i915_gem_gtt.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drmP.h>
  25. #include <drm/i915_drm.h>
  26. #include "i915_drv.h"
  27. #include "i915_trace.h"
  28. #include "intel_drv.h"
  29. #define GEN6_PPGTT_PD_ENTRIES 512
  30. #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
  31. typedef uint64_t gen8_gtt_pte_t;
  32. typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
  33. /* PPGTT stuff */
  34. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  35. #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
  36. #define GEN6_PDE_VALID (1 << 0)
  37. /* gen6+ has bit 11-4 for physical addr bit 39-32 */
  38. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  39. #define GEN6_PTE_VALID (1 << 0)
  40. #define GEN6_PTE_UNCACHED (1 << 1)
  41. #define HSW_PTE_UNCACHED (0)
  42. #define GEN6_PTE_CACHE_LLC (2 << 1)
  43. #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
  44. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  45. #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
  46. /* Cacheability Control is a 4-bit value. The low three bits are stored in *
  47. * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  48. */
  49. #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
  50. (((bits) & 0x8) << (11 - 3)))
  51. #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
  52. #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
  53. #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
  54. #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
  55. #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
  56. #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
  57. #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
  58. #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
  59. #define GEN8_LEGACY_PDPS 4
  60. #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
  61. #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
  62. #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
  63. #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
  64. static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
  65. enum i915_cache_level level,
  66. bool valid)
  67. {
  68. gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
  69. pte |= addr;
  70. if (level != I915_CACHE_NONE)
  71. pte |= PPAT_CACHED_INDEX;
  72. else
  73. pte |= PPAT_UNCACHED_INDEX;
  74. return pte;
  75. }
  76. static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
  77. dma_addr_t addr,
  78. enum i915_cache_level level)
  79. {
  80. gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
  81. pde |= addr;
  82. if (level != I915_CACHE_NONE)
  83. pde |= PPAT_CACHED_PDE_INDEX;
  84. else
  85. pde |= PPAT_UNCACHED_INDEX;
  86. return pde;
  87. }
  88. static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
  89. enum i915_cache_level level,
  90. bool valid)
  91. {
  92. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  93. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  94. switch (level) {
  95. case I915_CACHE_L3_LLC:
  96. case I915_CACHE_LLC:
  97. pte |= GEN6_PTE_CACHE_LLC;
  98. break;
  99. case I915_CACHE_NONE:
  100. pte |= GEN6_PTE_UNCACHED;
  101. break;
  102. default:
  103. WARN_ON(1);
  104. }
  105. return pte;
  106. }
  107. static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
  108. enum i915_cache_level level,
  109. bool valid)
  110. {
  111. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  112. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  113. switch (level) {
  114. case I915_CACHE_L3_LLC:
  115. pte |= GEN7_PTE_CACHE_L3_LLC;
  116. break;
  117. case I915_CACHE_LLC:
  118. pte |= GEN6_PTE_CACHE_LLC;
  119. break;
  120. case I915_CACHE_NONE:
  121. pte |= GEN6_PTE_UNCACHED;
  122. break;
  123. default:
  124. WARN_ON(1);
  125. }
  126. return pte;
  127. }
  128. #define BYT_PTE_WRITEABLE (1 << 1)
  129. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  130. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  131. enum i915_cache_level level,
  132. bool valid)
  133. {
  134. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  135. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  136. /* Mark the page as writeable. Other platforms don't have a
  137. * setting for read-only/writable, so this matches that behavior.
  138. */
  139. pte |= BYT_PTE_WRITEABLE;
  140. if (level != I915_CACHE_NONE)
  141. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  142. return pte;
  143. }
  144. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  145. enum i915_cache_level level,
  146. bool valid)
  147. {
  148. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  149. pte |= HSW_PTE_ADDR_ENCODE(addr);
  150. if (level != I915_CACHE_NONE)
  151. pte |= HSW_WB_LLC_AGE3;
  152. return pte;
  153. }
  154. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  155. enum i915_cache_level level,
  156. bool valid)
  157. {
  158. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  159. pte |= HSW_PTE_ADDR_ENCODE(addr);
  160. switch (level) {
  161. case I915_CACHE_NONE:
  162. break;
  163. case I915_CACHE_WT:
  164. pte |= HSW_WT_ELLC_LLC_AGE3;
  165. break;
  166. default:
  167. pte |= HSW_WB_ELLC_LLC_AGE3;
  168. break;
  169. }
  170. return pte;
  171. }
  172. /* Broadwell Page Directory Pointer Descriptors */
  173. static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
  174. uint64_t val)
  175. {
  176. int ret;
  177. BUG_ON(entry >= 4);
  178. ret = intel_ring_begin(ring, 6);
  179. if (ret)
  180. return ret;
  181. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  182. intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
  183. intel_ring_emit(ring, (u32)(val >> 32));
  184. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  185. intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
  186. intel_ring_emit(ring, (u32)(val));
  187. intel_ring_advance(ring);
  188. return 0;
  189. }
  190. static int gen8_ppgtt_enable(struct drm_device *dev)
  191. {
  192. struct drm_i915_private *dev_priv = dev->dev_private;
  193. struct intel_ring_buffer *ring;
  194. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  195. int i, j, ret;
  196. /* bit of a hack to find the actual last used pd */
  197. int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
  198. for_each_ring(ring, dev_priv, j) {
  199. I915_WRITE(RING_MODE_GEN7(ring),
  200. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  201. }
  202. for (i = used_pd - 1; i >= 0; i--) {
  203. dma_addr_t addr = ppgtt->pd_dma_addr[i];
  204. for_each_ring(ring, dev_priv, j) {
  205. ret = gen8_write_pdp(ring, i, addr);
  206. if (ret)
  207. return ret;
  208. }
  209. }
  210. return 0;
  211. }
  212. static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
  213. unsigned first_entry,
  214. unsigned num_entries,
  215. bool use_scratch)
  216. {
  217. struct i915_hw_ppgtt *ppgtt =
  218. container_of(vm, struct i915_hw_ppgtt, base);
  219. gen8_gtt_pte_t *pt_vaddr, scratch_pte;
  220. unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
  221. unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
  222. unsigned last_pte, i;
  223. scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
  224. I915_CACHE_LLC, use_scratch);
  225. while (num_entries) {
  226. struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
  227. last_pte = first_pte + num_entries;
  228. if (last_pte > GEN8_PTES_PER_PAGE)
  229. last_pte = GEN8_PTES_PER_PAGE;
  230. pt_vaddr = kmap_atomic(page_table);
  231. for (i = first_pte; i < last_pte; i++)
  232. pt_vaddr[i] = scratch_pte;
  233. kunmap_atomic(pt_vaddr);
  234. num_entries -= last_pte - first_pte;
  235. first_pte = 0;
  236. act_pt++;
  237. }
  238. }
  239. static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
  240. struct sg_table *pages,
  241. unsigned first_entry,
  242. enum i915_cache_level cache_level)
  243. {
  244. struct i915_hw_ppgtt *ppgtt =
  245. container_of(vm, struct i915_hw_ppgtt, base);
  246. gen8_gtt_pte_t *pt_vaddr;
  247. unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
  248. unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
  249. struct sg_page_iter sg_iter;
  250. pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
  251. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  252. dma_addr_t page_addr;
  253. page_addr = sg_dma_address(sg_iter.sg) +
  254. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  255. pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
  256. true);
  257. if (++act_pte == GEN8_PTES_PER_PAGE) {
  258. kunmap_atomic(pt_vaddr);
  259. act_pt++;
  260. pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
  261. act_pte = 0;
  262. }
  263. }
  264. kunmap_atomic(pt_vaddr);
  265. }
  266. static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
  267. {
  268. struct i915_hw_ppgtt *ppgtt =
  269. container_of(vm, struct i915_hw_ppgtt, base);
  270. int i, j;
  271. for (i = 0; i < ppgtt->num_pd_pages ; i++) {
  272. if (ppgtt->pd_dma_addr[i]) {
  273. pci_unmap_page(ppgtt->base.dev->pdev,
  274. ppgtt->pd_dma_addr[i],
  275. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  276. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  277. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  278. if (addr)
  279. pci_unmap_page(ppgtt->base.dev->pdev,
  280. addr,
  281. PAGE_SIZE,
  282. PCI_DMA_BIDIRECTIONAL);
  283. }
  284. }
  285. kfree(ppgtt->gen8_pt_dma_addr[i]);
  286. }
  287. __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT);
  288. __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT);
  289. }
  290. /**
  291. * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
  292. * net effect resembling a 2-level page table in normal x86 terms. Each PDP
  293. * represents 1GB of memory
  294. * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
  295. *
  296. * TODO: Do something with the size parameter
  297. **/
  298. static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
  299. {
  300. struct page *pt_pages;
  301. int i, j, ret = -ENOMEM;
  302. const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
  303. const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
  304. if (size % (1<<30))
  305. DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
  306. /* FIXME: split allocation into smaller pieces. For now we only ever do
  307. * this once, but with full PPGTT, the multiple contiguous allocations
  308. * will be bad.
  309. */
  310. ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
  311. if (!ppgtt->pd_pages)
  312. return -ENOMEM;
  313. pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
  314. if (!pt_pages) {
  315. __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
  316. return -ENOMEM;
  317. }
  318. ppgtt->gen8_pt_pages = pt_pages;
  319. ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
  320. ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
  321. ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
  322. ppgtt->enable = gen8_ppgtt_enable;
  323. ppgtt->base.clear_range = gen8_ppgtt_clear_range;
  324. ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
  325. ppgtt->base.cleanup = gen8_ppgtt_cleanup;
  326. BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
  327. /*
  328. * - Create a mapping for the page directories.
  329. * - For each page directory:
  330. * allocate space for page table mappings.
  331. * map each page table
  332. */
  333. for (i = 0; i < max_pdp; i++) {
  334. dma_addr_t temp;
  335. temp = pci_map_page(ppgtt->base.dev->pdev,
  336. &ppgtt->pd_pages[i], 0,
  337. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  338. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  339. goto err_out;
  340. ppgtt->pd_dma_addr[i] = temp;
  341. ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
  342. if (!ppgtt->gen8_pt_dma_addr[i])
  343. goto err_out;
  344. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  345. struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
  346. temp = pci_map_page(ppgtt->base.dev->pdev,
  347. p, 0, PAGE_SIZE,
  348. PCI_DMA_BIDIRECTIONAL);
  349. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  350. goto err_out;
  351. ppgtt->gen8_pt_dma_addr[i][j] = temp;
  352. }
  353. }
  354. /* For now, the PPGTT helper functions all require that the PDEs are
  355. * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
  356. * will never need to touch the PDEs again */
  357. for (i = 0; i < max_pdp; i++) {
  358. gen8_ppgtt_pde_t *pd_vaddr;
  359. pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
  360. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  361. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  362. pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
  363. I915_CACHE_LLC);
  364. }
  365. kunmap_atomic(pd_vaddr);
  366. }
  367. ppgtt->base.clear_range(&ppgtt->base, 0,
  368. ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
  369. true);
  370. DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
  371. ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
  372. DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
  373. ppgtt->num_pt_pages,
  374. (ppgtt->num_pt_pages - num_pt_pages) +
  375. size % (1<<30));
  376. return 0;
  377. err_out:
  378. ppgtt->base.cleanup(&ppgtt->base);
  379. return ret;
  380. }
  381. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  382. {
  383. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  384. gen6_gtt_pte_t __iomem *pd_addr;
  385. uint32_t pd_entry;
  386. int i;
  387. WARN_ON(ppgtt->pd_offset & 0x3f);
  388. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  389. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  390. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  391. dma_addr_t pt_addr;
  392. pt_addr = ppgtt->pt_dma_addr[i];
  393. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  394. pd_entry |= GEN6_PDE_VALID;
  395. writel(pd_entry, pd_addr + i);
  396. }
  397. readl(pd_addr);
  398. }
  399. static int gen6_ppgtt_enable(struct drm_device *dev)
  400. {
  401. drm_i915_private_t *dev_priv = dev->dev_private;
  402. uint32_t pd_offset;
  403. struct intel_ring_buffer *ring;
  404. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  405. int i;
  406. BUG_ON(ppgtt->pd_offset & 0x3f);
  407. gen6_write_pdes(ppgtt);
  408. pd_offset = ppgtt->pd_offset;
  409. pd_offset /= 64; /* in cachelines, */
  410. pd_offset <<= 16;
  411. if (INTEL_INFO(dev)->gen == 6) {
  412. uint32_t ecochk, gab_ctl, ecobits;
  413. ecobits = I915_READ(GAC_ECO_BITS);
  414. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  415. ECOBITS_PPGTT_CACHE64B);
  416. gab_ctl = I915_READ(GAB_CTL);
  417. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  418. ecochk = I915_READ(GAM_ECOCHK);
  419. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  420. ECOCHK_PPGTT_CACHE64B);
  421. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  422. } else if (INTEL_INFO(dev)->gen >= 7) {
  423. uint32_t ecochk, ecobits;
  424. ecobits = I915_READ(GAC_ECO_BITS);
  425. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  426. ecochk = I915_READ(GAM_ECOCHK);
  427. if (IS_HASWELL(dev)) {
  428. ecochk |= ECOCHK_PPGTT_WB_HSW;
  429. } else {
  430. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  431. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  432. }
  433. I915_WRITE(GAM_ECOCHK, ecochk);
  434. /* GFX_MODE is per-ring on gen7+ */
  435. }
  436. for_each_ring(ring, dev_priv, i) {
  437. if (INTEL_INFO(dev)->gen >= 7)
  438. I915_WRITE(RING_MODE_GEN7(ring),
  439. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  440. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  441. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  442. }
  443. return 0;
  444. }
  445. /* PPGTT support for Sandybdrige/Gen6 and later */
  446. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  447. unsigned first_entry,
  448. unsigned num_entries,
  449. bool use_scratch)
  450. {
  451. struct i915_hw_ppgtt *ppgtt =
  452. container_of(vm, struct i915_hw_ppgtt, base);
  453. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  454. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  455. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  456. unsigned last_pte, i;
  457. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
  458. while (num_entries) {
  459. last_pte = first_pte + num_entries;
  460. if (last_pte > I915_PPGTT_PT_ENTRIES)
  461. last_pte = I915_PPGTT_PT_ENTRIES;
  462. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  463. for (i = first_pte; i < last_pte; i++)
  464. pt_vaddr[i] = scratch_pte;
  465. kunmap_atomic(pt_vaddr);
  466. num_entries -= last_pte - first_pte;
  467. first_pte = 0;
  468. act_pt++;
  469. }
  470. }
  471. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  472. struct sg_table *pages,
  473. unsigned first_entry,
  474. enum i915_cache_level cache_level)
  475. {
  476. struct i915_hw_ppgtt *ppgtt =
  477. container_of(vm, struct i915_hw_ppgtt, base);
  478. gen6_gtt_pte_t *pt_vaddr;
  479. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  480. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  481. struct sg_page_iter sg_iter;
  482. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  483. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  484. dma_addr_t page_addr;
  485. page_addr = sg_page_iter_dma_address(&sg_iter);
  486. pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
  487. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  488. kunmap_atomic(pt_vaddr);
  489. act_pt++;
  490. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  491. act_pte = 0;
  492. }
  493. }
  494. kunmap_atomic(pt_vaddr);
  495. }
  496. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  497. {
  498. struct i915_hw_ppgtt *ppgtt =
  499. container_of(vm, struct i915_hw_ppgtt, base);
  500. int i;
  501. drm_mm_takedown(&ppgtt->base.mm);
  502. if (ppgtt->pt_dma_addr) {
  503. for (i = 0; i < ppgtt->num_pd_entries; i++)
  504. pci_unmap_page(ppgtt->base.dev->pdev,
  505. ppgtt->pt_dma_addr[i],
  506. 4096, PCI_DMA_BIDIRECTIONAL);
  507. }
  508. kfree(ppgtt->pt_dma_addr);
  509. for (i = 0; i < ppgtt->num_pd_entries; i++)
  510. __free_page(ppgtt->pt_pages[i]);
  511. kfree(ppgtt->pt_pages);
  512. kfree(ppgtt);
  513. }
  514. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  515. {
  516. struct drm_device *dev = ppgtt->base.dev;
  517. struct drm_i915_private *dev_priv = dev->dev_private;
  518. unsigned first_pd_entry_in_global_pt;
  519. int i;
  520. int ret = -ENOMEM;
  521. /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
  522. * entries. For aliasing ppgtt support we just steal them at the end for
  523. * now. */
  524. first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
  525. ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
  526. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  527. ppgtt->enable = gen6_ppgtt_enable;
  528. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  529. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  530. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  531. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  532. ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
  533. GFP_KERNEL);
  534. if (!ppgtt->pt_pages)
  535. return -ENOMEM;
  536. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  537. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  538. if (!ppgtt->pt_pages[i])
  539. goto err_pt_alloc;
  540. }
  541. ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
  542. GFP_KERNEL);
  543. if (!ppgtt->pt_dma_addr)
  544. goto err_pt_alloc;
  545. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  546. dma_addr_t pt_addr;
  547. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  548. PCI_DMA_BIDIRECTIONAL);
  549. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  550. ret = -EIO;
  551. goto err_pd_pin;
  552. }
  553. ppgtt->pt_dma_addr[i] = pt_addr;
  554. }
  555. ppgtt->base.clear_range(&ppgtt->base, 0,
  556. ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
  557. ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
  558. return 0;
  559. err_pd_pin:
  560. if (ppgtt->pt_dma_addr) {
  561. for (i--; i >= 0; i--)
  562. pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
  563. 4096, PCI_DMA_BIDIRECTIONAL);
  564. }
  565. err_pt_alloc:
  566. kfree(ppgtt->pt_dma_addr);
  567. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  568. if (ppgtt->pt_pages[i])
  569. __free_page(ppgtt->pt_pages[i]);
  570. }
  571. kfree(ppgtt->pt_pages);
  572. return ret;
  573. }
  574. static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
  575. {
  576. struct drm_i915_private *dev_priv = dev->dev_private;
  577. struct i915_hw_ppgtt *ppgtt;
  578. int ret;
  579. ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
  580. if (!ppgtt)
  581. return -ENOMEM;
  582. ppgtt->base.dev = dev;
  583. if (INTEL_INFO(dev)->gen < 8)
  584. ret = gen6_ppgtt_init(ppgtt);
  585. else if (IS_GEN8(dev))
  586. ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
  587. else
  588. BUG();
  589. if (ret)
  590. kfree(ppgtt);
  591. else {
  592. dev_priv->mm.aliasing_ppgtt = ppgtt;
  593. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  594. ppgtt->base.total);
  595. }
  596. return ret;
  597. }
  598. void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
  599. {
  600. struct drm_i915_private *dev_priv = dev->dev_private;
  601. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  602. if (!ppgtt)
  603. return;
  604. ppgtt->base.cleanup(&ppgtt->base);
  605. dev_priv->mm.aliasing_ppgtt = NULL;
  606. }
  607. void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
  608. struct drm_i915_gem_object *obj,
  609. enum i915_cache_level cache_level)
  610. {
  611. ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
  612. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  613. cache_level);
  614. }
  615. void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
  616. struct drm_i915_gem_object *obj)
  617. {
  618. ppgtt->base.clear_range(&ppgtt->base,
  619. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  620. obj->base.size >> PAGE_SHIFT,
  621. true);
  622. }
  623. extern int intel_iommu_gfx_mapped;
  624. /* Certain Gen5 chipsets require require idling the GPU before
  625. * unmapping anything from the GTT when VT-d is enabled.
  626. */
  627. static inline bool needs_idle_maps(struct drm_device *dev)
  628. {
  629. #ifdef CONFIG_INTEL_IOMMU
  630. /* Query intel_iommu to see if we need the workaround. Presumably that
  631. * was loaded first.
  632. */
  633. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  634. return true;
  635. #endif
  636. return false;
  637. }
  638. static bool do_idling(struct drm_i915_private *dev_priv)
  639. {
  640. bool ret = dev_priv->mm.interruptible;
  641. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  642. dev_priv->mm.interruptible = false;
  643. if (i915_gpu_idle(dev_priv->dev)) {
  644. DRM_ERROR("Couldn't idle GPU\n");
  645. /* Wait a bit, in hopes it avoids the hang */
  646. udelay(10);
  647. }
  648. }
  649. return ret;
  650. }
  651. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  652. {
  653. if (unlikely(dev_priv->gtt.do_idle_maps))
  654. dev_priv->mm.interruptible = interruptible;
  655. }
  656. void i915_check_and_clear_faults(struct drm_device *dev)
  657. {
  658. struct drm_i915_private *dev_priv = dev->dev_private;
  659. struct intel_ring_buffer *ring;
  660. int i;
  661. if (INTEL_INFO(dev)->gen < 6)
  662. return;
  663. for_each_ring(ring, dev_priv, i) {
  664. u32 fault_reg;
  665. fault_reg = I915_READ(RING_FAULT_REG(ring));
  666. if (fault_reg & RING_FAULT_VALID) {
  667. DRM_DEBUG_DRIVER("Unexpected fault\n"
  668. "\tAddr: 0x%08lx\\n"
  669. "\tAddress space: %s\n"
  670. "\tSource ID: %d\n"
  671. "\tType: %d\n",
  672. fault_reg & PAGE_MASK,
  673. fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
  674. RING_FAULT_SRCID(fault_reg),
  675. RING_FAULT_FAULT_TYPE(fault_reg));
  676. I915_WRITE(RING_FAULT_REG(ring),
  677. fault_reg & ~RING_FAULT_VALID);
  678. }
  679. }
  680. POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
  681. }
  682. void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
  683. {
  684. struct drm_i915_private *dev_priv = dev->dev_private;
  685. /* Don't bother messing with faults pre GEN6 as we have little
  686. * documentation supporting that it's a good idea.
  687. */
  688. if (INTEL_INFO(dev)->gen < 6)
  689. return;
  690. i915_check_and_clear_faults(dev);
  691. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  692. dev_priv->gtt.base.start / PAGE_SIZE,
  693. dev_priv->gtt.base.total / PAGE_SIZE,
  694. false);
  695. }
  696. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  697. {
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. struct drm_i915_gem_object *obj;
  700. i915_check_and_clear_faults(dev);
  701. /* First fill our portion of the GTT with scratch pages */
  702. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  703. dev_priv->gtt.base.start / PAGE_SIZE,
  704. dev_priv->gtt.base.total / PAGE_SIZE,
  705. true);
  706. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  707. i915_gem_clflush_object(obj, obj->pin_display);
  708. i915_gem_gtt_bind_object(obj, obj->cache_level);
  709. }
  710. i915_gem_chipset_flush(dev);
  711. }
  712. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  713. {
  714. if (obj->has_dma_mapping)
  715. return 0;
  716. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  717. obj->pages->sgl, obj->pages->nents,
  718. PCI_DMA_BIDIRECTIONAL))
  719. return -ENOSPC;
  720. return 0;
  721. }
  722. static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
  723. {
  724. #ifdef writeq
  725. writeq(pte, addr);
  726. #else
  727. iowrite32((u32)pte, addr);
  728. iowrite32(pte >> 32, addr + 4);
  729. #endif
  730. }
  731. static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
  732. struct sg_table *st,
  733. unsigned int first_entry,
  734. enum i915_cache_level level)
  735. {
  736. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  737. gen8_gtt_pte_t __iomem *gtt_entries =
  738. (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  739. int i = 0;
  740. struct sg_page_iter sg_iter;
  741. dma_addr_t addr;
  742. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  743. addr = sg_dma_address(sg_iter.sg) +
  744. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  745. gen8_set_pte(&gtt_entries[i],
  746. gen8_pte_encode(addr, level, true));
  747. i++;
  748. }
  749. /*
  750. * XXX: This serves as a posting read to make sure that the PTE has
  751. * actually been updated. There is some concern that even though
  752. * registers and PTEs are within the same BAR that they are potentially
  753. * of NUMA access patterns. Therefore, even with the way we assume
  754. * hardware should work, we must keep this posting read for paranoia.
  755. */
  756. if (i != 0)
  757. WARN_ON(readq(&gtt_entries[i-1])
  758. != gen8_pte_encode(addr, level, true));
  759. #if 0 /* TODO: Still needed on GEN8? */
  760. /* This next bit makes the above posting read even more important. We
  761. * want to flush the TLBs only after we're certain all the PTE updates
  762. * have finished.
  763. */
  764. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  765. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  766. #endif
  767. }
  768. /*
  769. * Binds an object into the global gtt with the specified cache level. The object
  770. * will be accessible to the GPU via commands whose operands reference offsets
  771. * within the global GTT as well as accessible by the GPU through the GMADR
  772. * mapped BAR (dev_priv->mm.gtt->gtt).
  773. */
  774. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  775. struct sg_table *st,
  776. unsigned int first_entry,
  777. enum i915_cache_level level)
  778. {
  779. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  780. gen6_gtt_pte_t __iomem *gtt_entries =
  781. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  782. int i = 0;
  783. struct sg_page_iter sg_iter;
  784. dma_addr_t addr;
  785. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  786. addr = sg_page_iter_dma_address(&sg_iter);
  787. iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
  788. i++;
  789. }
  790. /* XXX: This serves as a posting read to make sure that the PTE has
  791. * actually been updated. There is some concern that even though
  792. * registers and PTEs are within the same BAR that they are potentially
  793. * of NUMA access patterns. Therefore, even with the way we assume
  794. * hardware should work, we must keep this posting read for paranoia.
  795. */
  796. if (i != 0)
  797. WARN_ON(readl(&gtt_entries[i-1]) !=
  798. vm->pte_encode(addr, level, true));
  799. /* This next bit makes the above posting read even more important. We
  800. * want to flush the TLBs only after we're certain all the PTE updates
  801. * have finished.
  802. */
  803. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  804. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  805. }
  806. static void gen8_ggtt_clear_range(struct i915_address_space *vm,
  807. unsigned int first_entry,
  808. unsigned int num_entries,
  809. bool use_scratch)
  810. {
  811. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  812. gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
  813. (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  814. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  815. int i;
  816. if (WARN(num_entries > max_entries,
  817. "First entry = %d; Num entries = %d (max=%d)\n",
  818. first_entry, num_entries, max_entries))
  819. num_entries = max_entries;
  820. scratch_pte = gen8_pte_encode(vm->scratch.addr,
  821. I915_CACHE_LLC,
  822. use_scratch);
  823. for (i = 0; i < num_entries; i++)
  824. gen8_set_pte(&gtt_base[i], scratch_pte);
  825. readl(gtt_base);
  826. }
  827. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  828. unsigned int first_entry,
  829. unsigned int num_entries,
  830. bool use_scratch)
  831. {
  832. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  833. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  834. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  835. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  836. int i;
  837. if (WARN(num_entries > max_entries,
  838. "First entry = %d; Num entries = %d (max=%d)\n",
  839. first_entry, num_entries, max_entries))
  840. num_entries = max_entries;
  841. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
  842. for (i = 0; i < num_entries; i++)
  843. iowrite32(scratch_pte, &gtt_base[i]);
  844. readl(gtt_base);
  845. }
  846. static void i915_ggtt_insert_entries(struct i915_address_space *vm,
  847. struct sg_table *st,
  848. unsigned int pg_start,
  849. enum i915_cache_level cache_level)
  850. {
  851. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  852. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  853. intel_gtt_insert_sg_entries(st, pg_start, flags);
  854. }
  855. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  856. unsigned int first_entry,
  857. unsigned int num_entries,
  858. bool unused)
  859. {
  860. intel_gtt_clear_range(first_entry, num_entries);
  861. }
  862. void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
  863. enum i915_cache_level cache_level)
  864. {
  865. struct drm_device *dev = obj->base.dev;
  866. struct drm_i915_private *dev_priv = dev->dev_private;
  867. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  868. dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
  869. entry,
  870. cache_level);
  871. obj->has_global_gtt_mapping = 1;
  872. }
  873. void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
  874. {
  875. struct drm_device *dev = obj->base.dev;
  876. struct drm_i915_private *dev_priv = dev->dev_private;
  877. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  878. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  879. entry,
  880. obj->base.size >> PAGE_SHIFT,
  881. true);
  882. obj->has_global_gtt_mapping = 0;
  883. }
  884. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  885. {
  886. struct drm_device *dev = obj->base.dev;
  887. struct drm_i915_private *dev_priv = dev->dev_private;
  888. bool interruptible;
  889. interruptible = do_idling(dev_priv);
  890. if (!obj->has_dma_mapping)
  891. dma_unmap_sg(&dev->pdev->dev,
  892. obj->pages->sgl, obj->pages->nents,
  893. PCI_DMA_BIDIRECTIONAL);
  894. undo_idling(dev_priv, interruptible);
  895. }
  896. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  897. unsigned long color,
  898. unsigned long *start,
  899. unsigned long *end)
  900. {
  901. if (node->color != color)
  902. *start += 4096;
  903. if (!list_empty(&node->node_list)) {
  904. node = list_entry(node->node_list.next,
  905. struct drm_mm_node,
  906. node_list);
  907. if (node->allocated && node->color != color)
  908. *end -= 4096;
  909. }
  910. }
  911. void i915_gem_setup_global_gtt(struct drm_device *dev,
  912. unsigned long start,
  913. unsigned long mappable_end,
  914. unsigned long end)
  915. {
  916. /* Let GEM Manage all of the aperture.
  917. *
  918. * However, leave one page at the end still bound to the scratch page.
  919. * There are a number of places where the hardware apparently prefetches
  920. * past the end of the object, and we've seen multiple hangs with the
  921. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  922. * aperture. One page should be enough to keep any prefetching inside
  923. * of the aperture.
  924. */
  925. struct drm_i915_private *dev_priv = dev->dev_private;
  926. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  927. struct drm_mm_node *entry;
  928. struct drm_i915_gem_object *obj;
  929. unsigned long hole_start, hole_end;
  930. BUG_ON(mappable_end > end);
  931. /* Subtract the guard page ... */
  932. drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
  933. if (!HAS_LLC(dev))
  934. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  935. /* Mark any preallocated objects as occupied */
  936. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  937. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  938. int ret;
  939. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  940. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  941. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  942. ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
  943. if (ret)
  944. DRM_DEBUG_KMS("Reservation failed\n");
  945. obj->has_global_gtt_mapping = 1;
  946. list_add(&vma->vma_link, &obj->vma_list);
  947. }
  948. dev_priv->gtt.base.start = start;
  949. dev_priv->gtt.base.total = end - start;
  950. /* Clear any non-preallocated blocks */
  951. drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
  952. const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
  953. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  954. hole_start, hole_end);
  955. ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
  956. }
  957. /* And finally clear the reserved guard page */
  958. ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
  959. }
  960. static bool
  961. intel_enable_ppgtt(struct drm_device *dev)
  962. {
  963. if (i915_enable_ppgtt >= 0)
  964. return i915_enable_ppgtt;
  965. #ifdef CONFIG_INTEL_IOMMU
  966. /* Disable ppgtt on SNB if VT-d is on. */
  967. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  968. return false;
  969. #endif
  970. return true;
  971. }
  972. void i915_gem_init_global_gtt(struct drm_device *dev)
  973. {
  974. struct drm_i915_private *dev_priv = dev->dev_private;
  975. unsigned long gtt_size, mappable_size;
  976. gtt_size = dev_priv->gtt.base.total;
  977. mappable_size = dev_priv->gtt.mappable_end;
  978. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  979. int ret;
  980. if (INTEL_INFO(dev)->gen <= 7) {
  981. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  982. * aperture accordingly when using aliasing ppgtt. */
  983. gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  984. }
  985. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  986. ret = i915_gem_init_aliasing_ppgtt(dev);
  987. if (!ret)
  988. return;
  989. DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
  990. drm_mm_takedown(&dev_priv->gtt.base.mm);
  991. if (INTEL_INFO(dev)->gen < 8)
  992. gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
  993. }
  994. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  995. }
  996. static int setup_scratch_page(struct drm_device *dev)
  997. {
  998. struct drm_i915_private *dev_priv = dev->dev_private;
  999. struct page *page;
  1000. dma_addr_t dma_addr;
  1001. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  1002. if (page == NULL)
  1003. return -ENOMEM;
  1004. get_page(page);
  1005. set_pages_uc(page, 1);
  1006. #ifdef CONFIG_INTEL_IOMMU
  1007. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  1008. PCI_DMA_BIDIRECTIONAL);
  1009. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  1010. return -EINVAL;
  1011. #else
  1012. dma_addr = page_to_phys(page);
  1013. #endif
  1014. dev_priv->gtt.base.scratch.page = page;
  1015. dev_priv->gtt.base.scratch.addr = dma_addr;
  1016. return 0;
  1017. }
  1018. static void teardown_scratch_page(struct drm_device *dev)
  1019. {
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. struct page *page = dev_priv->gtt.base.scratch.page;
  1022. set_pages_wb(page, 1);
  1023. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  1024. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  1025. put_page(page);
  1026. __free_page(page);
  1027. }
  1028. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  1029. {
  1030. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  1031. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  1032. return snb_gmch_ctl << 20;
  1033. }
  1034. static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
  1035. {
  1036. bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
  1037. bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
  1038. if (bdw_gmch_ctl)
  1039. bdw_gmch_ctl = 1 << bdw_gmch_ctl;
  1040. return bdw_gmch_ctl << 20;
  1041. }
  1042. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  1043. {
  1044. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  1045. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  1046. return snb_gmch_ctl << 25; /* 32 MB units */
  1047. }
  1048. static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
  1049. {
  1050. bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
  1051. bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
  1052. return bdw_gmch_ctl << 25; /* 32 MB units */
  1053. }
  1054. static int ggtt_probe_common(struct drm_device *dev,
  1055. size_t gtt_size)
  1056. {
  1057. struct drm_i915_private *dev_priv = dev->dev_private;
  1058. phys_addr_t gtt_bus_addr;
  1059. int ret;
  1060. /* For Modern GENs the PTEs and register space are split in the BAR */
  1061. gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
  1062. (pci_resource_len(dev->pdev, 0) / 2);
  1063. dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
  1064. if (!dev_priv->gtt.gsm) {
  1065. DRM_ERROR("Failed to map the gtt page table\n");
  1066. return -ENOMEM;
  1067. }
  1068. ret = setup_scratch_page(dev);
  1069. if (ret) {
  1070. DRM_ERROR("Scratch setup failed\n");
  1071. /* iounmap will also get called at remove, but meh */
  1072. iounmap(dev_priv->gtt.gsm);
  1073. }
  1074. return ret;
  1075. }
  1076. /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
  1077. * bits. When using advanced contexts each context stores its own PAT, but
  1078. * writing this data shouldn't be harmful even in those cases. */
  1079. static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
  1080. {
  1081. #define GEN8_PPAT_UC (0<<0)
  1082. #define GEN8_PPAT_WC (1<<0)
  1083. #define GEN8_PPAT_WT (2<<0)
  1084. #define GEN8_PPAT_WB (3<<0)
  1085. #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
  1086. /* FIXME(BDW): Bspec is completely confused about cache control bits. */
  1087. #define GEN8_PPAT_LLC (1<<2)
  1088. #define GEN8_PPAT_LLCELLC (2<<2)
  1089. #define GEN8_PPAT_LLCeLLC (3<<2)
  1090. #define GEN8_PPAT_AGE(x) (x<<4)
  1091. #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
  1092. uint64_t pat;
  1093. pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
  1094. GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
  1095. GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
  1096. GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
  1097. GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
  1098. GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
  1099. GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
  1100. GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
  1101. /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
  1102. * write would work. */
  1103. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  1104. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  1105. }
  1106. static int gen8_gmch_probe(struct drm_device *dev,
  1107. size_t *gtt_total,
  1108. size_t *stolen,
  1109. phys_addr_t *mappable_base,
  1110. unsigned long *mappable_end)
  1111. {
  1112. struct drm_i915_private *dev_priv = dev->dev_private;
  1113. unsigned int gtt_size;
  1114. u16 snb_gmch_ctl;
  1115. int ret;
  1116. /* TODO: We're not aware of mappable constraints on gen8 yet */
  1117. *mappable_base = pci_resource_start(dev->pdev, 2);
  1118. *mappable_end = pci_resource_len(dev->pdev, 2);
  1119. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
  1120. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
  1121. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1122. *stolen = gen8_get_stolen_size(snb_gmch_ctl);
  1123. gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
  1124. *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
  1125. gen8_setup_private_ppat(dev_priv);
  1126. ret = ggtt_probe_common(dev, gtt_size);
  1127. dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
  1128. dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
  1129. return ret;
  1130. }
  1131. static int gen6_gmch_probe(struct drm_device *dev,
  1132. size_t *gtt_total,
  1133. size_t *stolen,
  1134. phys_addr_t *mappable_base,
  1135. unsigned long *mappable_end)
  1136. {
  1137. struct drm_i915_private *dev_priv = dev->dev_private;
  1138. unsigned int gtt_size;
  1139. u16 snb_gmch_ctl;
  1140. int ret;
  1141. *mappable_base = pci_resource_start(dev->pdev, 2);
  1142. *mappable_end = pci_resource_len(dev->pdev, 2);
  1143. /* 64/512MB is the current min/max we actually know of, but this is just
  1144. * a coarse sanity check.
  1145. */
  1146. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  1147. DRM_ERROR("Unknown GMADR size (%lx)\n",
  1148. dev_priv->gtt.mappable_end);
  1149. return -ENXIO;
  1150. }
  1151. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  1152. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  1153. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1154. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  1155. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  1156. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  1157. ret = ggtt_probe_common(dev, gtt_size);
  1158. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  1159. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  1160. return ret;
  1161. }
  1162. static void gen6_gmch_remove(struct i915_address_space *vm)
  1163. {
  1164. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  1165. iounmap(gtt->gsm);
  1166. teardown_scratch_page(vm->dev);
  1167. }
  1168. static int i915_gmch_probe(struct drm_device *dev,
  1169. size_t *gtt_total,
  1170. size_t *stolen,
  1171. phys_addr_t *mappable_base,
  1172. unsigned long *mappable_end)
  1173. {
  1174. struct drm_i915_private *dev_priv = dev->dev_private;
  1175. int ret;
  1176. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  1177. if (!ret) {
  1178. DRM_ERROR("failed to set up gmch\n");
  1179. return -EIO;
  1180. }
  1181. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  1182. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  1183. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  1184. dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
  1185. return 0;
  1186. }
  1187. static void i915_gmch_remove(struct i915_address_space *vm)
  1188. {
  1189. intel_gmch_remove();
  1190. }
  1191. int i915_gem_gtt_init(struct drm_device *dev)
  1192. {
  1193. struct drm_i915_private *dev_priv = dev->dev_private;
  1194. struct i915_gtt *gtt = &dev_priv->gtt;
  1195. int ret;
  1196. if (INTEL_INFO(dev)->gen <= 5) {
  1197. gtt->gtt_probe = i915_gmch_probe;
  1198. gtt->base.cleanup = i915_gmch_remove;
  1199. } else if (INTEL_INFO(dev)->gen < 8) {
  1200. gtt->gtt_probe = gen6_gmch_probe;
  1201. gtt->base.cleanup = gen6_gmch_remove;
  1202. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  1203. gtt->base.pte_encode = iris_pte_encode;
  1204. else if (IS_HASWELL(dev))
  1205. gtt->base.pte_encode = hsw_pte_encode;
  1206. else if (IS_VALLEYVIEW(dev))
  1207. gtt->base.pte_encode = byt_pte_encode;
  1208. else if (INTEL_INFO(dev)->gen >= 7)
  1209. gtt->base.pte_encode = ivb_pte_encode;
  1210. else
  1211. gtt->base.pte_encode = snb_pte_encode;
  1212. } else {
  1213. dev_priv->gtt.gtt_probe = gen8_gmch_probe;
  1214. dev_priv->gtt.base.cleanup = gen6_gmch_remove;
  1215. }
  1216. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  1217. &gtt->mappable_base, &gtt->mappable_end);
  1218. if (ret)
  1219. return ret;
  1220. gtt->base.dev = dev;
  1221. /* GMADR is the PCI mmio aperture into the global GTT. */
  1222. DRM_INFO("Memory usable by graphics device = %zdM\n",
  1223. gtt->base.total >> 20);
  1224. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  1225. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  1226. return 0;
  1227. }