intel_ddi.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. };
  44. static const u32 hsw_ddi_translations_fdi[] = {
  45. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  46. 0x00D75FFF, 0x000F000A,
  47. 0x00C30FFF, 0x00060006,
  48. 0x00AAAFFF, 0x001E0000,
  49. 0x00FFFFFF, 0x000F000A,
  50. 0x00D75FFF, 0x00160004,
  51. 0x00C30FFF, 0x001E0000,
  52. 0x00FFFFFF, 0x00060006,
  53. 0x00D75FFF, 0x001E0000,
  54. };
  55. static const u32 hsw_ddi_translations_hdmi[] = {
  56. /* Idx NT mV diff T mV diff db */
  57. 0x00FFFFFF, 0x0006000E, /* 0: 400 400 0 */
  58. 0x00E79FFF, 0x000E000C, /* 1: 400 500 2 */
  59. 0x00D75FFF, 0x0005000A, /* 2: 400 600 3.5 */
  60. 0x00FFFFFF, 0x0005000A, /* 3: 600 600 0 */
  61. 0x00E79FFF, 0x001D0007, /* 4: 600 750 2 */
  62. 0x00D75FFF, 0x000C0004, /* 5: 600 900 3.5 */
  63. 0x00FFFFFF, 0x00040006, /* 6: 800 800 0 */
  64. 0x80E79FFF, 0x00030002, /* 7: 800 1000 2 */
  65. 0x00FFFFFF, 0x00140005, /* 8: 850 850 0 */
  66. 0x00FFFFFF, 0x000C0004, /* 9: 900 900 0 */
  67. 0x00FFFFFF, 0x001C0003, /* 10: 950 950 0 */
  68. 0x80FFFFFF, 0x00030002, /* 11: 1000 1000 0 */
  69. };
  70. static const u32 bdw_ddi_translations_edp[] = {
  71. 0x00FFFFFF, 0x00000012, /* DP parameters */
  72. 0x00EBAFFF, 0x00020011,
  73. 0x00C71FFF, 0x0006000F,
  74. 0x00FFFFFF, 0x00020011,
  75. 0x00DB6FFF, 0x0005000F,
  76. 0x00BEEFFF, 0x000A000C,
  77. 0x00FFFFFF, 0x0005000F,
  78. 0x00DB6FFF, 0x000A000C,
  79. 0x00FFFFFF, 0x000A000C,
  80. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  81. };
  82. static const u32 bdw_ddi_translations_dp[] = {
  83. 0x00FFFFFF, 0x0007000E, /* DP parameters */
  84. 0x00D75FFF, 0x000E000A,
  85. 0x00BEFFFF, 0x00140006,
  86. 0x00FFFFFF, 0x000E000A,
  87. 0x00D75FFF, 0x00180004,
  88. 0x80CB2FFF, 0x001B0002,
  89. 0x00F7DFFF, 0x00180004,
  90. 0x80D75FFF, 0x001B0002,
  91. 0x80FFFFFF, 0x001B0002,
  92. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  93. };
  94. static const u32 bdw_ddi_translations_fdi[] = {
  95. 0x00FFFFFF, 0x0001000E, /* FDI parameters */
  96. 0x00D75FFF, 0x0004000A,
  97. 0x00C30FFF, 0x00070006,
  98. 0x00AAAFFF, 0x000C0000,
  99. 0x00FFFFFF, 0x0004000A,
  100. 0x00D75FFF, 0x00090004,
  101. 0x00C30FFF, 0x000C0000,
  102. 0x00FFFFFF, 0x00070006,
  103. 0x00D75FFF, 0x000C0000,
  104. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  105. };
  106. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  107. {
  108. struct drm_encoder *encoder = &intel_encoder->base;
  109. int type = intel_encoder->type;
  110. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  111. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  112. struct intel_digital_port *intel_dig_port =
  113. enc_to_dig_port(encoder);
  114. return intel_dig_port->port;
  115. } else if (type == INTEL_OUTPUT_ANALOG) {
  116. return PORT_E;
  117. } else {
  118. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  119. BUG();
  120. }
  121. }
  122. /*
  123. * Starting with Haswell, DDI port buffers must be programmed with correct
  124. * values in advance. The buffer values are different for FDI and DP modes,
  125. * but the HDMI/DVI fields are shared among those. So we program the DDI
  126. * in either FDI or DP modes only, as HDMI connections will work with both
  127. * of those
  128. */
  129. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  130. {
  131. struct drm_i915_private *dev_priv = dev->dev_private;
  132. u32 reg;
  133. int i;
  134. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  135. const u32 *ddi_translations_fdi;
  136. const u32 *ddi_translations_dp;
  137. const u32 *ddi_translations_edp;
  138. const u32 *ddi_translations;
  139. if (IS_BROADWELL(dev)) {
  140. ddi_translations_fdi = bdw_ddi_translations_fdi;
  141. ddi_translations_dp = bdw_ddi_translations_dp;
  142. ddi_translations_edp = bdw_ddi_translations_edp;
  143. } else if (IS_HASWELL(dev)) {
  144. ddi_translations_fdi = hsw_ddi_translations_fdi;
  145. ddi_translations_dp = hsw_ddi_translations_dp;
  146. ddi_translations_edp = hsw_ddi_translations_dp;
  147. } else {
  148. WARN(1, "ddi translation table missing\n");
  149. ddi_translations_edp = bdw_ddi_translations_dp;
  150. ddi_translations_fdi = bdw_ddi_translations_fdi;
  151. ddi_translations_dp = bdw_ddi_translations_dp;
  152. }
  153. switch (port) {
  154. case PORT_A:
  155. ddi_translations = ddi_translations_edp;
  156. break;
  157. case PORT_B:
  158. case PORT_C:
  159. ddi_translations = ddi_translations_dp;
  160. break;
  161. case PORT_D:
  162. if (intel_dp_is_edp(dev, PORT_D))
  163. ddi_translations = ddi_translations_edp;
  164. else
  165. ddi_translations = ddi_translations_dp;
  166. break;
  167. case PORT_E:
  168. ddi_translations = ddi_translations_fdi;
  169. break;
  170. default:
  171. BUG();
  172. }
  173. for (i = 0, reg = DDI_BUF_TRANS(port);
  174. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  175. I915_WRITE(reg, ddi_translations[i]);
  176. reg += 4;
  177. }
  178. /* Entry 9 is for HDMI: */
  179. for (i = 0; i < 2; i++) {
  180. I915_WRITE(reg, hsw_ddi_translations_hdmi[hdmi_level * 2 + i]);
  181. reg += 4;
  182. }
  183. }
  184. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  185. * mode and port E for FDI.
  186. */
  187. void intel_prepare_ddi(struct drm_device *dev)
  188. {
  189. int port;
  190. if (!HAS_DDI(dev))
  191. return;
  192. for (port = PORT_A; port <= PORT_E; port++)
  193. intel_prepare_ddi_buffers(dev, port);
  194. }
  195. static const long hsw_ddi_buf_ctl_values[] = {
  196. DDI_BUF_EMP_400MV_0DB_HSW,
  197. DDI_BUF_EMP_400MV_3_5DB_HSW,
  198. DDI_BUF_EMP_400MV_6DB_HSW,
  199. DDI_BUF_EMP_400MV_9_5DB_HSW,
  200. DDI_BUF_EMP_600MV_0DB_HSW,
  201. DDI_BUF_EMP_600MV_3_5DB_HSW,
  202. DDI_BUF_EMP_600MV_6DB_HSW,
  203. DDI_BUF_EMP_800MV_0DB_HSW,
  204. DDI_BUF_EMP_800MV_3_5DB_HSW
  205. };
  206. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  207. enum port port)
  208. {
  209. uint32_t reg = DDI_BUF_CTL(port);
  210. int i;
  211. for (i = 0; i < 8; i++) {
  212. udelay(1);
  213. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  214. return;
  215. }
  216. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  217. }
  218. /* Starting with Haswell, different DDI ports can work in FDI mode for
  219. * connection to the PCH-located connectors. For this, it is necessary to train
  220. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  221. *
  222. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  223. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  224. * DDI A (which is used for eDP)
  225. */
  226. void hsw_fdi_link_train(struct drm_crtc *crtc)
  227. {
  228. struct drm_device *dev = crtc->dev;
  229. struct drm_i915_private *dev_priv = dev->dev_private;
  230. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  231. u32 temp, i, rx_ctl_val;
  232. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  233. * mode set "sequence for CRT port" document:
  234. * - TP1 to TP2 time with the default value
  235. * - FDI delay to 90h
  236. *
  237. * WaFDIAutoLinkSetTimingOverrride:hsw
  238. */
  239. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  240. FDI_RX_PWRDN_LANE0_VAL(2) |
  241. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  242. /* Enable the PCH Receiver FDI PLL */
  243. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  244. FDI_RX_PLL_ENABLE |
  245. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  246. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  247. POSTING_READ(_FDI_RXA_CTL);
  248. udelay(220);
  249. /* Switch from Rawclk to PCDclk */
  250. rx_ctl_val |= FDI_PCDCLK;
  251. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  252. /* Configure Port Clock Select */
  253. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
  254. /* Start the training iterating through available voltages and emphasis,
  255. * testing each value twice. */
  256. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  257. /* Configure DP_TP_CTL with auto-training */
  258. I915_WRITE(DP_TP_CTL(PORT_E),
  259. DP_TP_CTL_FDI_AUTOTRAIN |
  260. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  261. DP_TP_CTL_LINK_TRAIN_PAT1 |
  262. DP_TP_CTL_ENABLE);
  263. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  264. * DDI E does not support port reversal, the functionality is
  265. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  266. * port reversal bit */
  267. I915_WRITE(DDI_BUF_CTL(PORT_E),
  268. DDI_BUF_CTL_ENABLE |
  269. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  270. hsw_ddi_buf_ctl_values[i / 2]);
  271. POSTING_READ(DDI_BUF_CTL(PORT_E));
  272. udelay(600);
  273. /* Program PCH FDI Receiver TU */
  274. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  275. /* Enable PCH FDI Receiver with auto-training */
  276. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  277. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  278. POSTING_READ(_FDI_RXA_CTL);
  279. /* Wait for FDI receiver lane calibration */
  280. udelay(30);
  281. /* Unset FDI_RX_MISC pwrdn lanes */
  282. temp = I915_READ(_FDI_RXA_MISC);
  283. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  284. I915_WRITE(_FDI_RXA_MISC, temp);
  285. POSTING_READ(_FDI_RXA_MISC);
  286. /* Wait for FDI auto training time */
  287. udelay(5);
  288. temp = I915_READ(DP_TP_STATUS(PORT_E));
  289. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  290. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  291. /* Enable normal pixel sending for FDI */
  292. I915_WRITE(DP_TP_CTL(PORT_E),
  293. DP_TP_CTL_FDI_AUTOTRAIN |
  294. DP_TP_CTL_LINK_TRAIN_NORMAL |
  295. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  296. DP_TP_CTL_ENABLE);
  297. return;
  298. }
  299. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  300. temp &= ~DDI_BUF_CTL_ENABLE;
  301. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  302. POSTING_READ(DDI_BUF_CTL(PORT_E));
  303. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  304. temp = I915_READ(DP_TP_CTL(PORT_E));
  305. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  306. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  307. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  308. POSTING_READ(DP_TP_CTL(PORT_E));
  309. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  310. rx_ctl_val &= ~FDI_RX_ENABLE;
  311. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  312. POSTING_READ(_FDI_RXA_CTL);
  313. /* Reset FDI_RX_MISC pwrdn lanes */
  314. temp = I915_READ(_FDI_RXA_MISC);
  315. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  316. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  317. I915_WRITE(_FDI_RXA_MISC, temp);
  318. POSTING_READ(_FDI_RXA_MISC);
  319. }
  320. DRM_ERROR("FDI link training failed!\n");
  321. }
  322. static void intel_ddi_mode_set(struct intel_encoder *encoder)
  323. {
  324. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  325. int port = intel_ddi_get_encoder_port(encoder);
  326. int pipe = crtc->pipe;
  327. int type = encoder->type;
  328. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  329. DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
  330. port_name(port), pipe_name(pipe));
  331. crtc->eld_vld = false;
  332. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  333. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  334. struct intel_digital_port *intel_dig_port =
  335. enc_to_dig_port(&encoder->base);
  336. intel_dp->DP = intel_dig_port->saved_port_bits |
  337. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  338. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  339. if (intel_dp->has_audio) {
  340. DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
  341. pipe_name(crtc->pipe));
  342. /* write eld */
  343. DRM_DEBUG_DRIVER("DP audio: write eld information\n");
  344. intel_write_eld(&encoder->base, adjusted_mode);
  345. }
  346. } else if (type == INTEL_OUTPUT_HDMI) {
  347. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  348. if (intel_hdmi->has_audio) {
  349. /* Proper support for digital audio needs a new logic
  350. * and a new set of registers, so we leave it for future
  351. * patch bombing.
  352. */
  353. DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
  354. pipe_name(crtc->pipe));
  355. /* write eld */
  356. DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
  357. intel_write_eld(&encoder->base, adjusted_mode);
  358. }
  359. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  360. }
  361. }
  362. static struct intel_encoder *
  363. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  364. {
  365. struct drm_device *dev = crtc->dev;
  366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  367. struct intel_encoder *intel_encoder, *ret = NULL;
  368. int num_encoders = 0;
  369. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  370. ret = intel_encoder;
  371. num_encoders++;
  372. }
  373. if (num_encoders != 1)
  374. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  375. pipe_name(intel_crtc->pipe));
  376. BUG_ON(ret == NULL);
  377. return ret;
  378. }
  379. void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
  380. {
  381. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  382. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  383. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  384. uint32_t val;
  385. switch (intel_crtc->ddi_pll_sel) {
  386. case PORT_CLK_SEL_SPLL:
  387. plls->spll_refcount--;
  388. if (plls->spll_refcount == 0) {
  389. DRM_DEBUG_KMS("Disabling SPLL\n");
  390. val = I915_READ(SPLL_CTL);
  391. WARN_ON(!(val & SPLL_PLL_ENABLE));
  392. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  393. POSTING_READ(SPLL_CTL);
  394. }
  395. break;
  396. case PORT_CLK_SEL_WRPLL1:
  397. plls->wrpll1_refcount--;
  398. if (plls->wrpll1_refcount == 0) {
  399. DRM_DEBUG_KMS("Disabling WRPLL 1\n");
  400. val = I915_READ(WRPLL_CTL1);
  401. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  402. I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
  403. POSTING_READ(WRPLL_CTL1);
  404. }
  405. break;
  406. case PORT_CLK_SEL_WRPLL2:
  407. plls->wrpll2_refcount--;
  408. if (plls->wrpll2_refcount == 0) {
  409. DRM_DEBUG_KMS("Disabling WRPLL 2\n");
  410. val = I915_READ(WRPLL_CTL2);
  411. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  412. I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
  413. POSTING_READ(WRPLL_CTL2);
  414. }
  415. break;
  416. }
  417. WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
  418. WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
  419. WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
  420. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  421. }
  422. #define LC_FREQ 2700
  423. #define LC_FREQ_2K (LC_FREQ * 2000)
  424. #define P_MIN 2
  425. #define P_MAX 64
  426. #define P_INC 2
  427. /* Constraints for PLL good behavior */
  428. #define REF_MIN 48
  429. #define REF_MAX 400
  430. #define VCO_MIN 2400
  431. #define VCO_MAX 4800
  432. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  433. struct wrpll_rnp {
  434. unsigned p, n2, r2;
  435. };
  436. static unsigned wrpll_get_budget_for_freq(int clock)
  437. {
  438. unsigned budget;
  439. switch (clock) {
  440. case 25175000:
  441. case 25200000:
  442. case 27000000:
  443. case 27027000:
  444. case 37762500:
  445. case 37800000:
  446. case 40500000:
  447. case 40541000:
  448. case 54000000:
  449. case 54054000:
  450. case 59341000:
  451. case 59400000:
  452. case 72000000:
  453. case 74176000:
  454. case 74250000:
  455. case 81000000:
  456. case 81081000:
  457. case 89012000:
  458. case 89100000:
  459. case 108000000:
  460. case 108108000:
  461. case 111264000:
  462. case 111375000:
  463. case 148352000:
  464. case 148500000:
  465. case 162000000:
  466. case 162162000:
  467. case 222525000:
  468. case 222750000:
  469. case 296703000:
  470. case 297000000:
  471. budget = 0;
  472. break;
  473. case 233500000:
  474. case 245250000:
  475. case 247750000:
  476. case 253250000:
  477. case 298000000:
  478. budget = 1500;
  479. break;
  480. case 169128000:
  481. case 169500000:
  482. case 179500000:
  483. case 202000000:
  484. budget = 2000;
  485. break;
  486. case 256250000:
  487. case 262500000:
  488. case 270000000:
  489. case 272500000:
  490. case 273750000:
  491. case 280750000:
  492. case 281250000:
  493. case 286000000:
  494. case 291750000:
  495. budget = 4000;
  496. break;
  497. case 267250000:
  498. case 268500000:
  499. budget = 5000;
  500. break;
  501. default:
  502. budget = 1000;
  503. break;
  504. }
  505. return budget;
  506. }
  507. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  508. unsigned r2, unsigned n2, unsigned p,
  509. struct wrpll_rnp *best)
  510. {
  511. uint64_t a, b, c, d, diff, diff_best;
  512. /* No best (r,n,p) yet */
  513. if (best->p == 0) {
  514. best->p = p;
  515. best->n2 = n2;
  516. best->r2 = r2;
  517. return;
  518. }
  519. /*
  520. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  521. * freq2k.
  522. *
  523. * delta = 1e6 *
  524. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  525. * freq2k;
  526. *
  527. * and we would like delta <= budget.
  528. *
  529. * If the discrepancy is above the PPM-based budget, always prefer to
  530. * improve upon the previous solution. However, if you're within the
  531. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  532. */
  533. a = freq2k * budget * p * r2;
  534. b = freq2k * budget * best->p * best->r2;
  535. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  536. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  537. (LC_FREQ_2K * best->n2));
  538. c = 1000000 * diff;
  539. d = 1000000 * diff_best;
  540. if (a < c && b < d) {
  541. /* If both are above the budget, pick the closer */
  542. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  543. best->p = p;
  544. best->n2 = n2;
  545. best->r2 = r2;
  546. }
  547. } else if (a >= c && b < d) {
  548. /* If A is below the threshold but B is above it? Update. */
  549. best->p = p;
  550. best->n2 = n2;
  551. best->r2 = r2;
  552. } else if (a >= c && b >= d) {
  553. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  554. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  555. best->p = p;
  556. best->n2 = n2;
  557. best->r2 = r2;
  558. }
  559. }
  560. /* Otherwise a < c && b >= d, do nothing */
  561. }
  562. static void
  563. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  564. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  565. {
  566. uint64_t freq2k;
  567. unsigned p, n2, r2;
  568. struct wrpll_rnp best = { 0, 0, 0 };
  569. unsigned budget;
  570. freq2k = clock / 100;
  571. budget = wrpll_get_budget_for_freq(clock);
  572. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  573. * and directly pass the LC PLL to it. */
  574. if (freq2k == 5400000) {
  575. *n2_out = 2;
  576. *p_out = 1;
  577. *r2_out = 2;
  578. return;
  579. }
  580. /*
  581. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  582. * the WR PLL.
  583. *
  584. * We want R so that REF_MIN <= Ref <= REF_MAX.
  585. * Injecting R2 = 2 * R gives:
  586. * REF_MAX * r2 > LC_FREQ * 2 and
  587. * REF_MIN * r2 < LC_FREQ * 2
  588. *
  589. * Which means the desired boundaries for r2 are:
  590. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  591. *
  592. */
  593. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  594. r2 <= LC_FREQ * 2 / REF_MIN;
  595. r2++) {
  596. /*
  597. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  598. *
  599. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  600. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  601. * VCO_MAX * r2 > n2 * LC_FREQ and
  602. * VCO_MIN * r2 < n2 * LC_FREQ)
  603. *
  604. * Which means the desired boundaries for n2 are:
  605. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  606. */
  607. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  608. n2 <= VCO_MAX * r2 / LC_FREQ;
  609. n2++) {
  610. for (p = P_MIN; p <= P_MAX; p += P_INC)
  611. wrpll_update_rnp(freq2k, budget,
  612. r2, n2, p, &best);
  613. }
  614. }
  615. *n2_out = best.n2;
  616. *p_out = best.p;
  617. *r2_out = best.r2;
  618. DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n",
  619. clock, *p_out, *n2_out, *r2_out);
  620. }
  621. bool intel_ddi_pll_mode_set(struct drm_crtc *crtc)
  622. {
  623. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  624. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  625. struct drm_encoder *encoder = &intel_encoder->base;
  626. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  627. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  628. int type = intel_encoder->type;
  629. enum pipe pipe = intel_crtc->pipe;
  630. uint32_t reg, val;
  631. int clock = intel_crtc->config.port_clock;
  632. /* TODO: reuse PLLs when possible (compare values) */
  633. intel_ddi_put_crtc_pll(crtc);
  634. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  635. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  636. switch (intel_dp->link_bw) {
  637. case DP_LINK_BW_1_62:
  638. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
  639. break;
  640. case DP_LINK_BW_2_7:
  641. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
  642. break;
  643. case DP_LINK_BW_5_4:
  644. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
  645. break;
  646. default:
  647. DRM_ERROR("Link bandwidth %d unsupported\n",
  648. intel_dp->link_bw);
  649. return false;
  650. }
  651. /* We don't need to turn any PLL on because we'll use LCPLL. */
  652. return true;
  653. } else if (type == INTEL_OUTPUT_HDMI) {
  654. unsigned p, n2, r2;
  655. if (plls->wrpll1_refcount == 0) {
  656. DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
  657. pipe_name(pipe));
  658. plls->wrpll1_refcount++;
  659. reg = WRPLL_CTL1;
  660. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
  661. } else if (plls->wrpll2_refcount == 0) {
  662. DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
  663. pipe_name(pipe));
  664. plls->wrpll2_refcount++;
  665. reg = WRPLL_CTL2;
  666. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
  667. } else {
  668. DRM_ERROR("No WRPLLs available!\n");
  669. return false;
  670. }
  671. WARN(I915_READ(reg) & WRPLL_PLL_ENABLE,
  672. "WRPLL already enabled\n");
  673. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  674. val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  675. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  676. WRPLL_DIVIDER_POST(p);
  677. } else if (type == INTEL_OUTPUT_ANALOG) {
  678. if (plls->spll_refcount == 0) {
  679. DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
  680. pipe_name(pipe));
  681. plls->spll_refcount++;
  682. reg = SPLL_CTL;
  683. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
  684. } else {
  685. DRM_ERROR("SPLL already in use\n");
  686. return false;
  687. }
  688. WARN(I915_READ(reg) & SPLL_PLL_ENABLE,
  689. "SPLL already enabled\n");
  690. val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  691. } else {
  692. WARN(1, "Invalid DDI encoder type %d\n", type);
  693. return false;
  694. }
  695. I915_WRITE(reg, val);
  696. udelay(20);
  697. return true;
  698. }
  699. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  700. {
  701. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  702. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  703. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  704. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  705. int type = intel_encoder->type;
  706. uint32_t temp;
  707. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  708. temp = TRANS_MSA_SYNC_CLK;
  709. switch (intel_crtc->config.pipe_bpp) {
  710. case 18:
  711. temp |= TRANS_MSA_6_BPC;
  712. break;
  713. case 24:
  714. temp |= TRANS_MSA_8_BPC;
  715. break;
  716. case 30:
  717. temp |= TRANS_MSA_10_BPC;
  718. break;
  719. case 36:
  720. temp |= TRANS_MSA_12_BPC;
  721. break;
  722. default:
  723. BUG();
  724. }
  725. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  726. }
  727. }
  728. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  729. {
  730. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  731. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  732. struct drm_encoder *encoder = &intel_encoder->base;
  733. struct drm_device *dev = crtc->dev;
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. enum pipe pipe = intel_crtc->pipe;
  736. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  737. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  738. int type = intel_encoder->type;
  739. uint32_t temp;
  740. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  741. temp = TRANS_DDI_FUNC_ENABLE;
  742. temp |= TRANS_DDI_SELECT_PORT(port);
  743. switch (intel_crtc->config.pipe_bpp) {
  744. case 18:
  745. temp |= TRANS_DDI_BPC_6;
  746. break;
  747. case 24:
  748. temp |= TRANS_DDI_BPC_8;
  749. break;
  750. case 30:
  751. temp |= TRANS_DDI_BPC_10;
  752. break;
  753. case 36:
  754. temp |= TRANS_DDI_BPC_12;
  755. break;
  756. default:
  757. BUG();
  758. }
  759. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  760. temp |= TRANS_DDI_PVSYNC;
  761. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  762. temp |= TRANS_DDI_PHSYNC;
  763. if (cpu_transcoder == TRANSCODER_EDP) {
  764. switch (pipe) {
  765. case PIPE_A:
  766. /* On Haswell, can only use the always-on power well for
  767. * eDP when not using the panel fitter, and when not
  768. * using motion blur mitigation (which we don't
  769. * support). */
  770. if (IS_HASWELL(dev) && intel_crtc->config.pch_pfit.enabled)
  771. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  772. else
  773. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  774. break;
  775. case PIPE_B:
  776. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  777. break;
  778. case PIPE_C:
  779. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  780. break;
  781. default:
  782. BUG();
  783. break;
  784. }
  785. }
  786. if (type == INTEL_OUTPUT_HDMI) {
  787. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  788. if (intel_hdmi->has_hdmi_sink)
  789. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  790. else
  791. temp |= TRANS_DDI_MODE_SELECT_DVI;
  792. } else if (type == INTEL_OUTPUT_ANALOG) {
  793. temp |= TRANS_DDI_MODE_SELECT_FDI;
  794. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  795. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  796. type == INTEL_OUTPUT_EDP) {
  797. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  798. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  799. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  800. } else {
  801. WARN(1, "Invalid encoder type %d for pipe %c\n",
  802. intel_encoder->type, pipe_name(pipe));
  803. }
  804. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  805. }
  806. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  807. enum transcoder cpu_transcoder)
  808. {
  809. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  810. uint32_t val = I915_READ(reg);
  811. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
  812. val |= TRANS_DDI_PORT_NONE;
  813. I915_WRITE(reg, val);
  814. }
  815. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  816. {
  817. struct drm_device *dev = intel_connector->base.dev;
  818. struct drm_i915_private *dev_priv = dev->dev_private;
  819. struct intel_encoder *intel_encoder = intel_connector->encoder;
  820. int type = intel_connector->base.connector_type;
  821. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  822. enum pipe pipe = 0;
  823. enum transcoder cpu_transcoder;
  824. uint32_t tmp;
  825. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  826. return false;
  827. if (port == PORT_A)
  828. cpu_transcoder = TRANSCODER_EDP;
  829. else
  830. cpu_transcoder = (enum transcoder) pipe;
  831. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  832. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  833. case TRANS_DDI_MODE_SELECT_HDMI:
  834. case TRANS_DDI_MODE_SELECT_DVI:
  835. return (type == DRM_MODE_CONNECTOR_HDMIA);
  836. case TRANS_DDI_MODE_SELECT_DP_SST:
  837. if (type == DRM_MODE_CONNECTOR_eDP)
  838. return true;
  839. case TRANS_DDI_MODE_SELECT_DP_MST:
  840. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  841. case TRANS_DDI_MODE_SELECT_FDI:
  842. return (type == DRM_MODE_CONNECTOR_VGA);
  843. default:
  844. return false;
  845. }
  846. }
  847. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  848. enum pipe *pipe)
  849. {
  850. struct drm_device *dev = encoder->base.dev;
  851. struct drm_i915_private *dev_priv = dev->dev_private;
  852. enum port port = intel_ddi_get_encoder_port(encoder);
  853. u32 tmp;
  854. int i;
  855. tmp = I915_READ(DDI_BUF_CTL(port));
  856. if (!(tmp & DDI_BUF_CTL_ENABLE))
  857. return false;
  858. if (port == PORT_A) {
  859. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  860. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  861. case TRANS_DDI_EDP_INPUT_A_ON:
  862. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  863. *pipe = PIPE_A;
  864. break;
  865. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  866. *pipe = PIPE_B;
  867. break;
  868. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  869. *pipe = PIPE_C;
  870. break;
  871. }
  872. return true;
  873. } else {
  874. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  875. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  876. if ((tmp & TRANS_DDI_PORT_MASK)
  877. == TRANS_DDI_SELECT_PORT(port)) {
  878. *pipe = i;
  879. return true;
  880. }
  881. }
  882. }
  883. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  884. return false;
  885. }
  886. static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
  887. enum pipe pipe)
  888. {
  889. uint32_t temp, ret;
  890. enum port port = I915_MAX_PORTS;
  891. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  892. pipe);
  893. int i;
  894. if (cpu_transcoder == TRANSCODER_EDP) {
  895. port = PORT_A;
  896. } else {
  897. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  898. temp &= TRANS_DDI_PORT_MASK;
  899. for (i = PORT_B; i <= PORT_E; i++)
  900. if (temp == TRANS_DDI_SELECT_PORT(i))
  901. port = i;
  902. }
  903. if (port == I915_MAX_PORTS) {
  904. WARN(1, "Pipe %c enabled on an unknown port\n",
  905. pipe_name(pipe));
  906. ret = PORT_CLK_SEL_NONE;
  907. } else {
  908. ret = I915_READ(PORT_CLK_SEL(port));
  909. DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
  910. "0x%08x\n", pipe_name(pipe), port_name(port),
  911. ret);
  912. }
  913. return ret;
  914. }
  915. void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
  916. {
  917. struct drm_i915_private *dev_priv = dev->dev_private;
  918. enum pipe pipe;
  919. struct intel_crtc *intel_crtc;
  920. for_each_pipe(pipe) {
  921. intel_crtc =
  922. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  923. if (!intel_crtc->active)
  924. continue;
  925. intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
  926. pipe);
  927. switch (intel_crtc->ddi_pll_sel) {
  928. case PORT_CLK_SEL_SPLL:
  929. dev_priv->ddi_plls.spll_refcount++;
  930. break;
  931. case PORT_CLK_SEL_WRPLL1:
  932. dev_priv->ddi_plls.wrpll1_refcount++;
  933. break;
  934. case PORT_CLK_SEL_WRPLL2:
  935. dev_priv->ddi_plls.wrpll2_refcount++;
  936. break;
  937. }
  938. }
  939. }
  940. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  941. {
  942. struct drm_crtc *crtc = &intel_crtc->base;
  943. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  944. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  945. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  946. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  947. if (cpu_transcoder != TRANSCODER_EDP)
  948. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  949. TRANS_CLK_SEL_PORT(port));
  950. }
  951. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  952. {
  953. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  954. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  955. if (cpu_transcoder != TRANSCODER_EDP)
  956. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  957. TRANS_CLK_SEL_DISABLED);
  958. }
  959. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  960. {
  961. struct drm_encoder *encoder = &intel_encoder->base;
  962. struct drm_crtc *crtc = encoder->crtc;
  963. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  964. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  965. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  966. int type = intel_encoder->type;
  967. if (type == INTEL_OUTPUT_EDP) {
  968. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  969. ironlake_edp_panel_vdd_on(intel_dp);
  970. ironlake_edp_panel_on(intel_dp);
  971. ironlake_edp_panel_vdd_off(intel_dp, true);
  972. }
  973. WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
  974. I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
  975. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  976. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  977. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  978. intel_dp_start_link_train(intel_dp);
  979. intel_dp_complete_link_train(intel_dp);
  980. if (port != PORT_A)
  981. intel_dp_stop_link_train(intel_dp);
  982. }
  983. }
  984. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  985. {
  986. struct drm_encoder *encoder = &intel_encoder->base;
  987. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  988. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  989. int type = intel_encoder->type;
  990. uint32_t val;
  991. bool wait = false;
  992. val = I915_READ(DDI_BUF_CTL(port));
  993. if (val & DDI_BUF_CTL_ENABLE) {
  994. val &= ~DDI_BUF_CTL_ENABLE;
  995. I915_WRITE(DDI_BUF_CTL(port), val);
  996. wait = true;
  997. }
  998. val = I915_READ(DP_TP_CTL(port));
  999. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1000. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1001. I915_WRITE(DP_TP_CTL(port), val);
  1002. if (wait)
  1003. intel_wait_ddi_buf_idle(dev_priv, port);
  1004. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1005. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1006. ironlake_edp_panel_vdd_on(intel_dp);
  1007. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1008. ironlake_edp_panel_off(intel_dp);
  1009. }
  1010. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1011. }
  1012. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  1013. {
  1014. struct drm_encoder *encoder = &intel_encoder->base;
  1015. struct drm_crtc *crtc = encoder->crtc;
  1016. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1017. int pipe = intel_crtc->pipe;
  1018. struct drm_device *dev = encoder->dev;
  1019. struct drm_i915_private *dev_priv = dev->dev_private;
  1020. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1021. int type = intel_encoder->type;
  1022. uint32_t tmp;
  1023. if (type == INTEL_OUTPUT_HDMI) {
  1024. struct intel_digital_port *intel_dig_port =
  1025. enc_to_dig_port(encoder);
  1026. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  1027. * are ignored so nothing special needs to be done besides
  1028. * enabling the port.
  1029. */
  1030. I915_WRITE(DDI_BUF_CTL(port),
  1031. intel_dig_port->saved_port_bits |
  1032. DDI_BUF_CTL_ENABLE);
  1033. } else if (type == INTEL_OUTPUT_EDP) {
  1034. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1035. if (port == PORT_A)
  1036. intel_dp_stop_link_train(intel_dp);
  1037. ironlake_edp_backlight_on(intel_dp);
  1038. intel_edp_psr_enable(intel_dp);
  1039. }
  1040. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  1041. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1042. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  1043. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1044. }
  1045. }
  1046. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  1047. {
  1048. struct drm_encoder *encoder = &intel_encoder->base;
  1049. struct drm_crtc *crtc = encoder->crtc;
  1050. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1051. int pipe = intel_crtc->pipe;
  1052. int type = intel_encoder->type;
  1053. struct drm_device *dev = encoder->dev;
  1054. struct drm_i915_private *dev_priv = dev->dev_private;
  1055. uint32_t tmp;
  1056. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  1057. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1058. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  1059. (pipe * 4));
  1060. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1061. }
  1062. if (type == INTEL_OUTPUT_EDP) {
  1063. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1064. intel_edp_psr_disable(intel_dp);
  1065. ironlake_edp_backlight_off(intel_dp);
  1066. }
  1067. }
  1068. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1069. {
  1070. struct drm_device *dev = dev_priv->dev;
  1071. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1072. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1073. if (lcpll & LCPLL_CD_SOURCE_FCLK) {
  1074. return 800000;
  1075. } else if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT) {
  1076. return 450000;
  1077. } else if (freq == LCPLL_CLK_FREQ_450) {
  1078. return 450000;
  1079. } else if (IS_HASWELL(dev)) {
  1080. if (IS_ULT(dev))
  1081. return 337500;
  1082. else
  1083. return 540000;
  1084. } else {
  1085. if (freq == LCPLL_CLK_FREQ_54O_BDW)
  1086. return 540000;
  1087. else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  1088. return 337500;
  1089. else
  1090. return 675000;
  1091. }
  1092. }
  1093. void intel_ddi_pll_init(struct drm_device *dev)
  1094. {
  1095. struct drm_i915_private *dev_priv = dev->dev_private;
  1096. uint32_t val = I915_READ(LCPLL_CTL);
  1097. /* The LCPLL register should be turned on by the BIOS. For now let's
  1098. * just check its state and print errors in case something is wrong.
  1099. * Don't even try to turn it on.
  1100. */
  1101. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1102. intel_ddi_get_cdclk_freq(dev_priv));
  1103. if (val & LCPLL_CD_SOURCE_FCLK)
  1104. DRM_ERROR("CDCLK source is not LCPLL\n");
  1105. if (val & LCPLL_PLL_DISABLE)
  1106. DRM_ERROR("LCPLL is disabled\n");
  1107. }
  1108. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1109. {
  1110. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1111. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1112. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1113. enum port port = intel_dig_port->port;
  1114. uint32_t val;
  1115. bool wait = false;
  1116. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1117. val = I915_READ(DDI_BUF_CTL(port));
  1118. if (val & DDI_BUF_CTL_ENABLE) {
  1119. val &= ~DDI_BUF_CTL_ENABLE;
  1120. I915_WRITE(DDI_BUF_CTL(port), val);
  1121. wait = true;
  1122. }
  1123. val = I915_READ(DP_TP_CTL(port));
  1124. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1125. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1126. I915_WRITE(DP_TP_CTL(port), val);
  1127. POSTING_READ(DP_TP_CTL(port));
  1128. if (wait)
  1129. intel_wait_ddi_buf_idle(dev_priv, port);
  1130. }
  1131. val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
  1132. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1133. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1134. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1135. I915_WRITE(DP_TP_CTL(port), val);
  1136. POSTING_READ(DP_TP_CTL(port));
  1137. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1138. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1139. POSTING_READ(DDI_BUF_CTL(port));
  1140. udelay(600);
  1141. }
  1142. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1143. {
  1144. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1145. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1146. uint32_t val;
  1147. intel_ddi_post_disable(intel_encoder);
  1148. val = I915_READ(_FDI_RXA_CTL);
  1149. val &= ~FDI_RX_ENABLE;
  1150. I915_WRITE(_FDI_RXA_CTL, val);
  1151. val = I915_READ(_FDI_RXA_MISC);
  1152. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1153. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1154. I915_WRITE(_FDI_RXA_MISC, val);
  1155. val = I915_READ(_FDI_RXA_CTL);
  1156. val &= ~FDI_PCDCLK;
  1157. I915_WRITE(_FDI_RXA_CTL, val);
  1158. val = I915_READ(_FDI_RXA_CTL);
  1159. val &= ~FDI_RX_PLL_ENABLE;
  1160. I915_WRITE(_FDI_RXA_CTL, val);
  1161. }
  1162. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1163. {
  1164. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1165. int type = intel_encoder->type;
  1166. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
  1167. intel_dp_check_link_status(intel_dp);
  1168. }
  1169. void intel_ddi_get_config(struct intel_encoder *encoder,
  1170. struct intel_crtc_config *pipe_config)
  1171. {
  1172. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1173. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1174. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1175. u32 temp, flags = 0;
  1176. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1177. if (temp & TRANS_DDI_PHSYNC)
  1178. flags |= DRM_MODE_FLAG_PHSYNC;
  1179. else
  1180. flags |= DRM_MODE_FLAG_NHSYNC;
  1181. if (temp & TRANS_DDI_PVSYNC)
  1182. flags |= DRM_MODE_FLAG_PVSYNC;
  1183. else
  1184. flags |= DRM_MODE_FLAG_NVSYNC;
  1185. pipe_config->adjusted_mode.flags |= flags;
  1186. switch (temp & TRANS_DDI_BPC_MASK) {
  1187. case TRANS_DDI_BPC_6:
  1188. pipe_config->pipe_bpp = 18;
  1189. break;
  1190. case TRANS_DDI_BPC_8:
  1191. pipe_config->pipe_bpp = 24;
  1192. break;
  1193. case TRANS_DDI_BPC_10:
  1194. pipe_config->pipe_bpp = 30;
  1195. break;
  1196. case TRANS_DDI_BPC_12:
  1197. pipe_config->pipe_bpp = 36;
  1198. break;
  1199. default:
  1200. break;
  1201. }
  1202. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1203. case TRANS_DDI_MODE_SELECT_HDMI:
  1204. case TRANS_DDI_MODE_SELECT_DVI:
  1205. case TRANS_DDI_MODE_SELECT_FDI:
  1206. break;
  1207. case TRANS_DDI_MODE_SELECT_DP_SST:
  1208. case TRANS_DDI_MODE_SELECT_DP_MST:
  1209. pipe_config->has_dp_encoder = true;
  1210. intel_dp_get_m_n(intel_crtc, pipe_config);
  1211. break;
  1212. default:
  1213. break;
  1214. }
  1215. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  1216. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1217. /*
  1218. * This is a big fat ugly hack.
  1219. *
  1220. * Some machines in UEFI boot mode provide us a VBT that has 18
  1221. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1222. * unknown we fail to light up. Yet the same BIOS boots up with
  1223. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1224. * max, not what it tells us to use.
  1225. *
  1226. * Note: This will still be broken if the eDP panel is not lit
  1227. * up by the BIOS, and thus we can't get the mode at module
  1228. * load.
  1229. */
  1230. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1231. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1232. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1233. }
  1234. }
  1235. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1236. {
  1237. /* HDMI has nothing special to destroy, so we can go with this. */
  1238. intel_dp_encoder_destroy(encoder);
  1239. }
  1240. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1241. struct intel_crtc_config *pipe_config)
  1242. {
  1243. int type = encoder->type;
  1244. int port = intel_ddi_get_encoder_port(encoder);
  1245. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1246. if (port == PORT_A)
  1247. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1248. if (type == INTEL_OUTPUT_HDMI)
  1249. return intel_hdmi_compute_config(encoder, pipe_config);
  1250. else
  1251. return intel_dp_compute_config(encoder, pipe_config);
  1252. }
  1253. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1254. .destroy = intel_ddi_destroy,
  1255. };
  1256. static struct intel_connector *
  1257. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1258. {
  1259. struct intel_connector *connector;
  1260. enum port port = intel_dig_port->port;
  1261. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1262. if (!connector)
  1263. return NULL;
  1264. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1265. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1266. kfree(connector);
  1267. return NULL;
  1268. }
  1269. return connector;
  1270. }
  1271. static struct intel_connector *
  1272. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1273. {
  1274. struct intel_connector *connector;
  1275. enum port port = intel_dig_port->port;
  1276. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1277. if (!connector)
  1278. return NULL;
  1279. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1280. intel_hdmi_init_connector(intel_dig_port, connector);
  1281. return connector;
  1282. }
  1283. void intel_ddi_init(struct drm_device *dev, enum port port)
  1284. {
  1285. struct drm_i915_private *dev_priv = dev->dev_private;
  1286. struct intel_digital_port *intel_dig_port;
  1287. struct intel_encoder *intel_encoder;
  1288. struct drm_encoder *encoder;
  1289. struct intel_connector *hdmi_connector = NULL;
  1290. struct intel_connector *dp_connector = NULL;
  1291. bool init_hdmi, init_dp;
  1292. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1293. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1294. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1295. if (!init_dp && !init_hdmi) {
  1296. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible\n",
  1297. port_name(port));
  1298. init_hdmi = true;
  1299. init_dp = true;
  1300. }
  1301. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1302. if (!intel_dig_port)
  1303. return;
  1304. intel_encoder = &intel_dig_port->base;
  1305. encoder = &intel_encoder->base;
  1306. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1307. DRM_MODE_ENCODER_TMDS);
  1308. intel_encoder->compute_config = intel_ddi_compute_config;
  1309. intel_encoder->mode_set = intel_ddi_mode_set;
  1310. intel_encoder->enable = intel_enable_ddi;
  1311. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1312. intel_encoder->disable = intel_disable_ddi;
  1313. intel_encoder->post_disable = intel_ddi_post_disable;
  1314. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1315. intel_encoder->get_config = intel_ddi_get_config;
  1316. intel_dig_port->port = port;
  1317. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1318. (DDI_BUF_PORT_REVERSAL |
  1319. DDI_A_4_LANES);
  1320. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1321. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1322. intel_encoder->cloneable = false;
  1323. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1324. if (init_dp)
  1325. dp_connector = intel_ddi_init_dp_connector(intel_dig_port);
  1326. /* In theory we don't need the encoder->type check, but leave it just in
  1327. * case we have some really bad VBTs... */
  1328. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi)
  1329. hdmi_connector = intel_ddi_init_hdmi_connector(intel_dig_port);
  1330. if (!dp_connector && !hdmi_connector) {
  1331. drm_encoder_cleanup(encoder);
  1332. kfree(intel_dig_port);
  1333. }
  1334. }