sata_mv.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  22. *
  23. */
  24. /*
  25. * sata_mv TODO list:
  26. *
  27. * --> Errata workaround for NCQ device errors.
  28. *
  29. * --> More errata workarounds for PCI-X.
  30. *
  31. * --> Complete a full errata audit for all chipsets to identify others.
  32. *
  33. * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
  34. *
  35. * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
  36. *
  37. * --> Develop a low-power-consumption strategy, and implement it.
  38. *
  39. * --> [Experiment, low priority] Investigate interrupt coalescing.
  40. * Quite often, especially with PCI Message Signalled Interrupts (MSI),
  41. * the overhead reduced by interrupt mitigation is quite often not
  42. * worth the latency cost.
  43. *
  44. * --> [Experiment, Marvell value added] Is it possible to use target
  45. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  46. * creating LibATA target mode support would be very interesting.
  47. *
  48. * Target mode, for those without docs, is the ability to directly
  49. * connect two SATA ports.
  50. */
  51. #include <linux/kernel.h>
  52. #include <linux/module.h>
  53. #include <linux/pci.h>
  54. #include <linux/init.h>
  55. #include <linux/blkdev.h>
  56. #include <linux/delay.h>
  57. #include <linux/interrupt.h>
  58. #include <linux/dmapool.h>
  59. #include <linux/dma-mapping.h>
  60. #include <linux/device.h>
  61. #include <linux/platform_device.h>
  62. #include <linux/ata_platform.h>
  63. #include <linux/mbus.h>
  64. #include <linux/bitops.h>
  65. #include <scsi/scsi_host.h>
  66. #include <scsi/scsi_cmnd.h>
  67. #include <scsi/scsi_device.h>
  68. #include <linux/libata.h>
  69. #define DRV_NAME "sata_mv"
  70. #define DRV_VERSION "1.24"
  71. enum {
  72. /* BAR's are enumerated in terms of pci_resource_start() terms */
  73. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  74. MV_IO_BAR = 2, /* offset 0x18: IO space */
  75. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  76. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  77. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  78. MV_PCI_REG_BASE = 0,
  79. MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
  80. MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
  81. MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
  82. MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
  83. MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
  84. MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
  85. MV_SATAHC0_REG_BASE = 0x20000,
  86. MV_FLASH_CTL_OFS = 0x1046c,
  87. MV_GPIO_PORT_CTL_OFS = 0x104f0,
  88. MV_RESET_CFG_OFS = 0x180d8,
  89. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  90. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  91. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  92. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  93. MV_MAX_Q_DEPTH = 32,
  94. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  95. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  96. * CRPB needs alignment on a 256B boundary. Size == 256B
  97. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  98. */
  99. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  100. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  101. MV_MAX_SG_CT = 256,
  102. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  103. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  104. MV_PORT_HC_SHIFT = 2,
  105. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  106. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  107. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  108. /* Host Flags */
  109. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  110. MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
  111. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  112. ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
  113. ATA_FLAG_PIO_POLLING,
  114. MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
  115. MV_GENIIE_FLAGS = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  116. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  117. ATA_FLAG_NCQ | ATA_FLAG_AN,
  118. CRQB_FLAG_READ = (1 << 0),
  119. CRQB_TAG_SHIFT = 1,
  120. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  121. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  122. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  123. CRQB_CMD_ADDR_SHIFT = 8,
  124. CRQB_CMD_CS = (0x2 << 11),
  125. CRQB_CMD_LAST = (1 << 15),
  126. CRPB_FLAG_STATUS_SHIFT = 8,
  127. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  128. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  129. EPRD_FLAG_END_OF_TBL = (1 << 31),
  130. /* PCI interface registers */
  131. PCI_COMMAND_OFS = 0xc00,
  132. PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  133. PCI_MAIN_CMD_STS_OFS = 0xd30,
  134. STOP_PCI_MASTER = (1 << 2),
  135. PCI_MASTER_EMPTY = (1 << 3),
  136. GLOB_SFT_RST = (1 << 4),
  137. MV_PCI_MODE_OFS = 0xd00,
  138. MV_PCI_MODE_MASK = 0x30,
  139. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  140. MV_PCI_DISC_TIMER = 0xd04,
  141. MV_PCI_MSI_TRIGGER = 0xc38,
  142. MV_PCI_SERR_MASK = 0xc28,
  143. MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
  144. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  145. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  146. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  147. MV_PCI_ERR_COMMAND = 0x1d50,
  148. PCI_IRQ_CAUSE_OFS = 0x1d58,
  149. PCI_IRQ_MASK_OFS = 0x1d5c,
  150. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  151. PCIE_IRQ_CAUSE_OFS = 0x1900,
  152. PCIE_IRQ_MASK_OFS = 0x1910,
  153. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  154. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  155. PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
  156. PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
  157. SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
  158. SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
  159. ERR_IRQ = (1 << 0), /* shift by port # */
  160. DONE_IRQ = (1 << 1), /* shift by port # */
  161. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  162. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  163. PCI_ERR = (1 << 18),
  164. TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
  165. TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
  166. PORTS_0_3_COAL_DONE = (1 << 8),
  167. PORTS_4_7_COAL_DONE = (1 << 17),
  168. PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
  169. GPIO_INT = (1 << 22),
  170. SELF_INT = (1 << 23),
  171. TWSI_INT = (1 << 24),
  172. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  173. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  174. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  175. /* SATAHC registers */
  176. HC_CFG_OFS = 0,
  177. HC_IRQ_CAUSE_OFS = 0x14,
  178. DMA_IRQ = (1 << 0), /* shift by port # */
  179. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  180. DEV_IRQ = (1 << 8), /* shift by port # */
  181. /* Shadow block registers */
  182. SHD_BLK_OFS = 0x100,
  183. SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
  184. /* SATA registers */
  185. SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
  186. SATA_ACTIVE_OFS = 0x350,
  187. SATA_FIS_IRQ_CAUSE_OFS = 0x364,
  188. SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
  189. LTMODE_OFS = 0x30c,
  190. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  191. PHY_MODE3 = 0x310,
  192. PHY_MODE4 = 0x314,
  193. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  194. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  195. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  196. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  197. PHY_MODE2 = 0x330,
  198. SATA_IFCTL_OFS = 0x344,
  199. SATA_TESTCTL_OFS = 0x348,
  200. SATA_IFSTAT_OFS = 0x34c,
  201. VENDOR_UNIQUE_FIS_OFS = 0x35c,
  202. FISCFG_OFS = 0x360,
  203. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  204. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  205. MV5_PHY_MODE = 0x74,
  206. MV5_LTMODE_OFS = 0x30,
  207. MV5_PHY_CTL_OFS = 0x0C,
  208. SATA_INTERFACE_CFG_OFS = 0x050,
  209. MV_M2_PREAMP_MASK = 0x7e0,
  210. /* Port registers */
  211. EDMA_CFG_OFS = 0,
  212. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  213. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  214. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  215. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  216. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  217. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  218. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  219. EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
  220. EDMA_ERR_IRQ_MASK_OFS = 0xc,
  221. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  222. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  223. EDMA_ERR_DEV = (1 << 2), /* device error */
  224. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  225. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  226. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  227. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  228. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  229. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  230. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  231. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  232. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  233. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  234. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  235. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  236. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  237. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  238. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  239. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  240. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  241. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  242. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  243. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  244. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  245. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  246. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  247. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  248. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  249. EDMA_ERR_OVERRUN_5 = (1 << 5),
  250. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  251. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  252. EDMA_ERR_LNK_CTRL_RX_1 |
  253. EDMA_ERR_LNK_CTRL_RX_3 |
  254. EDMA_ERR_LNK_CTRL_TX,
  255. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  256. EDMA_ERR_PRD_PAR |
  257. EDMA_ERR_DEV_DCON |
  258. EDMA_ERR_DEV_CON |
  259. EDMA_ERR_SERR |
  260. EDMA_ERR_SELF_DIS |
  261. EDMA_ERR_CRQB_PAR |
  262. EDMA_ERR_CRPB_PAR |
  263. EDMA_ERR_INTRL_PAR |
  264. EDMA_ERR_IORDY |
  265. EDMA_ERR_LNK_CTRL_RX_2 |
  266. EDMA_ERR_LNK_DATA_RX |
  267. EDMA_ERR_LNK_DATA_TX |
  268. EDMA_ERR_TRANS_PROTO,
  269. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  270. EDMA_ERR_PRD_PAR |
  271. EDMA_ERR_DEV_DCON |
  272. EDMA_ERR_DEV_CON |
  273. EDMA_ERR_OVERRUN_5 |
  274. EDMA_ERR_UNDERRUN_5 |
  275. EDMA_ERR_SELF_DIS_5 |
  276. EDMA_ERR_CRQB_PAR |
  277. EDMA_ERR_CRPB_PAR |
  278. EDMA_ERR_INTRL_PAR |
  279. EDMA_ERR_IORDY,
  280. EDMA_REQ_Q_BASE_HI_OFS = 0x10,
  281. EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
  282. EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
  283. EDMA_REQ_Q_PTR_SHIFT = 5,
  284. EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
  285. EDMA_RSP_Q_IN_PTR_OFS = 0x20,
  286. EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
  287. EDMA_RSP_Q_PTR_SHIFT = 3,
  288. EDMA_CMD_OFS = 0x28, /* EDMA command register */
  289. EDMA_EN = (1 << 0), /* enable EDMA */
  290. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  291. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  292. EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
  293. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  294. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  295. EDMA_IORDY_TMOUT_OFS = 0x34,
  296. EDMA_ARB_CFG_OFS = 0x38,
  297. EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
  298. /* Host private flags (hp_flags) */
  299. MV_HP_FLAG_MSI = (1 << 0),
  300. MV_HP_ERRATA_50XXB0 = (1 << 1),
  301. MV_HP_ERRATA_50XXB2 = (1 << 2),
  302. MV_HP_ERRATA_60X1B2 = (1 << 3),
  303. MV_HP_ERRATA_60X1C0 = (1 << 4),
  304. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  305. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  306. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  307. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  308. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  309. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  310. /* Port private flags (pp_flags) */
  311. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  312. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  313. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  314. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  315. };
  316. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  317. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  318. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  319. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  320. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  321. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  322. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  323. enum {
  324. /* DMA boundary 0xffff is required by the s/g splitting
  325. * we need on /length/ in mv_fill-sg().
  326. */
  327. MV_DMA_BOUNDARY = 0xffffU,
  328. /* mask of register bits containing lower 32 bits
  329. * of EDMA request queue DMA address
  330. */
  331. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  332. /* ditto, for response queue */
  333. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  334. };
  335. enum chip_type {
  336. chip_504x,
  337. chip_508x,
  338. chip_5080,
  339. chip_604x,
  340. chip_608x,
  341. chip_6042,
  342. chip_7042,
  343. chip_soc,
  344. };
  345. /* Command ReQuest Block: 32B */
  346. struct mv_crqb {
  347. __le32 sg_addr;
  348. __le32 sg_addr_hi;
  349. __le16 ctrl_flags;
  350. __le16 ata_cmd[11];
  351. };
  352. struct mv_crqb_iie {
  353. __le32 addr;
  354. __le32 addr_hi;
  355. __le32 flags;
  356. __le32 len;
  357. __le32 ata_cmd[4];
  358. };
  359. /* Command ResPonse Block: 8B */
  360. struct mv_crpb {
  361. __le16 id;
  362. __le16 flags;
  363. __le32 tmstmp;
  364. };
  365. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  366. struct mv_sg {
  367. __le32 addr;
  368. __le32 flags_size;
  369. __le32 addr_hi;
  370. __le32 reserved;
  371. };
  372. struct mv_port_priv {
  373. struct mv_crqb *crqb;
  374. dma_addr_t crqb_dma;
  375. struct mv_crpb *crpb;
  376. dma_addr_t crpb_dma;
  377. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  378. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  379. unsigned int req_idx;
  380. unsigned int resp_idx;
  381. u32 pp_flags;
  382. unsigned int delayed_eh_pmp_map;
  383. };
  384. struct mv_port_signal {
  385. u32 amps;
  386. u32 pre;
  387. };
  388. struct mv_host_priv {
  389. u32 hp_flags;
  390. u32 main_irq_mask;
  391. struct mv_port_signal signal[8];
  392. const struct mv_hw_ops *ops;
  393. int n_ports;
  394. void __iomem *base;
  395. void __iomem *main_irq_cause_addr;
  396. void __iomem *main_irq_mask_addr;
  397. u32 irq_cause_ofs;
  398. u32 irq_mask_ofs;
  399. u32 unmask_all_irqs;
  400. /*
  401. * These consistent DMA memory pools give us guaranteed
  402. * alignment for hardware-accessed data structures,
  403. * and less memory waste in accomplishing the alignment.
  404. */
  405. struct dma_pool *crqb_pool;
  406. struct dma_pool *crpb_pool;
  407. struct dma_pool *sg_tbl_pool;
  408. };
  409. struct mv_hw_ops {
  410. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  411. unsigned int port);
  412. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  413. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  414. void __iomem *mmio);
  415. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  416. unsigned int n_hc);
  417. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  418. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  419. };
  420. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  421. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  422. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  423. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  424. static int mv_port_start(struct ata_port *ap);
  425. static void mv_port_stop(struct ata_port *ap);
  426. static int mv_qc_defer(struct ata_queued_cmd *qc);
  427. static void mv_qc_prep(struct ata_queued_cmd *qc);
  428. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  429. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  430. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  431. unsigned long deadline);
  432. static void mv_eh_freeze(struct ata_port *ap);
  433. static void mv_eh_thaw(struct ata_port *ap);
  434. static void mv6_dev_config(struct ata_device *dev);
  435. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  436. unsigned int port);
  437. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  438. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  439. void __iomem *mmio);
  440. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  441. unsigned int n_hc);
  442. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  443. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  444. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  445. unsigned int port);
  446. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  447. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  448. void __iomem *mmio);
  449. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  450. unsigned int n_hc);
  451. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  452. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  453. void __iomem *mmio);
  454. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  455. void __iomem *mmio);
  456. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  457. void __iomem *mmio, unsigned int n_hc);
  458. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  459. void __iomem *mmio);
  460. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  461. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  462. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  463. unsigned int port_no);
  464. static int mv_stop_edma(struct ata_port *ap);
  465. static int mv_stop_edma_engine(void __iomem *port_mmio);
  466. static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
  467. static void mv_pmp_select(struct ata_port *ap, int pmp);
  468. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  469. unsigned long deadline);
  470. static int mv_softreset(struct ata_link *link, unsigned int *class,
  471. unsigned long deadline);
  472. static void mv_pmp_error_handler(struct ata_port *ap);
  473. static void mv_process_crpb_entries(struct ata_port *ap,
  474. struct mv_port_priv *pp);
  475. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  476. * because we have to allow room for worst case splitting of
  477. * PRDs for 64K boundaries in mv_fill_sg().
  478. */
  479. static struct scsi_host_template mv5_sht = {
  480. ATA_BASE_SHT(DRV_NAME),
  481. .sg_tablesize = MV_MAX_SG_CT / 2,
  482. .dma_boundary = MV_DMA_BOUNDARY,
  483. };
  484. static struct scsi_host_template mv6_sht = {
  485. ATA_NCQ_SHT(DRV_NAME),
  486. .can_queue = MV_MAX_Q_DEPTH - 1,
  487. .sg_tablesize = MV_MAX_SG_CT / 2,
  488. .dma_boundary = MV_DMA_BOUNDARY,
  489. };
  490. static struct ata_port_operations mv5_ops = {
  491. .inherits = &ata_sff_port_ops,
  492. .qc_defer = mv_qc_defer,
  493. .qc_prep = mv_qc_prep,
  494. .qc_issue = mv_qc_issue,
  495. .freeze = mv_eh_freeze,
  496. .thaw = mv_eh_thaw,
  497. .hardreset = mv_hardreset,
  498. .error_handler = ata_std_error_handler, /* avoid SFF EH */
  499. .post_internal_cmd = ATA_OP_NULL,
  500. .scr_read = mv5_scr_read,
  501. .scr_write = mv5_scr_write,
  502. .port_start = mv_port_start,
  503. .port_stop = mv_port_stop,
  504. };
  505. static struct ata_port_operations mv6_ops = {
  506. .inherits = &mv5_ops,
  507. .dev_config = mv6_dev_config,
  508. .scr_read = mv_scr_read,
  509. .scr_write = mv_scr_write,
  510. .pmp_hardreset = mv_pmp_hardreset,
  511. .pmp_softreset = mv_softreset,
  512. .softreset = mv_softreset,
  513. .error_handler = mv_pmp_error_handler,
  514. };
  515. static struct ata_port_operations mv_iie_ops = {
  516. .inherits = &mv6_ops,
  517. .dev_config = ATA_OP_NULL,
  518. .qc_prep = mv_qc_prep_iie,
  519. };
  520. static const struct ata_port_info mv_port_info[] = {
  521. { /* chip_504x */
  522. .flags = MV_COMMON_FLAGS,
  523. .pio_mask = 0x1f, /* pio0-4 */
  524. .udma_mask = ATA_UDMA6,
  525. .port_ops = &mv5_ops,
  526. },
  527. { /* chip_508x */
  528. .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
  529. .pio_mask = 0x1f, /* pio0-4 */
  530. .udma_mask = ATA_UDMA6,
  531. .port_ops = &mv5_ops,
  532. },
  533. { /* chip_5080 */
  534. .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
  535. .pio_mask = 0x1f, /* pio0-4 */
  536. .udma_mask = ATA_UDMA6,
  537. .port_ops = &mv5_ops,
  538. },
  539. { /* chip_604x */
  540. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  541. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  542. ATA_FLAG_NCQ,
  543. .pio_mask = 0x1f, /* pio0-4 */
  544. .udma_mask = ATA_UDMA6,
  545. .port_ops = &mv6_ops,
  546. },
  547. { /* chip_608x */
  548. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  549. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  550. ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
  551. .pio_mask = 0x1f, /* pio0-4 */
  552. .udma_mask = ATA_UDMA6,
  553. .port_ops = &mv6_ops,
  554. },
  555. { /* chip_6042 */
  556. .flags = MV_GENIIE_FLAGS,
  557. .pio_mask = 0x1f, /* pio0-4 */
  558. .udma_mask = ATA_UDMA6,
  559. .port_ops = &mv_iie_ops,
  560. },
  561. { /* chip_7042 */
  562. .flags = MV_GENIIE_FLAGS,
  563. .pio_mask = 0x1f, /* pio0-4 */
  564. .udma_mask = ATA_UDMA6,
  565. .port_ops = &mv_iie_ops,
  566. },
  567. { /* chip_soc */
  568. .flags = MV_GENIIE_FLAGS,
  569. .pio_mask = 0x1f, /* pio0-4 */
  570. .udma_mask = ATA_UDMA6,
  571. .port_ops = &mv_iie_ops,
  572. },
  573. };
  574. static const struct pci_device_id mv_pci_tbl[] = {
  575. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  576. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  577. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  578. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  579. /* RocketRAID 1720/174x have different identifiers */
  580. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  581. { PCI_VDEVICE(TTI, 0x1740), chip_508x },
  582. { PCI_VDEVICE(TTI, 0x1742), chip_508x },
  583. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  584. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  585. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  586. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  587. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  588. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  589. /* Adaptec 1430SA */
  590. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  591. /* Marvell 7042 support */
  592. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  593. /* Highpoint RocketRAID PCIe series */
  594. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  595. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  596. { } /* terminate list */
  597. };
  598. static const struct mv_hw_ops mv5xxx_ops = {
  599. .phy_errata = mv5_phy_errata,
  600. .enable_leds = mv5_enable_leds,
  601. .read_preamp = mv5_read_preamp,
  602. .reset_hc = mv5_reset_hc,
  603. .reset_flash = mv5_reset_flash,
  604. .reset_bus = mv5_reset_bus,
  605. };
  606. static const struct mv_hw_ops mv6xxx_ops = {
  607. .phy_errata = mv6_phy_errata,
  608. .enable_leds = mv6_enable_leds,
  609. .read_preamp = mv6_read_preamp,
  610. .reset_hc = mv6_reset_hc,
  611. .reset_flash = mv6_reset_flash,
  612. .reset_bus = mv_reset_pci_bus,
  613. };
  614. static const struct mv_hw_ops mv_soc_ops = {
  615. .phy_errata = mv6_phy_errata,
  616. .enable_leds = mv_soc_enable_leds,
  617. .read_preamp = mv_soc_read_preamp,
  618. .reset_hc = mv_soc_reset_hc,
  619. .reset_flash = mv_soc_reset_flash,
  620. .reset_bus = mv_soc_reset_bus,
  621. };
  622. /*
  623. * Functions
  624. */
  625. static inline void writelfl(unsigned long data, void __iomem *addr)
  626. {
  627. writel(data, addr);
  628. (void) readl(addr); /* flush to avoid PCI posted write */
  629. }
  630. static inline unsigned int mv_hc_from_port(unsigned int port)
  631. {
  632. return port >> MV_PORT_HC_SHIFT;
  633. }
  634. static inline unsigned int mv_hardport_from_port(unsigned int port)
  635. {
  636. return port & MV_PORT_MASK;
  637. }
  638. /*
  639. * Consolidate some rather tricky bit shift calculations.
  640. * This is hot-path stuff, so not a function.
  641. * Simple code, with two return values, so macro rather than inline.
  642. *
  643. * port is the sole input, in range 0..7.
  644. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  645. * hardport is the other output, in range 0..3.
  646. *
  647. * Note that port and hardport may be the same variable in some cases.
  648. */
  649. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  650. { \
  651. shift = mv_hc_from_port(port) * HC_SHIFT; \
  652. hardport = mv_hardport_from_port(port); \
  653. shift += hardport * 2; \
  654. }
  655. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  656. {
  657. return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  658. }
  659. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  660. unsigned int port)
  661. {
  662. return mv_hc_base(base, mv_hc_from_port(port));
  663. }
  664. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  665. {
  666. return mv_hc_base_from_port(base, port) +
  667. MV_SATAHC_ARBTR_REG_SZ +
  668. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  669. }
  670. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  671. {
  672. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  673. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  674. return hc_mmio + ofs;
  675. }
  676. static inline void __iomem *mv_host_base(struct ata_host *host)
  677. {
  678. struct mv_host_priv *hpriv = host->private_data;
  679. return hpriv->base;
  680. }
  681. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  682. {
  683. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  684. }
  685. static inline int mv_get_hc_count(unsigned long port_flags)
  686. {
  687. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  688. }
  689. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  690. struct mv_host_priv *hpriv,
  691. struct mv_port_priv *pp)
  692. {
  693. u32 index;
  694. /*
  695. * initialize request queue
  696. */
  697. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  698. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  699. WARN_ON(pp->crqb_dma & 0x3ff);
  700. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
  701. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  702. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  703. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  704. /*
  705. * initialize response queue
  706. */
  707. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  708. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  709. WARN_ON(pp->crpb_dma & 0xff);
  710. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
  711. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  712. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  713. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  714. }
  715. static void mv_set_main_irq_mask(struct ata_host *host,
  716. u32 disable_bits, u32 enable_bits)
  717. {
  718. struct mv_host_priv *hpriv = host->private_data;
  719. u32 old_mask, new_mask;
  720. old_mask = hpriv->main_irq_mask;
  721. new_mask = (old_mask & ~disable_bits) | enable_bits;
  722. if (new_mask != old_mask) {
  723. hpriv->main_irq_mask = new_mask;
  724. writelfl(new_mask, hpriv->main_irq_mask_addr);
  725. }
  726. }
  727. static void mv_enable_port_irqs(struct ata_port *ap,
  728. unsigned int port_bits)
  729. {
  730. unsigned int shift, hardport, port = ap->port_no;
  731. u32 disable_bits, enable_bits;
  732. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  733. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  734. enable_bits = port_bits << shift;
  735. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  736. }
  737. /**
  738. * mv_start_dma - Enable eDMA engine
  739. * @base: port base address
  740. * @pp: port private data
  741. *
  742. * Verify the local cache of the eDMA state is accurate with a
  743. * WARN_ON.
  744. *
  745. * LOCKING:
  746. * Inherited from caller.
  747. */
  748. static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
  749. struct mv_port_priv *pp, u8 protocol)
  750. {
  751. int want_ncq = (protocol == ATA_PROT_NCQ);
  752. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  753. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  754. if (want_ncq != using_ncq)
  755. mv_stop_edma(ap);
  756. }
  757. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  758. struct mv_host_priv *hpriv = ap->host->private_data;
  759. int hardport = mv_hardport_from_port(ap->port_no);
  760. void __iomem *hc_mmio = mv_hc_base_from_port(
  761. mv_host_base(ap->host), ap->port_no);
  762. u32 hc_irq_cause;
  763. /* clear EDMA event indicators, if any */
  764. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  765. /* clear pending irq events */
  766. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  767. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  768. mv_edma_cfg(ap, want_ncq);
  769. /* clear FIS IRQ Cause */
  770. if (IS_GEN_IIE(hpriv))
  771. writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  772. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  773. mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
  774. writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
  775. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  776. }
  777. }
  778. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  779. {
  780. void __iomem *port_mmio = mv_ap_base(ap);
  781. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  782. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  783. int i;
  784. /*
  785. * Wait for the EDMA engine to finish transactions in progress.
  786. * No idea what a good "timeout" value might be, but measurements
  787. * indicate that it often requires hundreds of microseconds
  788. * with two drives in-use. So we use the 15msec value above
  789. * as a rough guess at what even more drives might require.
  790. */
  791. for (i = 0; i < timeout; ++i) {
  792. u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
  793. if ((edma_stat & empty_idle) == empty_idle)
  794. break;
  795. udelay(per_loop);
  796. }
  797. /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
  798. }
  799. /**
  800. * mv_stop_edma_engine - Disable eDMA engine
  801. * @port_mmio: io base address
  802. *
  803. * LOCKING:
  804. * Inherited from caller.
  805. */
  806. static int mv_stop_edma_engine(void __iomem *port_mmio)
  807. {
  808. int i;
  809. /* Disable eDMA. The disable bit auto clears. */
  810. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  811. /* Wait for the chip to confirm eDMA is off. */
  812. for (i = 10000; i > 0; i--) {
  813. u32 reg = readl(port_mmio + EDMA_CMD_OFS);
  814. if (!(reg & EDMA_EN))
  815. return 0;
  816. udelay(10);
  817. }
  818. return -EIO;
  819. }
  820. static int mv_stop_edma(struct ata_port *ap)
  821. {
  822. void __iomem *port_mmio = mv_ap_base(ap);
  823. struct mv_port_priv *pp = ap->private_data;
  824. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  825. return 0;
  826. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  827. mv_wait_for_edma_empty_idle(ap);
  828. if (mv_stop_edma_engine(port_mmio)) {
  829. ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
  830. return -EIO;
  831. }
  832. return 0;
  833. }
  834. #ifdef ATA_DEBUG
  835. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  836. {
  837. int b, w;
  838. for (b = 0; b < bytes; ) {
  839. DPRINTK("%p: ", start + b);
  840. for (w = 0; b < bytes && w < 4; w++) {
  841. printk("%08x ", readl(start + b));
  842. b += sizeof(u32);
  843. }
  844. printk("\n");
  845. }
  846. }
  847. #endif
  848. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  849. {
  850. #ifdef ATA_DEBUG
  851. int b, w;
  852. u32 dw;
  853. for (b = 0; b < bytes; ) {
  854. DPRINTK("%02x: ", b);
  855. for (w = 0; b < bytes && w < 4; w++) {
  856. (void) pci_read_config_dword(pdev, b, &dw);
  857. printk("%08x ", dw);
  858. b += sizeof(u32);
  859. }
  860. printk("\n");
  861. }
  862. #endif
  863. }
  864. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  865. struct pci_dev *pdev)
  866. {
  867. #ifdef ATA_DEBUG
  868. void __iomem *hc_base = mv_hc_base(mmio_base,
  869. port >> MV_PORT_HC_SHIFT);
  870. void __iomem *port_base;
  871. int start_port, num_ports, p, start_hc, num_hcs, hc;
  872. if (0 > port) {
  873. start_hc = start_port = 0;
  874. num_ports = 8; /* shld be benign for 4 port devs */
  875. num_hcs = 2;
  876. } else {
  877. start_hc = port >> MV_PORT_HC_SHIFT;
  878. start_port = port;
  879. num_ports = num_hcs = 1;
  880. }
  881. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  882. num_ports > 1 ? num_ports - 1 : start_port);
  883. if (NULL != pdev) {
  884. DPRINTK("PCI config space regs:\n");
  885. mv_dump_pci_cfg(pdev, 0x68);
  886. }
  887. DPRINTK("PCI regs:\n");
  888. mv_dump_mem(mmio_base+0xc00, 0x3c);
  889. mv_dump_mem(mmio_base+0xd00, 0x34);
  890. mv_dump_mem(mmio_base+0xf00, 0x4);
  891. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  892. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  893. hc_base = mv_hc_base(mmio_base, hc);
  894. DPRINTK("HC regs (HC %i):\n", hc);
  895. mv_dump_mem(hc_base, 0x1c);
  896. }
  897. for (p = start_port; p < start_port + num_ports; p++) {
  898. port_base = mv_port_base(mmio_base, p);
  899. DPRINTK("EDMA regs (port %i):\n", p);
  900. mv_dump_mem(port_base, 0x54);
  901. DPRINTK("SATA regs (port %i):\n", p);
  902. mv_dump_mem(port_base+0x300, 0x60);
  903. }
  904. #endif
  905. }
  906. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  907. {
  908. unsigned int ofs;
  909. switch (sc_reg_in) {
  910. case SCR_STATUS:
  911. case SCR_CONTROL:
  912. case SCR_ERROR:
  913. ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
  914. break;
  915. case SCR_ACTIVE:
  916. ofs = SATA_ACTIVE_OFS; /* active is not with the others */
  917. break;
  918. default:
  919. ofs = 0xffffffffU;
  920. break;
  921. }
  922. return ofs;
  923. }
  924. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  925. {
  926. unsigned int ofs = mv_scr_offset(sc_reg_in);
  927. if (ofs != 0xffffffffU) {
  928. *val = readl(mv_ap_base(link->ap) + ofs);
  929. return 0;
  930. } else
  931. return -EINVAL;
  932. }
  933. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  934. {
  935. unsigned int ofs = mv_scr_offset(sc_reg_in);
  936. if (ofs != 0xffffffffU) {
  937. writelfl(val, mv_ap_base(link->ap) + ofs);
  938. return 0;
  939. } else
  940. return -EINVAL;
  941. }
  942. static void mv6_dev_config(struct ata_device *adev)
  943. {
  944. /*
  945. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  946. *
  947. * Gen-II does not support NCQ over a port multiplier
  948. * (no FIS-based switching).
  949. */
  950. if (adev->flags & ATA_DFLAG_NCQ) {
  951. if (sata_pmp_attached(adev->link->ap)) {
  952. adev->flags &= ~ATA_DFLAG_NCQ;
  953. ata_dev_printk(adev, KERN_INFO,
  954. "NCQ disabled for command-based switching\n");
  955. }
  956. }
  957. }
  958. static int mv_qc_defer(struct ata_queued_cmd *qc)
  959. {
  960. struct ata_link *link = qc->dev->link;
  961. struct ata_port *ap = link->ap;
  962. struct mv_port_priv *pp = ap->private_data;
  963. /*
  964. * Don't allow new commands if we're in a delayed EH state
  965. * for NCQ and/or FIS-based switching.
  966. */
  967. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  968. return ATA_DEFER_PORT;
  969. /*
  970. * If the port is completely idle, then allow the new qc.
  971. */
  972. if (ap->nr_active_links == 0)
  973. return 0;
  974. /*
  975. * The port is operating in host queuing mode (EDMA) with NCQ
  976. * enabled, allow multiple NCQ commands. EDMA also allows
  977. * queueing multiple DMA commands but libata core currently
  978. * doesn't allow it.
  979. */
  980. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  981. (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
  982. return 0;
  983. return ATA_DEFER_PORT;
  984. }
  985. static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
  986. {
  987. u32 new_fiscfg, old_fiscfg;
  988. u32 new_ltmode, old_ltmode;
  989. u32 new_haltcond, old_haltcond;
  990. old_fiscfg = readl(port_mmio + FISCFG_OFS);
  991. old_ltmode = readl(port_mmio + LTMODE_OFS);
  992. old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
  993. new_fiscfg = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  994. new_ltmode = old_ltmode & ~LTMODE_BIT8;
  995. new_haltcond = old_haltcond | EDMA_ERR_DEV;
  996. if (want_fbs) {
  997. new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
  998. new_ltmode = old_ltmode | LTMODE_BIT8;
  999. if (want_ncq)
  1000. new_haltcond &= ~EDMA_ERR_DEV;
  1001. else
  1002. new_fiscfg |= FISCFG_WAIT_DEV_ERR;
  1003. }
  1004. if (new_fiscfg != old_fiscfg)
  1005. writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
  1006. if (new_ltmode != old_ltmode)
  1007. writelfl(new_ltmode, port_mmio + LTMODE_OFS);
  1008. if (new_haltcond != old_haltcond)
  1009. writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
  1010. }
  1011. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1012. {
  1013. struct mv_host_priv *hpriv = ap->host->private_data;
  1014. u32 old, new;
  1015. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1016. old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1017. if (want_ncq)
  1018. new = old | (1 << 22);
  1019. else
  1020. new = old & ~(1 << 22);
  1021. if (new != old)
  1022. writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1023. }
  1024. static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
  1025. {
  1026. u32 cfg;
  1027. struct mv_port_priv *pp = ap->private_data;
  1028. struct mv_host_priv *hpriv = ap->host->private_data;
  1029. void __iomem *port_mmio = mv_ap_base(ap);
  1030. /* set up non-NCQ EDMA configuration */
  1031. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1032. pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
  1033. if (IS_GEN_I(hpriv))
  1034. cfg |= (1 << 8); /* enab config burst size mask */
  1035. else if (IS_GEN_II(hpriv)) {
  1036. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1037. mv_60x1_errata_sata25(ap, want_ncq);
  1038. } else if (IS_GEN_IIE(hpriv)) {
  1039. int want_fbs = sata_pmp_attached(ap);
  1040. /*
  1041. * Possible future enhancement:
  1042. *
  1043. * The chip can use FBS with non-NCQ, if we allow it,
  1044. * But first we need to have the error handling in place
  1045. * for this mode (datasheet section 7.3.15.4.2.3).
  1046. * So disallow non-NCQ FBS for now.
  1047. */
  1048. want_fbs &= want_ncq;
  1049. mv_config_fbs(port_mmio, want_ncq, want_fbs);
  1050. if (want_fbs) {
  1051. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1052. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1053. }
  1054. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1055. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1056. if (!IS_SOC(hpriv))
  1057. cfg |= (1 << 18); /* enab early completion */
  1058. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1059. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1060. }
  1061. if (want_ncq) {
  1062. cfg |= EDMA_CFG_NCQ;
  1063. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1064. } else
  1065. pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
  1066. writelfl(cfg, port_mmio + EDMA_CFG_OFS);
  1067. }
  1068. static void mv_port_free_dma_mem(struct ata_port *ap)
  1069. {
  1070. struct mv_host_priv *hpriv = ap->host->private_data;
  1071. struct mv_port_priv *pp = ap->private_data;
  1072. int tag;
  1073. if (pp->crqb) {
  1074. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1075. pp->crqb = NULL;
  1076. }
  1077. if (pp->crpb) {
  1078. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1079. pp->crpb = NULL;
  1080. }
  1081. /*
  1082. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1083. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1084. */
  1085. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1086. if (pp->sg_tbl[tag]) {
  1087. if (tag == 0 || !IS_GEN_I(hpriv))
  1088. dma_pool_free(hpriv->sg_tbl_pool,
  1089. pp->sg_tbl[tag],
  1090. pp->sg_tbl_dma[tag]);
  1091. pp->sg_tbl[tag] = NULL;
  1092. }
  1093. }
  1094. }
  1095. /**
  1096. * mv_port_start - Port specific init/start routine.
  1097. * @ap: ATA channel to manipulate
  1098. *
  1099. * Allocate and point to DMA memory, init port private memory,
  1100. * zero indices.
  1101. *
  1102. * LOCKING:
  1103. * Inherited from caller.
  1104. */
  1105. static int mv_port_start(struct ata_port *ap)
  1106. {
  1107. struct device *dev = ap->host->dev;
  1108. struct mv_host_priv *hpriv = ap->host->private_data;
  1109. struct mv_port_priv *pp;
  1110. int tag;
  1111. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1112. if (!pp)
  1113. return -ENOMEM;
  1114. ap->private_data = pp;
  1115. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1116. if (!pp->crqb)
  1117. return -ENOMEM;
  1118. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1119. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1120. if (!pp->crpb)
  1121. goto out_port_free_dma_mem;
  1122. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1123. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1124. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1125. ap->flags |= ATA_FLAG_AN;
  1126. /*
  1127. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1128. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1129. */
  1130. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1131. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1132. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1133. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1134. if (!pp->sg_tbl[tag])
  1135. goto out_port_free_dma_mem;
  1136. } else {
  1137. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1138. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1139. }
  1140. }
  1141. return 0;
  1142. out_port_free_dma_mem:
  1143. mv_port_free_dma_mem(ap);
  1144. return -ENOMEM;
  1145. }
  1146. /**
  1147. * mv_port_stop - Port specific cleanup/stop routine.
  1148. * @ap: ATA channel to manipulate
  1149. *
  1150. * Stop DMA, cleanup port memory.
  1151. *
  1152. * LOCKING:
  1153. * This routine uses the host lock to protect the DMA stop.
  1154. */
  1155. static void mv_port_stop(struct ata_port *ap)
  1156. {
  1157. mv_stop_edma(ap);
  1158. mv_enable_port_irqs(ap, 0);
  1159. mv_port_free_dma_mem(ap);
  1160. }
  1161. /**
  1162. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1163. * @qc: queued command whose SG list to source from
  1164. *
  1165. * Populate the SG list and mark the last entry.
  1166. *
  1167. * LOCKING:
  1168. * Inherited from caller.
  1169. */
  1170. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1171. {
  1172. struct mv_port_priv *pp = qc->ap->private_data;
  1173. struct scatterlist *sg;
  1174. struct mv_sg *mv_sg, *last_sg = NULL;
  1175. unsigned int si;
  1176. mv_sg = pp->sg_tbl[qc->tag];
  1177. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1178. dma_addr_t addr = sg_dma_address(sg);
  1179. u32 sg_len = sg_dma_len(sg);
  1180. while (sg_len) {
  1181. u32 offset = addr & 0xffff;
  1182. u32 len = sg_len;
  1183. if ((offset + sg_len > 0x10000))
  1184. len = 0x10000 - offset;
  1185. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1186. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1187. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1188. sg_len -= len;
  1189. addr += len;
  1190. last_sg = mv_sg;
  1191. mv_sg++;
  1192. }
  1193. }
  1194. if (likely(last_sg))
  1195. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1196. }
  1197. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1198. {
  1199. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1200. (last ? CRQB_CMD_LAST : 0);
  1201. *cmdw = cpu_to_le16(tmp);
  1202. }
  1203. /**
  1204. * mv_qc_prep - Host specific command preparation.
  1205. * @qc: queued command to prepare
  1206. *
  1207. * This routine simply redirects to the general purpose routine
  1208. * if command is not DMA. Else, it handles prep of the CRQB
  1209. * (command request block), does some sanity checking, and calls
  1210. * the SG load routine.
  1211. *
  1212. * LOCKING:
  1213. * Inherited from caller.
  1214. */
  1215. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1216. {
  1217. struct ata_port *ap = qc->ap;
  1218. struct mv_port_priv *pp = ap->private_data;
  1219. __le16 *cw;
  1220. struct ata_taskfile *tf;
  1221. u16 flags = 0;
  1222. unsigned in_index;
  1223. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1224. (qc->tf.protocol != ATA_PROT_NCQ))
  1225. return;
  1226. /* Fill in command request block
  1227. */
  1228. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1229. flags |= CRQB_FLAG_READ;
  1230. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1231. flags |= qc->tag << CRQB_TAG_SHIFT;
  1232. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1233. /* get current queue index from software */
  1234. in_index = pp->req_idx;
  1235. pp->crqb[in_index].sg_addr =
  1236. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1237. pp->crqb[in_index].sg_addr_hi =
  1238. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1239. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1240. cw = &pp->crqb[in_index].ata_cmd[0];
  1241. tf = &qc->tf;
  1242. /* Sadly, the CRQB cannot accomodate all registers--there are
  1243. * only 11 bytes...so we must pick and choose required
  1244. * registers based on the command. So, we drop feature and
  1245. * hob_feature for [RW] DMA commands, but they are needed for
  1246. * NCQ. NCQ will drop hob_nsect, which is not needed there
  1247. * (nsect is used only for the tag; feat/hob_feat hold true nsect).
  1248. */
  1249. switch (tf->command) {
  1250. case ATA_CMD_READ:
  1251. case ATA_CMD_READ_EXT:
  1252. case ATA_CMD_WRITE:
  1253. case ATA_CMD_WRITE_EXT:
  1254. case ATA_CMD_WRITE_FUA_EXT:
  1255. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1256. break;
  1257. case ATA_CMD_FPDMA_READ:
  1258. case ATA_CMD_FPDMA_WRITE:
  1259. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1260. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1261. break;
  1262. default:
  1263. /* The only other commands EDMA supports in non-queued and
  1264. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1265. * of which are defined/used by Linux. If we get here, this
  1266. * driver needs work.
  1267. *
  1268. * FIXME: modify libata to give qc_prep a return value and
  1269. * return error here.
  1270. */
  1271. BUG_ON(tf->command);
  1272. break;
  1273. }
  1274. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1275. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1276. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1277. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1278. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1279. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1280. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1281. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1282. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1283. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1284. return;
  1285. mv_fill_sg(qc);
  1286. }
  1287. /**
  1288. * mv_qc_prep_iie - Host specific command preparation.
  1289. * @qc: queued command to prepare
  1290. *
  1291. * This routine simply redirects to the general purpose routine
  1292. * if command is not DMA. Else, it handles prep of the CRQB
  1293. * (command request block), does some sanity checking, and calls
  1294. * the SG load routine.
  1295. *
  1296. * LOCKING:
  1297. * Inherited from caller.
  1298. */
  1299. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1300. {
  1301. struct ata_port *ap = qc->ap;
  1302. struct mv_port_priv *pp = ap->private_data;
  1303. struct mv_crqb_iie *crqb;
  1304. struct ata_taskfile *tf;
  1305. unsigned in_index;
  1306. u32 flags = 0;
  1307. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1308. (qc->tf.protocol != ATA_PROT_NCQ))
  1309. return;
  1310. /* Fill in Gen IIE command request block */
  1311. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1312. flags |= CRQB_FLAG_READ;
  1313. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1314. flags |= qc->tag << CRQB_TAG_SHIFT;
  1315. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1316. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1317. /* get current queue index from software */
  1318. in_index = pp->req_idx;
  1319. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1320. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1321. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1322. crqb->flags = cpu_to_le32(flags);
  1323. tf = &qc->tf;
  1324. crqb->ata_cmd[0] = cpu_to_le32(
  1325. (tf->command << 16) |
  1326. (tf->feature << 24)
  1327. );
  1328. crqb->ata_cmd[1] = cpu_to_le32(
  1329. (tf->lbal << 0) |
  1330. (tf->lbam << 8) |
  1331. (tf->lbah << 16) |
  1332. (tf->device << 24)
  1333. );
  1334. crqb->ata_cmd[2] = cpu_to_le32(
  1335. (tf->hob_lbal << 0) |
  1336. (tf->hob_lbam << 8) |
  1337. (tf->hob_lbah << 16) |
  1338. (tf->hob_feature << 24)
  1339. );
  1340. crqb->ata_cmd[3] = cpu_to_le32(
  1341. (tf->nsect << 0) |
  1342. (tf->hob_nsect << 8)
  1343. );
  1344. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1345. return;
  1346. mv_fill_sg(qc);
  1347. }
  1348. /**
  1349. * mv_qc_issue - Initiate a command to the host
  1350. * @qc: queued command to start
  1351. *
  1352. * This routine simply redirects to the general purpose routine
  1353. * if command is not DMA. Else, it sanity checks our local
  1354. * caches of the request producer/consumer indices then enables
  1355. * DMA and bumps the request producer index.
  1356. *
  1357. * LOCKING:
  1358. * Inherited from caller.
  1359. */
  1360. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  1361. {
  1362. struct ata_port *ap = qc->ap;
  1363. void __iomem *port_mmio = mv_ap_base(ap);
  1364. struct mv_port_priv *pp = ap->private_data;
  1365. u32 in_index;
  1366. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1367. (qc->tf.protocol != ATA_PROT_NCQ)) {
  1368. static int limit_warnings = 10;
  1369. /*
  1370. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  1371. *
  1372. * Someday, we might implement special polling workarounds
  1373. * for these, but it all seems rather unnecessary since we
  1374. * normally use only DMA for commands which transfer more
  1375. * than a single block of data.
  1376. *
  1377. * Much of the time, this could just work regardless.
  1378. * So for now, just log the incident, and allow the attempt.
  1379. */
  1380. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  1381. --limit_warnings;
  1382. ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
  1383. ": attempting PIO w/multiple DRQ: "
  1384. "this may fail due to h/w errata\n");
  1385. }
  1386. /*
  1387. * We're about to send a non-EDMA capable command to the
  1388. * port. Turn off EDMA so there won't be problems accessing
  1389. * shadow block, etc registers.
  1390. */
  1391. mv_stop_edma(ap);
  1392. mv_enable_port_irqs(ap, ERR_IRQ);
  1393. mv_pmp_select(ap, qc->dev->link->pmp);
  1394. return ata_sff_qc_issue(qc);
  1395. }
  1396. mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
  1397. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1398. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  1399. /* and write the request in pointer to kick the EDMA to life */
  1400. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  1401. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  1402. return 0;
  1403. }
  1404. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  1405. {
  1406. struct mv_port_priv *pp = ap->private_data;
  1407. struct ata_queued_cmd *qc;
  1408. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1409. return NULL;
  1410. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1411. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  1412. qc = NULL;
  1413. return qc;
  1414. }
  1415. static void mv_pmp_error_handler(struct ata_port *ap)
  1416. {
  1417. unsigned int pmp, pmp_map;
  1418. struct mv_port_priv *pp = ap->private_data;
  1419. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  1420. /*
  1421. * Perform NCQ error analysis on failed PMPs
  1422. * before we freeze the port entirely.
  1423. *
  1424. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  1425. */
  1426. pmp_map = pp->delayed_eh_pmp_map;
  1427. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  1428. for (pmp = 0; pmp_map != 0; pmp++) {
  1429. unsigned int this_pmp = (1 << pmp);
  1430. if (pmp_map & this_pmp) {
  1431. struct ata_link *link = &ap->pmp_link[pmp];
  1432. pmp_map &= ~this_pmp;
  1433. ata_eh_analyze_ncq_error(link);
  1434. }
  1435. }
  1436. ata_port_freeze(ap);
  1437. }
  1438. sata_pmp_error_handler(ap);
  1439. }
  1440. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  1441. {
  1442. void __iomem *port_mmio = mv_ap_base(ap);
  1443. return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
  1444. }
  1445. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  1446. {
  1447. struct ata_eh_info *ehi;
  1448. unsigned int pmp;
  1449. /*
  1450. * Initialize EH info for PMPs which saw device errors
  1451. */
  1452. ehi = &ap->link.eh_info;
  1453. for (pmp = 0; pmp_map != 0; pmp++) {
  1454. unsigned int this_pmp = (1 << pmp);
  1455. if (pmp_map & this_pmp) {
  1456. struct ata_link *link = &ap->pmp_link[pmp];
  1457. pmp_map &= ~this_pmp;
  1458. ehi = &link->eh_info;
  1459. ata_ehi_clear_desc(ehi);
  1460. ata_ehi_push_desc(ehi, "dev err");
  1461. ehi->err_mask |= AC_ERR_DEV;
  1462. ehi->action |= ATA_EH_RESET;
  1463. ata_link_abort(link);
  1464. }
  1465. }
  1466. }
  1467. static int mv_req_q_empty(struct ata_port *ap)
  1468. {
  1469. void __iomem *port_mmio = mv_ap_base(ap);
  1470. u32 in_ptr, out_ptr;
  1471. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
  1472. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1473. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
  1474. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1475. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  1476. }
  1477. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  1478. {
  1479. struct mv_port_priv *pp = ap->private_data;
  1480. int failed_links;
  1481. unsigned int old_map, new_map;
  1482. /*
  1483. * Device error during FBS+NCQ operation:
  1484. *
  1485. * Set a port flag to prevent further I/O being enqueued.
  1486. * Leave the EDMA running to drain outstanding commands from this port.
  1487. * Perform the post-mortem/EH only when all responses are complete.
  1488. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  1489. */
  1490. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  1491. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  1492. pp->delayed_eh_pmp_map = 0;
  1493. }
  1494. old_map = pp->delayed_eh_pmp_map;
  1495. new_map = old_map | mv_get_err_pmp_map(ap);
  1496. if (old_map != new_map) {
  1497. pp->delayed_eh_pmp_map = new_map;
  1498. mv_pmp_eh_prep(ap, new_map & ~old_map);
  1499. }
  1500. failed_links = hweight16(new_map);
  1501. ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
  1502. "failed_links=%d nr_active_links=%d\n",
  1503. __func__, pp->delayed_eh_pmp_map,
  1504. ap->qc_active, failed_links,
  1505. ap->nr_active_links);
  1506. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  1507. mv_process_crpb_entries(ap, pp);
  1508. mv_stop_edma(ap);
  1509. mv_eh_freeze(ap);
  1510. ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
  1511. return 1; /* handled */
  1512. }
  1513. ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
  1514. return 1; /* handled */
  1515. }
  1516. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  1517. {
  1518. /*
  1519. * Possible future enhancement:
  1520. *
  1521. * FBS+non-NCQ operation is not yet implemented.
  1522. * See related notes in mv_edma_cfg().
  1523. *
  1524. * Device error during FBS+non-NCQ operation:
  1525. *
  1526. * We need to snapshot the shadow registers for each failed command.
  1527. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  1528. */
  1529. return 0; /* not handled */
  1530. }
  1531. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  1532. {
  1533. struct mv_port_priv *pp = ap->private_data;
  1534. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  1535. return 0; /* EDMA was not active: not handled */
  1536. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  1537. return 0; /* FBS was not active: not handled */
  1538. if (!(edma_err_cause & EDMA_ERR_DEV))
  1539. return 0; /* non DEV error: not handled */
  1540. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  1541. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  1542. return 0; /* other problems: not handled */
  1543. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  1544. /*
  1545. * EDMA should NOT have self-disabled for this case.
  1546. * If it did, then something is wrong elsewhere,
  1547. * and we cannot handle it here.
  1548. */
  1549. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  1550. ata_port_printk(ap, KERN_WARNING,
  1551. "%s: err_cause=0x%x pp_flags=0x%x\n",
  1552. __func__, edma_err_cause, pp->pp_flags);
  1553. return 0; /* not handled */
  1554. }
  1555. return mv_handle_fbs_ncq_dev_err(ap);
  1556. } else {
  1557. /*
  1558. * EDMA should have self-disabled for this case.
  1559. * If it did not, then something is wrong elsewhere,
  1560. * and we cannot handle it here.
  1561. */
  1562. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  1563. ata_port_printk(ap, KERN_WARNING,
  1564. "%s: err_cause=0x%x pp_flags=0x%x\n",
  1565. __func__, edma_err_cause, pp->pp_flags);
  1566. return 0; /* not handled */
  1567. }
  1568. return mv_handle_fbs_non_ncq_dev_err(ap);
  1569. }
  1570. return 0; /* not handled */
  1571. }
  1572. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  1573. {
  1574. struct ata_eh_info *ehi = &ap->link.eh_info;
  1575. char *when = "idle";
  1576. ata_ehi_clear_desc(ehi);
  1577. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  1578. when = "disabled";
  1579. } else if (edma_was_enabled) {
  1580. when = "EDMA enabled";
  1581. } else {
  1582. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1583. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  1584. when = "polling";
  1585. }
  1586. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  1587. ehi->err_mask |= AC_ERR_OTHER;
  1588. ehi->action |= ATA_EH_RESET;
  1589. ata_port_freeze(ap);
  1590. }
  1591. /**
  1592. * mv_err_intr - Handle error interrupts on the port
  1593. * @ap: ATA channel to manipulate
  1594. *
  1595. * Most cases require a full reset of the chip's state machine,
  1596. * which also performs a COMRESET.
  1597. * Also, if the port disabled DMA, update our cached copy to match.
  1598. *
  1599. * LOCKING:
  1600. * Inherited from caller.
  1601. */
  1602. static void mv_err_intr(struct ata_port *ap)
  1603. {
  1604. void __iomem *port_mmio = mv_ap_base(ap);
  1605. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  1606. u32 fis_cause = 0;
  1607. struct mv_port_priv *pp = ap->private_data;
  1608. struct mv_host_priv *hpriv = ap->host->private_data;
  1609. unsigned int action = 0, err_mask = 0;
  1610. struct ata_eh_info *ehi = &ap->link.eh_info;
  1611. struct ata_queued_cmd *qc;
  1612. int abort = 0;
  1613. /*
  1614. * Read and clear the SError and err_cause bits.
  1615. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  1616. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  1617. */
  1618. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  1619. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  1620. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1621. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  1622. fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  1623. writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  1624. }
  1625. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1626. if (edma_err_cause & EDMA_ERR_DEV) {
  1627. /*
  1628. * Device errors during FIS-based switching operation
  1629. * require special handling.
  1630. */
  1631. if (mv_handle_dev_err(ap, edma_err_cause))
  1632. return;
  1633. }
  1634. qc = mv_get_active_qc(ap);
  1635. ata_ehi_clear_desc(ehi);
  1636. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  1637. edma_err_cause, pp->pp_flags);
  1638. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  1639. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  1640. if (fis_cause & SATA_FIS_IRQ_AN) {
  1641. u32 ec = edma_err_cause &
  1642. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  1643. sata_async_notification(ap);
  1644. if (!ec)
  1645. return; /* Just an AN; no need for the nukes */
  1646. ata_ehi_push_desc(ehi, "SDB notify");
  1647. }
  1648. }
  1649. /*
  1650. * All generations share these EDMA error cause bits:
  1651. */
  1652. if (edma_err_cause & EDMA_ERR_DEV) {
  1653. err_mask |= AC_ERR_DEV;
  1654. action |= ATA_EH_RESET;
  1655. ata_ehi_push_desc(ehi, "dev error");
  1656. }
  1657. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  1658. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  1659. EDMA_ERR_INTRL_PAR)) {
  1660. err_mask |= AC_ERR_ATA_BUS;
  1661. action |= ATA_EH_RESET;
  1662. ata_ehi_push_desc(ehi, "parity error");
  1663. }
  1664. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  1665. ata_ehi_hotplugged(ehi);
  1666. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  1667. "dev disconnect" : "dev connect");
  1668. action |= ATA_EH_RESET;
  1669. }
  1670. /*
  1671. * Gen-I has a different SELF_DIS bit,
  1672. * different FREEZE bits, and no SERR bit:
  1673. */
  1674. if (IS_GEN_I(hpriv)) {
  1675. eh_freeze_mask = EDMA_EH_FREEZE_5;
  1676. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  1677. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1678. ata_ehi_push_desc(ehi, "EDMA self-disable");
  1679. }
  1680. } else {
  1681. eh_freeze_mask = EDMA_EH_FREEZE;
  1682. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  1683. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1684. ata_ehi_push_desc(ehi, "EDMA self-disable");
  1685. }
  1686. if (edma_err_cause & EDMA_ERR_SERR) {
  1687. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  1688. err_mask |= AC_ERR_ATA_BUS;
  1689. action |= ATA_EH_RESET;
  1690. }
  1691. }
  1692. if (!err_mask) {
  1693. err_mask = AC_ERR_OTHER;
  1694. action |= ATA_EH_RESET;
  1695. }
  1696. ehi->serror |= serr;
  1697. ehi->action |= action;
  1698. if (qc)
  1699. qc->err_mask |= err_mask;
  1700. else
  1701. ehi->err_mask |= err_mask;
  1702. if (err_mask == AC_ERR_DEV) {
  1703. /*
  1704. * Cannot do ata_port_freeze() here,
  1705. * because it would kill PIO access,
  1706. * which is needed for further diagnosis.
  1707. */
  1708. mv_eh_freeze(ap);
  1709. abort = 1;
  1710. } else if (edma_err_cause & eh_freeze_mask) {
  1711. /*
  1712. * Note to self: ata_port_freeze() calls ata_port_abort()
  1713. */
  1714. ata_port_freeze(ap);
  1715. } else {
  1716. abort = 1;
  1717. }
  1718. if (abort) {
  1719. if (qc)
  1720. ata_link_abort(qc->dev->link);
  1721. else
  1722. ata_port_abort(ap);
  1723. }
  1724. }
  1725. static void mv_process_crpb_response(struct ata_port *ap,
  1726. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  1727. {
  1728. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
  1729. if (qc) {
  1730. u8 ata_status;
  1731. u16 edma_status = le16_to_cpu(response->flags);
  1732. /*
  1733. * edma_status from a response queue entry:
  1734. * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
  1735. * MSB is saved ATA status from command completion.
  1736. */
  1737. if (!ncq_enabled) {
  1738. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  1739. if (err_cause) {
  1740. /*
  1741. * Error will be seen/handled by mv_err_intr().
  1742. * So do nothing at all here.
  1743. */
  1744. return;
  1745. }
  1746. }
  1747. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  1748. if (!ac_err_mask(ata_status))
  1749. ata_qc_complete(qc);
  1750. /* else: leave it for mv_err_intr() */
  1751. } else {
  1752. ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
  1753. __func__, tag);
  1754. }
  1755. }
  1756. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  1757. {
  1758. void __iomem *port_mmio = mv_ap_base(ap);
  1759. struct mv_host_priv *hpriv = ap->host->private_data;
  1760. u32 in_index;
  1761. bool work_done = false;
  1762. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  1763. /* Get the hardware queue position index */
  1764. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
  1765. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1766. /* Process new responses from since the last time we looked */
  1767. while (in_index != pp->resp_idx) {
  1768. unsigned int tag;
  1769. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  1770. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1771. if (IS_GEN_I(hpriv)) {
  1772. /* 50xx: no NCQ, only one command active at a time */
  1773. tag = ap->link.active_tag;
  1774. } else {
  1775. /* Gen II/IIE: get command tag from CRPB entry */
  1776. tag = le16_to_cpu(response->id) & 0x1f;
  1777. }
  1778. mv_process_crpb_response(ap, response, tag, ncq_enabled);
  1779. work_done = true;
  1780. }
  1781. /* Update the software queue position index in hardware */
  1782. if (work_done)
  1783. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  1784. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  1785. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  1786. }
  1787. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  1788. {
  1789. struct mv_port_priv *pp;
  1790. int edma_was_enabled;
  1791. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  1792. mv_unexpected_intr(ap, 0);
  1793. return;
  1794. }
  1795. /*
  1796. * Grab a snapshot of the EDMA_EN flag setting,
  1797. * so that we have a consistent view for this port,
  1798. * even if something we call of our routines changes it.
  1799. */
  1800. pp = ap->private_data;
  1801. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  1802. /*
  1803. * Process completed CRPB response(s) before other events.
  1804. */
  1805. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  1806. mv_process_crpb_entries(ap, pp);
  1807. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1808. mv_handle_fbs_ncq_dev_err(ap);
  1809. }
  1810. /*
  1811. * Handle chip-reported errors, or continue on to handle PIO.
  1812. */
  1813. if (unlikely(port_cause & ERR_IRQ)) {
  1814. mv_err_intr(ap);
  1815. } else if (!edma_was_enabled) {
  1816. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  1817. if (qc)
  1818. ata_sff_host_intr(ap, qc);
  1819. else
  1820. mv_unexpected_intr(ap, edma_was_enabled);
  1821. }
  1822. }
  1823. /**
  1824. * mv_host_intr - Handle all interrupts on the given host controller
  1825. * @host: host specific structure
  1826. * @main_irq_cause: Main interrupt cause register for the chip.
  1827. *
  1828. * LOCKING:
  1829. * Inherited from caller.
  1830. */
  1831. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  1832. {
  1833. struct mv_host_priv *hpriv = host->private_data;
  1834. void __iomem *mmio = hpriv->base, *hc_mmio;
  1835. unsigned int handled = 0, port;
  1836. for (port = 0; port < hpriv->n_ports; port++) {
  1837. struct ata_port *ap = host->ports[port];
  1838. unsigned int p, shift, hardport, port_cause;
  1839. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  1840. /*
  1841. * Each hc within the host has its own hc_irq_cause register,
  1842. * where the interrupting ports bits get ack'd.
  1843. */
  1844. if (hardport == 0) { /* first port on this hc ? */
  1845. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  1846. u32 port_mask, ack_irqs;
  1847. /*
  1848. * Skip this entire hc if nothing pending for any ports
  1849. */
  1850. if (!hc_cause) {
  1851. port += MV_PORTS_PER_HC - 1;
  1852. continue;
  1853. }
  1854. /*
  1855. * We don't need/want to read the hc_irq_cause register,
  1856. * because doing so hurts performance, and
  1857. * main_irq_cause already gives us everything we need.
  1858. *
  1859. * But we do have to *write* to the hc_irq_cause to ack
  1860. * the ports that we are handling this time through.
  1861. *
  1862. * This requires that we create a bitmap for those
  1863. * ports which interrupted us, and use that bitmap
  1864. * to ack (only) those ports via hc_irq_cause.
  1865. */
  1866. ack_irqs = 0;
  1867. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  1868. if ((port + p) >= hpriv->n_ports)
  1869. break;
  1870. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  1871. if (hc_cause & port_mask)
  1872. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  1873. }
  1874. hc_mmio = mv_hc_base_from_port(mmio, port);
  1875. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
  1876. handled = 1;
  1877. }
  1878. /*
  1879. * Handle interrupts signalled for this port:
  1880. */
  1881. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  1882. if (port_cause)
  1883. mv_port_intr(ap, port_cause);
  1884. }
  1885. return handled;
  1886. }
  1887. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  1888. {
  1889. struct mv_host_priv *hpriv = host->private_data;
  1890. struct ata_port *ap;
  1891. struct ata_queued_cmd *qc;
  1892. struct ata_eh_info *ehi;
  1893. unsigned int i, err_mask, printed = 0;
  1894. u32 err_cause;
  1895. err_cause = readl(mmio + hpriv->irq_cause_ofs);
  1896. dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
  1897. err_cause);
  1898. DPRINTK("All regs @ PCI error\n");
  1899. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  1900. writelfl(0, mmio + hpriv->irq_cause_ofs);
  1901. for (i = 0; i < host->n_ports; i++) {
  1902. ap = host->ports[i];
  1903. if (!ata_link_offline(&ap->link)) {
  1904. ehi = &ap->link.eh_info;
  1905. ata_ehi_clear_desc(ehi);
  1906. if (!printed++)
  1907. ata_ehi_push_desc(ehi,
  1908. "PCI err cause 0x%08x", err_cause);
  1909. err_mask = AC_ERR_HOST_BUS;
  1910. ehi->action = ATA_EH_RESET;
  1911. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1912. if (qc)
  1913. qc->err_mask |= err_mask;
  1914. else
  1915. ehi->err_mask |= err_mask;
  1916. ata_port_freeze(ap);
  1917. }
  1918. }
  1919. return 1; /* handled */
  1920. }
  1921. /**
  1922. * mv_interrupt - Main interrupt event handler
  1923. * @irq: unused
  1924. * @dev_instance: private data; in this case the host structure
  1925. *
  1926. * Read the read only register to determine if any host
  1927. * controllers have pending interrupts. If so, call lower level
  1928. * routine to handle. Also check for PCI errors which are only
  1929. * reported here.
  1930. *
  1931. * LOCKING:
  1932. * This routine holds the host lock while processing pending
  1933. * interrupts.
  1934. */
  1935. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  1936. {
  1937. struct ata_host *host = dev_instance;
  1938. struct mv_host_priv *hpriv = host->private_data;
  1939. unsigned int handled = 0;
  1940. u32 main_irq_cause, pending_irqs;
  1941. spin_lock(&host->lock);
  1942. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  1943. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  1944. /*
  1945. * Deal with cases where we either have nothing pending, or have read
  1946. * a bogus register value which can indicate HW removal or PCI fault.
  1947. */
  1948. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  1949. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  1950. handled = mv_pci_error(host, hpriv->base);
  1951. else
  1952. handled = mv_host_intr(host, pending_irqs);
  1953. }
  1954. spin_unlock(&host->lock);
  1955. return IRQ_RETVAL(handled);
  1956. }
  1957. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  1958. {
  1959. unsigned int ofs;
  1960. switch (sc_reg_in) {
  1961. case SCR_STATUS:
  1962. case SCR_ERROR:
  1963. case SCR_CONTROL:
  1964. ofs = sc_reg_in * sizeof(u32);
  1965. break;
  1966. default:
  1967. ofs = 0xffffffffU;
  1968. break;
  1969. }
  1970. return ofs;
  1971. }
  1972. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  1973. {
  1974. struct mv_host_priv *hpriv = link->ap->host->private_data;
  1975. void __iomem *mmio = hpriv->base;
  1976. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  1977. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1978. if (ofs != 0xffffffffU) {
  1979. *val = readl(addr + ofs);
  1980. return 0;
  1981. } else
  1982. return -EINVAL;
  1983. }
  1984. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1985. {
  1986. struct mv_host_priv *hpriv = link->ap->host->private_data;
  1987. void __iomem *mmio = hpriv->base;
  1988. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  1989. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1990. if (ofs != 0xffffffffU) {
  1991. writelfl(val, addr + ofs);
  1992. return 0;
  1993. } else
  1994. return -EINVAL;
  1995. }
  1996. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  1997. {
  1998. struct pci_dev *pdev = to_pci_dev(host->dev);
  1999. int early_5080;
  2000. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2001. if (!early_5080) {
  2002. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2003. tmp |= (1 << 0);
  2004. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2005. }
  2006. mv_reset_pci_bus(host, mmio);
  2007. }
  2008. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2009. {
  2010. writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
  2011. }
  2012. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2013. void __iomem *mmio)
  2014. {
  2015. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2016. u32 tmp;
  2017. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2018. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2019. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2020. }
  2021. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2022. {
  2023. u32 tmp;
  2024. writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
  2025. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2026. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2027. tmp |= ~(1 << 0);
  2028. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2029. }
  2030. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2031. unsigned int port)
  2032. {
  2033. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2034. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2035. u32 tmp;
  2036. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2037. if (fix_apm_sq) {
  2038. tmp = readl(phy_mmio + MV5_LTMODE_OFS);
  2039. tmp |= (1 << 19);
  2040. writel(tmp, phy_mmio + MV5_LTMODE_OFS);
  2041. tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
  2042. tmp &= ~0x3;
  2043. tmp |= 0x1;
  2044. writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
  2045. }
  2046. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2047. tmp &= ~mask;
  2048. tmp |= hpriv->signal[port].pre;
  2049. tmp |= hpriv->signal[port].amps;
  2050. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2051. }
  2052. #undef ZERO
  2053. #define ZERO(reg) writel(0, port_mmio + (reg))
  2054. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2055. unsigned int port)
  2056. {
  2057. void __iomem *port_mmio = mv_port_base(mmio, port);
  2058. mv_reset_channel(hpriv, mmio, port);
  2059. ZERO(0x028); /* command */
  2060. writel(0x11f, port_mmio + EDMA_CFG_OFS);
  2061. ZERO(0x004); /* timer */
  2062. ZERO(0x008); /* irq err cause */
  2063. ZERO(0x00c); /* irq err mask */
  2064. ZERO(0x010); /* rq bah */
  2065. ZERO(0x014); /* rq inp */
  2066. ZERO(0x018); /* rq outp */
  2067. ZERO(0x01c); /* respq bah */
  2068. ZERO(0x024); /* respq outp */
  2069. ZERO(0x020); /* respq inp */
  2070. ZERO(0x02c); /* test control */
  2071. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2072. }
  2073. #undef ZERO
  2074. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2075. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2076. unsigned int hc)
  2077. {
  2078. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2079. u32 tmp;
  2080. ZERO(0x00c);
  2081. ZERO(0x010);
  2082. ZERO(0x014);
  2083. ZERO(0x018);
  2084. tmp = readl(hc_mmio + 0x20);
  2085. tmp &= 0x1c1c1c1c;
  2086. tmp |= 0x03030303;
  2087. writel(tmp, hc_mmio + 0x20);
  2088. }
  2089. #undef ZERO
  2090. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2091. unsigned int n_hc)
  2092. {
  2093. unsigned int hc, port;
  2094. for (hc = 0; hc < n_hc; hc++) {
  2095. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2096. mv5_reset_hc_port(hpriv, mmio,
  2097. (hc * MV_PORTS_PER_HC) + port);
  2098. mv5_reset_one_hc(hpriv, mmio, hc);
  2099. }
  2100. return 0;
  2101. }
  2102. #undef ZERO
  2103. #define ZERO(reg) writel(0, mmio + (reg))
  2104. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2105. {
  2106. struct mv_host_priv *hpriv = host->private_data;
  2107. u32 tmp;
  2108. tmp = readl(mmio + MV_PCI_MODE_OFS);
  2109. tmp &= 0xff00ffff;
  2110. writel(tmp, mmio + MV_PCI_MODE_OFS);
  2111. ZERO(MV_PCI_DISC_TIMER);
  2112. ZERO(MV_PCI_MSI_TRIGGER);
  2113. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
  2114. ZERO(MV_PCI_SERR_MASK);
  2115. ZERO(hpriv->irq_cause_ofs);
  2116. ZERO(hpriv->irq_mask_ofs);
  2117. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2118. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2119. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2120. ZERO(MV_PCI_ERR_COMMAND);
  2121. }
  2122. #undef ZERO
  2123. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2124. {
  2125. u32 tmp;
  2126. mv5_reset_flash(hpriv, mmio);
  2127. tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
  2128. tmp &= 0x3;
  2129. tmp |= (1 << 5) | (1 << 6);
  2130. writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
  2131. }
  2132. /**
  2133. * mv6_reset_hc - Perform the 6xxx global soft reset
  2134. * @mmio: base address of the HBA
  2135. *
  2136. * This routine only applies to 6xxx parts.
  2137. *
  2138. * LOCKING:
  2139. * Inherited from caller.
  2140. */
  2141. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2142. unsigned int n_hc)
  2143. {
  2144. void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
  2145. int i, rc = 0;
  2146. u32 t;
  2147. /* Following procedure defined in PCI "main command and status
  2148. * register" table.
  2149. */
  2150. t = readl(reg);
  2151. writel(t | STOP_PCI_MASTER, reg);
  2152. for (i = 0; i < 1000; i++) {
  2153. udelay(1);
  2154. t = readl(reg);
  2155. if (PCI_MASTER_EMPTY & t)
  2156. break;
  2157. }
  2158. if (!(PCI_MASTER_EMPTY & t)) {
  2159. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  2160. rc = 1;
  2161. goto done;
  2162. }
  2163. /* set reset */
  2164. i = 5;
  2165. do {
  2166. writel(t | GLOB_SFT_RST, reg);
  2167. t = readl(reg);
  2168. udelay(1);
  2169. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2170. if (!(GLOB_SFT_RST & t)) {
  2171. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  2172. rc = 1;
  2173. goto done;
  2174. }
  2175. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2176. i = 5;
  2177. do {
  2178. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2179. t = readl(reg);
  2180. udelay(1);
  2181. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2182. if (GLOB_SFT_RST & t) {
  2183. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  2184. rc = 1;
  2185. }
  2186. done:
  2187. return rc;
  2188. }
  2189. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2190. void __iomem *mmio)
  2191. {
  2192. void __iomem *port_mmio;
  2193. u32 tmp;
  2194. tmp = readl(mmio + MV_RESET_CFG_OFS);
  2195. if ((tmp & (1 << 0)) == 0) {
  2196. hpriv->signal[idx].amps = 0x7 << 8;
  2197. hpriv->signal[idx].pre = 0x1 << 5;
  2198. return;
  2199. }
  2200. port_mmio = mv_port_base(mmio, idx);
  2201. tmp = readl(port_mmio + PHY_MODE2);
  2202. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2203. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2204. }
  2205. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2206. {
  2207. writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
  2208. }
  2209. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2210. unsigned int port)
  2211. {
  2212. void __iomem *port_mmio = mv_port_base(mmio, port);
  2213. u32 hp_flags = hpriv->hp_flags;
  2214. int fix_phy_mode2 =
  2215. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2216. int fix_phy_mode4 =
  2217. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2218. u32 m2, m3;
  2219. if (fix_phy_mode2) {
  2220. m2 = readl(port_mmio + PHY_MODE2);
  2221. m2 &= ~(1 << 16);
  2222. m2 |= (1 << 31);
  2223. writel(m2, port_mmio + PHY_MODE2);
  2224. udelay(200);
  2225. m2 = readl(port_mmio + PHY_MODE2);
  2226. m2 &= ~((1 << 16) | (1 << 31));
  2227. writel(m2, port_mmio + PHY_MODE2);
  2228. udelay(200);
  2229. }
  2230. /*
  2231. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2232. * Achieves better receiver noise performance than the h/w default:
  2233. */
  2234. m3 = readl(port_mmio + PHY_MODE3);
  2235. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2236. /* Guideline 88F5182 (GL# SATA-S11) */
  2237. if (IS_SOC(hpriv))
  2238. m3 &= ~0x1c;
  2239. if (fix_phy_mode4) {
  2240. u32 m4 = readl(port_mmio + PHY_MODE4);
  2241. /*
  2242. * Enforce reserved-bit restrictions on GenIIe devices only.
  2243. * For earlier chipsets, force only the internal config field
  2244. * (workaround for errata FEr SATA#10 part 1).
  2245. */
  2246. if (IS_GEN_IIE(hpriv))
  2247. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2248. else
  2249. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2250. writel(m4, port_mmio + PHY_MODE4);
  2251. }
  2252. /*
  2253. * Workaround for 60x1-B2 errata SATA#13:
  2254. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2255. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2256. */
  2257. writel(m3, port_mmio + PHY_MODE3);
  2258. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2259. m2 = readl(port_mmio + PHY_MODE2);
  2260. m2 &= ~MV_M2_PREAMP_MASK;
  2261. m2 |= hpriv->signal[port].amps;
  2262. m2 |= hpriv->signal[port].pre;
  2263. m2 &= ~(1 << 16);
  2264. /* according to mvSata 3.6.1, some IIE values are fixed */
  2265. if (IS_GEN_IIE(hpriv)) {
  2266. m2 &= ~0xC30FF01F;
  2267. m2 |= 0x0000900F;
  2268. }
  2269. writel(m2, port_mmio + PHY_MODE2);
  2270. }
  2271. /* TODO: use the generic LED interface to configure the SATA Presence */
  2272. /* & Acitivy LEDs on the board */
  2273. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2274. void __iomem *mmio)
  2275. {
  2276. return;
  2277. }
  2278. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2279. void __iomem *mmio)
  2280. {
  2281. void __iomem *port_mmio;
  2282. u32 tmp;
  2283. port_mmio = mv_port_base(mmio, idx);
  2284. tmp = readl(port_mmio + PHY_MODE2);
  2285. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2286. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2287. }
  2288. #undef ZERO
  2289. #define ZERO(reg) writel(0, port_mmio + (reg))
  2290. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  2291. void __iomem *mmio, unsigned int port)
  2292. {
  2293. void __iomem *port_mmio = mv_port_base(mmio, port);
  2294. mv_reset_channel(hpriv, mmio, port);
  2295. ZERO(0x028); /* command */
  2296. writel(0x101f, port_mmio + EDMA_CFG_OFS);
  2297. ZERO(0x004); /* timer */
  2298. ZERO(0x008); /* irq err cause */
  2299. ZERO(0x00c); /* irq err mask */
  2300. ZERO(0x010); /* rq bah */
  2301. ZERO(0x014); /* rq inp */
  2302. ZERO(0x018); /* rq outp */
  2303. ZERO(0x01c); /* respq bah */
  2304. ZERO(0x024); /* respq outp */
  2305. ZERO(0x020); /* respq inp */
  2306. ZERO(0x02c); /* test control */
  2307. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2308. }
  2309. #undef ZERO
  2310. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2311. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  2312. void __iomem *mmio)
  2313. {
  2314. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  2315. ZERO(0x00c);
  2316. ZERO(0x010);
  2317. ZERO(0x014);
  2318. }
  2319. #undef ZERO
  2320. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  2321. void __iomem *mmio, unsigned int n_hc)
  2322. {
  2323. unsigned int port;
  2324. for (port = 0; port < hpriv->n_ports; port++)
  2325. mv_soc_reset_hc_port(hpriv, mmio, port);
  2326. mv_soc_reset_one_hc(hpriv, mmio);
  2327. return 0;
  2328. }
  2329. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  2330. void __iomem *mmio)
  2331. {
  2332. return;
  2333. }
  2334. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  2335. {
  2336. return;
  2337. }
  2338. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  2339. {
  2340. u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
  2341. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  2342. if (want_gen2i)
  2343. ifcfg |= (1 << 7); /* enable gen2i speed */
  2344. writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
  2345. }
  2346. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  2347. unsigned int port_no)
  2348. {
  2349. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  2350. /*
  2351. * The datasheet warns against setting EDMA_RESET when EDMA is active
  2352. * (but doesn't say what the problem might be). So we first try
  2353. * to disable the EDMA engine before doing the EDMA_RESET operation.
  2354. */
  2355. mv_stop_edma_engine(port_mmio);
  2356. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2357. if (!IS_GEN_I(hpriv)) {
  2358. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  2359. mv_setup_ifcfg(port_mmio, 1);
  2360. }
  2361. /*
  2362. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  2363. * link, and physical layers. It resets all SATA interface registers
  2364. * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
  2365. */
  2366. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2367. udelay(25); /* allow reset propagation */
  2368. writelfl(0, port_mmio + EDMA_CMD_OFS);
  2369. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  2370. if (IS_GEN_I(hpriv))
  2371. mdelay(1);
  2372. }
  2373. static void mv_pmp_select(struct ata_port *ap, int pmp)
  2374. {
  2375. if (sata_pmp_supported(ap)) {
  2376. void __iomem *port_mmio = mv_ap_base(ap);
  2377. u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
  2378. int old = reg & 0xf;
  2379. if (old != pmp) {
  2380. reg = (reg & ~0xf) | pmp;
  2381. writelfl(reg, port_mmio + SATA_IFCTL_OFS);
  2382. }
  2383. }
  2384. }
  2385. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  2386. unsigned long deadline)
  2387. {
  2388. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2389. return sata_std_hardreset(link, class, deadline);
  2390. }
  2391. static int mv_softreset(struct ata_link *link, unsigned int *class,
  2392. unsigned long deadline)
  2393. {
  2394. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2395. return ata_sff_softreset(link, class, deadline);
  2396. }
  2397. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  2398. unsigned long deadline)
  2399. {
  2400. struct ata_port *ap = link->ap;
  2401. struct mv_host_priv *hpriv = ap->host->private_data;
  2402. struct mv_port_priv *pp = ap->private_data;
  2403. void __iomem *mmio = hpriv->base;
  2404. int rc, attempts = 0, extra = 0;
  2405. u32 sstatus;
  2406. bool online;
  2407. mv_reset_channel(hpriv, mmio, ap->port_no);
  2408. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2409. /* Workaround for errata FEr SATA#10 (part 2) */
  2410. do {
  2411. const unsigned long *timing =
  2412. sata_ehc_deb_timing(&link->eh_context);
  2413. rc = sata_link_hardreset(link, timing, deadline + extra,
  2414. &online, NULL);
  2415. rc = online ? -EAGAIN : rc;
  2416. if (rc)
  2417. return rc;
  2418. sata_scr_read(link, SCR_STATUS, &sstatus);
  2419. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  2420. /* Force 1.5gb/s link speed and try again */
  2421. mv_setup_ifcfg(mv_ap_base(ap), 0);
  2422. if (time_after(jiffies + HZ, deadline))
  2423. extra = HZ; /* only extend it once, max */
  2424. }
  2425. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  2426. return rc;
  2427. }
  2428. static void mv_eh_freeze(struct ata_port *ap)
  2429. {
  2430. mv_stop_edma(ap);
  2431. mv_enable_port_irqs(ap, 0);
  2432. }
  2433. static void mv_eh_thaw(struct ata_port *ap)
  2434. {
  2435. struct mv_host_priv *hpriv = ap->host->private_data;
  2436. unsigned int port = ap->port_no;
  2437. unsigned int hardport = mv_hardport_from_port(port);
  2438. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  2439. void __iomem *port_mmio = mv_ap_base(ap);
  2440. u32 hc_irq_cause;
  2441. /* clear EDMA errors on this port */
  2442. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2443. /* clear pending irq events */
  2444. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  2445. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  2446. mv_enable_port_irqs(ap, ERR_IRQ);
  2447. }
  2448. /**
  2449. * mv_port_init - Perform some early initialization on a single port.
  2450. * @port: libata data structure storing shadow register addresses
  2451. * @port_mmio: base address of the port
  2452. *
  2453. * Initialize shadow register mmio addresses, clear outstanding
  2454. * interrupts on the port, and unmask interrupts for the future
  2455. * start of the port.
  2456. *
  2457. * LOCKING:
  2458. * Inherited from caller.
  2459. */
  2460. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  2461. {
  2462. void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
  2463. unsigned serr_ofs;
  2464. /* PIO related setup
  2465. */
  2466. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  2467. port->error_addr =
  2468. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  2469. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  2470. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  2471. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  2472. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  2473. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  2474. port->status_addr =
  2475. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  2476. /* special case: control/altstatus doesn't have ATA_REG_ address */
  2477. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
  2478. /* unused: */
  2479. port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
  2480. /* Clear any currently outstanding port interrupt conditions */
  2481. serr_ofs = mv_scr_offset(SCR_ERROR);
  2482. writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
  2483. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2484. /* unmask all non-transient EDMA error interrupts */
  2485. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
  2486. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  2487. readl(port_mmio + EDMA_CFG_OFS),
  2488. readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
  2489. readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
  2490. }
  2491. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  2492. {
  2493. struct mv_host_priv *hpriv = host->private_data;
  2494. void __iomem *mmio = hpriv->base;
  2495. u32 reg;
  2496. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  2497. return 0; /* not PCI-X capable */
  2498. reg = readl(mmio + MV_PCI_MODE_OFS);
  2499. if ((reg & MV_PCI_MODE_MASK) == 0)
  2500. return 0; /* conventional PCI mode */
  2501. return 1; /* chip is in PCI-X mode */
  2502. }
  2503. static int mv_pci_cut_through_okay(struct ata_host *host)
  2504. {
  2505. struct mv_host_priv *hpriv = host->private_data;
  2506. void __iomem *mmio = hpriv->base;
  2507. u32 reg;
  2508. if (!mv_in_pcix_mode(host)) {
  2509. reg = readl(mmio + PCI_COMMAND_OFS);
  2510. if (reg & PCI_COMMAND_MRDTRIG)
  2511. return 0; /* not okay */
  2512. }
  2513. return 1; /* okay */
  2514. }
  2515. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  2516. {
  2517. struct pci_dev *pdev = to_pci_dev(host->dev);
  2518. struct mv_host_priv *hpriv = host->private_data;
  2519. u32 hp_flags = hpriv->hp_flags;
  2520. switch (board_idx) {
  2521. case chip_5080:
  2522. hpriv->ops = &mv5xxx_ops;
  2523. hp_flags |= MV_HP_GEN_I;
  2524. switch (pdev->revision) {
  2525. case 0x1:
  2526. hp_flags |= MV_HP_ERRATA_50XXB0;
  2527. break;
  2528. case 0x3:
  2529. hp_flags |= MV_HP_ERRATA_50XXB2;
  2530. break;
  2531. default:
  2532. dev_printk(KERN_WARNING, &pdev->dev,
  2533. "Applying 50XXB2 workarounds to unknown rev\n");
  2534. hp_flags |= MV_HP_ERRATA_50XXB2;
  2535. break;
  2536. }
  2537. break;
  2538. case chip_504x:
  2539. case chip_508x:
  2540. hpriv->ops = &mv5xxx_ops;
  2541. hp_flags |= MV_HP_GEN_I;
  2542. switch (pdev->revision) {
  2543. case 0x0:
  2544. hp_flags |= MV_HP_ERRATA_50XXB0;
  2545. break;
  2546. case 0x3:
  2547. hp_flags |= MV_HP_ERRATA_50XXB2;
  2548. break;
  2549. default:
  2550. dev_printk(KERN_WARNING, &pdev->dev,
  2551. "Applying B2 workarounds to unknown rev\n");
  2552. hp_flags |= MV_HP_ERRATA_50XXB2;
  2553. break;
  2554. }
  2555. break;
  2556. case chip_604x:
  2557. case chip_608x:
  2558. hpriv->ops = &mv6xxx_ops;
  2559. hp_flags |= MV_HP_GEN_II;
  2560. switch (pdev->revision) {
  2561. case 0x7:
  2562. hp_flags |= MV_HP_ERRATA_60X1B2;
  2563. break;
  2564. case 0x9:
  2565. hp_flags |= MV_HP_ERRATA_60X1C0;
  2566. break;
  2567. default:
  2568. dev_printk(KERN_WARNING, &pdev->dev,
  2569. "Applying B2 workarounds to unknown rev\n");
  2570. hp_flags |= MV_HP_ERRATA_60X1B2;
  2571. break;
  2572. }
  2573. break;
  2574. case chip_7042:
  2575. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  2576. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  2577. (pdev->device == 0x2300 || pdev->device == 0x2310))
  2578. {
  2579. /*
  2580. * Highpoint RocketRAID PCIe 23xx series cards:
  2581. *
  2582. * Unconfigured drives are treated as "Legacy"
  2583. * by the BIOS, and it overwrites sector 8 with
  2584. * a "Lgcy" metadata block prior to Linux boot.
  2585. *
  2586. * Configured drives (RAID or JBOD) leave sector 8
  2587. * alone, but instead overwrite a high numbered
  2588. * sector for the RAID metadata. This sector can
  2589. * be determined exactly, by truncating the physical
  2590. * drive capacity to a nice even GB value.
  2591. *
  2592. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  2593. *
  2594. * Warn the user, lest they think we're just buggy.
  2595. */
  2596. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  2597. " BIOS CORRUPTS DATA on all attached drives,"
  2598. " regardless of if/how they are configured."
  2599. " BEWARE!\n");
  2600. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  2601. " use sectors 8-9 on \"Legacy\" drives,"
  2602. " and avoid the final two gigabytes on"
  2603. " all RocketRAID BIOS initialized drives.\n");
  2604. }
  2605. /* drop through */
  2606. case chip_6042:
  2607. hpriv->ops = &mv6xxx_ops;
  2608. hp_flags |= MV_HP_GEN_IIE;
  2609. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  2610. hp_flags |= MV_HP_CUT_THROUGH;
  2611. switch (pdev->revision) {
  2612. case 0x2: /* Rev.B0: the first/only public release */
  2613. hp_flags |= MV_HP_ERRATA_60X1C0;
  2614. break;
  2615. default:
  2616. dev_printk(KERN_WARNING, &pdev->dev,
  2617. "Applying 60X1C0 workarounds to unknown rev\n");
  2618. hp_flags |= MV_HP_ERRATA_60X1C0;
  2619. break;
  2620. }
  2621. break;
  2622. case chip_soc:
  2623. hpriv->ops = &mv_soc_ops;
  2624. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  2625. MV_HP_ERRATA_60X1C0;
  2626. break;
  2627. default:
  2628. dev_printk(KERN_ERR, host->dev,
  2629. "BUG: invalid board index %u\n", board_idx);
  2630. return 1;
  2631. }
  2632. hpriv->hp_flags = hp_flags;
  2633. if (hp_flags & MV_HP_PCIE) {
  2634. hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
  2635. hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
  2636. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  2637. } else {
  2638. hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
  2639. hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
  2640. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  2641. }
  2642. return 0;
  2643. }
  2644. /**
  2645. * mv_init_host - Perform some early initialization of the host.
  2646. * @host: ATA host to initialize
  2647. * @board_idx: controller index
  2648. *
  2649. * If possible, do an early global reset of the host. Then do
  2650. * our port init and clear/unmask all/relevant host interrupts.
  2651. *
  2652. * LOCKING:
  2653. * Inherited from caller.
  2654. */
  2655. static int mv_init_host(struct ata_host *host, unsigned int board_idx)
  2656. {
  2657. int rc = 0, n_hc, port, hc;
  2658. struct mv_host_priv *hpriv = host->private_data;
  2659. void __iomem *mmio = hpriv->base;
  2660. rc = mv_chip_id(host, board_idx);
  2661. if (rc)
  2662. goto done;
  2663. if (IS_SOC(hpriv)) {
  2664. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
  2665. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
  2666. } else {
  2667. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
  2668. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
  2669. }
  2670. /* global interrupt mask: 0 == mask everything */
  2671. mv_set_main_irq_mask(host, ~0, 0);
  2672. n_hc = mv_get_hc_count(host->ports[0]->flags);
  2673. for (port = 0; port < host->n_ports; port++)
  2674. hpriv->ops->read_preamp(hpriv, port, mmio);
  2675. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  2676. if (rc)
  2677. goto done;
  2678. hpriv->ops->reset_flash(hpriv, mmio);
  2679. hpriv->ops->reset_bus(host, mmio);
  2680. hpriv->ops->enable_leds(hpriv, mmio);
  2681. for (port = 0; port < host->n_ports; port++) {
  2682. struct ata_port *ap = host->ports[port];
  2683. void __iomem *port_mmio = mv_port_base(mmio, port);
  2684. mv_port_init(&ap->ioaddr, port_mmio);
  2685. #ifdef CONFIG_PCI
  2686. if (!IS_SOC(hpriv)) {
  2687. unsigned int offset = port_mmio - mmio;
  2688. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  2689. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  2690. }
  2691. #endif
  2692. }
  2693. for (hc = 0; hc < n_hc; hc++) {
  2694. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2695. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  2696. "(before clear)=0x%08x\n", hc,
  2697. readl(hc_mmio + HC_CFG_OFS),
  2698. readl(hc_mmio + HC_IRQ_CAUSE_OFS));
  2699. /* Clear any currently outstanding hc interrupt conditions */
  2700. writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
  2701. }
  2702. if (!IS_SOC(hpriv)) {
  2703. /* Clear any currently outstanding host interrupt conditions */
  2704. writelfl(0, mmio + hpriv->irq_cause_ofs);
  2705. /* and unmask interrupt generation for host regs */
  2706. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
  2707. /*
  2708. * enable only global host interrupts for now.
  2709. * The per-port interrupts get done later as ports are set up.
  2710. */
  2711. mv_set_main_irq_mask(host, 0, PCI_ERR);
  2712. }
  2713. done:
  2714. return rc;
  2715. }
  2716. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  2717. {
  2718. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  2719. MV_CRQB_Q_SZ, 0);
  2720. if (!hpriv->crqb_pool)
  2721. return -ENOMEM;
  2722. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  2723. MV_CRPB_Q_SZ, 0);
  2724. if (!hpriv->crpb_pool)
  2725. return -ENOMEM;
  2726. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  2727. MV_SG_TBL_SZ, 0);
  2728. if (!hpriv->sg_tbl_pool)
  2729. return -ENOMEM;
  2730. return 0;
  2731. }
  2732. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  2733. struct mbus_dram_target_info *dram)
  2734. {
  2735. int i;
  2736. for (i = 0; i < 4; i++) {
  2737. writel(0, hpriv->base + WINDOW_CTRL(i));
  2738. writel(0, hpriv->base + WINDOW_BASE(i));
  2739. }
  2740. for (i = 0; i < dram->num_cs; i++) {
  2741. struct mbus_dram_window *cs = dram->cs + i;
  2742. writel(((cs->size - 1) & 0xffff0000) |
  2743. (cs->mbus_attr << 8) |
  2744. (dram->mbus_dram_target_id << 4) | 1,
  2745. hpriv->base + WINDOW_CTRL(i));
  2746. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  2747. }
  2748. }
  2749. /**
  2750. * mv_platform_probe - handle a positive probe of an soc Marvell
  2751. * host
  2752. * @pdev: platform device found
  2753. *
  2754. * LOCKING:
  2755. * Inherited from caller.
  2756. */
  2757. static int mv_platform_probe(struct platform_device *pdev)
  2758. {
  2759. static int printed_version;
  2760. const struct mv_sata_platform_data *mv_platform_data;
  2761. const struct ata_port_info *ppi[] =
  2762. { &mv_port_info[chip_soc], NULL };
  2763. struct ata_host *host;
  2764. struct mv_host_priv *hpriv;
  2765. struct resource *res;
  2766. int n_ports, rc;
  2767. if (!printed_version++)
  2768. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  2769. /*
  2770. * Simple resource validation ..
  2771. */
  2772. if (unlikely(pdev->num_resources != 2)) {
  2773. dev_err(&pdev->dev, "invalid number of resources\n");
  2774. return -EINVAL;
  2775. }
  2776. /*
  2777. * Get the register base first
  2778. */
  2779. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2780. if (res == NULL)
  2781. return -EINVAL;
  2782. /* allocate host */
  2783. mv_platform_data = pdev->dev.platform_data;
  2784. n_ports = mv_platform_data->n_ports;
  2785. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  2786. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  2787. if (!host || !hpriv)
  2788. return -ENOMEM;
  2789. host->private_data = hpriv;
  2790. hpriv->n_ports = n_ports;
  2791. host->iomap = NULL;
  2792. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  2793. res->end - res->start + 1);
  2794. hpriv->base -= MV_SATAHC0_REG_BASE;
  2795. /*
  2796. * (Re-)program MBUS remapping windows if we are asked to.
  2797. */
  2798. if (mv_platform_data->dram != NULL)
  2799. mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
  2800. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  2801. if (rc)
  2802. return rc;
  2803. /* initialize adapter */
  2804. rc = mv_init_host(host, chip_soc);
  2805. if (rc)
  2806. return rc;
  2807. dev_printk(KERN_INFO, &pdev->dev,
  2808. "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
  2809. host->n_ports);
  2810. return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
  2811. IRQF_SHARED, &mv6_sht);
  2812. }
  2813. /*
  2814. *
  2815. * mv_platform_remove - unplug a platform interface
  2816. * @pdev: platform device
  2817. *
  2818. * A platform bus SATA device has been unplugged. Perform the needed
  2819. * cleanup. Also called on module unload for any active devices.
  2820. */
  2821. static int __devexit mv_platform_remove(struct platform_device *pdev)
  2822. {
  2823. struct device *dev = &pdev->dev;
  2824. struct ata_host *host = dev_get_drvdata(dev);
  2825. ata_host_detach(host);
  2826. return 0;
  2827. }
  2828. static struct platform_driver mv_platform_driver = {
  2829. .probe = mv_platform_probe,
  2830. .remove = __devexit_p(mv_platform_remove),
  2831. .driver = {
  2832. .name = DRV_NAME,
  2833. .owner = THIS_MODULE,
  2834. },
  2835. };
  2836. #ifdef CONFIG_PCI
  2837. static int mv_pci_init_one(struct pci_dev *pdev,
  2838. const struct pci_device_id *ent);
  2839. static struct pci_driver mv_pci_driver = {
  2840. .name = DRV_NAME,
  2841. .id_table = mv_pci_tbl,
  2842. .probe = mv_pci_init_one,
  2843. .remove = ata_pci_remove_one,
  2844. };
  2845. /*
  2846. * module options
  2847. */
  2848. static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
  2849. /* move to PCI layer or libata core? */
  2850. static int pci_go_64(struct pci_dev *pdev)
  2851. {
  2852. int rc;
  2853. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2854. rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2855. if (rc) {
  2856. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2857. if (rc) {
  2858. dev_printk(KERN_ERR, &pdev->dev,
  2859. "64-bit DMA enable failed\n");
  2860. return rc;
  2861. }
  2862. }
  2863. } else {
  2864. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2865. if (rc) {
  2866. dev_printk(KERN_ERR, &pdev->dev,
  2867. "32-bit DMA enable failed\n");
  2868. return rc;
  2869. }
  2870. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2871. if (rc) {
  2872. dev_printk(KERN_ERR, &pdev->dev,
  2873. "32-bit consistent DMA enable failed\n");
  2874. return rc;
  2875. }
  2876. }
  2877. return rc;
  2878. }
  2879. /**
  2880. * mv_print_info - Dump key info to kernel log for perusal.
  2881. * @host: ATA host to print info about
  2882. *
  2883. * FIXME: complete this.
  2884. *
  2885. * LOCKING:
  2886. * Inherited from caller.
  2887. */
  2888. static void mv_print_info(struct ata_host *host)
  2889. {
  2890. struct pci_dev *pdev = to_pci_dev(host->dev);
  2891. struct mv_host_priv *hpriv = host->private_data;
  2892. u8 scc;
  2893. const char *scc_s, *gen;
  2894. /* Use this to determine the HW stepping of the chip so we know
  2895. * what errata to workaround
  2896. */
  2897. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  2898. if (scc == 0)
  2899. scc_s = "SCSI";
  2900. else if (scc == 0x01)
  2901. scc_s = "RAID";
  2902. else
  2903. scc_s = "?";
  2904. if (IS_GEN_I(hpriv))
  2905. gen = "I";
  2906. else if (IS_GEN_II(hpriv))
  2907. gen = "II";
  2908. else if (IS_GEN_IIE(hpriv))
  2909. gen = "IIE";
  2910. else
  2911. gen = "?";
  2912. dev_printk(KERN_INFO, &pdev->dev,
  2913. "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  2914. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  2915. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  2916. }
  2917. /**
  2918. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  2919. * @pdev: PCI device found
  2920. * @ent: PCI device ID entry for the matched host
  2921. *
  2922. * LOCKING:
  2923. * Inherited from caller.
  2924. */
  2925. static int mv_pci_init_one(struct pci_dev *pdev,
  2926. const struct pci_device_id *ent)
  2927. {
  2928. static int printed_version;
  2929. unsigned int board_idx = (unsigned int)ent->driver_data;
  2930. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  2931. struct ata_host *host;
  2932. struct mv_host_priv *hpriv;
  2933. int n_ports, rc;
  2934. if (!printed_version++)
  2935. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  2936. /* allocate host */
  2937. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  2938. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  2939. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  2940. if (!host || !hpriv)
  2941. return -ENOMEM;
  2942. host->private_data = hpriv;
  2943. hpriv->n_ports = n_ports;
  2944. /* acquire resources */
  2945. rc = pcim_enable_device(pdev);
  2946. if (rc)
  2947. return rc;
  2948. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  2949. if (rc == -EBUSY)
  2950. pcim_pin_device(pdev);
  2951. if (rc)
  2952. return rc;
  2953. host->iomap = pcim_iomap_table(pdev);
  2954. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  2955. rc = pci_go_64(pdev);
  2956. if (rc)
  2957. return rc;
  2958. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  2959. if (rc)
  2960. return rc;
  2961. /* initialize adapter */
  2962. rc = mv_init_host(host, board_idx);
  2963. if (rc)
  2964. return rc;
  2965. /* Enable interrupts */
  2966. if (msi && pci_enable_msi(pdev))
  2967. pci_intx(pdev, 1);
  2968. mv_dump_pci_cfg(pdev, 0x68);
  2969. mv_print_info(host);
  2970. pci_set_master(pdev);
  2971. pci_try_set_mwi(pdev);
  2972. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  2973. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  2974. }
  2975. #endif
  2976. static int mv_platform_probe(struct platform_device *pdev);
  2977. static int __devexit mv_platform_remove(struct platform_device *pdev);
  2978. static int __init mv_init(void)
  2979. {
  2980. int rc = -ENODEV;
  2981. #ifdef CONFIG_PCI
  2982. rc = pci_register_driver(&mv_pci_driver);
  2983. if (rc < 0)
  2984. return rc;
  2985. #endif
  2986. rc = platform_driver_register(&mv_platform_driver);
  2987. #ifdef CONFIG_PCI
  2988. if (rc < 0)
  2989. pci_unregister_driver(&mv_pci_driver);
  2990. #endif
  2991. return rc;
  2992. }
  2993. static void __exit mv_exit(void)
  2994. {
  2995. #ifdef CONFIG_PCI
  2996. pci_unregister_driver(&mv_pci_driver);
  2997. #endif
  2998. platform_driver_unregister(&mv_platform_driver);
  2999. }
  3000. MODULE_AUTHOR("Brett Russ");
  3001. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3002. MODULE_LICENSE("GPL");
  3003. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3004. MODULE_VERSION(DRV_VERSION);
  3005. MODULE_ALIAS("platform:" DRV_NAME);
  3006. #ifdef CONFIG_PCI
  3007. module_param(msi, int, 0444);
  3008. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  3009. #endif
  3010. module_init(mv_init);
  3011. module_exit(mv_exit);