fair.c 140 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * SCHED_OTHER wake-up granularity.
  72. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  73. *
  74. * This option delays the preemption effects of decoupled workloads
  75. * and reduces their over-scheduling. Synchronous workloads will still
  76. * have immediate wakeup/sleep latencies.
  77. */
  78. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  79. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  80. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  81. /*
  82. * The exponential sliding window over which load is averaged for shares
  83. * distribution.
  84. * (default: 10msec)
  85. */
  86. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  87. #ifdef CONFIG_CFS_BANDWIDTH
  88. /*
  89. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  90. * each time a cfs_rq requests quota.
  91. *
  92. * Note: in the case that the slice exceeds the runtime remaining (either due
  93. * to consumption or the quota being specified to be smaller than the slice)
  94. * we will always only issue the remaining available time.
  95. *
  96. * default: 5 msec, units: microseconds
  97. */
  98. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  99. #endif
  100. /*
  101. * Increase the granularity value when there are more CPUs,
  102. * because with more CPUs the 'effective latency' as visible
  103. * to users decreases. But the relationship is not linear,
  104. * so pick a second-best guess by going with the log2 of the
  105. * number of CPUs.
  106. *
  107. * This idea comes from the SD scheduler of Con Kolivas:
  108. */
  109. static int get_update_sysctl_factor(void)
  110. {
  111. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  112. unsigned int factor;
  113. switch (sysctl_sched_tunable_scaling) {
  114. case SCHED_TUNABLESCALING_NONE:
  115. factor = 1;
  116. break;
  117. case SCHED_TUNABLESCALING_LINEAR:
  118. factor = cpus;
  119. break;
  120. case SCHED_TUNABLESCALING_LOG:
  121. default:
  122. factor = 1 + ilog2(cpus);
  123. break;
  124. }
  125. return factor;
  126. }
  127. static void update_sysctl(void)
  128. {
  129. unsigned int factor = get_update_sysctl_factor();
  130. #define SET_SYSCTL(name) \
  131. (sysctl_##name = (factor) * normalized_sysctl_##name)
  132. SET_SYSCTL(sched_min_granularity);
  133. SET_SYSCTL(sched_latency);
  134. SET_SYSCTL(sched_wakeup_granularity);
  135. #undef SET_SYSCTL
  136. }
  137. void sched_init_granularity(void)
  138. {
  139. update_sysctl();
  140. }
  141. #if BITS_PER_LONG == 32
  142. # define WMULT_CONST (~0UL)
  143. #else
  144. # define WMULT_CONST (1UL << 32)
  145. #endif
  146. #define WMULT_SHIFT 32
  147. /*
  148. * Shift right and round:
  149. */
  150. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  151. /*
  152. * delta *= weight / lw
  153. */
  154. static unsigned long
  155. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  156. struct load_weight *lw)
  157. {
  158. u64 tmp;
  159. /*
  160. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  161. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  162. * 2^SCHED_LOAD_RESOLUTION.
  163. */
  164. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  165. tmp = (u64)delta_exec * scale_load_down(weight);
  166. else
  167. tmp = (u64)delta_exec;
  168. if (!lw->inv_weight) {
  169. unsigned long w = scale_load_down(lw->weight);
  170. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  171. lw->inv_weight = 1;
  172. else if (unlikely(!w))
  173. lw->inv_weight = WMULT_CONST;
  174. else
  175. lw->inv_weight = WMULT_CONST / w;
  176. }
  177. /*
  178. * Check whether we'd overflow the 64-bit multiplication:
  179. */
  180. if (unlikely(tmp > WMULT_CONST))
  181. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  182. WMULT_SHIFT/2);
  183. else
  184. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  185. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  186. }
  187. const struct sched_class fair_sched_class;
  188. /**************************************************************
  189. * CFS operations on generic schedulable entities:
  190. */
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. /* cpu runqueue to which this cfs_rq is attached */
  193. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  194. {
  195. return cfs_rq->rq;
  196. }
  197. /* An entity is a task if it doesn't "own" a runqueue */
  198. #define entity_is_task(se) (!se->my_q)
  199. static inline struct task_struct *task_of(struct sched_entity *se)
  200. {
  201. #ifdef CONFIG_SCHED_DEBUG
  202. WARN_ON_ONCE(!entity_is_task(se));
  203. #endif
  204. return container_of(se, struct task_struct, se);
  205. }
  206. /* Walk up scheduling entities hierarchy */
  207. #define for_each_sched_entity(se) \
  208. for (; se; se = se->parent)
  209. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  210. {
  211. return p->se.cfs_rq;
  212. }
  213. /* runqueue on which this entity is (to be) queued */
  214. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  215. {
  216. return se->cfs_rq;
  217. }
  218. /* runqueue "owned" by this group */
  219. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  220. {
  221. return grp->my_q;
  222. }
  223. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  224. {
  225. if (!cfs_rq->on_list) {
  226. /*
  227. * Ensure we either appear before our parent (if already
  228. * enqueued) or force our parent to appear after us when it is
  229. * enqueued. The fact that we always enqueue bottom-up
  230. * reduces this to two cases.
  231. */
  232. if (cfs_rq->tg->parent &&
  233. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  234. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  235. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  236. } else {
  237. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  238. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  239. }
  240. cfs_rq->on_list = 1;
  241. }
  242. }
  243. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (cfs_rq->on_list) {
  246. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  247. cfs_rq->on_list = 0;
  248. }
  249. }
  250. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  251. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  252. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  253. /* Do the two (enqueued) entities belong to the same group ? */
  254. static inline int
  255. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  256. {
  257. if (se->cfs_rq == pse->cfs_rq)
  258. return 1;
  259. return 0;
  260. }
  261. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  262. {
  263. return se->parent;
  264. }
  265. /* return depth at which a sched entity is present in the hierarchy */
  266. static inline int depth_se(struct sched_entity *se)
  267. {
  268. int depth = 0;
  269. for_each_sched_entity(se)
  270. depth++;
  271. return depth;
  272. }
  273. static void
  274. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  275. {
  276. int se_depth, pse_depth;
  277. /*
  278. * preemption test can be made between sibling entities who are in the
  279. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  280. * both tasks until we find their ancestors who are siblings of common
  281. * parent.
  282. */
  283. /* First walk up until both entities are at same depth */
  284. se_depth = depth_se(*se);
  285. pse_depth = depth_se(*pse);
  286. while (se_depth > pse_depth) {
  287. se_depth--;
  288. *se = parent_entity(*se);
  289. }
  290. while (pse_depth > se_depth) {
  291. pse_depth--;
  292. *pse = parent_entity(*pse);
  293. }
  294. while (!is_same_group(*se, *pse)) {
  295. *se = parent_entity(*se);
  296. *pse = parent_entity(*pse);
  297. }
  298. }
  299. #else /* !CONFIG_FAIR_GROUP_SCHED */
  300. static inline struct task_struct *task_of(struct sched_entity *se)
  301. {
  302. return container_of(se, struct task_struct, se);
  303. }
  304. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  305. {
  306. return container_of(cfs_rq, struct rq, cfs);
  307. }
  308. #define entity_is_task(se) 1
  309. #define for_each_sched_entity(se) \
  310. for (; se; se = NULL)
  311. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  312. {
  313. return &task_rq(p)->cfs;
  314. }
  315. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  316. {
  317. struct task_struct *p = task_of(se);
  318. struct rq *rq = task_rq(p);
  319. return &rq->cfs;
  320. }
  321. /* runqueue "owned" by this group */
  322. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  323. {
  324. return NULL;
  325. }
  326. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  327. {
  328. }
  329. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  330. {
  331. }
  332. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  333. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  334. static inline int
  335. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  336. {
  337. return 1;
  338. }
  339. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  340. {
  341. return NULL;
  342. }
  343. static inline void
  344. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  345. {
  346. }
  347. #endif /* CONFIG_FAIR_GROUP_SCHED */
  348. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  349. unsigned long delta_exec);
  350. /**************************************************************
  351. * Scheduling class tree data structure manipulation methods:
  352. */
  353. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  354. {
  355. s64 delta = (s64)(vruntime - min_vruntime);
  356. if (delta > 0)
  357. min_vruntime = vruntime;
  358. return min_vruntime;
  359. }
  360. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta < 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline int entity_before(struct sched_entity *a,
  368. struct sched_entity *b)
  369. {
  370. return (s64)(a->vruntime - b->vruntime) < 0;
  371. }
  372. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  373. {
  374. u64 vruntime = cfs_rq->min_vruntime;
  375. if (cfs_rq->curr)
  376. vruntime = cfs_rq->curr->vruntime;
  377. if (cfs_rq->rb_leftmost) {
  378. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  379. struct sched_entity,
  380. run_node);
  381. if (!cfs_rq->curr)
  382. vruntime = se->vruntime;
  383. else
  384. vruntime = min_vruntime(vruntime, se->vruntime);
  385. }
  386. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  387. #ifndef CONFIG_64BIT
  388. smp_wmb();
  389. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  390. #endif
  391. }
  392. /*
  393. * Enqueue an entity into the rb-tree:
  394. */
  395. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  396. {
  397. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  398. struct rb_node *parent = NULL;
  399. struct sched_entity *entry;
  400. int leftmost = 1;
  401. /*
  402. * Find the right place in the rbtree:
  403. */
  404. while (*link) {
  405. parent = *link;
  406. entry = rb_entry(parent, struct sched_entity, run_node);
  407. /*
  408. * We dont care about collisions. Nodes with
  409. * the same key stay together.
  410. */
  411. if (entity_before(se, entry)) {
  412. link = &parent->rb_left;
  413. } else {
  414. link = &parent->rb_right;
  415. leftmost = 0;
  416. }
  417. }
  418. /*
  419. * Maintain a cache of leftmost tree entries (it is frequently
  420. * used):
  421. */
  422. if (leftmost)
  423. cfs_rq->rb_leftmost = &se->run_node;
  424. rb_link_node(&se->run_node, parent, link);
  425. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  426. }
  427. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. if (cfs_rq->rb_leftmost == &se->run_node) {
  430. struct rb_node *next_node;
  431. next_node = rb_next(&se->run_node);
  432. cfs_rq->rb_leftmost = next_node;
  433. }
  434. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  435. }
  436. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  437. {
  438. struct rb_node *left = cfs_rq->rb_leftmost;
  439. if (!left)
  440. return NULL;
  441. return rb_entry(left, struct sched_entity, run_node);
  442. }
  443. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  444. {
  445. struct rb_node *next = rb_next(&se->run_node);
  446. if (!next)
  447. return NULL;
  448. return rb_entry(next, struct sched_entity, run_node);
  449. }
  450. #ifdef CONFIG_SCHED_DEBUG
  451. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  452. {
  453. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  454. if (!last)
  455. return NULL;
  456. return rb_entry(last, struct sched_entity, run_node);
  457. }
  458. /**************************************************************
  459. * Scheduling class statistics methods:
  460. */
  461. int sched_proc_update_handler(struct ctl_table *table, int write,
  462. void __user *buffer, size_t *lenp,
  463. loff_t *ppos)
  464. {
  465. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  466. int factor = get_update_sysctl_factor();
  467. if (ret || !write)
  468. return ret;
  469. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  470. sysctl_sched_min_granularity);
  471. #define WRT_SYSCTL(name) \
  472. (normalized_sysctl_##name = sysctl_##name / (factor))
  473. WRT_SYSCTL(sched_min_granularity);
  474. WRT_SYSCTL(sched_latency);
  475. WRT_SYSCTL(sched_wakeup_granularity);
  476. #undef WRT_SYSCTL
  477. return 0;
  478. }
  479. #endif
  480. /*
  481. * delta /= w
  482. */
  483. static inline unsigned long
  484. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  485. {
  486. if (unlikely(se->load.weight != NICE_0_LOAD))
  487. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  488. return delta;
  489. }
  490. /*
  491. * The idea is to set a period in which each task runs once.
  492. *
  493. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  494. * this period because otherwise the slices get too small.
  495. *
  496. * p = (nr <= nl) ? l : l*nr/nl
  497. */
  498. static u64 __sched_period(unsigned long nr_running)
  499. {
  500. u64 period = sysctl_sched_latency;
  501. unsigned long nr_latency = sched_nr_latency;
  502. if (unlikely(nr_running > nr_latency)) {
  503. period = sysctl_sched_min_granularity;
  504. period *= nr_running;
  505. }
  506. return period;
  507. }
  508. /*
  509. * We calculate the wall-time slice from the period by taking a part
  510. * proportional to the weight.
  511. *
  512. * s = p*P[w/rw]
  513. */
  514. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  515. {
  516. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  517. for_each_sched_entity(se) {
  518. struct load_weight *load;
  519. struct load_weight lw;
  520. cfs_rq = cfs_rq_of(se);
  521. load = &cfs_rq->load;
  522. if (unlikely(!se->on_rq)) {
  523. lw = cfs_rq->load;
  524. update_load_add(&lw, se->load.weight);
  525. load = &lw;
  526. }
  527. slice = calc_delta_mine(slice, se->load.weight, load);
  528. }
  529. return slice;
  530. }
  531. /*
  532. * We calculate the vruntime slice of a to be inserted task
  533. *
  534. * vs = s/w
  535. */
  536. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  539. }
  540. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  541. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  542. /*
  543. * Update the current task's runtime statistics. Skip current tasks that
  544. * are not in our scheduling class.
  545. */
  546. static inline void
  547. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  548. unsigned long delta_exec)
  549. {
  550. unsigned long delta_exec_weighted;
  551. schedstat_set(curr->statistics.exec_max,
  552. max((u64)delta_exec, curr->statistics.exec_max));
  553. curr->sum_exec_runtime += delta_exec;
  554. schedstat_add(cfs_rq, exec_clock, delta_exec);
  555. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  556. curr->vruntime += delta_exec_weighted;
  557. update_min_vruntime(cfs_rq);
  558. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  559. cfs_rq->load_unacc_exec_time += delta_exec;
  560. #endif
  561. }
  562. static void update_curr(struct cfs_rq *cfs_rq)
  563. {
  564. struct sched_entity *curr = cfs_rq->curr;
  565. u64 now = rq_of(cfs_rq)->clock_task;
  566. unsigned long delta_exec;
  567. if (unlikely(!curr))
  568. return;
  569. /*
  570. * Get the amount of time the current task was running
  571. * since the last time we changed load (this cannot
  572. * overflow on 32 bits):
  573. */
  574. delta_exec = (unsigned long)(now - curr->exec_start);
  575. if (!delta_exec)
  576. return;
  577. __update_curr(cfs_rq, curr, delta_exec);
  578. curr->exec_start = now;
  579. if (entity_is_task(curr)) {
  580. struct task_struct *curtask = task_of(curr);
  581. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  582. cpuacct_charge(curtask, delta_exec);
  583. account_group_exec_runtime(curtask, delta_exec);
  584. }
  585. account_cfs_rq_runtime(cfs_rq, delta_exec);
  586. }
  587. static inline void
  588. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  589. {
  590. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  591. }
  592. /*
  593. * Task is being enqueued - update stats:
  594. */
  595. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. /*
  598. * Are we enqueueing a waiting task? (for current tasks
  599. * a dequeue/enqueue event is a NOP)
  600. */
  601. if (se != cfs_rq->curr)
  602. update_stats_wait_start(cfs_rq, se);
  603. }
  604. static void
  605. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  606. {
  607. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  608. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  609. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  610. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  612. #ifdef CONFIG_SCHEDSTATS
  613. if (entity_is_task(se)) {
  614. trace_sched_stat_wait(task_of(se),
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  616. }
  617. #endif
  618. schedstat_set(se->statistics.wait_start, 0);
  619. }
  620. static inline void
  621. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  622. {
  623. /*
  624. * Mark the end of the wait period if dequeueing a
  625. * waiting task:
  626. */
  627. if (se != cfs_rq->curr)
  628. update_stats_wait_end(cfs_rq, se);
  629. }
  630. /*
  631. * We are picking a new current task - update its stats:
  632. */
  633. static inline void
  634. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  635. {
  636. /*
  637. * We are starting a new run period:
  638. */
  639. se->exec_start = rq_of(cfs_rq)->clock_task;
  640. }
  641. /**************************************************
  642. * Scheduling class queueing methods:
  643. */
  644. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  645. static void
  646. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  647. {
  648. cfs_rq->task_weight += weight;
  649. }
  650. #else
  651. static inline void
  652. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  653. {
  654. }
  655. #endif
  656. static void
  657. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. update_load_add(&cfs_rq->load, se->load.weight);
  660. if (!parent_entity(se))
  661. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  662. if (entity_is_task(se)) {
  663. add_cfs_task_weight(cfs_rq, se->load.weight);
  664. list_add(&se->group_node, &cfs_rq->tasks);
  665. }
  666. cfs_rq->nr_running++;
  667. }
  668. static void
  669. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  670. {
  671. update_load_sub(&cfs_rq->load, se->load.weight);
  672. if (!parent_entity(se))
  673. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  674. if (entity_is_task(se)) {
  675. add_cfs_task_weight(cfs_rq, -se->load.weight);
  676. list_del_init(&se->group_node);
  677. }
  678. cfs_rq->nr_running--;
  679. }
  680. #ifdef CONFIG_FAIR_GROUP_SCHED
  681. /* we need this in update_cfs_load and load-balance functions below */
  682. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  683. # ifdef CONFIG_SMP
  684. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  685. int global_update)
  686. {
  687. struct task_group *tg = cfs_rq->tg;
  688. long load_avg;
  689. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  690. load_avg -= cfs_rq->load_contribution;
  691. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  692. atomic_add(load_avg, &tg->load_weight);
  693. cfs_rq->load_contribution += load_avg;
  694. }
  695. }
  696. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  697. {
  698. u64 period = sysctl_sched_shares_window;
  699. u64 now, delta;
  700. unsigned long load = cfs_rq->load.weight;
  701. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  702. return;
  703. now = rq_of(cfs_rq)->clock_task;
  704. delta = now - cfs_rq->load_stamp;
  705. /* truncate load history at 4 idle periods */
  706. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  707. now - cfs_rq->load_last > 4 * period) {
  708. cfs_rq->load_period = 0;
  709. cfs_rq->load_avg = 0;
  710. delta = period - 1;
  711. }
  712. cfs_rq->load_stamp = now;
  713. cfs_rq->load_unacc_exec_time = 0;
  714. cfs_rq->load_period += delta;
  715. if (load) {
  716. cfs_rq->load_last = now;
  717. cfs_rq->load_avg += delta * load;
  718. }
  719. /* consider updating load contribution on each fold or truncate */
  720. if (global_update || cfs_rq->load_period > period
  721. || !cfs_rq->load_period)
  722. update_cfs_rq_load_contribution(cfs_rq, global_update);
  723. while (cfs_rq->load_period > period) {
  724. /*
  725. * Inline assembly required to prevent the compiler
  726. * optimising this loop into a divmod call.
  727. * See __iter_div_u64_rem() for another example of this.
  728. */
  729. asm("" : "+rm" (cfs_rq->load_period));
  730. cfs_rq->load_period /= 2;
  731. cfs_rq->load_avg /= 2;
  732. }
  733. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  734. list_del_leaf_cfs_rq(cfs_rq);
  735. }
  736. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  737. {
  738. long tg_weight;
  739. /*
  740. * Use this CPU's actual weight instead of the last load_contribution
  741. * to gain a more accurate current total weight. See
  742. * update_cfs_rq_load_contribution().
  743. */
  744. tg_weight = atomic_read(&tg->load_weight);
  745. tg_weight -= cfs_rq->load_contribution;
  746. tg_weight += cfs_rq->load.weight;
  747. return tg_weight;
  748. }
  749. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  750. {
  751. long tg_weight, load, shares;
  752. tg_weight = calc_tg_weight(tg, cfs_rq);
  753. load = cfs_rq->load.weight;
  754. shares = (tg->shares * load);
  755. if (tg_weight)
  756. shares /= tg_weight;
  757. if (shares < MIN_SHARES)
  758. shares = MIN_SHARES;
  759. if (shares > tg->shares)
  760. shares = tg->shares;
  761. return shares;
  762. }
  763. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  764. {
  765. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  766. update_cfs_load(cfs_rq, 0);
  767. update_cfs_shares(cfs_rq);
  768. }
  769. }
  770. # else /* CONFIG_SMP */
  771. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  772. {
  773. }
  774. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  775. {
  776. return tg->shares;
  777. }
  778. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  779. {
  780. }
  781. # endif /* CONFIG_SMP */
  782. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  783. unsigned long weight)
  784. {
  785. if (se->on_rq) {
  786. /* commit outstanding execution time */
  787. if (cfs_rq->curr == se)
  788. update_curr(cfs_rq);
  789. account_entity_dequeue(cfs_rq, se);
  790. }
  791. update_load_set(&se->load, weight);
  792. if (se->on_rq)
  793. account_entity_enqueue(cfs_rq, se);
  794. }
  795. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  796. {
  797. struct task_group *tg;
  798. struct sched_entity *se;
  799. long shares;
  800. tg = cfs_rq->tg;
  801. se = tg->se[cpu_of(rq_of(cfs_rq))];
  802. if (!se || throttled_hierarchy(cfs_rq))
  803. return;
  804. #ifndef CONFIG_SMP
  805. if (likely(se->load.weight == tg->shares))
  806. return;
  807. #endif
  808. shares = calc_cfs_shares(cfs_rq, tg);
  809. reweight_entity(cfs_rq_of(se), se, shares);
  810. }
  811. #else /* CONFIG_FAIR_GROUP_SCHED */
  812. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  813. {
  814. }
  815. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  816. {
  817. }
  818. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  819. {
  820. }
  821. #endif /* CONFIG_FAIR_GROUP_SCHED */
  822. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  823. {
  824. #ifdef CONFIG_SCHEDSTATS
  825. struct task_struct *tsk = NULL;
  826. if (entity_is_task(se))
  827. tsk = task_of(se);
  828. if (se->statistics.sleep_start) {
  829. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  830. if ((s64)delta < 0)
  831. delta = 0;
  832. if (unlikely(delta > se->statistics.sleep_max))
  833. se->statistics.sleep_max = delta;
  834. se->statistics.sleep_start = 0;
  835. se->statistics.sum_sleep_runtime += delta;
  836. if (tsk) {
  837. account_scheduler_latency(tsk, delta >> 10, 1);
  838. trace_sched_stat_sleep(tsk, delta);
  839. }
  840. }
  841. if (se->statistics.block_start) {
  842. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  843. if ((s64)delta < 0)
  844. delta = 0;
  845. if (unlikely(delta > se->statistics.block_max))
  846. se->statistics.block_max = delta;
  847. se->statistics.block_start = 0;
  848. se->statistics.sum_sleep_runtime += delta;
  849. if (tsk) {
  850. if (tsk->in_iowait) {
  851. se->statistics.iowait_sum += delta;
  852. se->statistics.iowait_count++;
  853. trace_sched_stat_iowait(tsk, delta);
  854. }
  855. trace_sched_stat_blocked(tsk, delta);
  856. /*
  857. * Blocking time is in units of nanosecs, so shift by
  858. * 20 to get a milliseconds-range estimation of the
  859. * amount of time that the task spent sleeping:
  860. */
  861. if (unlikely(prof_on == SLEEP_PROFILING)) {
  862. profile_hits(SLEEP_PROFILING,
  863. (void *)get_wchan(tsk),
  864. delta >> 20);
  865. }
  866. account_scheduler_latency(tsk, delta >> 10, 0);
  867. }
  868. }
  869. #endif
  870. }
  871. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  872. {
  873. #ifdef CONFIG_SCHED_DEBUG
  874. s64 d = se->vruntime - cfs_rq->min_vruntime;
  875. if (d < 0)
  876. d = -d;
  877. if (d > 3*sysctl_sched_latency)
  878. schedstat_inc(cfs_rq, nr_spread_over);
  879. #endif
  880. }
  881. static void
  882. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  883. {
  884. u64 vruntime = cfs_rq->min_vruntime;
  885. /*
  886. * The 'current' period is already promised to the current tasks,
  887. * however the extra weight of the new task will slow them down a
  888. * little, place the new task so that it fits in the slot that
  889. * stays open at the end.
  890. */
  891. if (initial && sched_feat(START_DEBIT))
  892. vruntime += sched_vslice(cfs_rq, se);
  893. /* sleeps up to a single latency don't count. */
  894. if (!initial) {
  895. unsigned long thresh = sysctl_sched_latency;
  896. /*
  897. * Halve their sleep time's effect, to allow
  898. * for a gentler effect of sleepers:
  899. */
  900. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  901. thresh >>= 1;
  902. vruntime -= thresh;
  903. }
  904. /* ensure we never gain time by being placed backwards. */
  905. vruntime = max_vruntime(se->vruntime, vruntime);
  906. se->vruntime = vruntime;
  907. }
  908. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  909. static void
  910. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  911. {
  912. /*
  913. * Update the normalized vruntime before updating min_vruntime
  914. * through callig update_curr().
  915. */
  916. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  917. se->vruntime += cfs_rq->min_vruntime;
  918. /*
  919. * Update run-time statistics of the 'current'.
  920. */
  921. update_curr(cfs_rq);
  922. update_cfs_load(cfs_rq, 0);
  923. account_entity_enqueue(cfs_rq, se);
  924. update_cfs_shares(cfs_rq);
  925. if (flags & ENQUEUE_WAKEUP) {
  926. place_entity(cfs_rq, se, 0);
  927. enqueue_sleeper(cfs_rq, se);
  928. }
  929. update_stats_enqueue(cfs_rq, se);
  930. check_spread(cfs_rq, se);
  931. if (se != cfs_rq->curr)
  932. __enqueue_entity(cfs_rq, se);
  933. se->on_rq = 1;
  934. if (cfs_rq->nr_running == 1) {
  935. list_add_leaf_cfs_rq(cfs_rq);
  936. check_enqueue_throttle(cfs_rq);
  937. }
  938. }
  939. static void __clear_buddies_last(struct sched_entity *se)
  940. {
  941. for_each_sched_entity(se) {
  942. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  943. if (cfs_rq->last == se)
  944. cfs_rq->last = NULL;
  945. else
  946. break;
  947. }
  948. }
  949. static void __clear_buddies_next(struct sched_entity *se)
  950. {
  951. for_each_sched_entity(se) {
  952. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  953. if (cfs_rq->next == se)
  954. cfs_rq->next = NULL;
  955. else
  956. break;
  957. }
  958. }
  959. static void __clear_buddies_skip(struct sched_entity *se)
  960. {
  961. for_each_sched_entity(se) {
  962. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  963. if (cfs_rq->skip == se)
  964. cfs_rq->skip = NULL;
  965. else
  966. break;
  967. }
  968. }
  969. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  970. {
  971. if (cfs_rq->last == se)
  972. __clear_buddies_last(se);
  973. if (cfs_rq->next == se)
  974. __clear_buddies_next(se);
  975. if (cfs_rq->skip == se)
  976. __clear_buddies_skip(se);
  977. }
  978. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  979. static void
  980. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  981. {
  982. /*
  983. * Update run-time statistics of the 'current'.
  984. */
  985. update_curr(cfs_rq);
  986. update_stats_dequeue(cfs_rq, se);
  987. if (flags & DEQUEUE_SLEEP) {
  988. #ifdef CONFIG_SCHEDSTATS
  989. if (entity_is_task(se)) {
  990. struct task_struct *tsk = task_of(se);
  991. if (tsk->state & TASK_INTERRUPTIBLE)
  992. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  993. if (tsk->state & TASK_UNINTERRUPTIBLE)
  994. se->statistics.block_start = rq_of(cfs_rq)->clock;
  995. }
  996. #endif
  997. }
  998. clear_buddies(cfs_rq, se);
  999. if (se != cfs_rq->curr)
  1000. __dequeue_entity(cfs_rq, se);
  1001. se->on_rq = 0;
  1002. update_cfs_load(cfs_rq, 0);
  1003. account_entity_dequeue(cfs_rq, se);
  1004. /*
  1005. * Normalize the entity after updating the min_vruntime because the
  1006. * update can refer to the ->curr item and we need to reflect this
  1007. * movement in our normalized position.
  1008. */
  1009. if (!(flags & DEQUEUE_SLEEP))
  1010. se->vruntime -= cfs_rq->min_vruntime;
  1011. /* return excess runtime on last dequeue */
  1012. return_cfs_rq_runtime(cfs_rq);
  1013. update_min_vruntime(cfs_rq);
  1014. update_cfs_shares(cfs_rq);
  1015. }
  1016. /*
  1017. * Preempt the current task with a newly woken task if needed:
  1018. */
  1019. static void
  1020. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1021. {
  1022. unsigned long ideal_runtime, delta_exec;
  1023. struct sched_entity *se;
  1024. s64 delta;
  1025. ideal_runtime = sched_slice(cfs_rq, curr);
  1026. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1027. if (delta_exec > ideal_runtime) {
  1028. resched_task(rq_of(cfs_rq)->curr);
  1029. /*
  1030. * The current task ran long enough, ensure it doesn't get
  1031. * re-elected due to buddy favours.
  1032. */
  1033. clear_buddies(cfs_rq, curr);
  1034. return;
  1035. }
  1036. /*
  1037. * Ensure that a task that missed wakeup preemption by a
  1038. * narrow margin doesn't have to wait for a full slice.
  1039. * This also mitigates buddy induced latencies under load.
  1040. */
  1041. if (delta_exec < sysctl_sched_min_granularity)
  1042. return;
  1043. se = __pick_first_entity(cfs_rq);
  1044. delta = curr->vruntime - se->vruntime;
  1045. if (delta < 0)
  1046. return;
  1047. if (delta > ideal_runtime)
  1048. resched_task(rq_of(cfs_rq)->curr);
  1049. }
  1050. static void
  1051. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1052. {
  1053. /* 'current' is not kept within the tree. */
  1054. if (se->on_rq) {
  1055. /*
  1056. * Any task has to be enqueued before it get to execute on
  1057. * a CPU. So account for the time it spent waiting on the
  1058. * runqueue.
  1059. */
  1060. update_stats_wait_end(cfs_rq, se);
  1061. __dequeue_entity(cfs_rq, se);
  1062. }
  1063. update_stats_curr_start(cfs_rq, se);
  1064. cfs_rq->curr = se;
  1065. #ifdef CONFIG_SCHEDSTATS
  1066. /*
  1067. * Track our maximum slice length, if the CPU's load is at
  1068. * least twice that of our own weight (i.e. dont track it
  1069. * when there are only lesser-weight tasks around):
  1070. */
  1071. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1072. se->statistics.slice_max = max(se->statistics.slice_max,
  1073. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1074. }
  1075. #endif
  1076. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1077. }
  1078. static int
  1079. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1080. /*
  1081. * Pick the next process, keeping these things in mind, in this order:
  1082. * 1) keep things fair between processes/task groups
  1083. * 2) pick the "next" process, since someone really wants that to run
  1084. * 3) pick the "last" process, for cache locality
  1085. * 4) do not run the "skip" process, if something else is available
  1086. */
  1087. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1088. {
  1089. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1090. struct sched_entity *left = se;
  1091. /*
  1092. * Avoid running the skip buddy, if running something else can
  1093. * be done without getting too unfair.
  1094. */
  1095. if (cfs_rq->skip == se) {
  1096. struct sched_entity *second = __pick_next_entity(se);
  1097. if (second && wakeup_preempt_entity(second, left) < 1)
  1098. se = second;
  1099. }
  1100. /*
  1101. * Prefer last buddy, try to return the CPU to a preempted task.
  1102. */
  1103. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1104. se = cfs_rq->last;
  1105. /*
  1106. * Someone really wants this to run. If it's not unfair, run it.
  1107. */
  1108. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1109. se = cfs_rq->next;
  1110. clear_buddies(cfs_rq, se);
  1111. return se;
  1112. }
  1113. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1114. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1115. {
  1116. /*
  1117. * If still on the runqueue then deactivate_task()
  1118. * was not called and update_curr() has to be done:
  1119. */
  1120. if (prev->on_rq)
  1121. update_curr(cfs_rq);
  1122. /* throttle cfs_rqs exceeding runtime */
  1123. check_cfs_rq_runtime(cfs_rq);
  1124. check_spread(cfs_rq, prev);
  1125. if (prev->on_rq) {
  1126. update_stats_wait_start(cfs_rq, prev);
  1127. /* Put 'current' back into the tree. */
  1128. __enqueue_entity(cfs_rq, prev);
  1129. }
  1130. cfs_rq->curr = NULL;
  1131. }
  1132. static void
  1133. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1134. {
  1135. /*
  1136. * Update run-time statistics of the 'current'.
  1137. */
  1138. update_curr(cfs_rq);
  1139. /*
  1140. * Update share accounting for long-running entities.
  1141. */
  1142. update_entity_shares_tick(cfs_rq);
  1143. #ifdef CONFIG_SCHED_HRTICK
  1144. /*
  1145. * queued ticks are scheduled to match the slice, so don't bother
  1146. * validating it and just reschedule.
  1147. */
  1148. if (queued) {
  1149. resched_task(rq_of(cfs_rq)->curr);
  1150. return;
  1151. }
  1152. /*
  1153. * don't let the period tick interfere with the hrtick preemption
  1154. */
  1155. if (!sched_feat(DOUBLE_TICK) &&
  1156. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1157. return;
  1158. #endif
  1159. if (cfs_rq->nr_running > 1)
  1160. check_preempt_tick(cfs_rq, curr);
  1161. }
  1162. /**************************************************
  1163. * CFS bandwidth control machinery
  1164. */
  1165. #ifdef CONFIG_CFS_BANDWIDTH
  1166. #ifdef HAVE_JUMP_LABEL
  1167. static struct jump_label_key __cfs_bandwidth_used;
  1168. static inline bool cfs_bandwidth_used(void)
  1169. {
  1170. return static_branch(&__cfs_bandwidth_used);
  1171. }
  1172. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1173. {
  1174. /* only need to count groups transitioning between enabled/!enabled */
  1175. if (enabled && !was_enabled)
  1176. jump_label_inc(&__cfs_bandwidth_used);
  1177. else if (!enabled && was_enabled)
  1178. jump_label_dec(&__cfs_bandwidth_used);
  1179. }
  1180. #else /* HAVE_JUMP_LABEL */
  1181. static bool cfs_bandwidth_used(void)
  1182. {
  1183. return true;
  1184. }
  1185. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1186. #endif /* HAVE_JUMP_LABEL */
  1187. /*
  1188. * default period for cfs group bandwidth.
  1189. * default: 0.1s, units: nanoseconds
  1190. */
  1191. static inline u64 default_cfs_period(void)
  1192. {
  1193. return 100000000ULL;
  1194. }
  1195. static inline u64 sched_cfs_bandwidth_slice(void)
  1196. {
  1197. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1198. }
  1199. /*
  1200. * Replenish runtime according to assigned quota and update expiration time.
  1201. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1202. * additional synchronization around rq->lock.
  1203. *
  1204. * requires cfs_b->lock
  1205. */
  1206. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1207. {
  1208. u64 now;
  1209. if (cfs_b->quota == RUNTIME_INF)
  1210. return;
  1211. now = sched_clock_cpu(smp_processor_id());
  1212. cfs_b->runtime = cfs_b->quota;
  1213. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1214. }
  1215. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1216. {
  1217. return &tg->cfs_bandwidth;
  1218. }
  1219. /* returns 0 on failure to allocate runtime */
  1220. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1221. {
  1222. struct task_group *tg = cfs_rq->tg;
  1223. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1224. u64 amount = 0, min_amount, expires;
  1225. /* note: this is a positive sum as runtime_remaining <= 0 */
  1226. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1227. raw_spin_lock(&cfs_b->lock);
  1228. if (cfs_b->quota == RUNTIME_INF)
  1229. amount = min_amount;
  1230. else {
  1231. /*
  1232. * If the bandwidth pool has become inactive, then at least one
  1233. * period must have elapsed since the last consumption.
  1234. * Refresh the global state and ensure bandwidth timer becomes
  1235. * active.
  1236. */
  1237. if (!cfs_b->timer_active) {
  1238. __refill_cfs_bandwidth_runtime(cfs_b);
  1239. __start_cfs_bandwidth(cfs_b);
  1240. }
  1241. if (cfs_b->runtime > 0) {
  1242. amount = min(cfs_b->runtime, min_amount);
  1243. cfs_b->runtime -= amount;
  1244. cfs_b->idle = 0;
  1245. }
  1246. }
  1247. expires = cfs_b->runtime_expires;
  1248. raw_spin_unlock(&cfs_b->lock);
  1249. cfs_rq->runtime_remaining += amount;
  1250. /*
  1251. * we may have advanced our local expiration to account for allowed
  1252. * spread between our sched_clock and the one on which runtime was
  1253. * issued.
  1254. */
  1255. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1256. cfs_rq->runtime_expires = expires;
  1257. return cfs_rq->runtime_remaining > 0;
  1258. }
  1259. /*
  1260. * Note: This depends on the synchronization provided by sched_clock and the
  1261. * fact that rq->clock snapshots this value.
  1262. */
  1263. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1264. {
  1265. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1266. struct rq *rq = rq_of(cfs_rq);
  1267. /* if the deadline is ahead of our clock, nothing to do */
  1268. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1269. return;
  1270. if (cfs_rq->runtime_remaining < 0)
  1271. return;
  1272. /*
  1273. * If the local deadline has passed we have to consider the
  1274. * possibility that our sched_clock is 'fast' and the global deadline
  1275. * has not truly expired.
  1276. *
  1277. * Fortunately we can check determine whether this the case by checking
  1278. * whether the global deadline has advanced.
  1279. */
  1280. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1281. /* extend local deadline, drift is bounded above by 2 ticks */
  1282. cfs_rq->runtime_expires += TICK_NSEC;
  1283. } else {
  1284. /* global deadline is ahead, expiration has passed */
  1285. cfs_rq->runtime_remaining = 0;
  1286. }
  1287. }
  1288. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1289. unsigned long delta_exec)
  1290. {
  1291. /* dock delta_exec before expiring quota (as it could span periods) */
  1292. cfs_rq->runtime_remaining -= delta_exec;
  1293. expire_cfs_rq_runtime(cfs_rq);
  1294. if (likely(cfs_rq->runtime_remaining > 0))
  1295. return;
  1296. /*
  1297. * if we're unable to extend our runtime we resched so that the active
  1298. * hierarchy can be throttled
  1299. */
  1300. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1301. resched_task(rq_of(cfs_rq)->curr);
  1302. }
  1303. static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1304. unsigned long delta_exec)
  1305. {
  1306. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1307. return;
  1308. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1309. }
  1310. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1311. {
  1312. return cfs_bandwidth_used() && cfs_rq->throttled;
  1313. }
  1314. /* check whether cfs_rq, or any parent, is throttled */
  1315. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1316. {
  1317. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1318. }
  1319. /*
  1320. * Ensure that neither of the group entities corresponding to src_cpu or
  1321. * dest_cpu are members of a throttled hierarchy when performing group
  1322. * load-balance operations.
  1323. */
  1324. static inline int throttled_lb_pair(struct task_group *tg,
  1325. int src_cpu, int dest_cpu)
  1326. {
  1327. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1328. src_cfs_rq = tg->cfs_rq[src_cpu];
  1329. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1330. return throttled_hierarchy(src_cfs_rq) ||
  1331. throttled_hierarchy(dest_cfs_rq);
  1332. }
  1333. /* updated child weight may affect parent so we have to do this bottom up */
  1334. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1335. {
  1336. struct rq *rq = data;
  1337. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1338. cfs_rq->throttle_count--;
  1339. #ifdef CONFIG_SMP
  1340. if (!cfs_rq->throttle_count) {
  1341. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1342. /* leaving throttled state, advance shares averaging windows */
  1343. cfs_rq->load_stamp += delta;
  1344. cfs_rq->load_last += delta;
  1345. /* update entity weight now that we are on_rq again */
  1346. update_cfs_shares(cfs_rq);
  1347. }
  1348. #endif
  1349. return 0;
  1350. }
  1351. static int tg_throttle_down(struct task_group *tg, void *data)
  1352. {
  1353. struct rq *rq = data;
  1354. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1355. /* group is entering throttled state, record last load */
  1356. if (!cfs_rq->throttle_count)
  1357. update_cfs_load(cfs_rq, 0);
  1358. cfs_rq->throttle_count++;
  1359. return 0;
  1360. }
  1361. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1362. {
  1363. struct rq *rq = rq_of(cfs_rq);
  1364. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1365. struct sched_entity *se;
  1366. long task_delta, dequeue = 1;
  1367. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1368. /* account load preceding throttle */
  1369. rcu_read_lock();
  1370. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1371. rcu_read_unlock();
  1372. task_delta = cfs_rq->h_nr_running;
  1373. for_each_sched_entity(se) {
  1374. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1375. /* throttled entity or throttle-on-deactivate */
  1376. if (!se->on_rq)
  1377. break;
  1378. if (dequeue)
  1379. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1380. qcfs_rq->h_nr_running -= task_delta;
  1381. if (qcfs_rq->load.weight)
  1382. dequeue = 0;
  1383. }
  1384. if (!se)
  1385. rq->nr_running -= task_delta;
  1386. cfs_rq->throttled = 1;
  1387. cfs_rq->throttled_timestamp = rq->clock;
  1388. raw_spin_lock(&cfs_b->lock);
  1389. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1390. raw_spin_unlock(&cfs_b->lock);
  1391. }
  1392. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1393. {
  1394. struct rq *rq = rq_of(cfs_rq);
  1395. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1396. struct sched_entity *se;
  1397. int enqueue = 1;
  1398. long task_delta;
  1399. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1400. cfs_rq->throttled = 0;
  1401. raw_spin_lock(&cfs_b->lock);
  1402. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1403. list_del_rcu(&cfs_rq->throttled_list);
  1404. raw_spin_unlock(&cfs_b->lock);
  1405. cfs_rq->throttled_timestamp = 0;
  1406. update_rq_clock(rq);
  1407. /* update hierarchical throttle state */
  1408. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1409. if (!cfs_rq->load.weight)
  1410. return;
  1411. task_delta = cfs_rq->h_nr_running;
  1412. for_each_sched_entity(se) {
  1413. if (se->on_rq)
  1414. enqueue = 0;
  1415. cfs_rq = cfs_rq_of(se);
  1416. if (enqueue)
  1417. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1418. cfs_rq->h_nr_running += task_delta;
  1419. if (cfs_rq_throttled(cfs_rq))
  1420. break;
  1421. }
  1422. if (!se)
  1423. rq->nr_running += task_delta;
  1424. /* determine whether we need to wake up potentially idle cpu */
  1425. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1426. resched_task(rq->curr);
  1427. }
  1428. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1429. u64 remaining, u64 expires)
  1430. {
  1431. struct cfs_rq *cfs_rq;
  1432. u64 runtime = remaining;
  1433. rcu_read_lock();
  1434. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1435. throttled_list) {
  1436. struct rq *rq = rq_of(cfs_rq);
  1437. raw_spin_lock(&rq->lock);
  1438. if (!cfs_rq_throttled(cfs_rq))
  1439. goto next;
  1440. runtime = -cfs_rq->runtime_remaining + 1;
  1441. if (runtime > remaining)
  1442. runtime = remaining;
  1443. remaining -= runtime;
  1444. cfs_rq->runtime_remaining += runtime;
  1445. cfs_rq->runtime_expires = expires;
  1446. /* we check whether we're throttled above */
  1447. if (cfs_rq->runtime_remaining > 0)
  1448. unthrottle_cfs_rq(cfs_rq);
  1449. next:
  1450. raw_spin_unlock(&rq->lock);
  1451. if (!remaining)
  1452. break;
  1453. }
  1454. rcu_read_unlock();
  1455. return remaining;
  1456. }
  1457. /*
  1458. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1459. * cfs_rqs as appropriate. If there has been no activity within the last
  1460. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1461. * used to track this state.
  1462. */
  1463. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1464. {
  1465. u64 runtime, runtime_expires;
  1466. int idle = 1, throttled;
  1467. raw_spin_lock(&cfs_b->lock);
  1468. /* no need to continue the timer with no bandwidth constraint */
  1469. if (cfs_b->quota == RUNTIME_INF)
  1470. goto out_unlock;
  1471. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1472. /* idle depends on !throttled (for the case of a large deficit) */
  1473. idle = cfs_b->idle && !throttled;
  1474. cfs_b->nr_periods += overrun;
  1475. /* if we're going inactive then everything else can be deferred */
  1476. if (idle)
  1477. goto out_unlock;
  1478. __refill_cfs_bandwidth_runtime(cfs_b);
  1479. if (!throttled) {
  1480. /* mark as potentially idle for the upcoming period */
  1481. cfs_b->idle = 1;
  1482. goto out_unlock;
  1483. }
  1484. /* account preceding periods in which throttling occurred */
  1485. cfs_b->nr_throttled += overrun;
  1486. /*
  1487. * There are throttled entities so we must first use the new bandwidth
  1488. * to unthrottle them before making it generally available. This
  1489. * ensures that all existing debts will be paid before a new cfs_rq is
  1490. * allowed to run.
  1491. */
  1492. runtime = cfs_b->runtime;
  1493. runtime_expires = cfs_b->runtime_expires;
  1494. cfs_b->runtime = 0;
  1495. /*
  1496. * This check is repeated as we are holding onto the new bandwidth
  1497. * while we unthrottle. This can potentially race with an unthrottled
  1498. * group trying to acquire new bandwidth from the global pool.
  1499. */
  1500. while (throttled && runtime > 0) {
  1501. raw_spin_unlock(&cfs_b->lock);
  1502. /* we can't nest cfs_b->lock while distributing bandwidth */
  1503. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1504. runtime_expires);
  1505. raw_spin_lock(&cfs_b->lock);
  1506. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1507. }
  1508. /* return (any) remaining runtime */
  1509. cfs_b->runtime = runtime;
  1510. /*
  1511. * While we are ensured activity in the period following an
  1512. * unthrottle, this also covers the case in which the new bandwidth is
  1513. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1514. * timer to remain active while there are any throttled entities.)
  1515. */
  1516. cfs_b->idle = 0;
  1517. out_unlock:
  1518. if (idle)
  1519. cfs_b->timer_active = 0;
  1520. raw_spin_unlock(&cfs_b->lock);
  1521. return idle;
  1522. }
  1523. /* a cfs_rq won't donate quota below this amount */
  1524. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1525. /* minimum remaining period time to redistribute slack quota */
  1526. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1527. /* how long we wait to gather additional slack before distributing */
  1528. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1529. /* are we near the end of the current quota period? */
  1530. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1531. {
  1532. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1533. u64 remaining;
  1534. /* if the call-back is running a quota refresh is already occurring */
  1535. if (hrtimer_callback_running(refresh_timer))
  1536. return 1;
  1537. /* is a quota refresh about to occur? */
  1538. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1539. if (remaining < min_expire)
  1540. return 1;
  1541. return 0;
  1542. }
  1543. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1544. {
  1545. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1546. /* if there's a quota refresh soon don't bother with slack */
  1547. if (runtime_refresh_within(cfs_b, min_left))
  1548. return;
  1549. start_bandwidth_timer(&cfs_b->slack_timer,
  1550. ns_to_ktime(cfs_bandwidth_slack_period));
  1551. }
  1552. /* we know any runtime found here is valid as update_curr() precedes return */
  1553. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1554. {
  1555. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1556. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1557. if (slack_runtime <= 0)
  1558. return;
  1559. raw_spin_lock(&cfs_b->lock);
  1560. if (cfs_b->quota != RUNTIME_INF &&
  1561. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1562. cfs_b->runtime += slack_runtime;
  1563. /* we are under rq->lock, defer unthrottling using a timer */
  1564. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1565. !list_empty(&cfs_b->throttled_cfs_rq))
  1566. start_cfs_slack_bandwidth(cfs_b);
  1567. }
  1568. raw_spin_unlock(&cfs_b->lock);
  1569. /* even if it's not valid for return we don't want to try again */
  1570. cfs_rq->runtime_remaining -= slack_runtime;
  1571. }
  1572. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1573. {
  1574. if (!cfs_bandwidth_used())
  1575. return;
  1576. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1577. return;
  1578. __return_cfs_rq_runtime(cfs_rq);
  1579. }
  1580. /*
  1581. * This is done with a timer (instead of inline with bandwidth return) since
  1582. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1583. */
  1584. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1585. {
  1586. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1587. u64 expires;
  1588. /* confirm we're still not at a refresh boundary */
  1589. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1590. return;
  1591. raw_spin_lock(&cfs_b->lock);
  1592. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1593. runtime = cfs_b->runtime;
  1594. cfs_b->runtime = 0;
  1595. }
  1596. expires = cfs_b->runtime_expires;
  1597. raw_spin_unlock(&cfs_b->lock);
  1598. if (!runtime)
  1599. return;
  1600. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1601. raw_spin_lock(&cfs_b->lock);
  1602. if (expires == cfs_b->runtime_expires)
  1603. cfs_b->runtime = runtime;
  1604. raw_spin_unlock(&cfs_b->lock);
  1605. }
  1606. /*
  1607. * When a group wakes up we want to make sure that its quota is not already
  1608. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1609. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1610. */
  1611. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1612. {
  1613. if (!cfs_bandwidth_used())
  1614. return;
  1615. /* an active group must be handled by the update_curr()->put() path */
  1616. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1617. return;
  1618. /* ensure the group is not already throttled */
  1619. if (cfs_rq_throttled(cfs_rq))
  1620. return;
  1621. /* update runtime allocation */
  1622. account_cfs_rq_runtime(cfs_rq, 0);
  1623. if (cfs_rq->runtime_remaining <= 0)
  1624. throttle_cfs_rq(cfs_rq);
  1625. }
  1626. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1627. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1628. {
  1629. if (!cfs_bandwidth_used())
  1630. return;
  1631. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1632. return;
  1633. /*
  1634. * it's possible for a throttled entity to be forced into a running
  1635. * state (e.g. set_curr_task), in this case we're finished.
  1636. */
  1637. if (cfs_rq_throttled(cfs_rq))
  1638. return;
  1639. throttle_cfs_rq(cfs_rq);
  1640. }
  1641. static inline u64 default_cfs_period(void);
  1642. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1643. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1644. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1645. {
  1646. struct cfs_bandwidth *cfs_b =
  1647. container_of(timer, struct cfs_bandwidth, slack_timer);
  1648. do_sched_cfs_slack_timer(cfs_b);
  1649. return HRTIMER_NORESTART;
  1650. }
  1651. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1652. {
  1653. struct cfs_bandwidth *cfs_b =
  1654. container_of(timer, struct cfs_bandwidth, period_timer);
  1655. ktime_t now;
  1656. int overrun;
  1657. int idle = 0;
  1658. for (;;) {
  1659. now = hrtimer_cb_get_time(timer);
  1660. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1661. if (!overrun)
  1662. break;
  1663. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1664. }
  1665. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1666. }
  1667. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1668. {
  1669. raw_spin_lock_init(&cfs_b->lock);
  1670. cfs_b->runtime = 0;
  1671. cfs_b->quota = RUNTIME_INF;
  1672. cfs_b->period = ns_to_ktime(default_cfs_period());
  1673. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1674. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1675. cfs_b->period_timer.function = sched_cfs_period_timer;
  1676. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1677. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1678. }
  1679. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1680. {
  1681. cfs_rq->runtime_enabled = 0;
  1682. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1683. }
  1684. /* requires cfs_b->lock, may release to reprogram timer */
  1685. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1686. {
  1687. /*
  1688. * The timer may be active because we're trying to set a new bandwidth
  1689. * period or because we're racing with the tear-down path
  1690. * (timer_active==0 becomes visible before the hrtimer call-back
  1691. * terminates). In either case we ensure that it's re-programmed
  1692. */
  1693. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  1694. raw_spin_unlock(&cfs_b->lock);
  1695. /* ensure cfs_b->lock is available while we wait */
  1696. hrtimer_cancel(&cfs_b->period_timer);
  1697. raw_spin_lock(&cfs_b->lock);
  1698. /* if someone else restarted the timer then we're done */
  1699. if (cfs_b->timer_active)
  1700. return;
  1701. }
  1702. cfs_b->timer_active = 1;
  1703. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1704. }
  1705. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1706. {
  1707. hrtimer_cancel(&cfs_b->period_timer);
  1708. hrtimer_cancel(&cfs_b->slack_timer);
  1709. }
  1710. void unthrottle_offline_cfs_rqs(struct rq *rq)
  1711. {
  1712. struct cfs_rq *cfs_rq;
  1713. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1714. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1715. if (!cfs_rq->runtime_enabled)
  1716. continue;
  1717. /*
  1718. * clock_task is not advancing so we just need to make sure
  1719. * there's some valid quota amount
  1720. */
  1721. cfs_rq->runtime_remaining = cfs_b->quota;
  1722. if (cfs_rq_throttled(cfs_rq))
  1723. unthrottle_cfs_rq(cfs_rq);
  1724. }
  1725. }
  1726. #else /* CONFIG_CFS_BANDWIDTH */
  1727. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1728. unsigned long delta_exec) {}
  1729. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1730. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1731. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1732. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1733. {
  1734. return 0;
  1735. }
  1736. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1737. {
  1738. return 0;
  1739. }
  1740. static inline int throttled_lb_pair(struct task_group *tg,
  1741. int src_cpu, int dest_cpu)
  1742. {
  1743. return 0;
  1744. }
  1745. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1746. #ifdef CONFIG_FAIR_GROUP_SCHED
  1747. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1748. #endif
  1749. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1750. {
  1751. return NULL;
  1752. }
  1753. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1754. void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1755. #endif /* CONFIG_CFS_BANDWIDTH */
  1756. /**************************************************
  1757. * CFS operations on tasks:
  1758. */
  1759. #ifdef CONFIG_SCHED_HRTICK
  1760. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1761. {
  1762. struct sched_entity *se = &p->se;
  1763. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1764. WARN_ON(task_rq(p) != rq);
  1765. if (cfs_rq->nr_running > 1) {
  1766. u64 slice = sched_slice(cfs_rq, se);
  1767. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1768. s64 delta = slice - ran;
  1769. if (delta < 0) {
  1770. if (rq->curr == p)
  1771. resched_task(p);
  1772. return;
  1773. }
  1774. /*
  1775. * Don't schedule slices shorter than 10000ns, that just
  1776. * doesn't make sense. Rely on vruntime for fairness.
  1777. */
  1778. if (rq->curr != p)
  1779. delta = max_t(s64, 10000LL, delta);
  1780. hrtick_start(rq, delta);
  1781. }
  1782. }
  1783. /*
  1784. * called from enqueue/dequeue and updates the hrtick when the
  1785. * current task is from our class and nr_running is low enough
  1786. * to matter.
  1787. */
  1788. static void hrtick_update(struct rq *rq)
  1789. {
  1790. struct task_struct *curr = rq->curr;
  1791. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  1792. return;
  1793. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1794. hrtick_start_fair(rq, curr);
  1795. }
  1796. #else /* !CONFIG_SCHED_HRTICK */
  1797. static inline void
  1798. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1799. {
  1800. }
  1801. static inline void hrtick_update(struct rq *rq)
  1802. {
  1803. }
  1804. #endif
  1805. /*
  1806. * The enqueue_task method is called before nr_running is
  1807. * increased. Here we update the fair scheduling stats and
  1808. * then put the task into the rbtree:
  1809. */
  1810. static void
  1811. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1812. {
  1813. struct cfs_rq *cfs_rq;
  1814. struct sched_entity *se = &p->se;
  1815. for_each_sched_entity(se) {
  1816. if (se->on_rq)
  1817. break;
  1818. cfs_rq = cfs_rq_of(se);
  1819. enqueue_entity(cfs_rq, se, flags);
  1820. /*
  1821. * end evaluation on encountering a throttled cfs_rq
  1822. *
  1823. * note: in the case of encountering a throttled cfs_rq we will
  1824. * post the final h_nr_running increment below.
  1825. */
  1826. if (cfs_rq_throttled(cfs_rq))
  1827. break;
  1828. cfs_rq->h_nr_running++;
  1829. flags = ENQUEUE_WAKEUP;
  1830. }
  1831. for_each_sched_entity(se) {
  1832. cfs_rq = cfs_rq_of(se);
  1833. cfs_rq->h_nr_running++;
  1834. if (cfs_rq_throttled(cfs_rq))
  1835. break;
  1836. update_cfs_load(cfs_rq, 0);
  1837. update_cfs_shares(cfs_rq);
  1838. }
  1839. if (!se)
  1840. inc_nr_running(rq);
  1841. hrtick_update(rq);
  1842. }
  1843. static void set_next_buddy(struct sched_entity *se);
  1844. /*
  1845. * The dequeue_task method is called before nr_running is
  1846. * decreased. We remove the task from the rbtree and
  1847. * update the fair scheduling stats:
  1848. */
  1849. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1850. {
  1851. struct cfs_rq *cfs_rq;
  1852. struct sched_entity *se = &p->se;
  1853. int task_sleep = flags & DEQUEUE_SLEEP;
  1854. for_each_sched_entity(se) {
  1855. cfs_rq = cfs_rq_of(se);
  1856. dequeue_entity(cfs_rq, se, flags);
  1857. /*
  1858. * end evaluation on encountering a throttled cfs_rq
  1859. *
  1860. * note: in the case of encountering a throttled cfs_rq we will
  1861. * post the final h_nr_running decrement below.
  1862. */
  1863. if (cfs_rq_throttled(cfs_rq))
  1864. break;
  1865. cfs_rq->h_nr_running--;
  1866. /* Don't dequeue parent if it has other entities besides us */
  1867. if (cfs_rq->load.weight) {
  1868. /*
  1869. * Bias pick_next to pick a task from this cfs_rq, as
  1870. * p is sleeping when it is within its sched_slice.
  1871. */
  1872. if (task_sleep && parent_entity(se))
  1873. set_next_buddy(parent_entity(se));
  1874. /* avoid re-evaluating load for this entity */
  1875. se = parent_entity(se);
  1876. break;
  1877. }
  1878. flags |= DEQUEUE_SLEEP;
  1879. }
  1880. for_each_sched_entity(se) {
  1881. cfs_rq = cfs_rq_of(se);
  1882. cfs_rq->h_nr_running--;
  1883. if (cfs_rq_throttled(cfs_rq))
  1884. break;
  1885. update_cfs_load(cfs_rq, 0);
  1886. update_cfs_shares(cfs_rq);
  1887. }
  1888. if (!se)
  1889. dec_nr_running(rq);
  1890. hrtick_update(rq);
  1891. }
  1892. #ifdef CONFIG_SMP
  1893. /* Used instead of source_load when we know the type == 0 */
  1894. static unsigned long weighted_cpuload(const int cpu)
  1895. {
  1896. return cpu_rq(cpu)->load.weight;
  1897. }
  1898. /*
  1899. * Return a low guess at the load of a migration-source cpu weighted
  1900. * according to the scheduling class and "nice" value.
  1901. *
  1902. * We want to under-estimate the load of migration sources, to
  1903. * balance conservatively.
  1904. */
  1905. static unsigned long source_load(int cpu, int type)
  1906. {
  1907. struct rq *rq = cpu_rq(cpu);
  1908. unsigned long total = weighted_cpuload(cpu);
  1909. if (type == 0 || !sched_feat(LB_BIAS))
  1910. return total;
  1911. return min(rq->cpu_load[type-1], total);
  1912. }
  1913. /*
  1914. * Return a high guess at the load of a migration-target cpu weighted
  1915. * according to the scheduling class and "nice" value.
  1916. */
  1917. static unsigned long target_load(int cpu, int type)
  1918. {
  1919. struct rq *rq = cpu_rq(cpu);
  1920. unsigned long total = weighted_cpuload(cpu);
  1921. if (type == 0 || !sched_feat(LB_BIAS))
  1922. return total;
  1923. return max(rq->cpu_load[type-1], total);
  1924. }
  1925. static unsigned long power_of(int cpu)
  1926. {
  1927. return cpu_rq(cpu)->cpu_power;
  1928. }
  1929. static unsigned long cpu_avg_load_per_task(int cpu)
  1930. {
  1931. struct rq *rq = cpu_rq(cpu);
  1932. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1933. if (nr_running)
  1934. return rq->load.weight / nr_running;
  1935. return 0;
  1936. }
  1937. static void task_waking_fair(struct task_struct *p)
  1938. {
  1939. struct sched_entity *se = &p->se;
  1940. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1941. u64 min_vruntime;
  1942. #ifndef CONFIG_64BIT
  1943. u64 min_vruntime_copy;
  1944. do {
  1945. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1946. smp_rmb();
  1947. min_vruntime = cfs_rq->min_vruntime;
  1948. } while (min_vruntime != min_vruntime_copy);
  1949. #else
  1950. min_vruntime = cfs_rq->min_vruntime;
  1951. #endif
  1952. se->vruntime -= min_vruntime;
  1953. }
  1954. #ifdef CONFIG_FAIR_GROUP_SCHED
  1955. /*
  1956. * effective_load() calculates the load change as seen from the root_task_group
  1957. *
  1958. * Adding load to a group doesn't make a group heavier, but can cause movement
  1959. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1960. * can calculate the shift in shares.
  1961. *
  1962. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1963. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1964. * total group weight.
  1965. *
  1966. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1967. * distribution (s_i) using:
  1968. *
  1969. * s_i = rw_i / \Sum rw_j (1)
  1970. *
  1971. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1972. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1973. * shares distribution (s_i):
  1974. *
  1975. * rw_i = { 2, 4, 1, 0 }
  1976. * s_i = { 2/7, 4/7, 1/7, 0 }
  1977. *
  1978. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1979. * task used to run on and the CPU the waker is running on), we need to
  1980. * compute the effect of waking a task on either CPU and, in case of a sync
  1981. * wakeup, compute the effect of the current task going to sleep.
  1982. *
  1983. * So for a change of @wl to the local @cpu with an overall group weight change
  1984. * of @wl we can compute the new shares distribution (s'_i) using:
  1985. *
  1986. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1987. *
  1988. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1989. * differences in waking a task to CPU 0. The additional task changes the
  1990. * weight and shares distributions like:
  1991. *
  1992. * rw'_i = { 3, 4, 1, 0 }
  1993. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1994. *
  1995. * We can then compute the difference in effective weight by using:
  1996. *
  1997. * dw_i = S * (s'_i - s_i) (3)
  1998. *
  1999. * Where 'S' is the group weight as seen by its parent.
  2000. *
  2001. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2002. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2003. * 4/7) times the weight of the group.
  2004. */
  2005. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2006. {
  2007. struct sched_entity *se = tg->se[cpu];
  2008. if (!tg->parent) /* the trivial, non-cgroup case */
  2009. return wl;
  2010. for_each_sched_entity(se) {
  2011. long w, W;
  2012. tg = se->my_q->tg;
  2013. /*
  2014. * W = @wg + \Sum rw_j
  2015. */
  2016. W = wg + calc_tg_weight(tg, se->my_q);
  2017. /*
  2018. * w = rw_i + @wl
  2019. */
  2020. w = se->my_q->load.weight + wl;
  2021. /*
  2022. * wl = S * s'_i; see (2)
  2023. */
  2024. if (W > 0 && w < W)
  2025. wl = (w * tg->shares) / W;
  2026. else
  2027. wl = tg->shares;
  2028. /*
  2029. * Per the above, wl is the new se->load.weight value; since
  2030. * those are clipped to [MIN_SHARES, ...) do so now. See
  2031. * calc_cfs_shares().
  2032. */
  2033. if (wl < MIN_SHARES)
  2034. wl = MIN_SHARES;
  2035. /*
  2036. * wl = dw_i = S * (s'_i - s_i); see (3)
  2037. */
  2038. wl -= se->load.weight;
  2039. /*
  2040. * Recursively apply this logic to all parent groups to compute
  2041. * the final effective load change on the root group. Since
  2042. * only the @tg group gets extra weight, all parent groups can
  2043. * only redistribute existing shares. @wl is the shift in shares
  2044. * resulting from this level per the above.
  2045. */
  2046. wg = 0;
  2047. }
  2048. return wl;
  2049. }
  2050. #else
  2051. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2052. unsigned long wl, unsigned long wg)
  2053. {
  2054. return wl;
  2055. }
  2056. #endif
  2057. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2058. {
  2059. s64 this_load, load;
  2060. int idx, this_cpu, prev_cpu;
  2061. unsigned long tl_per_task;
  2062. struct task_group *tg;
  2063. unsigned long weight;
  2064. int balanced;
  2065. idx = sd->wake_idx;
  2066. this_cpu = smp_processor_id();
  2067. prev_cpu = task_cpu(p);
  2068. load = source_load(prev_cpu, idx);
  2069. this_load = target_load(this_cpu, idx);
  2070. /*
  2071. * If sync wakeup then subtract the (maximum possible)
  2072. * effect of the currently running task from the load
  2073. * of the current CPU:
  2074. */
  2075. if (sync) {
  2076. tg = task_group(current);
  2077. weight = current->se.load.weight;
  2078. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2079. load += effective_load(tg, prev_cpu, 0, -weight);
  2080. }
  2081. tg = task_group(p);
  2082. weight = p->se.load.weight;
  2083. /*
  2084. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2085. * due to the sync cause above having dropped this_load to 0, we'll
  2086. * always have an imbalance, but there's really nothing you can do
  2087. * about that, so that's good too.
  2088. *
  2089. * Otherwise check if either cpus are near enough in load to allow this
  2090. * task to be woken on this_cpu.
  2091. */
  2092. if (this_load > 0) {
  2093. s64 this_eff_load, prev_eff_load;
  2094. this_eff_load = 100;
  2095. this_eff_load *= power_of(prev_cpu);
  2096. this_eff_load *= this_load +
  2097. effective_load(tg, this_cpu, weight, weight);
  2098. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2099. prev_eff_load *= power_of(this_cpu);
  2100. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2101. balanced = this_eff_load <= prev_eff_load;
  2102. } else
  2103. balanced = true;
  2104. /*
  2105. * If the currently running task will sleep within
  2106. * a reasonable amount of time then attract this newly
  2107. * woken task:
  2108. */
  2109. if (sync && balanced)
  2110. return 1;
  2111. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2112. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2113. if (balanced ||
  2114. (this_load <= load &&
  2115. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2116. /*
  2117. * This domain has SD_WAKE_AFFINE and
  2118. * p is cache cold in this domain, and
  2119. * there is no bad imbalance.
  2120. */
  2121. schedstat_inc(sd, ttwu_move_affine);
  2122. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2123. return 1;
  2124. }
  2125. return 0;
  2126. }
  2127. /*
  2128. * find_idlest_group finds and returns the least busy CPU group within the
  2129. * domain.
  2130. */
  2131. static struct sched_group *
  2132. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2133. int this_cpu, int load_idx)
  2134. {
  2135. struct sched_group *idlest = NULL, *group = sd->groups;
  2136. unsigned long min_load = ULONG_MAX, this_load = 0;
  2137. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2138. do {
  2139. unsigned long load, avg_load;
  2140. int local_group;
  2141. int i;
  2142. /* Skip over this group if it has no CPUs allowed */
  2143. if (!cpumask_intersects(sched_group_cpus(group),
  2144. tsk_cpus_allowed(p)))
  2145. continue;
  2146. local_group = cpumask_test_cpu(this_cpu,
  2147. sched_group_cpus(group));
  2148. /* Tally up the load of all CPUs in the group */
  2149. avg_load = 0;
  2150. for_each_cpu(i, sched_group_cpus(group)) {
  2151. /* Bias balancing toward cpus of our domain */
  2152. if (local_group)
  2153. load = source_load(i, load_idx);
  2154. else
  2155. load = target_load(i, load_idx);
  2156. avg_load += load;
  2157. }
  2158. /* Adjust by relative CPU power of the group */
  2159. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2160. if (local_group) {
  2161. this_load = avg_load;
  2162. } else if (avg_load < min_load) {
  2163. min_load = avg_load;
  2164. idlest = group;
  2165. }
  2166. } while (group = group->next, group != sd->groups);
  2167. if (!idlest || 100*this_load < imbalance*min_load)
  2168. return NULL;
  2169. return idlest;
  2170. }
  2171. /*
  2172. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2173. */
  2174. static int
  2175. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2176. {
  2177. unsigned long load, min_load = ULONG_MAX;
  2178. int idlest = -1;
  2179. int i;
  2180. /* Traverse only the allowed CPUs */
  2181. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2182. load = weighted_cpuload(i);
  2183. if (load < min_load || (load == min_load && i == this_cpu)) {
  2184. min_load = load;
  2185. idlest = i;
  2186. }
  2187. }
  2188. return idlest;
  2189. }
  2190. /**
  2191. * highest_flag_domain - Return highest sched_domain containing flag.
  2192. * @cpu: The cpu whose highest level of sched domain is to
  2193. * be returned.
  2194. * @flag: The flag to check for the highest sched_domain
  2195. * for the given cpu.
  2196. *
  2197. * Returns the highest sched_domain of a cpu which contains the given flag.
  2198. */
  2199. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  2200. {
  2201. struct sched_domain *sd, *hsd = NULL;
  2202. for_each_domain(cpu, sd) {
  2203. if (!(sd->flags & flag))
  2204. break;
  2205. hsd = sd;
  2206. }
  2207. return hsd;
  2208. }
  2209. /*
  2210. * Try and locate an idle CPU in the sched_domain.
  2211. */
  2212. static int select_idle_sibling(struct task_struct *p, int target)
  2213. {
  2214. int cpu = smp_processor_id();
  2215. int prev_cpu = task_cpu(p);
  2216. struct sched_domain *sd;
  2217. struct sched_group *sg;
  2218. int i;
  2219. /*
  2220. * If the task is going to be woken-up on this cpu and if it is
  2221. * already idle, then it is the right target.
  2222. */
  2223. if (target == cpu && idle_cpu(cpu))
  2224. return cpu;
  2225. /*
  2226. * If the task is going to be woken-up on the cpu where it previously
  2227. * ran and if it is currently idle, then it the right target.
  2228. */
  2229. if (target == prev_cpu && idle_cpu(prev_cpu))
  2230. return prev_cpu;
  2231. /*
  2232. * Otherwise, iterate the domains and find an elegible idle cpu.
  2233. */
  2234. rcu_read_lock();
  2235. sd = highest_flag_domain(target, SD_SHARE_PKG_RESOURCES);
  2236. for_each_lower_domain(sd) {
  2237. sg = sd->groups;
  2238. do {
  2239. if (!cpumask_intersects(sched_group_cpus(sg),
  2240. tsk_cpus_allowed(p)))
  2241. goto next;
  2242. for_each_cpu(i, sched_group_cpus(sg)) {
  2243. if (!idle_cpu(i))
  2244. goto next;
  2245. }
  2246. target = cpumask_first_and(sched_group_cpus(sg),
  2247. tsk_cpus_allowed(p));
  2248. goto done;
  2249. next:
  2250. sg = sg->next;
  2251. } while (sg != sd->groups);
  2252. }
  2253. done:
  2254. rcu_read_unlock();
  2255. return target;
  2256. }
  2257. /*
  2258. * sched_balance_self: balance the current task (running on cpu) in domains
  2259. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2260. * SD_BALANCE_EXEC.
  2261. *
  2262. * Balance, ie. select the least loaded group.
  2263. *
  2264. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2265. *
  2266. * preempt must be disabled.
  2267. */
  2268. static int
  2269. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2270. {
  2271. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2272. int cpu = smp_processor_id();
  2273. int prev_cpu = task_cpu(p);
  2274. int new_cpu = cpu;
  2275. int want_affine = 0;
  2276. int want_sd = 1;
  2277. int sync = wake_flags & WF_SYNC;
  2278. if (p->rt.nr_cpus_allowed == 1)
  2279. return prev_cpu;
  2280. if (sd_flag & SD_BALANCE_WAKE) {
  2281. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2282. want_affine = 1;
  2283. new_cpu = prev_cpu;
  2284. }
  2285. rcu_read_lock();
  2286. for_each_domain(cpu, tmp) {
  2287. if (!(tmp->flags & SD_LOAD_BALANCE))
  2288. continue;
  2289. /*
  2290. * If power savings logic is enabled for a domain, see if we
  2291. * are not overloaded, if so, don't balance wider.
  2292. */
  2293. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  2294. unsigned long power = 0;
  2295. unsigned long nr_running = 0;
  2296. unsigned long capacity;
  2297. int i;
  2298. for_each_cpu(i, sched_domain_span(tmp)) {
  2299. power += power_of(i);
  2300. nr_running += cpu_rq(i)->cfs.nr_running;
  2301. }
  2302. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2303. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2304. nr_running /= 2;
  2305. if (nr_running < capacity)
  2306. want_sd = 0;
  2307. }
  2308. /*
  2309. * If both cpu and prev_cpu are part of this domain,
  2310. * cpu is a valid SD_WAKE_AFFINE target.
  2311. */
  2312. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2313. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2314. affine_sd = tmp;
  2315. want_affine = 0;
  2316. }
  2317. if (!want_sd && !want_affine)
  2318. break;
  2319. if (!(tmp->flags & sd_flag))
  2320. continue;
  2321. if (want_sd)
  2322. sd = tmp;
  2323. }
  2324. if (affine_sd) {
  2325. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2326. prev_cpu = cpu;
  2327. new_cpu = select_idle_sibling(p, prev_cpu);
  2328. goto unlock;
  2329. }
  2330. while (sd) {
  2331. int load_idx = sd->forkexec_idx;
  2332. struct sched_group *group;
  2333. int weight;
  2334. if (!(sd->flags & sd_flag)) {
  2335. sd = sd->child;
  2336. continue;
  2337. }
  2338. if (sd_flag & SD_BALANCE_WAKE)
  2339. load_idx = sd->wake_idx;
  2340. group = find_idlest_group(sd, p, cpu, load_idx);
  2341. if (!group) {
  2342. sd = sd->child;
  2343. continue;
  2344. }
  2345. new_cpu = find_idlest_cpu(group, p, cpu);
  2346. if (new_cpu == -1 || new_cpu == cpu) {
  2347. /* Now try balancing at a lower domain level of cpu */
  2348. sd = sd->child;
  2349. continue;
  2350. }
  2351. /* Now try balancing at a lower domain level of new_cpu */
  2352. cpu = new_cpu;
  2353. weight = sd->span_weight;
  2354. sd = NULL;
  2355. for_each_domain(cpu, tmp) {
  2356. if (weight <= tmp->span_weight)
  2357. break;
  2358. if (tmp->flags & sd_flag)
  2359. sd = tmp;
  2360. }
  2361. /* while loop will break here if sd == NULL */
  2362. }
  2363. unlock:
  2364. rcu_read_unlock();
  2365. return new_cpu;
  2366. }
  2367. #endif /* CONFIG_SMP */
  2368. static unsigned long
  2369. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2370. {
  2371. unsigned long gran = sysctl_sched_wakeup_granularity;
  2372. /*
  2373. * Since its curr running now, convert the gran from real-time
  2374. * to virtual-time in his units.
  2375. *
  2376. * By using 'se' instead of 'curr' we penalize light tasks, so
  2377. * they get preempted easier. That is, if 'se' < 'curr' then
  2378. * the resulting gran will be larger, therefore penalizing the
  2379. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2380. * be smaller, again penalizing the lighter task.
  2381. *
  2382. * This is especially important for buddies when the leftmost
  2383. * task is higher priority than the buddy.
  2384. */
  2385. return calc_delta_fair(gran, se);
  2386. }
  2387. /*
  2388. * Should 'se' preempt 'curr'.
  2389. *
  2390. * |s1
  2391. * |s2
  2392. * |s3
  2393. * g
  2394. * |<--->|c
  2395. *
  2396. * w(c, s1) = -1
  2397. * w(c, s2) = 0
  2398. * w(c, s3) = 1
  2399. *
  2400. */
  2401. static int
  2402. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2403. {
  2404. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2405. if (vdiff <= 0)
  2406. return -1;
  2407. gran = wakeup_gran(curr, se);
  2408. if (vdiff > gran)
  2409. return 1;
  2410. return 0;
  2411. }
  2412. static void set_last_buddy(struct sched_entity *se)
  2413. {
  2414. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2415. return;
  2416. for_each_sched_entity(se)
  2417. cfs_rq_of(se)->last = se;
  2418. }
  2419. static void set_next_buddy(struct sched_entity *se)
  2420. {
  2421. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2422. return;
  2423. for_each_sched_entity(se)
  2424. cfs_rq_of(se)->next = se;
  2425. }
  2426. static void set_skip_buddy(struct sched_entity *se)
  2427. {
  2428. for_each_sched_entity(se)
  2429. cfs_rq_of(se)->skip = se;
  2430. }
  2431. /*
  2432. * Preempt the current task with a newly woken task if needed:
  2433. */
  2434. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2435. {
  2436. struct task_struct *curr = rq->curr;
  2437. struct sched_entity *se = &curr->se, *pse = &p->se;
  2438. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2439. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2440. int next_buddy_marked = 0;
  2441. if (unlikely(se == pse))
  2442. return;
  2443. /*
  2444. * This is possible from callers such as pull_task(), in which we
  2445. * unconditionally check_prempt_curr() after an enqueue (which may have
  2446. * lead to a throttle). This both saves work and prevents false
  2447. * next-buddy nomination below.
  2448. */
  2449. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2450. return;
  2451. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2452. set_next_buddy(pse);
  2453. next_buddy_marked = 1;
  2454. }
  2455. /*
  2456. * We can come here with TIF_NEED_RESCHED already set from new task
  2457. * wake up path.
  2458. *
  2459. * Note: this also catches the edge-case of curr being in a throttled
  2460. * group (e.g. via set_curr_task), since update_curr() (in the
  2461. * enqueue of curr) will have resulted in resched being set. This
  2462. * prevents us from potentially nominating it as a false LAST_BUDDY
  2463. * below.
  2464. */
  2465. if (test_tsk_need_resched(curr))
  2466. return;
  2467. /* Idle tasks are by definition preempted by non-idle tasks. */
  2468. if (unlikely(curr->policy == SCHED_IDLE) &&
  2469. likely(p->policy != SCHED_IDLE))
  2470. goto preempt;
  2471. /*
  2472. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2473. * is driven by the tick):
  2474. */
  2475. if (unlikely(p->policy != SCHED_NORMAL))
  2476. return;
  2477. find_matching_se(&se, &pse);
  2478. update_curr(cfs_rq_of(se));
  2479. BUG_ON(!pse);
  2480. if (wakeup_preempt_entity(se, pse) == 1) {
  2481. /*
  2482. * Bias pick_next to pick the sched entity that is
  2483. * triggering this preemption.
  2484. */
  2485. if (!next_buddy_marked)
  2486. set_next_buddy(pse);
  2487. goto preempt;
  2488. }
  2489. return;
  2490. preempt:
  2491. resched_task(curr);
  2492. /*
  2493. * Only set the backward buddy when the current task is still
  2494. * on the rq. This can happen when a wakeup gets interleaved
  2495. * with schedule on the ->pre_schedule() or idle_balance()
  2496. * point, either of which can * drop the rq lock.
  2497. *
  2498. * Also, during early boot the idle thread is in the fair class,
  2499. * for obvious reasons its a bad idea to schedule back to it.
  2500. */
  2501. if (unlikely(!se->on_rq || curr == rq->idle))
  2502. return;
  2503. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2504. set_last_buddy(se);
  2505. }
  2506. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2507. {
  2508. struct task_struct *p;
  2509. struct cfs_rq *cfs_rq = &rq->cfs;
  2510. struct sched_entity *se;
  2511. if (!cfs_rq->nr_running)
  2512. return NULL;
  2513. do {
  2514. se = pick_next_entity(cfs_rq);
  2515. set_next_entity(cfs_rq, se);
  2516. cfs_rq = group_cfs_rq(se);
  2517. } while (cfs_rq);
  2518. p = task_of(se);
  2519. if (hrtick_enabled(rq))
  2520. hrtick_start_fair(rq, p);
  2521. return p;
  2522. }
  2523. /*
  2524. * Account for a descheduled task:
  2525. */
  2526. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2527. {
  2528. struct sched_entity *se = &prev->se;
  2529. struct cfs_rq *cfs_rq;
  2530. for_each_sched_entity(se) {
  2531. cfs_rq = cfs_rq_of(se);
  2532. put_prev_entity(cfs_rq, se);
  2533. }
  2534. }
  2535. /*
  2536. * sched_yield() is very simple
  2537. *
  2538. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2539. */
  2540. static void yield_task_fair(struct rq *rq)
  2541. {
  2542. struct task_struct *curr = rq->curr;
  2543. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2544. struct sched_entity *se = &curr->se;
  2545. /*
  2546. * Are we the only task in the tree?
  2547. */
  2548. if (unlikely(rq->nr_running == 1))
  2549. return;
  2550. clear_buddies(cfs_rq, se);
  2551. if (curr->policy != SCHED_BATCH) {
  2552. update_rq_clock(rq);
  2553. /*
  2554. * Update run-time statistics of the 'current'.
  2555. */
  2556. update_curr(cfs_rq);
  2557. /*
  2558. * Tell update_rq_clock() that we've just updated,
  2559. * so we don't do microscopic update in schedule()
  2560. * and double the fastpath cost.
  2561. */
  2562. rq->skip_clock_update = 1;
  2563. }
  2564. set_skip_buddy(se);
  2565. }
  2566. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2567. {
  2568. struct sched_entity *se = &p->se;
  2569. /* throttled hierarchies are not runnable */
  2570. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2571. return false;
  2572. /* Tell the scheduler that we'd really like pse to run next. */
  2573. set_next_buddy(se);
  2574. yield_task_fair(rq);
  2575. return true;
  2576. }
  2577. #ifdef CONFIG_SMP
  2578. /**************************************************
  2579. * Fair scheduling class load-balancing methods:
  2580. */
  2581. /*
  2582. * pull_task - move a task from a remote runqueue to the local runqueue.
  2583. * Both runqueues must be locked.
  2584. */
  2585. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2586. struct rq *this_rq, int this_cpu)
  2587. {
  2588. deactivate_task(src_rq, p, 0);
  2589. set_task_cpu(p, this_cpu);
  2590. activate_task(this_rq, p, 0);
  2591. check_preempt_curr(this_rq, p, 0);
  2592. }
  2593. /*
  2594. * Is this task likely cache-hot:
  2595. */
  2596. static int
  2597. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2598. {
  2599. s64 delta;
  2600. if (p->sched_class != &fair_sched_class)
  2601. return 0;
  2602. if (unlikely(p->policy == SCHED_IDLE))
  2603. return 0;
  2604. /*
  2605. * Buddy candidates are cache hot:
  2606. */
  2607. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2608. (&p->se == cfs_rq_of(&p->se)->next ||
  2609. &p->se == cfs_rq_of(&p->se)->last))
  2610. return 1;
  2611. if (sysctl_sched_migration_cost == -1)
  2612. return 1;
  2613. if (sysctl_sched_migration_cost == 0)
  2614. return 0;
  2615. delta = now - p->se.exec_start;
  2616. return delta < (s64)sysctl_sched_migration_cost;
  2617. }
  2618. /*
  2619. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2620. */
  2621. static
  2622. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2623. struct sched_domain *sd, enum cpu_idle_type idle,
  2624. int *all_pinned)
  2625. {
  2626. int tsk_cache_hot = 0;
  2627. /*
  2628. * We do not migrate tasks that are:
  2629. * 1) running (obviously), or
  2630. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2631. * 3) are cache-hot on their current CPU.
  2632. */
  2633. if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
  2634. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2635. return 0;
  2636. }
  2637. *all_pinned = 0;
  2638. if (task_running(rq, p)) {
  2639. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2640. return 0;
  2641. }
  2642. /*
  2643. * Aggressive migration if:
  2644. * 1) task is cache cold, or
  2645. * 2) too many balance attempts have failed.
  2646. */
  2647. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  2648. if (!tsk_cache_hot ||
  2649. sd->nr_balance_failed > sd->cache_nice_tries) {
  2650. #ifdef CONFIG_SCHEDSTATS
  2651. if (tsk_cache_hot) {
  2652. schedstat_inc(sd, lb_hot_gained[idle]);
  2653. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2654. }
  2655. #endif
  2656. return 1;
  2657. }
  2658. if (tsk_cache_hot) {
  2659. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2660. return 0;
  2661. }
  2662. return 1;
  2663. }
  2664. /*
  2665. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2666. * part of active balancing operations within "domain".
  2667. * Returns 1 if successful and 0 otherwise.
  2668. *
  2669. * Called with both runqueues locked.
  2670. */
  2671. static int
  2672. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2673. struct sched_domain *sd, enum cpu_idle_type idle)
  2674. {
  2675. struct task_struct *p, *n;
  2676. struct cfs_rq *cfs_rq;
  2677. int pinned = 0;
  2678. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  2679. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  2680. if (throttled_lb_pair(task_group(p),
  2681. busiest->cpu, this_cpu))
  2682. break;
  2683. if (!can_migrate_task(p, busiest, this_cpu,
  2684. sd, idle, &pinned))
  2685. continue;
  2686. pull_task(busiest, p, this_rq, this_cpu);
  2687. /*
  2688. * Right now, this is only the second place pull_task()
  2689. * is called, so we can safely collect pull_task()
  2690. * stats here rather than inside pull_task().
  2691. */
  2692. schedstat_inc(sd, lb_gained[idle]);
  2693. return 1;
  2694. }
  2695. }
  2696. return 0;
  2697. }
  2698. static unsigned long
  2699. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2700. unsigned long max_load_move, struct sched_domain *sd,
  2701. enum cpu_idle_type idle, int *all_pinned,
  2702. struct cfs_rq *busiest_cfs_rq)
  2703. {
  2704. int loops = 0, pulled = 0;
  2705. long rem_load_move = max_load_move;
  2706. struct task_struct *p, *n;
  2707. if (max_load_move == 0)
  2708. goto out;
  2709. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  2710. if (loops++ > sysctl_sched_nr_migrate)
  2711. break;
  2712. if ((p->se.load.weight >> 1) > rem_load_move ||
  2713. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  2714. all_pinned))
  2715. continue;
  2716. pull_task(busiest, p, this_rq, this_cpu);
  2717. pulled++;
  2718. rem_load_move -= p->se.load.weight;
  2719. #ifdef CONFIG_PREEMPT
  2720. /*
  2721. * NEWIDLE balancing is a source of latency, so preemptible
  2722. * kernels will stop after the first task is pulled to minimize
  2723. * the critical section.
  2724. */
  2725. if (idle == CPU_NEWLY_IDLE)
  2726. break;
  2727. #endif
  2728. /*
  2729. * We only want to steal up to the prescribed amount of
  2730. * weighted load.
  2731. */
  2732. if (rem_load_move <= 0)
  2733. break;
  2734. }
  2735. out:
  2736. /*
  2737. * Right now, this is one of only two places pull_task() is called,
  2738. * so we can safely collect pull_task() stats here rather than
  2739. * inside pull_task().
  2740. */
  2741. schedstat_add(sd, lb_gained[idle], pulled);
  2742. return max_load_move - rem_load_move;
  2743. }
  2744. #ifdef CONFIG_FAIR_GROUP_SCHED
  2745. /*
  2746. * update tg->load_weight by folding this cpu's load_avg
  2747. */
  2748. static int update_shares_cpu(struct task_group *tg, int cpu)
  2749. {
  2750. struct cfs_rq *cfs_rq;
  2751. unsigned long flags;
  2752. struct rq *rq;
  2753. if (!tg->se[cpu])
  2754. return 0;
  2755. rq = cpu_rq(cpu);
  2756. cfs_rq = tg->cfs_rq[cpu];
  2757. raw_spin_lock_irqsave(&rq->lock, flags);
  2758. update_rq_clock(rq);
  2759. update_cfs_load(cfs_rq, 1);
  2760. /*
  2761. * We need to update shares after updating tg->load_weight in
  2762. * order to adjust the weight of groups with long running tasks.
  2763. */
  2764. update_cfs_shares(cfs_rq);
  2765. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2766. return 0;
  2767. }
  2768. static void update_shares(int cpu)
  2769. {
  2770. struct cfs_rq *cfs_rq;
  2771. struct rq *rq = cpu_rq(cpu);
  2772. rcu_read_lock();
  2773. /*
  2774. * Iterates the task_group tree in a bottom up fashion, see
  2775. * list_add_leaf_cfs_rq() for details.
  2776. */
  2777. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2778. /* throttled entities do not contribute to load */
  2779. if (throttled_hierarchy(cfs_rq))
  2780. continue;
  2781. update_shares_cpu(cfs_rq->tg, cpu);
  2782. }
  2783. rcu_read_unlock();
  2784. }
  2785. /*
  2786. * Compute the cpu's hierarchical load factor for each task group.
  2787. * This needs to be done in a top-down fashion because the load of a child
  2788. * group is a fraction of its parents load.
  2789. */
  2790. static int tg_load_down(struct task_group *tg, void *data)
  2791. {
  2792. unsigned long load;
  2793. long cpu = (long)data;
  2794. if (!tg->parent) {
  2795. load = cpu_rq(cpu)->load.weight;
  2796. } else {
  2797. load = tg->parent->cfs_rq[cpu]->h_load;
  2798. load *= tg->se[cpu]->load.weight;
  2799. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2800. }
  2801. tg->cfs_rq[cpu]->h_load = load;
  2802. return 0;
  2803. }
  2804. static void update_h_load(long cpu)
  2805. {
  2806. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2807. }
  2808. static unsigned long
  2809. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2810. unsigned long max_load_move,
  2811. struct sched_domain *sd, enum cpu_idle_type idle,
  2812. int *all_pinned)
  2813. {
  2814. long rem_load_move = max_load_move;
  2815. struct cfs_rq *busiest_cfs_rq;
  2816. rcu_read_lock();
  2817. update_h_load(cpu_of(busiest));
  2818. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  2819. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  2820. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  2821. u64 rem_load, moved_load;
  2822. /*
  2823. * empty group or part of a throttled hierarchy
  2824. */
  2825. if (!busiest_cfs_rq->task_weight ||
  2826. throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
  2827. continue;
  2828. rem_load = (u64)rem_load_move * busiest_weight;
  2829. rem_load = div_u64(rem_load, busiest_h_load + 1);
  2830. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  2831. rem_load, sd, idle, all_pinned,
  2832. busiest_cfs_rq);
  2833. if (!moved_load)
  2834. continue;
  2835. moved_load *= busiest_h_load;
  2836. moved_load = div_u64(moved_load, busiest_weight + 1);
  2837. rem_load_move -= moved_load;
  2838. if (rem_load_move < 0)
  2839. break;
  2840. }
  2841. rcu_read_unlock();
  2842. return max_load_move - rem_load_move;
  2843. }
  2844. #else
  2845. static inline void update_shares(int cpu)
  2846. {
  2847. }
  2848. static unsigned long
  2849. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2850. unsigned long max_load_move,
  2851. struct sched_domain *sd, enum cpu_idle_type idle,
  2852. int *all_pinned)
  2853. {
  2854. return balance_tasks(this_rq, this_cpu, busiest,
  2855. max_load_move, sd, idle, all_pinned,
  2856. &busiest->cfs);
  2857. }
  2858. #endif
  2859. /*
  2860. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2861. * this_rq, as part of a balancing operation within domain "sd".
  2862. * Returns 1 if successful and 0 otherwise.
  2863. *
  2864. * Called with both runqueues locked.
  2865. */
  2866. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2867. unsigned long max_load_move,
  2868. struct sched_domain *sd, enum cpu_idle_type idle,
  2869. int *all_pinned)
  2870. {
  2871. unsigned long total_load_moved = 0, load_moved;
  2872. do {
  2873. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  2874. max_load_move - total_load_moved,
  2875. sd, idle, all_pinned);
  2876. total_load_moved += load_moved;
  2877. #ifdef CONFIG_PREEMPT
  2878. /*
  2879. * NEWIDLE balancing is a source of latency, so preemptible
  2880. * kernels will stop after the first task is pulled to minimize
  2881. * the critical section.
  2882. */
  2883. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2884. break;
  2885. if (raw_spin_is_contended(&this_rq->lock) ||
  2886. raw_spin_is_contended(&busiest->lock))
  2887. break;
  2888. #endif
  2889. } while (load_moved && max_load_move > total_load_moved);
  2890. return total_load_moved > 0;
  2891. }
  2892. /********** Helpers for find_busiest_group ************************/
  2893. /*
  2894. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2895. * during load balancing.
  2896. */
  2897. struct sd_lb_stats {
  2898. struct sched_group *busiest; /* Busiest group in this sd */
  2899. struct sched_group *this; /* Local group in this sd */
  2900. unsigned long total_load; /* Total load of all groups in sd */
  2901. unsigned long total_pwr; /* Total power of all groups in sd */
  2902. unsigned long avg_load; /* Average load across all groups in sd */
  2903. /** Statistics of this group */
  2904. unsigned long this_load;
  2905. unsigned long this_load_per_task;
  2906. unsigned long this_nr_running;
  2907. unsigned long this_has_capacity;
  2908. unsigned int this_idle_cpus;
  2909. /* Statistics of the busiest group */
  2910. unsigned int busiest_idle_cpus;
  2911. unsigned long max_load;
  2912. unsigned long busiest_load_per_task;
  2913. unsigned long busiest_nr_running;
  2914. unsigned long busiest_group_capacity;
  2915. unsigned long busiest_has_capacity;
  2916. unsigned int busiest_group_weight;
  2917. int group_imb; /* Is there imbalance in this sd */
  2918. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2919. int power_savings_balance; /* Is powersave balance needed for this sd */
  2920. struct sched_group *group_min; /* Least loaded group in sd */
  2921. struct sched_group *group_leader; /* Group which relieves group_min */
  2922. unsigned long min_load_per_task; /* load_per_task in group_min */
  2923. unsigned long leader_nr_running; /* Nr running of group_leader */
  2924. unsigned long min_nr_running; /* Nr running of group_min */
  2925. #endif
  2926. };
  2927. /*
  2928. * sg_lb_stats - stats of a sched_group required for load_balancing
  2929. */
  2930. struct sg_lb_stats {
  2931. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2932. unsigned long group_load; /* Total load over the CPUs of the group */
  2933. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2934. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2935. unsigned long group_capacity;
  2936. unsigned long idle_cpus;
  2937. unsigned long group_weight;
  2938. int group_imb; /* Is there an imbalance in the group ? */
  2939. int group_has_capacity; /* Is there extra capacity in the group? */
  2940. };
  2941. /**
  2942. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2943. * @sd: The sched_domain whose load_idx is to be obtained.
  2944. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2945. */
  2946. static inline int get_sd_load_idx(struct sched_domain *sd,
  2947. enum cpu_idle_type idle)
  2948. {
  2949. int load_idx;
  2950. switch (idle) {
  2951. case CPU_NOT_IDLE:
  2952. load_idx = sd->busy_idx;
  2953. break;
  2954. case CPU_NEWLY_IDLE:
  2955. load_idx = sd->newidle_idx;
  2956. break;
  2957. default:
  2958. load_idx = sd->idle_idx;
  2959. break;
  2960. }
  2961. return load_idx;
  2962. }
  2963. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2964. /**
  2965. * init_sd_power_savings_stats - Initialize power savings statistics for
  2966. * the given sched_domain, during load balancing.
  2967. *
  2968. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2969. * @sds: Variable containing the statistics for sd.
  2970. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2971. */
  2972. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2973. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2974. {
  2975. /*
  2976. * Busy processors will not participate in power savings
  2977. * balance.
  2978. */
  2979. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2980. sds->power_savings_balance = 0;
  2981. else {
  2982. sds->power_savings_balance = 1;
  2983. sds->min_nr_running = ULONG_MAX;
  2984. sds->leader_nr_running = 0;
  2985. }
  2986. }
  2987. /**
  2988. * update_sd_power_savings_stats - Update the power saving stats for a
  2989. * sched_domain while performing load balancing.
  2990. *
  2991. * @group: sched_group belonging to the sched_domain under consideration.
  2992. * @sds: Variable containing the statistics of the sched_domain
  2993. * @local_group: Does group contain the CPU for which we're performing
  2994. * load balancing ?
  2995. * @sgs: Variable containing the statistics of the group.
  2996. */
  2997. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2998. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2999. {
  3000. if (!sds->power_savings_balance)
  3001. return;
  3002. /*
  3003. * If the local group is idle or completely loaded
  3004. * no need to do power savings balance at this domain
  3005. */
  3006. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3007. !sds->this_nr_running))
  3008. sds->power_savings_balance = 0;
  3009. /*
  3010. * If a group is already running at full capacity or idle,
  3011. * don't include that group in power savings calculations
  3012. */
  3013. if (!sds->power_savings_balance ||
  3014. sgs->sum_nr_running >= sgs->group_capacity ||
  3015. !sgs->sum_nr_running)
  3016. return;
  3017. /*
  3018. * Calculate the group which has the least non-idle load.
  3019. * This is the group from where we need to pick up the load
  3020. * for saving power
  3021. */
  3022. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3023. (sgs->sum_nr_running == sds->min_nr_running &&
  3024. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3025. sds->group_min = group;
  3026. sds->min_nr_running = sgs->sum_nr_running;
  3027. sds->min_load_per_task = sgs->sum_weighted_load /
  3028. sgs->sum_nr_running;
  3029. }
  3030. /*
  3031. * Calculate the group which is almost near its
  3032. * capacity but still has some space to pick up some load
  3033. * from other group and save more power
  3034. */
  3035. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3036. return;
  3037. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3038. (sgs->sum_nr_running == sds->leader_nr_running &&
  3039. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3040. sds->group_leader = group;
  3041. sds->leader_nr_running = sgs->sum_nr_running;
  3042. }
  3043. }
  3044. /**
  3045. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3046. * @sds: Variable containing the statistics of the sched_domain
  3047. * under consideration.
  3048. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3049. * @imbalance: Variable to store the imbalance.
  3050. *
  3051. * Description:
  3052. * Check if we have potential to perform some power-savings balance.
  3053. * If yes, set the busiest group to be the least loaded group in the
  3054. * sched_domain, so that it's CPUs can be put to idle.
  3055. *
  3056. * Returns 1 if there is potential to perform power-savings balance.
  3057. * Else returns 0.
  3058. */
  3059. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3060. int this_cpu, unsigned long *imbalance)
  3061. {
  3062. if (!sds->power_savings_balance)
  3063. return 0;
  3064. if (sds->this != sds->group_leader ||
  3065. sds->group_leader == sds->group_min)
  3066. return 0;
  3067. *imbalance = sds->min_load_per_task;
  3068. sds->busiest = sds->group_min;
  3069. return 1;
  3070. }
  3071. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3072. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3073. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3074. {
  3075. return;
  3076. }
  3077. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3078. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3079. {
  3080. return;
  3081. }
  3082. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3083. int this_cpu, unsigned long *imbalance)
  3084. {
  3085. return 0;
  3086. }
  3087. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3088. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3089. {
  3090. return SCHED_POWER_SCALE;
  3091. }
  3092. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3093. {
  3094. return default_scale_freq_power(sd, cpu);
  3095. }
  3096. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3097. {
  3098. unsigned long weight = sd->span_weight;
  3099. unsigned long smt_gain = sd->smt_gain;
  3100. smt_gain /= weight;
  3101. return smt_gain;
  3102. }
  3103. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3104. {
  3105. return default_scale_smt_power(sd, cpu);
  3106. }
  3107. unsigned long scale_rt_power(int cpu)
  3108. {
  3109. struct rq *rq = cpu_rq(cpu);
  3110. u64 total, available;
  3111. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3112. if (unlikely(total < rq->rt_avg)) {
  3113. /* Ensures that power won't end up being negative */
  3114. available = 0;
  3115. } else {
  3116. available = total - rq->rt_avg;
  3117. }
  3118. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3119. total = SCHED_POWER_SCALE;
  3120. total >>= SCHED_POWER_SHIFT;
  3121. return div_u64(available, total);
  3122. }
  3123. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3124. {
  3125. unsigned long weight = sd->span_weight;
  3126. unsigned long power = SCHED_POWER_SCALE;
  3127. struct sched_group *sdg = sd->groups;
  3128. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3129. if (sched_feat(ARCH_POWER))
  3130. power *= arch_scale_smt_power(sd, cpu);
  3131. else
  3132. power *= default_scale_smt_power(sd, cpu);
  3133. power >>= SCHED_POWER_SHIFT;
  3134. }
  3135. sdg->sgp->power_orig = power;
  3136. if (sched_feat(ARCH_POWER))
  3137. power *= arch_scale_freq_power(sd, cpu);
  3138. else
  3139. power *= default_scale_freq_power(sd, cpu);
  3140. power >>= SCHED_POWER_SHIFT;
  3141. power *= scale_rt_power(cpu);
  3142. power >>= SCHED_POWER_SHIFT;
  3143. if (!power)
  3144. power = 1;
  3145. cpu_rq(cpu)->cpu_power = power;
  3146. sdg->sgp->power = power;
  3147. }
  3148. void update_group_power(struct sched_domain *sd, int cpu)
  3149. {
  3150. struct sched_domain *child = sd->child;
  3151. struct sched_group *group, *sdg = sd->groups;
  3152. unsigned long power;
  3153. if (!child) {
  3154. update_cpu_power(sd, cpu);
  3155. return;
  3156. }
  3157. power = 0;
  3158. group = child->groups;
  3159. do {
  3160. power += group->sgp->power;
  3161. group = group->next;
  3162. } while (group != child->groups);
  3163. sdg->sgp->power = power;
  3164. }
  3165. /*
  3166. * Try and fix up capacity for tiny siblings, this is needed when
  3167. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3168. * which on its own isn't powerful enough.
  3169. *
  3170. * See update_sd_pick_busiest() and check_asym_packing().
  3171. */
  3172. static inline int
  3173. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3174. {
  3175. /*
  3176. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3177. */
  3178. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3179. return 0;
  3180. /*
  3181. * If ~90% of the cpu_power is still there, we're good.
  3182. */
  3183. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3184. return 1;
  3185. return 0;
  3186. }
  3187. /**
  3188. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3189. * @sd: The sched_domain whose statistics are to be updated.
  3190. * @group: sched_group whose statistics are to be updated.
  3191. * @this_cpu: Cpu for which load balance is currently performed.
  3192. * @idle: Idle status of this_cpu
  3193. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3194. * @local_group: Does group contain this_cpu.
  3195. * @cpus: Set of cpus considered for load balancing.
  3196. * @balance: Should we balance.
  3197. * @sgs: variable to hold the statistics for this group.
  3198. */
  3199. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3200. struct sched_group *group, int this_cpu,
  3201. enum cpu_idle_type idle, int load_idx,
  3202. int local_group, const struct cpumask *cpus,
  3203. int *balance, struct sg_lb_stats *sgs)
  3204. {
  3205. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  3206. int i;
  3207. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3208. unsigned long avg_load_per_task = 0;
  3209. if (local_group)
  3210. balance_cpu = group_first_cpu(group);
  3211. /* Tally up the load of all CPUs in the group */
  3212. max_cpu_load = 0;
  3213. min_cpu_load = ~0UL;
  3214. max_nr_running = 0;
  3215. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3216. struct rq *rq = cpu_rq(i);
  3217. /* Bias balancing toward cpus of our domain */
  3218. if (local_group) {
  3219. if (idle_cpu(i) && !first_idle_cpu) {
  3220. first_idle_cpu = 1;
  3221. balance_cpu = i;
  3222. }
  3223. load = target_load(i, load_idx);
  3224. } else {
  3225. load = source_load(i, load_idx);
  3226. if (load > max_cpu_load) {
  3227. max_cpu_load = load;
  3228. max_nr_running = rq->nr_running;
  3229. }
  3230. if (min_cpu_load > load)
  3231. min_cpu_load = load;
  3232. }
  3233. sgs->group_load += load;
  3234. sgs->sum_nr_running += rq->nr_running;
  3235. sgs->sum_weighted_load += weighted_cpuload(i);
  3236. if (idle_cpu(i))
  3237. sgs->idle_cpus++;
  3238. }
  3239. /*
  3240. * First idle cpu or the first cpu(busiest) in this sched group
  3241. * is eligible for doing load balancing at this and above
  3242. * domains. In the newly idle case, we will allow all the cpu's
  3243. * to do the newly idle load balance.
  3244. */
  3245. if (idle != CPU_NEWLY_IDLE && local_group) {
  3246. if (balance_cpu != this_cpu) {
  3247. *balance = 0;
  3248. return;
  3249. }
  3250. update_group_power(sd, this_cpu);
  3251. }
  3252. /* Adjust by relative CPU power of the group */
  3253. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3254. /*
  3255. * Consider the group unbalanced when the imbalance is larger
  3256. * than the average weight of a task.
  3257. *
  3258. * APZ: with cgroup the avg task weight can vary wildly and
  3259. * might not be a suitable number - should we keep a
  3260. * normalized nr_running number somewhere that negates
  3261. * the hierarchy?
  3262. */
  3263. if (sgs->sum_nr_running)
  3264. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3265. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  3266. sgs->group_imb = 1;
  3267. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3268. SCHED_POWER_SCALE);
  3269. if (!sgs->group_capacity)
  3270. sgs->group_capacity = fix_small_capacity(sd, group);
  3271. sgs->group_weight = group->group_weight;
  3272. if (sgs->group_capacity > sgs->sum_nr_running)
  3273. sgs->group_has_capacity = 1;
  3274. }
  3275. /**
  3276. * update_sd_pick_busiest - return 1 on busiest group
  3277. * @sd: sched_domain whose statistics are to be checked
  3278. * @sds: sched_domain statistics
  3279. * @sg: sched_group candidate to be checked for being the busiest
  3280. * @sgs: sched_group statistics
  3281. * @this_cpu: the current cpu
  3282. *
  3283. * Determine if @sg is a busier group than the previously selected
  3284. * busiest group.
  3285. */
  3286. static bool update_sd_pick_busiest(struct sched_domain *sd,
  3287. struct sd_lb_stats *sds,
  3288. struct sched_group *sg,
  3289. struct sg_lb_stats *sgs,
  3290. int this_cpu)
  3291. {
  3292. if (sgs->avg_load <= sds->max_load)
  3293. return false;
  3294. if (sgs->sum_nr_running > sgs->group_capacity)
  3295. return true;
  3296. if (sgs->group_imb)
  3297. return true;
  3298. /*
  3299. * ASYM_PACKING needs to move all the work to the lowest
  3300. * numbered CPUs in the group, therefore mark all groups
  3301. * higher than ourself as busy.
  3302. */
  3303. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3304. this_cpu < group_first_cpu(sg)) {
  3305. if (!sds->busiest)
  3306. return true;
  3307. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3308. return true;
  3309. }
  3310. return false;
  3311. }
  3312. /**
  3313. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3314. * @sd: sched_domain whose statistics are to be updated.
  3315. * @this_cpu: Cpu for which load balance is currently performed.
  3316. * @idle: Idle status of this_cpu
  3317. * @cpus: Set of cpus considered for load balancing.
  3318. * @balance: Should we balance.
  3319. * @sds: variable to hold the statistics for this sched_domain.
  3320. */
  3321. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3322. enum cpu_idle_type idle, const struct cpumask *cpus,
  3323. int *balance, struct sd_lb_stats *sds)
  3324. {
  3325. struct sched_domain *child = sd->child;
  3326. struct sched_group *sg = sd->groups;
  3327. struct sg_lb_stats sgs;
  3328. int load_idx, prefer_sibling = 0;
  3329. if (child && child->flags & SD_PREFER_SIBLING)
  3330. prefer_sibling = 1;
  3331. init_sd_power_savings_stats(sd, sds, idle);
  3332. load_idx = get_sd_load_idx(sd, idle);
  3333. do {
  3334. int local_group;
  3335. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  3336. memset(&sgs, 0, sizeof(sgs));
  3337. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  3338. local_group, cpus, balance, &sgs);
  3339. if (local_group && !(*balance))
  3340. return;
  3341. sds->total_load += sgs.group_load;
  3342. sds->total_pwr += sg->sgp->power;
  3343. /*
  3344. * In case the child domain prefers tasks go to siblings
  3345. * first, lower the sg capacity to one so that we'll try
  3346. * and move all the excess tasks away. We lower the capacity
  3347. * of a group only if the local group has the capacity to fit
  3348. * these excess tasks, i.e. nr_running < group_capacity. The
  3349. * extra check prevents the case where you always pull from the
  3350. * heaviest group when it is already under-utilized (possible
  3351. * with a large weight task outweighs the tasks on the system).
  3352. */
  3353. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3354. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3355. if (local_group) {
  3356. sds->this_load = sgs.avg_load;
  3357. sds->this = sg;
  3358. sds->this_nr_running = sgs.sum_nr_running;
  3359. sds->this_load_per_task = sgs.sum_weighted_load;
  3360. sds->this_has_capacity = sgs.group_has_capacity;
  3361. sds->this_idle_cpus = sgs.idle_cpus;
  3362. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  3363. sds->max_load = sgs.avg_load;
  3364. sds->busiest = sg;
  3365. sds->busiest_nr_running = sgs.sum_nr_running;
  3366. sds->busiest_idle_cpus = sgs.idle_cpus;
  3367. sds->busiest_group_capacity = sgs.group_capacity;
  3368. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3369. sds->busiest_has_capacity = sgs.group_has_capacity;
  3370. sds->busiest_group_weight = sgs.group_weight;
  3371. sds->group_imb = sgs.group_imb;
  3372. }
  3373. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  3374. sg = sg->next;
  3375. } while (sg != sd->groups);
  3376. }
  3377. /**
  3378. * check_asym_packing - Check to see if the group is packed into the
  3379. * sched doman.
  3380. *
  3381. * This is primarily intended to used at the sibling level. Some
  3382. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3383. * case of POWER7, it can move to lower SMT modes only when higher
  3384. * threads are idle. When in lower SMT modes, the threads will
  3385. * perform better since they share less core resources. Hence when we
  3386. * have idle threads, we want them to be the higher ones.
  3387. *
  3388. * This packing function is run on idle threads. It checks to see if
  3389. * the busiest CPU in this domain (core in the P7 case) has a higher
  3390. * CPU number than the packing function is being run on. Here we are
  3391. * assuming lower CPU number will be equivalent to lower a SMT thread
  3392. * number.
  3393. *
  3394. * Returns 1 when packing is required and a task should be moved to
  3395. * this CPU. The amount of the imbalance is returned in *imbalance.
  3396. *
  3397. * @sd: The sched_domain whose packing is to be checked.
  3398. * @sds: Statistics of the sched_domain which is to be packed
  3399. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3400. * @imbalance: returns amount of imbalanced due to packing.
  3401. */
  3402. static int check_asym_packing(struct sched_domain *sd,
  3403. struct sd_lb_stats *sds,
  3404. int this_cpu, unsigned long *imbalance)
  3405. {
  3406. int busiest_cpu;
  3407. if (!(sd->flags & SD_ASYM_PACKING))
  3408. return 0;
  3409. if (!sds->busiest)
  3410. return 0;
  3411. busiest_cpu = group_first_cpu(sds->busiest);
  3412. if (this_cpu > busiest_cpu)
  3413. return 0;
  3414. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  3415. SCHED_POWER_SCALE);
  3416. return 1;
  3417. }
  3418. /**
  3419. * fix_small_imbalance - Calculate the minor imbalance that exists
  3420. * amongst the groups of a sched_domain, during
  3421. * load balancing.
  3422. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3423. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3424. * @imbalance: Variable to store the imbalance.
  3425. */
  3426. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3427. int this_cpu, unsigned long *imbalance)
  3428. {
  3429. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3430. unsigned int imbn = 2;
  3431. unsigned long scaled_busy_load_per_task;
  3432. if (sds->this_nr_running) {
  3433. sds->this_load_per_task /= sds->this_nr_running;
  3434. if (sds->busiest_load_per_task >
  3435. sds->this_load_per_task)
  3436. imbn = 1;
  3437. } else
  3438. sds->this_load_per_task =
  3439. cpu_avg_load_per_task(this_cpu);
  3440. scaled_busy_load_per_task = sds->busiest_load_per_task
  3441. * SCHED_POWER_SCALE;
  3442. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3443. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3444. (scaled_busy_load_per_task * imbn)) {
  3445. *imbalance = sds->busiest_load_per_task;
  3446. return;
  3447. }
  3448. /*
  3449. * OK, we don't have enough imbalance to justify moving tasks,
  3450. * however we may be able to increase total CPU power used by
  3451. * moving them.
  3452. */
  3453. pwr_now += sds->busiest->sgp->power *
  3454. min(sds->busiest_load_per_task, sds->max_load);
  3455. pwr_now += sds->this->sgp->power *
  3456. min(sds->this_load_per_task, sds->this_load);
  3457. pwr_now /= SCHED_POWER_SCALE;
  3458. /* Amount of load we'd subtract */
  3459. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3460. sds->busiest->sgp->power;
  3461. if (sds->max_load > tmp)
  3462. pwr_move += sds->busiest->sgp->power *
  3463. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3464. /* Amount of load we'd add */
  3465. if (sds->max_load * sds->busiest->sgp->power <
  3466. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3467. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3468. sds->this->sgp->power;
  3469. else
  3470. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3471. sds->this->sgp->power;
  3472. pwr_move += sds->this->sgp->power *
  3473. min(sds->this_load_per_task, sds->this_load + tmp);
  3474. pwr_move /= SCHED_POWER_SCALE;
  3475. /* Move if we gain throughput */
  3476. if (pwr_move > pwr_now)
  3477. *imbalance = sds->busiest_load_per_task;
  3478. }
  3479. /**
  3480. * calculate_imbalance - Calculate the amount of imbalance present within the
  3481. * groups of a given sched_domain during load balance.
  3482. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3483. * @this_cpu: Cpu for which currently load balance is being performed.
  3484. * @imbalance: The variable to store the imbalance.
  3485. */
  3486. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3487. unsigned long *imbalance)
  3488. {
  3489. unsigned long max_pull, load_above_capacity = ~0UL;
  3490. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3491. if (sds->group_imb) {
  3492. sds->busiest_load_per_task =
  3493. min(sds->busiest_load_per_task, sds->avg_load);
  3494. }
  3495. /*
  3496. * In the presence of smp nice balancing, certain scenarios can have
  3497. * max load less than avg load(as we skip the groups at or below
  3498. * its cpu_power, while calculating max_load..)
  3499. */
  3500. if (sds->max_load < sds->avg_load) {
  3501. *imbalance = 0;
  3502. return fix_small_imbalance(sds, this_cpu, imbalance);
  3503. }
  3504. if (!sds->group_imb) {
  3505. /*
  3506. * Don't want to pull so many tasks that a group would go idle.
  3507. */
  3508. load_above_capacity = (sds->busiest_nr_running -
  3509. sds->busiest_group_capacity);
  3510. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3511. load_above_capacity /= sds->busiest->sgp->power;
  3512. }
  3513. /*
  3514. * We're trying to get all the cpus to the average_load, so we don't
  3515. * want to push ourselves above the average load, nor do we wish to
  3516. * reduce the max loaded cpu below the average load. At the same time,
  3517. * we also don't want to reduce the group load below the group capacity
  3518. * (so that we can implement power-savings policies etc). Thus we look
  3519. * for the minimum possible imbalance.
  3520. * Be careful of negative numbers as they'll appear as very large values
  3521. * with unsigned longs.
  3522. */
  3523. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3524. /* How much load to actually move to equalise the imbalance */
  3525. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3526. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3527. / SCHED_POWER_SCALE;
  3528. /*
  3529. * if *imbalance is less than the average load per runnable task
  3530. * there is no guarantee that any tasks will be moved so we'll have
  3531. * a think about bumping its value to force at least one task to be
  3532. * moved
  3533. */
  3534. if (*imbalance < sds->busiest_load_per_task)
  3535. return fix_small_imbalance(sds, this_cpu, imbalance);
  3536. }
  3537. /******* find_busiest_group() helpers end here *********************/
  3538. /**
  3539. * find_busiest_group - Returns the busiest group within the sched_domain
  3540. * if there is an imbalance. If there isn't an imbalance, and
  3541. * the user has opted for power-savings, it returns a group whose
  3542. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3543. * such a group exists.
  3544. *
  3545. * Also calculates the amount of weighted load which should be moved
  3546. * to restore balance.
  3547. *
  3548. * @sd: The sched_domain whose busiest group is to be returned.
  3549. * @this_cpu: The cpu for which load balancing is currently being performed.
  3550. * @imbalance: Variable which stores amount of weighted load which should
  3551. * be moved to restore balance/put a group to idle.
  3552. * @idle: The idle status of this_cpu.
  3553. * @cpus: The set of CPUs under consideration for load-balancing.
  3554. * @balance: Pointer to a variable indicating if this_cpu
  3555. * is the appropriate cpu to perform load balancing at this_level.
  3556. *
  3557. * Returns: - the busiest group if imbalance exists.
  3558. * - If no imbalance and user has opted for power-savings balance,
  3559. * return the least loaded group whose CPUs can be
  3560. * put to idle by rebalancing its tasks onto our group.
  3561. */
  3562. static struct sched_group *
  3563. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3564. unsigned long *imbalance, enum cpu_idle_type idle,
  3565. const struct cpumask *cpus, int *balance)
  3566. {
  3567. struct sd_lb_stats sds;
  3568. memset(&sds, 0, sizeof(sds));
  3569. /*
  3570. * Compute the various statistics relavent for load balancing at
  3571. * this level.
  3572. */
  3573. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3574. /*
  3575. * this_cpu is not the appropriate cpu to perform load balancing at
  3576. * this level.
  3577. */
  3578. if (!(*balance))
  3579. goto ret;
  3580. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3581. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3582. return sds.busiest;
  3583. /* There is no busy sibling group to pull tasks from */
  3584. if (!sds.busiest || sds.busiest_nr_running == 0)
  3585. goto out_balanced;
  3586. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3587. /*
  3588. * If the busiest group is imbalanced the below checks don't
  3589. * work because they assumes all things are equal, which typically
  3590. * isn't true due to cpus_allowed constraints and the like.
  3591. */
  3592. if (sds.group_imb)
  3593. goto force_balance;
  3594. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3595. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3596. !sds.busiest_has_capacity)
  3597. goto force_balance;
  3598. /*
  3599. * If the local group is more busy than the selected busiest group
  3600. * don't try and pull any tasks.
  3601. */
  3602. if (sds.this_load >= sds.max_load)
  3603. goto out_balanced;
  3604. /*
  3605. * Don't pull any tasks if this group is already above the domain
  3606. * average load.
  3607. */
  3608. if (sds.this_load >= sds.avg_load)
  3609. goto out_balanced;
  3610. if (idle == CPU_IDLE) {
  3611. /*
  3612. * This cpu is idle. If the busiest group load doesn't
  3613. * have more tasks than the number of available cpu's and
  3614. * there is no imbalance between this and busiest group
  3615. * wrt to idle cpu's, it is balanced.
  3616. */
  3617. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3618. sds.busiest_nr_running <= sds.busiest_group_weight)
  3619. goto out_balanced;
  3620. } else {
  3621. /*
  3622. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3623. * imbalance_pct to be conservative.
  3624. */
  3625. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3626. goto out_balanced;
  3627. }
  3628. force_balance:
  3629. /* Looks like there is an imbalance. Compute it */
  3630. calculate_imbalance(&sds, this_cpu, imbalance);
  3631. return sds.busiest;
  3632. out_balanced:
  3633. /*
  3634. * There is no obvious imbalance. But check if we can do some balancing
  3635. * to save power.
  3636. */
  3637. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3638. return sds.busiest;
  3639. ret:
  3640. *imbalance = 0;
  3641. return NULL;
  3642. }
  3643. /*
  3644. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3645. */
  3646. static struct rq *
  3647. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3648. enum cpu_idle_type idle, unsigned long imbalance,
  3649. const struct cpumask *cpus)
  3650. {
  3651. struct rq *busiest = NULL, *rq;
  3652. unsigned long max_load = 0;
  3653. int i;
  3654. for_each_cpu(i, sched_group_cpus(group)) {
  3655. unsigned long power = power_of(i);
  3656. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3657. SCHED_POWER_SCALE);
  3658. unsigned long wl;
  3659. if (!capacity)
  3660. capacity = fix_small_capacity(sd, group);
  3661. if (!cpumask_test_cpu(i, cpus))
  3662. continue;
  3663. rq = cpu_rq(i);
  3664. wl = weighted_cpuload(i);
  3665. /*
  3666. * When comparing with imbalance, use weighted_cpuload()
  3667. * which is not scaled with the cpu power.
  3668. */
  3669. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3670. continue;
  3671. /*
  3672. * For the load comparisons with the other cpu's, consider
  3673. * the weighted_cpuload() scaled with the cpu power, so that
  3674. * the load can be moved away from the cpu that is potentially
  3675. * running at a lower capacity.
  3676. */
  3677. wl = (wl * SCHED_POWER_SCALE) / power;
  3678. if (wl > max_load) {
  3679. max_load = wl;
  3680. busiest = rq;
  3681. }
  3682. }
  3683. return busiest;
  3684. }
  3685. /*
  3686. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3687. * so long as it is large enough.
  3688. */
  3689. #define MAX_PINNED_INTERVAL 512
  3690. /* Working cpumask for load_balance and load_balance_newidle. */
  3691. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3692. static int need_active_balance(struct sched_domain *sd, int idle,
  3693. int busiest_cpu, int this_cpu)
  3694. {
  3695. if (idle == CPU_NEWLY_IDLE) {
  3696. /*
  3697. * ASYM_PACKING needs to force migrate tasks from busy but
  3698. * higher numbered CPUs in order to pack all tasks in the
  3699. * lowest numbered CPUs.
  3700. */
  3701. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3702. return 1;
  3703. /*
  3704. * The only task running in a non-idle cpu can be moved to this
  3705. * cpu in an attempt to completely freeup the other CPU
  3706. * package.
  3707. *
  3708. * The package power saving logic comes from
  3709. * find_busiest_group(). If there are no imbalance, then
  3710. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3711. * f_b_g() will select a group from which a running task may be
  3712. * pulled to this cpu in order to make the other package idle.
  3713. * If there is no opportunity to make a package idle and if
  3714. * there are no imbalance, then f_b_g() will return NULL and no
  3715. * action will be taken in load_balance_newidle().
  3716. *
  3717. * Under normal task pull operation due to imbalance, there
  3718. * will be more than one task in the source run queue and
  3719. * move_tasks() will succeed. ld_moved will be true and this
  3720. * active balance code will not be triggered.
  3721. */
  3722. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3723. return 0;
  3724. }
  3725. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3726. }
  3727. static int active_load_balance_cpu_stop(void *data);
  3728. /*
  3729. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3730. * tasks if there is an imbalance.
  3731. */
  3732. static int load_balance(int this_cpu, struct rq *this_rq,
  3733. struct sched_domain *sd, enum cpu_idle_type idle,
  3734. int *balance)
  3735. {
  3736. int ld_moved, all_pinned = 0, active_balance = 0;
  3737. struct sched_group *group;
  3738. unsigned long imbalance;
  3739. struct rq *busiest;
  3740. unsigned long flags;
  3741. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3742. cpumask_copy(cpus, cpu_active_mask);
  3743. schedstat_inc(sd, lb_count[idle]);
  3744. redo:
  3745. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3746. cpus, balance);
  3747. if (*balance == 0)
  3748. goto out_balanced;
  3749. if (!group) {
  3750. schedstat_inc(sd, lb_nobusyg[idle]);
  3751. goto out_balanced;
  3752. }
  3753. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3754. if (!busiest) {
  3755. schedstat_inc(sd, lb_nobusyq[idle]);
  3756. goto out_balanced;
  3757. }
  3758. BUG_ON(busiest == this_rq);
  3759. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3760. ld_moved = 0;
  3761. if (busiest->nr_running > 1) {
  3762. /*
  3763. * Attempt to move tasks. If find_busiest_group has found
  3764. * an imbalance but busiest->nr_running <= 1, the group is
  3765. * still unbalanced. ld_moved simply stays zero, so it is
  3766. * correctly treated as an imbalance.
  3767. */
  3768. all_pinned = 1;
  3769. local_irq_save(flags);
  3770. double_rq_lock(this_rq, busiest);
  3771. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3772. imbalance, sd, idle, &all_pinned);
  3773. double_rq_unlock(this_rq, busiest);
  3774. local_irq_restore(flags);
  3775. /*
  3776. * some other cpu did the load balance for us.
  3777. */
  3778. if (ld_moved && this_cpu != smp_processor_id())
  3779. resched_cpu(this_cpu);
  3780. /* All tasks on this runqueue were pinned by CPU affinity */
  3781. if (unlikely(all_pinned)) {
  3782. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3783. if (!cpumask_empty(cpus))
  3784. goto redo;
  3785. goto out_balanced;
  3786. }
  3787. }
  3788. if (!ld_moved) {
  3789. schedstat_inc(sd, lb_failed[idle]);
  3790. /*
  3791. * Increment the failure counter only on periodic balance.
  3792. * We do not want newidle balance, which can be very
  3793. * frequent, pollute the failure counter causing
  3794. * excessive cache_hot migrations and active balances.
  3795. */
  3796. if (idle != CPU_NEWLY_IDLE)
  3797. sd->nr_balance_failed++;
  3798. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3799. raw_spin_lock_irqsave(&busiest->lock, flags);
  3800. /* don't kick the active_load_balance_cpu_stop,
  3801. * if the curr task on busiest cpu can't be
  3802. * moved to this_cpu
  3803. */
  3804. if (!cpumask_test_cpu(this_cpu,
  3805. tsk_cpus_allowed(busiest->curr))) {
  3806. raw_spin_unlock_irqrestore(&busiest->lock,
  3807. flags);
  3808. all_pinned = 1;
  3809. goto out_one_pinned;
  3810. }
  3811. /*
  3812. * ->active_balance synchronizes accesses to
  3813. * ->active_balance_work. Once set, it's cleared
  3814. * only after active load balance is finished.
  3815. */
  3816. if (!busiest->active_balance) {
  3817. busiest->active_balance = 1;
  3818. busiest->push_cpu = this_cpu;
  3819. active_balance = 1;
  3820. }
  3821. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3822. if (active_balance)
  3823. stop_one_cpu_nowait(cpu_of(busiest),
  3824. active_load_balance_cpu_stop, busiest,
  3825. &busiest->active_balance_work);
  3826. /*
  3827. * We've kicked active balancing, reset the failure
  3828. * counter.
  3829. */
  3830. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3831. }
  3832. } else
  3833. sd->nr_balance_failed = 0;
  3834. if (likely(!active_balance)) {
  3835. /* We were unbalanced, so reset the balancing interval */
  3836. sd->balance_interval = sd->min_interval;
  3837. } else {
  3838. /*
  3839. * If we've begun active balancing, start to back off. This
  3840. * case may not be covered by the all_pinned logic if there
  3841. * is only 1 task on the busy runqueue (because we don't call
  3842. * move_tasks).
  3843. */
  3844. if (sd->balance_interval < sd->max_interval)
  3845. sd->balance_interval *= 2;
  3846. }
  3847. goto out;
  3848. out_balanced:
  3849. schedstat_inc(sd, lb_balanced[idle]);
  3850. sd->nr_balance_failed = 0;
  3851. out_one_pinned:
  3852. /* tune up the balancing interval */
  3853. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3854. (sd->balance_interval < sd->max_interval))
  3855. sd->balance_interval *= 2;
  3856. ld_moved = 0;
  3857. out:
  3858. return ld_moved;
  3859. }
  3860. /*
  3861. * idle_balance is called by schedule() if this_cpu is about to become
  3862. * idle. Attempts to pull tasks from other CPUs.
  3863. */
  3864. void idle_balance(int this_cpu, struct rq *this_rq)
  3865. {
  3866. struct sched_domain *sd;
  3867. int pulled_task = 0;
  3868. unsigned long next_balance = jiffies + HZ;
  3869. this_rq->idle_stamp = this_rq->clock;
  3870. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3871. return;
  3872. /*
  3873. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3874. */
  3875. raw_spin_unlock(&this_rq->lock);
  3876. update_shares(this_cpu);
  3877. rcu_read_lock();
  3878. for_each_domain(this_cpu, sd) {
  3879. unsigned long interval;
  3880. int balance = 1;
  3881. if (!(sd->flags & SD_LOAD_BALANCE))
  3882. continue;
  3883. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3884. /* If we've pulled tasks over stop searching: */
  3885. pulled_task = load_balance(this_cpu, this_rq,
  3886. sd, CPU_NEWLY_IDLE, &balance);
  3887. }
  3888. interval = msecs_to_jiffies(sd->balance_interval);
  3889. if (time_after(next_balance, sd->last_balance + interval))
  3890. next_balance = sd->last_balance + interval;
  3891. if (pulled_task) {
  3892. this_rq->idle_stamp = 0;
  3893. break;
  3894. }
  3895. }
  3896. rcu_read_unlock();
  3897. raw_spin_lock(&this_rq->lock);
  3898. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3899. /*
  3900. * We are going idle. next_balance may be set based on
  3901. * a busy processor. So reset next_balance.
  3902. */
  3903. this_rq->next_balance = next_balance;
  3904. }
  3905. }
  3906. /*
  3907. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3908. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3909. * least 1 task to be running on each physical CPU where possible, and
  3910. * avoids physical / logical imbalances.
  3911. */
  3912. static int active_load_balance_cpu_stop(void *data)
  3913. {
  3914. struct rq *busiest_rq = data;
  3915. int busiest_cpu = cpu_of(busiest_rq);
  3916. int target_cpu = busiest_rq->push_cpu;
  3917. struct rq *target_rq = cpu_rq(target_cpu);
  3918. struct sched_domain *sd;
  3919. raw_spin_lock_irq(&busiest_rq->lock);
  3920. /* make sure the requested cpu hasn't gone down in the meantime */
  3921. if (unlikely(busiest_cpu != smp_processor_id() ||
  3922. !busiest_rq->active_balance))
  3923. goto out_unlock;
  3924. /* Is there any task to move? */
  3925. if (busiest_rq->nr_running <= 1)
  3926. goto out_unlock;
  3927. /*
  3928. * This condition is "impossible", if it occurs
  3929. * we need to fix it. Originally reported by
  3930. * Bjorn Helgaas on a 128-cpu setup.
  3931. */
  3932. BUG_ON(busiest_rq == target_rq);
  3933. /* move a task from busiest_rq to target_rq */
  3934. double_lock_balance(busiest_rq, target_rq);
  3935. /* Search for an sd spanning us and the target CPU. */
  3936. rcu_read_lock();
  3937. for_each_domain(target_cpu, sd) {
  3938. if ((sd->flags & SD_LOAD_BALANCE) &&
  3939. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3940. break;
  3941. }
  3942. if (likely(sd)) {
  3943. schedstat_inc(sd, alb_count);
  3944. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3945. sd, CPU_IDLE))
  3946. schedstat_inc(sd, alb_pushed);
  3947. else
  3948. schedstat_inc(sd, alb_failed);
  3949. }
  3950. rcu_read_unlock();
  3951. double_unlock_balance(busiest_rq, target_rq);
  3952. out_unlock:
  3953. busiest_rq->active_balance = 0;
  3954. raw_spin_unlock_irq(&busiest_rq->lock);
  3955. return 0;
  3956. }
  3957. #ifdef CONFIG_NO_HZ
  3958. /*
  3959. * idle load balancing details
  3960. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3961. * needed, they will kick the idle load balancer, which then does idle
  3962. * load balancing for all the idle CPUs.
  3963. */
  3964. static struct {
  3965. cpumask_var_t idle_cpus_mask;
  3966. atomic_t nr_cpus;
  3967. unsigned long next_balance; /* in jiffy units */
  3968. } nohz ____cacheline_aligned;
  3969. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3970. /**
  3971. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3972. * @cpu: The cpu whose lowest level of sched domain is to
  3973. * be returned.
  3974. * @flag: The flag to check for the lowest sched_domain
  3975. * for the given cpu.
  3976. *
  3977. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3978. */
  3979. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3980. {
  3981. struct sched_domain *sd;
  3982. for_each_domain(cpu, sd)
  3983. if (sd->flags & flag)
  3984. break;
  3985. return sd;
  3986. }
  3987. /**
  3988. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3989. * @cpu: The cpu whose domains we're iterating over.
  3990. * @sd: variable holding the value of the power_savings_sd
  3991. * for cpu.
  3992. * @flag: The flag to filter the sched_domains to be iterated.
  3993. *
  3994. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3995. * set, starting from the lowest sched_domain to the highest.
  3996. */
  3997. #define for_each_flag_domain(cpu, sd, flag) \
  3998. for (sd = lowest_flag_domain(cpu, flag); \
  3999. (sd && (sd->flags & flag)); sd = sd->parent)
  4000. /**
  4001. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  4002. * @cpu: The cpu which is nominating a new idle_load_balancer.
  4003. *
  4004. * Returns: Returns the id of the idle load balancer if it exists,
  4005. * Else, returns >= nr_cpu_ids.
  4006. *
  4007. * This algorithm picks the idle load balancer such that it belongs to a
  4008. * semi-idle powersavings sched_domain. The idea is to try and avoid
  4009. * completely idle packages/cores just for the purpose of idle load balancing
  4010. * when there are other idle cpu's which are better suited for that job.
  4011. */
  4012. static int find_new_ilb(int cpu)
  4013. {
  4014. int ilb = cpumask_first(nohz.idle_cpus_mask);
  4015. struct sched_group *ilbg;
  4016. struct sched_domain *sd;
  4017. /*
  4018. * Have idle load balancer selection from semi-idle packages only
  4019. * when power-aware load balancing is enabled
  4020. */
  4021. if (!(sched_smt_power_savings || sched_mc_power_savings))
  4022. goto out_done;
  4023. /*
  4024. * Optimize for the case when we have no idle CPUs or only one
  4025. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  4026. */
  4027. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  4028. goto out_done;
  4029. rcu_read_lock();
  4030. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  4031. ilbg = sd->groups;
  4032. do {
  4033. if (ilbg->group_weight !=
  4034. atomic_read(&ilbg->sgp->nr_busy_cpus)) {
  4035. ilb = cpumask_first_and(nohz.idle_cpus_mask,
  4036. sched_group_cpus(ilbg));
  4037. goto unlock;
  4038. }
  4039. ilbg = ilbg->next;
  4040. } while (ilbg != sd->groups);
  4041. }
  4042. unlock:
  4043. rcu_read_unlock();
  4044. out_done:
  4045. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4046. return ilb;
  4047. return nr_cpu_ids;
  4048. }
  4049. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  4050. static inline int find_new_ilb(int call_cpu)
  4051. {
  4052. return nr_cpu_ids;
  4053. }
  4054. #endif
  4055. /*
  4056. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4057. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4058. * CPU (if there is one).
  4059. */
  4060. static void nohz_balancer_kick(int cpu)
  4061. {
  4062. int ilb_cpu;
  4063. nohz.next_balance++;
  4064. ilb_cpu = find_new_ilb(cpu);
  4065. if (ilb_cpu >= nr_cpu_ids)
  4066. return;
  4067. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4068. return;
  4069. /*
  4070. * Use smp_send_reschedule() instead of resched_cpu().
  4071. * This way we generate a sched IPI on the target cpu which
  4072. * is idle. And the softirq performing nohz idle load balance
  4073. * will be run before returning from the IPI.
  4074. */
  4075. smp_send_reschedule(ilb_cpu);
  4076. return;
  4077. }
  4078. static inline void set_cpu_sd_state_busy(void)
  4079. {
  4080. struct sched_domain *sd;
  4081. int cpu = smp_processor_id();
  4082. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4083. return;
  4084. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  4085. rcu_read_lock();
  4086. for_each_domain(cpu, sd)
  4087. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  4088. rcu_read_unlock();
  4089. }
  4090. void set_cpu_sd_state_idle(void)
  4091. {
  4092. struct sched_domain *sd;
  4093. int cpu = smp_processor_id();
  4094. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4095. return;
  4096. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  4097. rcu_read_lock();
  4098. for_each_domain(cpu, sd)
  4099. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  4100. rcu_read_unlock();
  4101. }
  4102. /*
  4103. * This routine will record that this cpu is going idle with tick stopped.
  4104. * This info will be used in performing idle load balancing in the future.
  4105. */
  4106. void select_nohz_load_balancer(int stop_tick)
  4107. {
  4108. int cpu = smp_processor_id();
  4109. if (stop_tick) {
  4110. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  4111. return;
  4112. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4113. atomic_inc(&nohz.nr_cpus);
  4114. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4115. }
  4116. return;
  4117. }
  4118. #endif
  4119. static DEFINE_SPINLOCK(balancing);
  4120. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  4121. /*
  4122. * Scale the max load_balance interval with the number of CPUs in the system.
  4123. * This trades load-balance latency on larger machines for less cross talk.
  4124. */
  4125. void update_max_interval(void)
  4126. {
  4127. max_load_balance_interval = HZ*num_online_cpus()/10;
  4128. }
  4129. /*
  4130. * It checks each scheduling domain to see if it is due to be balanced,
  4131. * and initiates a balancing operation if so.
  4132. *
  4133. * Balancing parameters are set up in arch_init_sched_domains.
  4134. */
  4135. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4136. {
  4137. int balance = 1;
  4138. struct rq *rq = cpu_rq(cpu);
  4139. unsigned long interval;
  4140. struct sched_domain *sd;
  4141. /* Earliest time when we have to do rebalance again */
  4142. unsigned long next_balance = jiffies + 60*HZ;
  4143. int update_next_balance = 0;
  4144. int need_serialize;
  4145. update_shares(cpu);
  4146. rcu_read_lock();
  4147. for_each_domain(cpu, sd) {
  4148. if (!(sd->flags & SD_LOAD_BALANCE))
  4149. continue;
  4150. interval = sd->balance_interval;
  4151. if (idle != CPU_IDLE)
  4152. interval *= sd->busy_factor;
  4153. /* scale ms to jiffies */
  4154. interval = msecs_to_jiffies(interval);
  4155. interval = clamp(interval, 1UL, max_load_balance_interval);
  4156. need_serialize = sd->flags & SD_SERIALIZE;
  4157. if (need_serialize) {
  4158. if (!spin_trylock(&balancing))
  4159. goto out;
  4160. }
  4161. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4162. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4163. /*
  4164. * We've pulled tasks over so either we're no
  4165. * longer idle.
  4166. */
  4167. idle = CPU_NOT_IDLE;
  4168. }
  4169. sd->last_balance = jiffies;
  4170. }
  4171. if (need_serialize)
  4172. spin_unlock(&balancing);
  4173. out:
  4174. if (time_after(next_balance, sd->last_balance + interval)) {
  4175. next_balance = sd->last_balance + interval;
  4176. update_next_balance = 1;
  4177. }
  4178. /*
  4179. * Stop the load balance at this level. There is another
  4180. * CPU in our sched group which is doing load balancing more
  4181. * actively.
  4182. */
  4183. if (!balance)
  4184. break;
  4185. }
  4186. rcu_read_unlock();
  4187. /*
  4188. * next_balance will be updated only when there is a need.
  4189. * When the cpu is attached to null domain for ex, it will not be
  4190. * updated.
  4191. */
  4192. if (likely(update_next_balance))
  4193. rq->next_balance = next_balance;
  4194. }
  4195. #ifdef CONFIG_NO_HZ
  4196. /*
  4197. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4198. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4199. */
  4200. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4201. {
  4202. struct rq *this_rq = cpu_rq(this_cpu);
  4203. struct rq *rq;
  4204. int balance_cpu;
  4205. if (idle != CPU_IDLE ||
  4206. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4207. goto end;
  4208. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4209. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4210. continue;
  4211. /*
  4212. * If this cpu gets work to do, stop the load balancing
  4213. * work being done for other cpus. Next load
  4214. * balancing owner will pick it up.
  4215. */
  4216. if (need_resched())
  4217. break;
  4218. raw_spin_lock_irq(&this_rq->lock);
  4219. update_rq_clock(this_rq);
  4220. update_cpu_load(this_rq);
  4221. raw_spin_unlock_irq(&this_rq->lock);
  4222. rebalance_domains(balance_cpu, CPU_IDLE);
  4223. rq = cpu_rq(balance_cpu);
  4224. if (time_after(this_rq->next_balance, rq->next_balance))
  4225. this_rq->next_balance = rq->next_balance;
  4226. }
  4227. nohz.next_balance = this_rq->next_balance;
  4228. end:
  4229. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4230. }
  4231. /*
  4232. * Current heuristic for kicking the idle load balancer in the presence
  4233. * of an idle cpu is the system.
  4234. * - This rq has more than one task.
  4235. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4236. * busy cpu's exceeding the group's power.
  4237. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4238. * domain span are idle.
  4239. */
  4240. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4241. {
  4242. unsigned long now = jiffies;
  4243. struct sched_domain *sd;
  4244. if (unlikely(idle_cpu(cpu)))
  4245. return 0;
  4246. /*
  4247. * We may be recently in ticked or tickless idle mode. At the first
  4248. * busy tick after returning from idle, we will update the busy stats.
  4249. */
  4250. set_cpu_sd_state_busy();
  4251. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  4252. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4253. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4254. atomic_dec(&nohz.nr_cpus);
  4255. }
  4256. /*
  4257. * None are in tickless mode and hence no need for NOHZ idle load
  4258. * balancing.
  4259. */
  4260. if (likely(!atomic_read(&nohz.nr_cpus)))
  4261. return 0;
  4262. if (time_before(now, nohz.next_balance))
  4263. return 0;
  4264. if (rq->nr_running >= 2)
  4265. goto need_kick;
  4266. for_each_domain(cpu, sd) {
  4267. struct sched_group *sg = sd->groups;
  4268. struct sched_group_power *sgp = sg->sgp;
  4269. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4270. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4271. goto need_kick;
  4272. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4273. && (cpumask_first_and(nohz.idle_cpus_mask,
  4274. sched_domain_span(sd)) < cpu))
  4275. goto need_kick;
  4276. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4277. break;
  4278. }
  4279. return 0;
  4280. need_kick:
  4281. return 1;
  4282. }
  4283. #else
  4284. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4285. #endif
  4286. /*
  4287. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4288. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4289. */
  4290. static void run_rebalance_domains(struct softirq_action *h)
  4291. {
  4292. int this_cpu = smp_processor_id();
  4293. struct rq *this_rq = cpu_rq(this_cpu);
  4294. enum cpu_idle_type idle = this_rq->idle_balance ?
  4295. CPU_IDLE : CPU_NOT_IDLE;
  4296. rebalance_domains(this_cpu, idle);
  4297. /*
  4298. * If this cpu has a pending nohz_balance_kick, then do the
  4299. * balancing on behalf of the other idle cpus whose ticks are
  4300. * stopped.
  4301. */
  4302. nohz_idle_balance(this_cpu, idle);
  4303. }
  4304. static inline int on_null_domain(int cpu)
  4305. {
  4306. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4307. }
  4308. /*
  4309. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4310. */
  4311. void trigger_load_balance(struct rq *rq, int cpu)
  4312. {
  4313. /* Don't need to rebalance while attached to NULL domain */
  4314. if (time_after_eq(jiffies, rq->next_balance) &&
  4315. likely(!on_null_domain(cpu)))
  4316. raise_softirq(SCHED_SOFTIRQ);
  4317. #ifdef CONFIG_NO_HZ
  4318. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4319. nohz_balancer_kick(cpu);
  4320. #endif
  4321. }
  4322. static void rq_online_fair(struct rq *rq)
  4323. {
  4324. update_sysctl();
  4325. }
  4326. static void rq_offline_fair(struct rq *rq)
  4327. {
  4328. update_sysctl();
  4329. }
  4330. #endif /* CONFIG_SMP */
  4331. /*
  4332. * scheduler tick hitting a task of our scheduling class:
  4333. */
  4334. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4335. {
  4336. struct cfs_rq *cfs_rq;
  4337. struct sched_entity *se = &curr->se;
  4338. for_each_sched_entity(se) {
  4339. cfs_rq = cfs_rq_of(se);
  4340. entity_tick(cfs_rq, se, queued);
  4341. }
  4342. }
  4343. /*
  4344. * called on fork with the child task as argument from the parent's context
  4345. * - child not yet on the tasklist
  4346. * - preemption disabled
  4347. */
  4348. static void task_fork_fair(struct task_struct *p)
  4349. {
  4350. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  4351. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  4352. int this_cpu = smp_processor_id();
  4353. struct rq *rq = this_rq();
  4354. unsigned long flags;
  4355. raw_spin_lock_irqsave(&rq->lock, flags);
  4356. update_rq_clock(rq);
  4357. if (unlikely(task_cpu(p) != this_cpu)) {
  4358. rcu_read_lock();
  4359. __set_task_cpu(p, this_cpu);
  4360. rcu_read_unlock();
  4361. }
  4362. update_curr(cfs_rq);
  4363. if (curr)
  4364. se->vruntime = curr->vruntime;
  4365. place_entity(cfs_rq, se, 1);
  4366. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4367. /*
  4368. * Upon rescheduling, sched_class::put_prev_task() will place
  4369. * 'current' within the tree based on its new key value.
  4370. */
  4371. swap(curr->vruntime, se->vruntime);
  4372. resched_task(rq->curr);
  4373. }
  4374. se->vruntime -= cfs_rq->min_vruntime;
  4375. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4376. }
  4377. /*
  4378. * Priority of the task has changed. Check to see if we preempt
  4379. * the current task.
  4380. */
  4381. static void
  4382. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4383. {
  4384. if (!p->se.on_rq)
  4385. return;
  4386. /*
  4387. * Reschedule if we are currently running on this runqueue and
  4388. * our priority decreased, or if we are not currently running on
  4389. * this runqueue and our priority is higher than the current's
  4390. */
  4391. if (rq->curr == p) {
  4392. if (p->prio > oldprio)
  4393. resched_task(rq->curr);
  4394. } else
  4395. check_preempt_curr(rq, p, 0);
  4396. }
  4397. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4398. {
  4399. struct sched_entity *se = &p->se;
  4400. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4401. /*
  4402. * Ensure the task's vruntime is normalized, so that when its
  4403. * switched back to the fair class the enqueue_entity(.flags=0) will
  4404. * do the right thing.
  4405. *
  4406. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4407. * have normalized the vruntime, if it was !on_rq, then only when
  4408. * the task is sleeping will it still have non-normalized vruntime.
  4409. */
  4410. if (!se->on_rq && p->state != TASK_RUNNING) {
  4411. /*
  4412. * Fix up our vruntime so that the current sleep doesn't
  4413. * cause 'unlimited' sleep bonus.
  4414. */
  4415. place_entity(cfs_rq, se, 0);
  4416. se->vruntime -= cfs_rq->min_vruntime;
  4417. }
  4418. }
  4419. /*
  4420. * We switched to the sched_fair class.
  4421. */
  4422. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4423. {
  4424. if (!p->se.on_rq)
  4425. return;
  4426. /*
  4427. * We were most likely switched from sched_rt, so
  4428. * kick off the schedule if running, otherwise just see
  4429. * if we can still preempt the current task.
  4430. */
  4431. if (rq->curr == p)
  4432. resched_task(rq->curr);
  4433. else
  4434. check_preempt_curr(rq, p, 0);
  4435. }
  4436. /* Account for a task changing its policy or group.
  4437. *
  4438. * This routine is mostly called to set cfs_rq->curr field when a task
  4439. * migrates between groups/classes.
  4440. */
  4441. static void set_curr_task_fair(struct rq *rq)
  4442. {
  4443. struct sched_entity *se = &rq->curr->se;
  4444. for_each_sched_entity(se) {
  4445. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4446. set_next_entity(cfs_rq, se);
  4447. /* ensure bandwidth has been allocated on our new cfs_rq */
  4448. account_cfs_rq_runtime(cfs_rq, 0);
  4449. }
  4450. }
  4451. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4452. {
  4453. cfs_rq->tasks_timeline = RB_ROOT;
  4454. INIT_LIST_HEAD(&cfs_rq->tasks);
  4455. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4456. #ifndef CONFIG_64BIT
  4457. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4458. #endif
  4459. }
  4460. #ifdef CONFIG_FAIR_GROUP_SCHED
  4461. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4462. {
  4463. /*
  4464. * If the task was not on the rq at the time of this cgroup movement
  4465. * it must have been asleep, sleeping tasks keep their ->vruntime
  4466. * absolute on their old rq until wakeup (needed for the fair sleeper
  4467. * bonus in place_entity()).
  4468. *
  4469. * If it was on the rq, we've just 'preempted' it, which does convert
  4470. * ->vruntime to a relative base.
  4471. *
  4472. * Make sure both cases convert their relative position when migrating
  4473. * to another cgroup's rq. This does somewhat interfere with the
  4474. * fair sleeper stuff for the first placement, but who cares.
  4475. */
  4476. if (!on_rq)
  4477. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4478. set_task_rq(p, task_cpu(p));
  4479. if (!on_rq)
  4480. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4481. }
  4482. void free_fair_sched_group(struct task_group *tg)
  4483. {
  4484. int i;
  4485. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4486. for_each_possible_cpu(i) {
  4487. if (tg->cfs_rq)
  4488. kfree(tg->cfs_rq[i]);
  4489. if (tg->se)
  4490. kfree(tg->se[i]);
  4491. }
  4492. kfree(tg->cfs_rq);
  4493. kfree(tg->se);
  4494. }
  4495. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4496. {
  4497. struct cfs_rq *cfs_rq;
  4498. struct sched_entity *se;
  4499. int i;
  4500. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4501. if (!tg->cfs_rq)
  4502. goto err;
  4503. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4504. if (!tg->se)
  4505. goto err;
  4506. tg->shares = NICE_0_LOAD;
  4507. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4508. for_each_possible_cpu(i) {
  4509. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4510. GFP_KERNEL, cpu_to_node(i));
  4511. if (!cfs_rq)
  4512. goto err;
  4513. se = kzalloc_node(sizeof(struct sched_entity),
  4514. GFP_KERNEL, cpu_to_node(i));
  4515. if (!se)
  4516. goto err_free_rq;
  4517. init_cfs_rq(cfs_rq);
  4518. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4519. }
  4520. return 1;
  4521. err_free_rq:
  4522. kfree(cfs_rq);
  4523. err:
  4524. return 0;
  4525. }
  4526. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4527. {
  4528. struct rq *rq = cpu_rq(cpu);
  4529. unsigned long flags;
  4530. /*
  4531. * Only empty task groups can be destroyed; so we can speculatively
  4532. * check on_list without danger of it being re-added.
  4533. */
  4534. if (!tg->cfs_rq[cpu]->on_list)
  4535. return;
  4536. raw_spin_lock_irqsave(&rq->lock, flags);
  4537. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4538. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4539. }
  4540. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4541. struct sched_entity *se, int cpu,
  4542. struct sched_entity *parent)
  4543. {
  4544. struct rq *rq = cpu_rq(cpu);
  4545. cfs_rq->tg = tg;
  4546. cfs_rq->rq = rq;
  4547. #ifdef CONFIG_SMP
  4548. /* allow initial update_cfs_load() to truncate */
  4549. cfs_rq->load_stamp = 1;
  4550. #endif
  4551. init_cfs_rq_runtime(cfs_rq);
  4552. tg->cfs_rq[cpu] = cfs_rq;
  4553. tg->se[cpu] = se;
  4554. /* se could be NULL for root_task_group */
  4555. if (!se)
  4556. return;
  4557. if (!parent)
  4558. se->cfs_rq = &rq->cfs;
  4559. else
  4560. se->cfs_rq = parent->my_q;
  4561. se->my_q = cfs_rq;
  4562. update_load_set(&se->load, 0);
  4563. se->parent = parent;
  4564. }
  4565. static DEFINE_MUTEX(shares_mutex);
  4566. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4567. {
  4568. int i;
  4569. unsigned long flags;
  4570. /*
  4571. * We can't change the weight of the root cgroup.
  4572. */
  4573. if (!tg->se[0])
  4574. return -EINVAL;
  4575. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4576. mutex_lock(&shares_mutex);
  4577. if (tg->shares == shares)
  4578. goto done;
  4579. tg->shares = shares;
  4580. for_each_possible_cpu(i) {
  4581. struct rq *rq = cpu_rq(i);
  4582. struct sched_entity *se;
  4583. se = tg->se[i];
  4584. /* Propagate contribution to hierarchy */
  4585. raw_spin_lock_irqsave(&rq->lock, flags);
  4586. for_each_sched_entity(se)
  4587. update_cfs_shares(group_cfs_rq(se));
  4588. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4589. }
  4590. done:
  4591. mutex_unlock(&shares_mutex);
  4592. return 0;
  4593. }
  4594. #else /* CONFIG_FAIR_GROUP_SCHED */
  4595. void free_fair_sched_group(struct task_group *tg) { }
  4596. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4597. {
  4598. return 1;
  4599. }
  4600. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4601. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4602. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4603. {
  4604. struct sched_entity *se = &task->se;
  4605. unsigned int rr_interval = 0;
  4606. /*
  4607. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4608. * idle runqueue:
  4609. */
  4610. if (rq->cfs.load.weight)
  4611. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4612. return rr_interval;
  4613. }
  4614. /*
  4615. * All the scheduling class methods:
  4616. */
  4617. const struct sched_class fair_sched_class = {
  4618. .next = &idle_sched_class,
  4619. .enqueue_task = enqueue_task_fair,
  4620. .dequeue_task = dequeue_task_fair,
  4621. .yield_task = yield_task_fair,
  4622. .yield_to_task = yield_to_task_fair,
  4623. .check_preempt_curr = check_preempt_wakeup,
  4624. .pick_next_task = pick_next_task_fair,
  4625. .put_prev_task = put_prev_task_fair,
  4626. #ifdef CONFIG_SMP
  4627. .select_task_rq = select_task_rq_fair,
  4628. .rq_online = rq_online_fair,
  4629. .rq_offline = rq_offline_fair,
  4630. .task_waking = task_waking_fair,
  4631. #endif
  4632. .set_curr_task = set_curr_task_fair,
  4633. .task_tick = task_tick_fair,
  4634. .task_fork = task_fork_fair,
  4635. .prio_changed = prio_changed_fair,
  4636. .switched_from = switched_from_fair,
  4637. .switched_to = switched_to_fair,
  4638. .get_rr_interval = get_rr_interval_fair,
  4639. #ifdef CONFIG_FAIR_GROUP_SCHED
  4640. .task_move_group = task_move_group_fair,
  4641. #endif
  4642. };
  4643. #ifdef CONFIG_SCHED_DEBUG
  4644. void print_cfs_stats(struct seq_file *m, int cpu)
  4645. {
  4646. struct cfs_rq *cfs_rq;
  4647. rcu_read_lock();
  4648. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4649. print_cfs_rq(m, cpu, cfs_rq);
  4650. rcu_read_unlock();
  4651. }
  4652. #endif
  4653. __init void init_sched_fair_class(void)
  4654. {
  4655. #ifdef CONFIG_SMP
  4656. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4657. #ifdef CONFIG_NO_HZ
  4658. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4659. #endif
  4660. #endif /* SMP */
  4661. }