setup.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/export.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/of_platform.h>
  22. #include <linux/init.h>
  23. #include <linux/kexec.h>
  24. #include <linux/of_fdt.h>
  25. #include <linux/cpu.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/smp.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/memblock.h>
  30. #include <linux/bug.h>
  31. #include <linux/compiler.h>
  32. #include <linux/sort.h>
  33. #include <asm/unified.h>
  34. #include <asm/cp15.h>
  35. #include <asm/cpu.h>
  36. #include <asm/cputype.h>
  37. #include <asm/elf.h>
  38. #include <asm/procinfo.h>
  39. #include <asm/psci.h>
  40. #include <asm/sections.h>
  41. #include <asm/setup.h>
  42. #include <asm/smp_plat.h>
  43. #include <asm/mach-types.h>
  44. #include <asm/cacheflush.h>
  45. #include <asm/cachetype.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/prom.h>
  48. #include <asm/mach/arch.h>
  49. #include <asm/mach/irq.h>
  50. #include <asm/mach/time.h>
  51. #include <asm/system_info.h>
  52. #include <asm/system_misc.h>
  53. #include <asm/traps.h>
  54. #include <asm/unwind.h>
  55. #include <asm/memblock.h>
  56. #include <asm/virt.h>
  57. #include "atags.h"
  58. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  59. char fpe_type[8];
  60. static int __init fpe_setup(char *line)
  61. {
  62. memcpy(fpe_type, line, 8);
  63. return 1;
  64. }
  65. __setup("fpe=", fpe_setup);
  66. #endif
  67. extern void paging_init(const struct machine_desc *desc);
  68. extern void early_paging_init(const struct machine_desc *,
  69. struct proc_info_list *);
  70. extern void sanity_check_meminfo(void);
  71. extern enum reboot_mode reboot_mode;
  72. extern void setup_dma_zone(const struct machine_desc *desc);
  73. unsigned int processor_id;
  74. EXPORT_SYMBOL(processor_id);
  75. unsigned int __machine_arch_type __read_mostly;
  76. EXPORT_SYMBOL(__machine_arch_type);
  77. unsigned int cacheid __read_mostly;
  78. EXPORT_SYMBOL(cacheid);
  79. unsigned int __atags_pointer __initdata;
  80. unsigned int system_rev;
  81. EXPORT_SYMBOL(system_rev);
  82. unsigned int system_serial_low;
  83. EXPORT_SYMBOL(system_serial_low);
  84. unsigned int system_serial_high;
  85. EXPORT_SYMBOL(system_serial_high);
  86. unsigned int elf_hwcap __read_mostly;
  87. EXPORT_SYMBOL(elf_hwcap);
  88. #ifdef MULTI_CPU
  89. struct processor processor __read_mostly;
  90. #endif
  91. #ifdef MULTI_TLB
  92. struct cpu_tlb_fns cpu_tlb __read_mostly;
  93. #endif
  94. #ifdef MULTI_USER
  95. struct cpu_user_fns cpu_user __read_mostly;
  96. #endif
  97. #ifdef MULTI_CACHE
  98. struct cpu_cache_fns cpu_cache __read_mostly;
  99. #endif
  100. #ifdef CONFIG_OUTER_CACHE
  101. struct outer_cache_fns outer_cache __read_mostly;
  102. EXPORT_SYMBOL(outer_cache);
  103. #endif
  104. /*
  105. * Cached cpu_architecture() result for use by assembler code.
  106. * C code should use the cpu_architecture() function instead of accessing this
  107. * variable directly.
  108. */
  109. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  110. struct stack {
  111. u32 irq[3];
  112. u32 abt[3];
  113. u32 und[3];
  114. } ____cacheline_aligned;
  115. #ifndef CONFIG_CPU_V7M
  116. static struct stack stacks[NR_CPUS];
  117. #endif
  118. char elf_platform[ELF_PLATFORM_SIZE];
  119. EXPORT_SYMBOL(elf_platform);
  120. static const char *cpu_name;
  121. static const char *machine_name;
  122. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  123. const struct machine_desc *machine_desc __initdata;
  124. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  125. #define ENDIANNESS ((char)endian_test.l)
  126. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  127. /*
  128. * Standard memory resources
  129. */
  130. static struct resource mem_res[] = {
  131. {
  132. .name = "Video RAM",
  133. .start = 0,
  134. .end = 0,
  135. .flags = IORESOURCE_MEM
  136. },
  137. {
  138. .name = "Kernel code",
  139. .start = 0,
  140. .end = 0,
  141. .flags = IORESOURCE_MEM
  142. },
  143. {
  144. .name = "Kernel data",
  145. .start = 0,
  146. .end = 0,
  147. .flags = IORESOURCE_MEM
  148. }
  149. };
  150. #define video_ram mem_res[0]
  151. #define kernel_code mem_res[1]
  152. #define kernel_data mem_res[2]
  153. static struct resource io_res[] = {
  154. {
  155. .name = "reserved",
  156. .start = 0x3bc,
  157. .end = 0x3be,
  158. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  159. },
  160. {
  161. .name = "reserved",
  162. .start = 0x378,
  163. .end = 0x37f,
  164. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  165. },
  166. {
  167. .name = "reserved",
  168. .start = 0x278,
  169. .end = 0x27f,
  170. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  171. }
  172. };
  173. #define lp0 io_res[0]
  174. #define lp1 io_res[1]
  175. #define lp2 io_res[2]
  176. static const char *proc_arch[] = {
  177. "undefined/unknown",
  178. "3",
  179. "4",
  180. "4T",
  181. "5",
  182. "5T",
  183. "5TE",
  184. "5TEJ",
  185. "6TEJ",
  186. "7",
  187. "7M",
  188. "?(12)",
  189. "?(13)",
  190. "?(14)",
  191. "?(15)",
  192. "?(16)",
  193. "?(17)",
  194. };
  195. #ifdef CONFIG_CPU_V7M
  196. static int __get_cpu_architecture(void)
  197. {
  198. return CPU_ARCH_ARMv7M;
  199. }
  200. #else
  201. static int __get_cpu_architecture(void)
  202. {
  203. int cpu_arch;
  204. if ((read_cpuid_id() & 0x0008f000) == 0) {
  205. cpu_arch = CPU_ARCH_UNKNOWN;
  206. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  207. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  208. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  209. cpu_arch = (read_cpuid_id() >> 16) & 7;
  210. if (cpu_arch)
  211. cpu_arch += CPU_ARCH_ARMv3;
  212. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  213. unsigned int mmfr0;
  214. /* Revised CPUID format. Read the Memory Model Feature
  215. * Register 0 and check for VMSAv7 or PMSAv7 */
  216. asm("mrc p15, 0, %0, c0, c1, 4"
  217. : "=r" (mmfr0));
  218. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  219. (mmfr0 & 0x000000f0) >= 0x00000030)
  220. cpu_arch = CPU_ARCH_ARMv7;
  221. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  222. (mmfr0 & 0x000000f0) == 0x00000020)
  223. cpu_arch = CPU_ARCH_ARMv6;
  224. else
  225. cpu_arch = CPU_ARCH_UNKNOWN;
  226. } else
  227. cpu_arch = CPU_ARCH_UNKNOWN;
  228. return cpu_arch;
  229. }
  230. #endif
  231. int __pure cpu_architecture(void)
  232. {
  233. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  234. return __cpu_architecture;
  235. }
  236. static int cpu_has_aliasing_icache(unsigned int arch)
  237. {
  238. int aliasing_icache;
  239. unsigned int id_reg, num_sets, line_size;
  240. /* PIPT caches never alias. */
  241. if (icache_is_pipt())
  242. return 0;
  243. /* arch specifies the register format */
  244. switch (arch) {
  245. case CPU_ARCH_ARMv7:
  246. asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
  247. : /* No output operands */
  248. : "r" (1));
  249. isb();
  250. asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
  251. : "=r" (id_reg));
  252. line_size = 4 << ((id_reg & 0x7) + 2);
  253. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  254. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  255. break;
  256. case CPU_ARCH_ARMv6:
  257. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  258. break;
  259. default:
  260. /* I-cache aliases will be handled by D-cache aliasing code */
  261. aliasing_icache = 0;
  262. }
  263. return aliasing_icache;
  264. }
  265. static void __init cacheid_init(void)
  266. {
  267. unsigned int arch = cpu_architecture();
  268. if (arch == CPU_ARCH_ARMv7M) {
  269. cacheid = 0;
  270. } else if (arch >= CPU_ARCH_ARMv6) {
  271. unsigned int cachetype = read_cpuid_cachetype();
  272. if ((cachetype & (7 << 29)) == 4 << 29) {
  273. /* ARMv7 register format */
  274. arch = CPU_ARCH_ARMv7;
  275. cacheid = CACHEID_VIPT_NONALIASING;
  276. switch (cachetype & (3 << 14)) {
  277. case (1 << 14):
  278. cacheid |= CACHEID_ASID_TAGGED;
  279. break;
  280. case (3 << 14):
  281. cacheid |= CACHEID_PIPT;
  282. break;
  283. }
  284. } else {
  285. arch = CPU_ARCH_ARMv6;
  286. if (cachetype & (1 << 23))
  287. cacheid = CACHEID_VIPT_ALIASING;
  288. else
  289. cacheid = CACHEID_VIPT_NONALIASING;
  290. }
  291. if (cpu_has_aliasing_icache(arch))
  292. cacheid |= CACHEID_VIPT_I_ALIASING;
  293. } else {
  294. cacheid = CACHEID_VIVT;
  295. }
  296. printk("CPU: %s data cache, %s instruction cache\n",
  297. cache_is_vivt() ? "VIVT" :
  298. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  299. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  300. cache_is_vivt() ? "VIVT" :
  301. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  302. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  303. icache_is_pipt() ? "PIPT" :
  304. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  305. }
  306. /*
  307. * These functions re-use the assembly code in head.S, which
  308. * already provide the required functionality.
  309. */
  310. extern struct proc_info_list *lookup_processor_type(unsigned int);
  311. void __init early_print(const char *str, ...)
  312. {
  313. extern void printascii(const char *);
  314. char buf[256];
  315. va_list ap;
  316. va_start(ap, str);
  317. vsnprintf(buf, sizeof(buf), str, ap);
  318. va_end(ap);
  319. #ifdef CONFIG_DEBUG_LL
  320. printascii(buf);
  321. #endif
  322. printk("%s", buf);
  323. }
  324. static void __init cpuid_init_hwcaps(void)
  325. {
  326. unsigned int divide_instrs, vmsa;
  327. if (cpu_architecture() < CPU_ARCH_ARMv7)
  328. return;
  329. divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
  330. switch (divide_instrs) {
  331. case 2:
  332. elf_hwcap |= HWCAP_IDIVA;
  333. case 1:
  334. elf_hwcap |= HWCAP_IDIVT;
  335. }
  336. /* LPAE implies atomic ldrd/strd instructions */
  337. vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
  338. if (vmsa >= 5)
  339. elf_hwcap |= HWCAP_LPAE;
  340. }
  341. static void __init feat_v6_fixup(void)
  342. {
  343. int id = read_cpuid_id();
  344. if ((id & 0xff0f0000) != 0x41070000)
  345. return;
  346. /*
  347. * HWCAP_TLS is available only on 1136 r1p0 and later,
  348. * see also kuser_get_tls_init.
  349. */
  350. if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
  351. elf_hwcap &= ~HWCAP_TLS;
  352. }
  353. /*
  354. * cpu_init - initialise one CPU.
  355. *
  356. * cpu_init sets up the per-CPU stacks.
  357. */
  358. void notrace cpu_init(void)
  359. {
  360. #ifndef CONFIG_CPU_V7M
  361. unsigned int cpu = smp_processor_id();
  362. struct stack *stk = &stacks[cpu];
  363. if (cpu >= NR_CPUS) {
  364. printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
  365. BUG();
  366. }
  367. /*
  368. * This only works on resume and secondary cores. For booting on the
  369. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  370. */
  371. set_my_cpu_offset(per_cpu_offset(cpu));
  372. cpu_proc_init();
  373. /*
  374. * Define the placement constraint for the inline asm directive below.
  375. * In Thumb-2, msr with an immediate value is not allowed.
  376. */
  377. #ifdef CONFIG_THUMB2_KERNEL
  378. #define PLC "r"
  379. #else
  380. #define PLC "I"
  381. #endif
  382. /*
  383. * setup stacks for re-entrant exception handlers
  384. */
  385. __asm__ (
  386. "msr cpsr_c, %1\n\t"
  387. "add r14, %0, %2\n\t"
  388. "mov sp, r14\n\t"
  389. "msr cpsr_c, %3\n\t"
  390. "add r14, %0, %4\n\t"
  391. "mov sp, r14\n\t"
  392. "msr cpsr_c, %5\n\t"
  393. "add r14, %0, %6\n\t"
  394. "mov sp, r14\n\t"
  395. "msr cpsr_c, %7"
  396. :
  397. : "r" (stk),
  398. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  399. "I" (offsetof(struct stack, irq[0])),
  400. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  401. "I" (offsetof(struct stack, abt[0])),
  402. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  403. "I" (offsetof(struct stack, und[0])),
  404. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  405. : "r14");
  406. #endif
  407. }
  408. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  409. void __init smp_setup_processor_id(void)
  410. {
  411. int i;
  412. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  413. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  414. cpu_logical_map(0) = cpu;
  415. for (i = 1; i < nr_cpu_ids; ++i)
  416. cpu_logical_map(i) = i == cpu ? 0 : i;
  417. /*
  418. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  419. * using percpu variable early, for example, lockdep will
  420. * access percpu variable inside lock_release
  421. */
  422. set_my_cpu_offset(0);
  423. printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr);
  424. }
  425. struct mpidr_hash mpidr_hash;
  426. #ifdef CONFIG_SMP
  427. /**
  428. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  429. * level in order to build a linear index from an
  430. * MPIDR value. Resulting algorithm is a collision
  431. * free hash carried out through shifting and ORing
  432. */
  433. static void __init smp_build_mpidr_hash(void)
  434. {
  435. u32 i, affinity;
  436. u32 fs[3], bits[3], ls, mask = 0;
  437. /*
  438. * Pre-scan the list of MPIDRS and filter out bits that do
  439. * not contribute to affinity levels, ie they never toggle.
  440. */
  441. for_each_possible_cpu(i)
  442. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  443. pr_debug("mask of set bits 0x%x\n", mask);
  444. /*
  445. * Find and stash the last and first bit set at all affinity levels to
  446. * check how many bits are required to represent them.
  447. */
  448. for (i = 0; i < 3; i++) {
  449. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  450. /*
  451. * Find the MSB bit and LSB bits position
  452. * to determine how many bits are required
  453. * to express the affinity level.
  454. */
  455. ls = fls(affinity);
  456. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  457. bits[i] = ls - fs[i];
  458. }
  459. /*
  460. * An index can be created from the MPIDR by isolating the
  461. * significant bits at each affinity level and by shifting
  462. * them in order to compress the 24 bits values space to a
  463. * compressed set of values. This is equivalent to hashing
  464. * the MPIDR through shifting and ORing. It is a collision free
  465. * hash though not minimal since some levels might contain a number
  466. * of CPUs that is not an exact power of 2 and their bit
  467. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  468. */
  469. mpidr_hash.shift_aff[0] = fs[0];
  470. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  471. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  472. (bits[1] + bits[0]);
  473. mpidr_hash.mask = mask;
  474. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  475. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  476. mpidr_hash.shift_aff[0],
  477. mpidr_hash.shift_aff[1],
  478. mpidr_hash.shift_aff[2],
  479. mpidr_hash.mask,
  480. mpidr_hash.bits);
  481. /*
  482. * 4x is an arbitrary value used to warn on a hash table much bigger
  483. * than expected on most systems.
  484. */
  485. if (mpidr_hash_size() > 4 * num_possible_cpus())
  486. pr_warn("Large number of MPIDR hash buckets detected\n");
  487. sync_cache_w(&mpidr_hash);
  488. }
  489. #endif
  490. static void __init setup_processor(void)
  491. {
  492. struct proc_info_list *list;
  493. /*
  494. * locate processor in the list of supported processor
  495. * types. The linker builds this table for us from the
  496. * entries in arch/arm/mm/proc-*.S
  497. */
  498. list = lookup_processor_type(read_cpuid_id());
  499. if (!list) {
  500. printk("CPU configuration botched (ID %08x), unable "
  501. "to continue.\n", read_cpuid_id());
  502. while (1);
  503. }
  504. cpu_name = list->cpu_name;
  505. __cpu_architecture = __get_cpu_architecture();
  506. #ifdef MULTI_CPU
  507. processor = *list->proc;
  508. #endif
  509. #ifdef MULTI_TLB
  510. cpu_tlb = *list->tlb;
  511. #endif
  512. #ifdef MULTI_USER
  513. cpu_user = *list->user;
  514. #endif
  515. #ifdef MULTI_CACHE
  516. cpu_cache = *list->cache;
  517. #endif
  518. printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  519. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  520. proc_arch[cpu_architecture()], cr_alignment);
  521. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  522. list->arch_name, ENDIANNESS);
  523. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  524. list->elf_name, ENDIANNESS);
  525. elf_hwcap = list->elf_hwcap;
  526. cpuid_init_hwcaps();
  527. #ifndef CONFIG_ARM_THUMB
  528. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  529. #endif
  530. erratum_a15_798181_init();
  531. feat_v6_fixup();
  532. cacheid_init();
  533. cpu_init();
  534. }
  535. void __init dump_machine_table(void)
  536. {
  537. const struct machine_desc *p;
  538. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  539. for_each_machine_desc(p)
  540. early_print("%08x\t%s\n", p->nr, p->name);
  541. early_print("\nPlease check your kernel config and/or bootloader.\n");
  542. while (true)
  543. /* can't use cpu_relax() here as it may require MMU setup */;
  544. }
  545. int __init arm_add_memory(u64 start, u64 size)
  546. {
  547. struct membank *bank = &meminfo.bank[meminfo.nr_banks];
  548. u64 aligned_start;
  549. if (meminfo.nr_banks >= NR_BANKS) {
  550. printk(KERN_CRIT "NR_BANKS too low, "
  551. "ignoring memory at 0x%08llx\n", (long long)start);
  552. return -EINVAL;
  553. }
  554. /*
  555. * Ensure that start/size are aligned to a page boundary.
  556. * Size is appropriately rounded down, start is rounded up.
  557. */
  558. size -= start & ~PAGE_MASK;
  559. aligned_start = PAGE_ALIGN(start);
  560. #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
  561. if (aligned_start > ULONG_MAX) {
  562. printk(KERN_CRIT "Ignoring memory at 0x%08llx outside "
  563. "32-bit physical address space\n", (long long)start);
  564. return -EINVAL;
  565. }
  566. if (aligned_start + size > ULONG_MAX) {
  567. printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
  568. "32-bit physical address space\n", (long long)start);
  569. /*
  570. * To ensure bank->start + bank->size is representable in
  571. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  572. * This means we lose a page after masking.
  573. */
  574. size = ULONG_MAX - aligned_start;
  575. }
  576. #endif
  577. bank->start = aligned_start;
  578. bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  579. /*
  580. * Check whether this memory region has non-zero size or
  581. * invalid node number.
  582. */
  583. if (bank->size == 0)
  584. return -EINVAL;
  585. meminfo.nr_banks++;
  586. return 0;
  587. }
  588. /*
  589. * Pick out the memory size. We look for mem=size@start,
  590. * where start and size are "size[KkMm]"
  591. */
  592. static int __init early_mem(char *p)
  593. {
  594. static int usermem __initdata = 0;
  595. u64 size;
  596. u64 start;
  597. char *endp;
  598. /*
  599. * If the user specifies memory size, we
  600. * blow away any automatically generated
  601. * size.
  602. */
  603. if (usermem == 0) {
  604. usermem = 1;
  605. meminfo.nr_banks = 0;
  606. }
  607. start = PHYS_OFFSET;
  608. size = memparse(p, &endp);
  609. if (*endp == '@')
  610. start = memparse(endp + 1, NULL);
  611. arm_add_memory(start, size);
  612. return 0;
  613. }
  614. early_param("mem", early_mem);
  615. static void __init request_standard_resources(const struct machine_desc *mdesc)
  616. {
  617. struct memblock_region *region;
  618. struct resource *res;
  619. kernel_code.start = virt_to_phys(_text);
  620. kernel_code.end = virt_to_phys(_etext - 1);
  621. kernel_data.start = virt_to_phys(_sdata);
  622. kernel_data.end = virt_to_phys(_end - 1);
  623. for_each_memblock(memory, region) {
  624. res = alloc_bootmem_low(sizeof(*res));
  625. res->name = "System RAM";
  626. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  627. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  628. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  629. request_resource(&iomem_resource, res);
  630. if (kernel_code.start >= res->start &&
  631. kernel_code.end <= res->end)
  632. request_resource(res, &kernel_code);
  633. if (kernel_data.start >= res->start &&
  634. kernel_data.end <= res->end)
  635. request_resource(res, &kernel_data);
  636. }
  637. if (mdesc->video_start) {
  638. video_ram.start = mdesc->video_start;
  639. video_ram.end = mdesc->video_end;
  640. request_resource(&iomem_resource, &video_ram);
  641. }
  642. /*
  643. * Some machines don't have the possibility of ever
  644. * possessing lp0, lp1 or lp2
  645. */
  646. if (mdesc->reserve_lp0)
  647. request_resource(&ioport_resource, &lp0);
  648. if (mdesc->reserve_lp1)
  649. request_resource(&ioport_resource, &lp1);
  650. if (mdesc->reserve_lp2)
  651. request_resource(&ioport_resource, &lp2);
  652. }
  653. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  654. struct screen_info screen_info = {
  655. .orig_video_lines = 30,
  656. .orig_video_cols = 80,
  657. .orig_video_mode = 0,
  658. .orig_video_ega_bx = 0,
  659. .orig_video_isVGA = 1,
  660. .orig_video_points = 8
  661. };
  662. #endif
  663. static int __init customize_machine(void)
  664. {
  665. /*
  666. * customizes platform devices, or adds new ones
  667. * On DT based machines, we fall back to populating the
  668. * machine from the device tree, if no callback is provided,
  669. * otherwise we would always need an init_machine callback.
  670. */
  671. if (machine_desc->init_machine)
  672. machine_desc->init_machine();
  673. #ifdef CONFIG_OF
  674. else
  675. of_platform_populate(NULL, of_default_bus_match_table,
  676. NULL, NULL);
  677. #endif
  678. return 0;
  679. }
  680. arch_initcall(customize_machine);
  681. static int __init init_machine_late(void)
  682. {
  683. if (machine_desc->init_late)
  684. machine_desc->init_late();
  685. return 0;
  686. }
  687. late_initcall(init_machine_late);
  688. #ifdef CONFIG_KEXEC
  689. static inline unsigned long long get_total_mem(void)
  690. {
  691. unsigned long total;
  692. total = max_low_pfn - min_low_pfn;
  693. return total << PAGE_SHIFT;
  694. }
  695. /**
  696. * reserve_crashkernel() - reserves memory are for crash kernel
  697. *
  698. * This function reserves memory area given in "crashkernel=" kernel command
  699. * line parameter. The memory reserved is used by a dump capture kernel when
  700. * primary kernel is crashing.
  701. */
  702. static void __init reserve_crashkernel(void)
  703. {
  704. unsigned long long crash_size, crash_base;
  705. unsigned long long total_mem;
  706. int ret;
  707. total_mem = get_total_mem();
  708. ret = parse_crashkernel(boot_command_line, total_mem,
  709. &crash_size, &crash_base);
  710. if (ret)
  711. return;
  712. ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
  713. if (ret < 0) {
  714. printk(KERN_WARNING "crashkernel reservation failed - "
  715. "memory is in use (0x%lx)\n", (unsigned long)crash_base);
  716. return;
  717. }
  718. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  719. "for crashkernel (System RAM: %ldMB)\n",
  720. (unsigned long)(crash_size >> 20),
  721. (unsigned long)(crash_base >> 20),
  722. (unsigned long)(total_mem >> 20));
  723. crashk_res.start = crash_base;
  724. crashk_res.end = crash_base + crash_size - 1;
  725. insert_resource(&iomem_resource, &crashk_res);
  726. }
  727. #else
  728. static inline void reserve_crashkernel(void) {}
  729. #endif /* CONFIG_KEXEC */
  730. static int __init meminfo_cmp(const void *_a, const void *_b)
  731. {
  732. const struct membank *a = _a, *b = _b;
  733. long cmp = bank_pfn_start(a) - bank_pfn_start(b);
  734. return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
  735. }
  736. void __init hyp_mode_check(void)
  737. {
  738. #ifdef CONFIG_ARM_VIRT_EXT
  739. sync_boot_mode();
  740. if (is_hyp_mode_available()) {
  741. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  742. pr_info("CPU: Virtualization extensions available.\n");
  743. } else if (is_hyp_mode_mismatched()) {
  744. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  745. __boot_cpu_mode & MODE_MASK);
  746. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  747. } else
  748. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  749. #endif
  750. }
  751. void __init setup_arch(char **cmdline_p)
  752. {
  753. const struct machine_desc *mdesc;
  754. setup_processor();
  755. mdesc = setup_machine_fdt(__atags_pointer);
  756. if (!mdesc)
  757. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  758. machine_desc = mdesc;
  759. machine_name = mdesc->name;
  760. if (mdesc->reboot_mode != REBOOT_HARD)
  761. reboot_mode = mdesc->reboot_mode;
  762. init_mm.start_code = (unsigned long) _text;
  763. init_mm.end_code = (unsigned long) _etext;
  764. init_mm.end_data = (unsigned long) _edata;
  765. init_mm.brk = (unsigned long) _end;
  766. /* populate cmd_line too for later use, preserving boot_command_line */
  767. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  768. *cmdline_p = cmd_line;
  769. parse_early_param();
  770. sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
  771. early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
  772. setup_dma_zone(mdesc);
  773. sanity_check_meminfo();
  774. arm_memblock_init(&meminfo, mdesc);
  775. paging_init(mdesc);
  776. request_standard_resources(mdesc);
  777. if (mdesc->restart)
  778. arm_pm_restart = mdesc->restart;
  779. unflatten_device_tree();
  780. arm_dt_init_cpu_maps();
  781. psci_init();
  782. #ifdef CONFIG_SMP
  783. if (is_smp()) {
  784. if (!mdesc->smp_init || !mdesc->smp_init()) {
  785. if (psci_smp_available())
  786. smp_set_ops(&psci_smp_ops);
  787. else if (mdesc->smp)
  788. smp_set_ops(mdesc->smp);
  789. }
  790. smp_init_cpus();
  791. smp_build_mpidr_hash();
  792. }
  793. #endif
  794. if (!is_smp())
  795. hyp_mode_check();
  796. reserve_crashkernel();
  797. #ifdef CONFIG_MULTI_IRQ_HANDLER
  798. handle_arch_irq = mdesc->handle_irq;
  799. #endif
  800. #ifdef CONFIG_VT
  801. #if defined(CONFIG_VGA_CONSOLE)
  802. conswitchp = &vga_con;
  803. #elif defined(CONFIG_DUMMY_CONSOLE)
  804. conswitchp = &dummy_con;
  805. #endif
  806. #endif
  807. if (mdesc->init_early)
  808. mdesc->init_early();
  809. }
  810. static int __init topology_init(void)
  811. {
  812. int cpu;
  813. for_each_possible_cpu(cpu) {
  814. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  815. cpuinfo->cpu.hotpluggable = 1;
  816. register_cpu(&cpuinfo->cpu, cpu);
  817. }
  818. return 0;
  819. }
  820. subsys_initcall(topology_init);
  821. #ifdef CONFIG_HAVE_PROC_CPU
  822. static int __init proc_cpu_init(void)
  823. {
  824. struct proc_dir_entry *res;
  825. res = proc_mkdir("cpu", NULL);
  826. if (!res)
  827. return -ENOMEM;
  828. return 0;
  829. }
  830. fs_initcall(proc_cpu_init);
  831. #endif
  832. static const char *hwcap_str[] = {
  833. "swp",
  834. "half",
  835. "thumb",
  836. "26bit",
  837. "fastmult",
  838. "fpa",
  839. "vfp",
  840. "edsp",
  841. "java",
  842. "iwmmxt",
  843. "crunch",
  844. "thumbee",
  845. "neon",
  846. "vfpv3",
  847. "vfpv3d16",
  848. "tls",
  849. "vfpv4",
  850. "idiva",
  851. "idivt",
  852. "vfpd32",
  853. "lpae",
  854. "evtstrm",
  855. NULL
  856. };
  857. static int c_show(struct seq_file *m, void *v)
  858. {
  859. int i, j;
  860. u32 cpuid;
  861. for_each_online_cpu(i) {
  862. /*
  863. * glibc reads /proc/cpuinfo to determine the number of
  864. * online processors, looking for lines beginning with
  865. * "processor". Give glibc what it expects.
  866. */
  867. seq_printf(m, "processor\t: %d\n", i);
  868. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  869. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  870. cpu_name, cpuid & 15, elf_platform);
  871. /* dump out the processor features */
  872. seq_puts(m, "Features\t: ");
  873. for (j = 0; hwcap_str[j]; j++)
  874. if (elf_hwcap & (1 << j))
  875. seq_printf(m, "%s ", hwcap_str[j]);
  876. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  877. seq_printf(m, "CPU architecture: %s\n",
  878. proc_arch[cpu_architecture()]);
  879. if ((cpuid & 0x0008f000) == 0x00000000) {
  880. /* pre-ARM7 */
  881. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  882. } else {
  883. if ((cpuid & 0x0008f000) == 0x00007000) {
  884. /* ARM7 */
  885. seq_printf(m, "CPU variant\t: 0x%02x\n",
  886. (cpuid >> 16) & 127);
  887. } else {
  888. /* post-ARM7 */
  889. seq_printf(m, "CPU variant\t: 0x%x\n",
  890. (cpuid >> 20) & 15);
  891. }
  892. seq_printf(m, "CPU part\t: 0x%03x\n",
  893. (cpuid >> 4) & 0xfff);
  894. }
  895. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  896. }
  897. seq_printf(m, "Hardware\t: %s\n", machine_name);
  898. seq_printf(m, "Revision\t: %04x\n", system_rev);
  899. seq_printf(m, "Serial\t\t: %08x%08x\n",
  900. system_serial_high, system_serial_low);
  901. return 0;
  902. }
  903. static void *c_start(struct seq_file *m, loff_t *pos)
  904. {
  905. return *pos < 1 ? (void *)1 : NULL;
  906. }
  907. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  908. {
  909. ++*pos;
  910. return NULL;
  911. }
  912. static void c_stop(struct seq_file *m, void *v)
  913. {
  914. }
  915. const struct seq_operations cpuinfo_op = {
  916. .start = c_start,
  917. .next = c_next,
  918. .stop = c_stop,
  919. .show = c_show
  920. };