process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/cpuidle.h>
  33. #include <linux/leds.h>
  34. #include <linux/reboot.h>
  35. #include <asm/cacheflush.h>
  36. #include <asm/idmap.h>
  37. #include <asm/processor.h>
  38. #include <asm/thread_notify.h>
  39. #include <asm/stacktrace.h>
  40. #include <asm/mach/time.h>
  41. #include <asm/tls.h>
  42. #ifdef CONFIG_CC_STACKPROTECTOR
  43. #include <linux/stackprotector.h>
  44. unsigned long __stack_chk_guard __read_mostly;
  45. EXPORT_SYMBOL(__stack_chk_guard);
  46. #endif
  47. static const char *processor_modes[] = {
  48. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  49. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  50. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  51. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  52. };
  53. static const char *isa_modes[] = {
  54. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  55. };
  56. extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
  57. typedef void (*phys_reset_t)(unsigned long);
  58. /*
  59. * A temporary stack to use for CPU reset. This is static so that we
  60. * don't clobber it with the identity mapping. When running with this
  61. * stack, any references to the current task *will not work* so you
  62. * should really do as little as possible before jumping to your reset
  63. * code.
  64. */
  65. static u64 soft_restart_stack[16];
  66. static void __soft_restart(void *addr)
  67. {
  68. phys_reset_t phys_reset;
  69. /* Take out a flat memory mapping. */
  70. setup_mm_for_reboot();
  71. /* Clean and invalidate caches */
  72. flush_cache_all();
  73. /* Turn off caching */
  74. cpu_proc_fin();
  75. /* Push out any further dirty data, and ensure cache is empty */
  76. flush_cache_all();
  77. /* Switch to the identity mapping. */
  78. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  79. phys_reset((unsigned long)addr);
  80. /* Should never get here. */
  81. BUG();
  82. }
  83. void soft_restart(unsigned long addr)
  84. {
  85. u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
  86. /* Disable interrupts first */
  87. local_irq_disable();
  88. local_fiq_disable();
  89. /* Disable the L2 if we're the last man standing. */
  90. if (num_online_cpus() == 1)
  91. outer_disable();
  92. /* Change to the new stack and continue with the reset. */
  93. call_with_stack(__soft_restart, (void *)addr, (void *)stack);
  94. /* Should never get here. */
  95. BUG();
  96. }
  97. static void null_restart(enum reboot_mode reboot_mode, const char *cmd)
  98. {
  99. }
  100. /*
  101. * Function pointers to optional machine specific functions
  102. */
  103. void (*pm_power_off)(void);
  104. EXPORT_SYMBOL(pm_power_off);
  105. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd) = null_restart;
  106. EXPORT_SYMBOL_GPL(arm_pm_restart);
  107. /*
  108. * This is our default idle handler.
  109. */
  110. void (*arm_pm_idle)(void);
  111. static void default_idle(void)
  112. {
  113. if (arm_pm_idle)
  114. arm_pm_idle();
  115. else
  116. cpu_do_idle();
  117. local_irq_enable();
  118. }
  119. void arch_cpu_idle_prepare(void)
  120. {
  121. local_fiq_enable();
  122. }
  123. void arch_cpu_idle_enter(void)
  124. {
  125. ledtrig_cpu(CPU_LED_IDLE_START);
  126. #ifdef CONFIG_PL310_ERRATA_769419
  127. wmb();
  128. #endif
  129. }
  130. void arch_cpu_idle_exit(void)
  131. {
  132. ledtrig_cpu(CPU_LED_IDLE_END);
  133. }
  134. #ifdef CONFIG_HOTPLUG_CPU
  135. void arch_cpu_idle_dead(void)
  136. {
  137. cpu_die();
  138. }
  139. #endif
  140. /*
  141. * Called from the core idle loop.
  142. */
  143. void arch_cpu_idle(void)
  144. {
  145. if (cpuidle_idle_call())
  146. default_idle();
  147. }
  148. /*
  149. * Called by kexec, immediately prior to machine_kexec().
  150. *
  151. * This must completely disable all secondary CPUs; simply causing those CPUs
  152. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  153. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  154. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  155. * functionality embodied in disable_nonboot_cpus() to achieve this.
  156. */
  157. void machine_shutdown(void)
  158. {
  159. disable_nonboot_cpus();
  160. }
  161. /*
  162. * Halting simply requires that the secondary CPUs stop performing any
  163. * activity (executing tasks, handling interrupts). smp_send_stop()
  164. * achieves this.
  165. */
  166. void machine_halt(void)
  167. {
  168. local_irq_disable();
  169. smp_send_stop();
  170. local_irq_disable();
  171. while (1);
  172. }
  173. /*
  174. * Power-off simply requires that the secondary CPUs stop performing any
  175. * activity (executing tasks, handling interrupts). smp_send_stop()
  176. * achieves this. When the system power is turned off, it will take all CPUs
  177. * with it.
  178. */
  179. void machine_power_off(void)
  180. {
  181. local_irq_disable();
  182. smp_send_stop();
  183. if (pm_power_off)
  184. pm_power_off();
  185. }
  186. /*
  187. * Restart requires that the secondary CPUs stop performing any activity
  188. * while the primary CPU resets the system. Systems with a single CPU can
  189. * use soft_restart() as their machine descriptor's .restart hook, since that
  190. * will cause the only available CPU to reset. Systems with multiple CPUs must
  191. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  192. * This is required so that any code running after reset on the primary CPU
  193. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  194. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  195. * to use. Implementing such co-ordination would be essentially impossible.
  196. */
  197. void machine_restart(char *cmd)
  198. {
  199. local_irq_disable();
  200. smp_send_stop();
  201. arm_pm_restart(reboot_mode, cmd);
  202. /* Give a grace period for failure to restart of 1s */
  203. mdelay(1000);
  204. /* Whoops - the platform was unable to reboot. Tell the user! */
  205. printk("Reboot failed -- System halted\n");
  206. local_irq_disable();
  207. while (1);
  208. }
  209. void __show_regs(struct pt_regs *regs)
  210. {
  211. unsigned long flags;
  212. char buf[64];
  213. show_regs_print_info(KERN_DEFAULT);
  214. print_symbol("PC is at %s\n", instruction_pointer(regs));
  215. print_symbol("LR is at %s\n", regs->ARM_lr);
  216. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  217. "sp : %08lx ip : %08lx fp : %08lx\n",
  218. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  219. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  220. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  221. regs->ARM_r10, regs->ARM_r9,
  222. regs->ARM_r8);
  223. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  224. regs->ARM_r7, regs->ARM_r6,
  225. regs->ARM_r5, regs->ARM_r4);
  226. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  227. regs->ARM_r3, regs->ARM_r2,
  228. regs->ARM_r1, regs->ARM_r0);
  229. flags = regs->ARM_cpsr;
  230. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  231. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  232. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  233. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  234. buf[4] = '\0';
  235. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  236. buf, interrupts_enabled(regs) ? "n" : "ff",
  237. fast_interrupts_enabled(regs) ? "n" : "ff",
  238. processor_modes[processor_mode(regs)],
  239. isa_modes[isa_mode(regs)],
  240. get_fs() == get_ds() ? "kernel" : "user");
  241. #ifdef CONFIG_CPU_CP15
  242. {
  243. unsigned int ctrl;
  244. buf[0] = '\0';
  245. #ifdef CONFIG_CPU_CP15_MMU
  246. {
  247. unsigned int transbase, dac;
  248. asm("mrc p15, 0, %0, c2, c0\n\t"
  249. "mrc p15, 0, %1, c3, c0\n"
  250. : "=r" (transbase), "=r" (dac));
  251. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  252. transbase, dac);
  253. }
  254. #endif
  255. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  256. printk("Control: %08x%s\n", ctrl, buf);
  257. }
  258. #endif
  259. }
  260. void show_regs(struct pt_regs * regs)
  261. {
  262. printk("\n");
  263. __show_regs(regs);
  264. dump_stack();
  265. }
  266. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  267. EXPORT_SYMBOL_GPL(thread_notify_head);
  268. /*
  269. * Free current thread data structures etc..
  270. */
  271. void exit_thread(void)
  272. {
  273. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  274. }
  275. void flush_thread(void)
  276. {
  277. struct thread_info *thread = current_thread_info();
  278. struct task_struct *tsk = current;
  279. flush_ptrace_hw_breakpoint(tsk);
  280. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  281. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  282. memset(&thread->fpstate, 0, sizeof(union fp_state));
  283. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  284. }
  285. void release_thread(struct task_struct *dead_task)
  286. {
  287. }
  288. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  289. int
  290. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  291. unsigned long stk_sz, struct task_struct *p)
  292. {
  293. struct thread_info *thread = task_thread_info(p);
  294. struct pt_regs *childregs = task_pt_regs(p);
  295. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  296. if (likely(!(p->flags & PF_KTHREAD))) {
  297. *childregs = *current_pt_regs();
  298. childregs->ARM_r0 = 0;
  299. if (stack_start)
  300. childregs->ARM_sp = stack_start;
  301. } else {
  302. memset(childregs, 0, sizeof(struct pt_regs));
  303. thread->cpu_context.r4 = stk_sz;
  304. thread->cpu_context.r5 = stack_start;
  305. childregs->ARM_cpsr = SVC_MODE;
  306. }
  307. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  308. thread->cpu_context.sp = (unsigned long)childregs;
  309. clear_ptrace_hw_breakpoint(p);
  310. if (clone_flags & CLONE_SETTLS)
  311. thread->tp_value[0] = childregs->ARM_r3;
  312. thread->tp_value[1] = get_tpuser();
  313. thread_notify(THREAD_NOTIFY_COPY, thread);
  314. return 0;
  315. }
  316. /*
  317. * Fill in the task's elfregs structure for a core dump.
  318. */
  319. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  320. {
  321. elf_core_copy_regs(elfregs, task_pt_regs(t));
  322. return 1;
  323. }
  324. /*
  325. * fill in the fpe structure for a core dump...
  326. */
  327. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  328. {
  329. struct thread_info *thread = current_thread_info();
  330. int used_math = thread->used_cp[1] | thread->used_cp[2];
  331. if (used_math)
  332. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  333. return used_math != 0;
  334. }
  335. EXPORT_SYMBOL(dump_fpu);
  336. unsigned long get_wchan(struct task_struct *p)
  337. {
  338. struct stackframe frame;
  339. unsigned long stack_page;
  340. int count = 0;
  341. if (!p || p == current || p->state == TASK_RUNNING)
  342. return 0;
  343. frame.fp = thread_saved_fp(p);
  344. frame.sp = thread_saved_sp(p);
  345. frame.lr = 0; /* recovered from the stack */
  346. frame.pc = thread_saved_pc(p);
  347. stack_page = (unsigned long)task_stack_page(p);
  348. do {
  349. if (frame.sp < stack_page ||
  350. frame.sp >= stack_page + THREAD_SIZE ||
  351. unwind_frame(&frame) < 0)
  352. return 0;
  353. if (!in_sched_functions(frame.pc))
  354. return frame.pc;
  355. } while (count ++ < 16);
  356. return 0;
  357. }
  358. unsigned long arch_randomize_brk(struct mm_struct *mm)
  359. {
  360. unsigned long range_end = mm->brk + 0x02000000;
  361. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  362. }
  363. #ifdef CONFIG_MMU
  364. #ifdef CONFIG_KUSER_HELPERS
  365. /*
  366. * The vectors page is always readable from user space for the
  367. * atomic helpers. Insert it into the gate_vma so that it is visible
  368. * through ptrace and /proc/<pid>/mem.
  369. */
  370. static struct vm_area_struct gate_vma = {
  371. .vm_start = 0xffff0000,
  372. .vm_end = 0xffff0000 + PAGE_SIZE,
  373. .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
  374. };
  375. static int __init gate_vma_init(void)
  376. {
  377. gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
  378. return 0;
  379. }
  380. arch_initcall(gate_vma_init);
  381. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  382. {
  383. return &gate_vma;
  384. }
  385. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  386. {
  387. return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
  388. }
  389. int in_gate_area_no_mm(unsigned long addr)
  390. {
  391. return in_gate_area(NULL, addr);
  392. }
  393. #define is_gate_vma(vma) ((vma) == &gate_vma)
  394. #else
  395. #define is_gate_vma(vma) 0
  396. #endif
  397. const char *arch_vma_name(struct vm_area_struct *vma)
  398. {
  399. return is_gate_vma(vma) ? "[vectors]" :
  400. (vma->vm_mm && vma->vm_start == vma->vm_mm->context.sigpage) ?
  401. "[sigpage]" : NULL;
  402. }
  403. static struct page *signal_page;
  404. extern struct page *get_signal_page(void);
  405. int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
  406. {
  407. struct mm_struct *mm = current->mm;
  408. unsigned long addr;
  409. int ret;
  410. if (!signal_page)
  411. signal_page = get_signal_page();
  412. if (!signal_page)
  413. return -ENOMEM;
  414. down_write(&mm->mmap_sem);
  415. addr = get_unmapped_area(NULL, 0, PAGE_SIZE, 0, 0);
  416. if (IS_ERR_VALUE(addr)) {
  417. ret = addr;
  418. goto up_fail;
  419. }
  420. ret = install_special_mapping(mm, addr, PAGE_SIZE,
  421. VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
  422. &signal_page);
  423. if (ret == 0)
  424. mm->context.sigpage = addr;
  425. up_fail:
  426. up_write(&mm->mmap_sem);
  427. return ret;
  428. }
  429. #endif