * prefers to locally disable MSI rather than globally disabling it.
  6732. */
  6733. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6734. struct pci_dev *amd_8132 = NULL;
  6735. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6736. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6737. amd_8132))) {
  6738. if (amd_8132->revision >= 0x10 &&
  6739. amd_8132->revision <= 0x13) {
  6740. disable_msi = 1;
  6741. pci_dev_put(amd_8132);
  6742. break;
  6743. }
  6744. }
  6745. }
  6746. bnx2_set_default_link(bp);
  6747. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6748. init_timer(&bp->timer);
  6749. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6750. bp->timer.data = (unsigned long) bp;
  6751. bp->timer.function = bnx2_timer;
  6752. return 0;
  6753. err_out_unmap:
  6754. if (bp->regview) {
  6755. iounmap(bp->regview);
  6756. bp->regview = NULL;
  6757. }
  6758. err_out_release:
  6759. pci_disable_pcie_error_reporting(pdev);
  6760. pci_release_regions(pdev);
  6761. err_out_disable:
  6762. pci_disable_device(pdev);
  6763. pci_set_drvdata(pdev, NULL);
  6764. err_out:
  6765. return rc;
  6766. }
  6767. static char * __devinit
  6768. bnx2_bus_string(struct bnx2 *bp, char *str)
  6769. {
  6770. char *s = str;
  6771. if (bp->flags & BNX2_FLAG_PCIE) {
  6772. s += sprintf(s, "PCI Express");
  6773. } else {
  6774. s += sprintf(s, "PCI");
  6775. if (bp->flags & BNX2_FLAG_PCIX)
  6776. s += sprintf(s, "-X");
  6777. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6778. s += sprintf(s, " 32-bit");
  6779. else
  6780. s += sprintf(s, " 64-bit");
  6781. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6782. }
  6783. return str;
  6784. }
  6785. static void
  6786. bnx2_del_napi(struct bnx2 *bp)
  6787. {
  6788. int i;
  6789. for (i = 0; i < bp->irq_nvecs; i++)
  6790. netif_napi_del(&bp->bnx2_napi[i].napi);
  6791. }
  6792. static void
  6793. bnx2_init_napi(struct bnx2 *bp)
  6794. {
  6795. int i;
  6796. for (i = 0; i < bp->irq_nvecs; i++) {
  6797. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6798. int (*poll)(struct napi_struct *, int);
  6799. if (i == 0)
  6800. poll = bnx2_poll;
  6801. else
  6802. poll = bnx2_poll_msix;
  6803. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6804. bnapi->bp = bp;
  6805. }
  6806. }
  6807. static const struct net_device_ops bnx2_netdev_ops = {
  6808. .ndo_open = bnx2_open,
  6809. .ndo_start_xmit = bnx2_start_xmit,
  6810. .ndo_stop = bnx2_close,
  6811. .ndo_get_stats64 = bnx2_get_stats64,
  6812. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6813. .ndo_do_ioctl = bnx2_ioctl,
  6814. .ndo_validate_addr = eth_validate_addr,
  6815. .ndo_set_mac_address = bnx2_change_mac_addr,
  6816. .ndo_change_mtu = bnx2_change_mtu,
  6817. .ndo_tx_timeout = bnx2_tx_timeout,
  6818. #ifdef BCM_VLAN
  6819. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6820. #endif
  6821. #ifdef CONFIG_NET_POLL_CONTROLLER
  6822. .ndo_poll_controller = poll_bnx2,
  6823. #endif
  6824. };
  6825. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6826. {
  6827. #ifdef BCM_VLAN
  6828. dev->vlan_features |= flags;
  6829. #endif
  6830. }
  6831. static int __devinit
  6832. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6833. {
  6834. static int version_printed = 0;
  6835. struct net_device *dev = NULL;
  6836. struct bnx2 *bp;
  6837. int rc;
  6838. char str[40];
  6839. if (version_printed++ == 0)
  6840. pr_info("%s", version);
  6841. /* dev zeroed in init_etherdev */
  6842. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6843. if (!dev)
  6844. return -ENOMEM;
  6845. rc = bnx2_init_board(pdev, dev);
  6846. if (rc < 0) {
  6847. free_netdev(dev);
  6848. return rc;
  6849. }
  6850. dev->netdev_ops = &bnx2_netdev_ops;
  6851. dev->watchdog_timeo = TX_TIMEOUT;
  6852. dev->ethtool_ops = &bnx2_ethtool_ops;
  6853. bp = netdev_priv(dev);
  6854. pci_set_drvdata(pdev, dev);
  6855. rc = bnx2_request_firmware(bp);
  6856. if (rc)
  6857. goto error;
  6858. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6859. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6860. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO |
  6861. NETIF_F_RXHASH;
  6862. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6863. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6864. dev->features |= NETIF_F_IPV6_CSUM;
  6865. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6866. }
  6867. #ifdef BCM_VLAN
  6868. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6869. #endif
  6870. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6871. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6872. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6873. dev->features |= NETIF_F_TSO6;
  6874. vlan_features_add(dev, NETIF_F_TSO6);
  6875. }
  6876. if ((rc = register_netdev(dev))) {
  6877. dev_err(&pdev->dev, "Cannot register net device\n");
  6878. goto error;
  6879. }
  6880. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6881. board_info[ent->driver_data].name,
  6882. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6883. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6884. bnx2_bus_string(bp, str),
  6885. dev->base_addr,
  6886. bp->pdev->irq, dev->dev_addr);
  6887. return 0;
  6888. error:
  6889. if (bp->mips_firmware)
  6890. release_firmware(bp->mips_firmware);
  6891. if (bp->rv2p_firmware)
  6892. release_firmware(bp->rv2p_firmware);
  6893. if (bp->regview)
  6894. iounmap(bp->regview);
  6895. pci_release_regions(pdev);
  6896. pci_disable_device(pdev);
  6897. pci_set_drvdata(pdev, NULL);
  6898. free_netdev(dev);
  6899. return rc;
  6900. }
  6901. static void __devexit
  6902. bnx2_remove_one(struct pci_dev *pdev)
  6903. {
  6904. struct net_device *dev = pci_get_drvdata(pdev);
  6905. struct bnx2 *bp = netdev_priv(dev);
  6906. flush_scheduled_work();
  6907. unregister_netdev(dev);
  6908. if (bp->mips_firmware)
  6909. release_firmware(bp->mips_firmware);
  6910. if (bp->rv2p_firmware)
  6911. release_firmware(bp->rv2p_firmware);
  6912. if (bp->regview)
  6913. iounmap(bp->regview);
  6914. kfree(bp->temp_stats_blk);
  6915. free_netdev(dev);
  6916. pci_disable_pcie_error_reporting(pdev);
  6917. pci_release_regions(pdev);
  6918. pci_disable_device(pdev);
  6919. pci_set_drvdata(pdev, NULL);
  6920. }
  6921. static int
  6922. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6923. {
  6924. struct net_device *dev = pci_get_drvdata(pdev);
  6925. struct bnx2 *bp = netdev_priv(dev);
  6926. /* PCI register 4 needs to be saved whether netif_running() or not.
  6927. * MSI address and data need to be saved if using MSI and
  6928. * netif_running().
  6929. */
  6930. pci_save_state(pdev);
  6931. if (!netif_running(dev))
  6932. return 0;
  6933. flush_scheduled_work();
  6934. bnx2_netif_stop(bp, true);
  6935. netif_device_detach(dev);
  6936. del_timer_sync(&bp->timer);
  6937. bnx2_shutdown_chip(bp);
  6938. bnx2_free_skbs(bp);
  6939. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6940. return 0;
  6941. }
  6942. static int
  6943. bnx2_resume(struct pci_dev *pdev)
  6944. {
  6945. struct net_device *dev = pci_get_drvdata(pdev);
  6946. struct bnx2 *bp = netdev_priv(dev);
  6947. pci_restore_state(pdev);
  6948. if (!netif_running(dev))
  6949. return 0;
  6950. bnx2_set_power_state(bp, PCI_D0);
  6951. netif_device_attach(dev);
  6952. bnx2_init_nic(bp, 1);
  6953. bnx2_netif_start(bp, true);
  6954. return 0;
  6955. }
  6956. /**
  6957. * bnx2_io_error_detected - called when PCI error is detected
  6958. * @pdev: Pointer to PCI device
  6959. * @state: The current pci connection state
  6960. *
  6961. * This function is called after a PCI bus error affecting
  6962. * this device has been detected.
  6963. */
  6964. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6965. pci_channel_state_t state)
  6966. {
  6967. struct net_device *dev = pci_get_drvdata(pdev);
  6968. struct bnx2 *bp = netdev_priv(dev);
  6969. rtnl_lock();
  6970. netif_device_detach(dev);
  6971. if (state == pci_channel_io_perm_failure) {
  6972. rtnl_unlock();
  6973. return PCI_ERS_RESULT_DISCONNECT;
  6974. }
  6975. if (netif_running(dev)) {
  6976. bnx2_netif_stop(bp, true);
  6977. del_timer_sync(&bp->timer);
  6978. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6979. }
  6980. pci_disable_device(pdev);
  6981. rtnl_unlock();
  6982. /* Request a slot slot reset. */
  6983. return PCI_ERS_RESULT_NEED_RESET;
  6984. }
  6985. /**
  6986. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6987. * @pdev: Pointer to PCI device
  6988. *
  6989. * Restart the card from scratch, as if from a cold-boot.
  6990. */
  6991. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6992. {
  6993. struct net_device *dev = pci_get_drvdata(pdev);
  6994. struct bnx2 *bp = netdev_priv(dev);
  6995. pci_ers_result_t result;
  6996. int err;
  6997. rtnl_lock();
  6998. if (pci_enable_device(pdev)) {
  6999. dev_err(&pdev->dev,
  7000. "Cannot re-enable PCI device after reset\n");
  7001. result = PCI_ERS_RESULT_DISCONNECT;
  7002. } else {
  7003. pci_set_master(pdev);
  7004. pci_restore_state(pdev);
  7005. pci_save_state(pdev);
  7006. if (netif_running(dev)) {
  7007. bnx2_set_power_state(bp, PCI_D0);
  7008. bnx2_init_nic(bp, 1);
  7009. }
  7010. result = PCI_ERS_RESULT_RECOVERED;
  7011. }
  7012. rtnl_unlock();
  7013. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7014. if (err) {
  7015. dev_err(&pdev->dev,
  7016. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7017. err); /* non-fatal, continue */
  7018. }
  7019. return result;
  7020. }
  7021. /**
  7022. * bnx2_io_resume - called when traffic can start flowing again.
  7023. * @pdev: Pointer to PCI device
  7024. *
  7025. * This callback is called when the error recovery driver tells us that
  7026. * its OK to resume normal operation.
  7027. */
  7028. static void bnx2_io_resume(struct pci_dev *pdev)
  7029. {
  7030. struct net_device *dev = pci_get_drvdata(pdev);
  7031. struct bnx2 *bp = netdev_priv(dev);
  7032. rtnl_lock();
  7033. if (netif_running(dev))
  7034. bnx2_netif_start(bp, true);
  7035. netif_device_attach(dev);
  7036. rtnl_unlock();
  7037. }
  7038. static struct pci_error_handlers bnx2_err_handler = {
  7039. .error_detected = bnx2_io_error_detected,
  7040. .slot_reset = bnx2_io_slot_reset,
  7041. .resume = bnx2_io_resume,
  7042. };
  7043. static struct pci_driver bnx2_pci_driver = {
  7044. .name = DRV_MODULE_NAME,
  7045. .id_table = bnx2_pci_tbl,
  7046. .probe = bnx2_init_one,
  7047. .remove = __devexit_p(bnx2_remove_one),
  7048. .suspend = bnx2_suspend,
  7049. .resume = bnx2_resume,
  7050. .err_handler = &bnx2_err_handler,
  7051. };
  7052. static int __init bnx2_init(void)
  7053. {
  7054. return pci_register_driver(&bnx2_pci_driver);
  7055. }
  7056. static void __exit bnx2_cleanup(void)
  7057. {
  7058. pci_unregister_driver(&bnx2_pci_driver);
  7059. }
  7060. module_init(bnx2_init);
  7061. module_exit(bnx2_cleanup);