perf_event_intel.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #include <linux/stddef.h>
  8. #include <linux/types.h>
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <asm/hardirq.h>
  13. #include <asm/apic.h>
  14. #include "perf_event.h"
  15. /*
  16. * Intel PerfMon, used on Core and later.
  17. */
  18. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  19. {
  20. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  21. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  22. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  23. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  24. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  25. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  26. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  27. };
  28. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  29. {
  30. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  31. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  32. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  33. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  34. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  35. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  36. EVENT_CONSTRAINT_END
  37. };
  38. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  39. {
  40. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  41. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  42. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  43. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  44. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  45. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  46. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  47. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  48. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  49. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  50. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  51. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  52. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  53. EVENT_CONSTRAINT_END
  54. };
  55. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  56. {
  57. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  58. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  59. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  60. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  61. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  62. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  63. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  64. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  65. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  66. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  67. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  68. EVENT_CONSTRAINT_END
  69. };
  70. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  71. {
  72. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  73. EVENT_EXTRA_END
  74. };
  75. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  76. {
  77. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  78. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  79. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  80. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  81. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  82. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  83. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  84. EVENT_CONSTRAINT_END
  85. };
  86. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  87. {
  88. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  89. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  90. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  91. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  92. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  93. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  94. EVENT_CONSTRAINT_END
  95. };
  96. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  97. {
  98. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  99. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  100. EVENT_EXTRA_END
  101. };
  102. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  103. {
  104. EVENT_CONSTRAINT_END
  105. };
  106. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  107. {
  108. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  109. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  110. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  111. EVENT_CONSTRAINT_END
  112. };
  113. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  114. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
  115. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
  116. EVENT_EXTRA_END
  117. };
  118. static u64 intel_pmu_event_map(int hw_event)
  119. {
  120. return intel_perfmon_event_map[hw_event];
  121. }
  122. static __initconst const u64 snb_hw_cache_event_ids
  123. [PERF_COUNT_HW_CACHE_MAX]
  124. [PERF_COUNT_HW_CACHE_OP_MAX]
  125. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  126. {
  127. [ C(L1D) ] = {
  128. [ C(OP_READ) ] = {
  129. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  130. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  131. },
  132. [ C(OP_WRITE) ] = {
  133. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  134. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  135. },
  136. [ C(OP_PREFETCH) ] = {
  137. [ C(RESULT_ACCESS) ] = 0x0,
  138. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  139. },
  140. },
  141. [ C(L1I ) ] = {
  142. [ C(OP_READ) ] = {
  143. [ C(RESULT_ACCESS) ] = 0x0,
  144. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  145. },
  146. [ C(OP_WRITE) ] = {
  147. [ C(RESULT_ACCESS) ] = -1,
  148. [ C(RESULT_MISS) ] = -1,
  149. },
  150. [ C(OP_PREFETCH) ] = {
  151. [ C(RESULT_ACCESS) ] = 0x0,
  152. [ C(RESULT_MISS) ] = 0x0,
  153. },
  154. },
  155. [ C(LL ) ] = {
  156. [ C(OP_READ) ] = {
  157. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  158. [ C(RESULT_ACCESS) ] = 0x01b7,
  159. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  160. [ C(RESULT_MISS) ] = 0x01b7,
  161. },
  162. [ C(OP_WRITE) ] = {
  163. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  164. [ C(RESULT_ACCESS) ] = 0x01b7,
  165. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  166. [ C(RESULT_MISS) ] = 0x01b7,
  167. },
  168. [ C(OP_PREFETCH) ] = {
  169. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  170. [ C(RESULT_ACCESS) ] = 0x01b7,
  171. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  172. [ C(RESULT_MISS) ] = 0x01b7,
  173. },
  174. },
  175. [ C(DTLB) ] = {
  176. [ C(OP_READ) ] = {
  177. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  178. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  179. },
  180. [ C(OP_WRITE) ] = {
  181. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  182. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  183. },
  184. [ C(OP_PREFETCH) ] = {
  185. [ C(RESULT_ACCESS) ] = 0x0,
  186. [ C(RESULT_MISS) ] = 0x0,
  187. },
  188. },
  189. [ C(ITLB) ] = {
  190. [ C(OP_READ) ] = {
  191. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  192. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  193. },
  194. [ C(OP_WRITE) ] = {
  195. [ C(RESULT_ACCESS) ] = -1,
  196. [ C(RESULT_MISS) ] = -1,
  197. },
  198. [ C(OP_PREFETCH) ] = {
  199. [ C(RESULT_ACCESS) ] = -1,
  200. [ C(RESULT_MISS) ] = -1,
  201. },
  202. },
  203. [ C(BPU ) ] = {
  204. [ C(OP_READ) ] = {
  205. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  206. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  207. },
  208. [ C(OP_WRITE) ] = {
  209. [ C(RESULT_ACCESS) ] = -1,
  210. [ C(RESULT_MISS) ] = -1,
  211. },
  212. [ C(OP_PREFETCH) ] = {
  213. [ C(RESULT_ACCESS) ] = -1,
  214. [ C(RESULT_MISS) ] = -1,
  215. },
  216. },
  217. [ C(NODE) ] = {
  218. [ C(OP_READ) ] = {
  219. [ C(RESULT_ACCESS) ] = -1,
  220. [ C(RESULT_MISS) ] = -1,
  221. },
  222. [ C(OP_WRITE) ] = {
  223. [ C(RESULT_ACCESS) ] = -1,
  224. [ C(RESULT_MISS) ] = -1,
  225. },
  226. [ C(OP_PREFETCH) ] = {
  227. [ C(RESULT_ACCESS) ] = -1,
  228. [ C(RESULT_MISS) ] = -1,
  229. },
  230. },
  231. };
  232. static __initconst const u64 westmere_hw_cache_event_ids
  233. [PERF_COUNT_HW_CACHE_MAX]
  234. [PERF_COUNT_HW_CACHE_OP_MAX]
  235. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  236. {
  237. [ C(L1D) ] = {
  238. [ C(OP_READ) ] = {
  239. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  240. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  241. },
  242. [ C(OP_WRITE) ] = {
  243. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  244. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  245. },
  246. [ C(OP_PREFETCH) ] = {
  247. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  248. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  249. },
  250. },
  251. [ C(L1I ) ] = {
  252. [ C(OP_READ) ] = {
  253. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  254. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  255. },
  256. [ C(OP_WRITE) ] = {
  257. [ C(RESULT_ACCESS) ] = -1,
  258. [ C(RESULT_MISS) ] = -1,
  259. },
  260. [ C(OP_PREFETCH) ] = {
  261. [ C(RESULT_ACCESS) ] = 0x0,
  262. [ C(RESULT_MISS) ] = 0x0,
  263. },
  264. },
  265. [ C(LL ) ] = {
  266. [ C(OP_READ) ] = {
  267. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  268. [ C(RESULT_ACCESS) ] = 0x01b7,
  269. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  270. [ C(RESULT_MISS) ] = 0x01b7,
  271. },
  272. /*
  273. * Use RFO, not WRITEBACK, because a write miss would typically occur
  274. * on RFO.
  275. */
  276. [ C(OP_WRITE) ] = {
  277. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  278. [ C(RESULT_ACCESS) ] = 0x01b7,
  279. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  280. [ C(RESULT_MISS) ] = 0x01b7,
  281. },
  282. [ C(OP_PREFETCH) ] = {
  283. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  284. [ C(RESULT_ACCESS) ] = 0x01b7,
  285. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  286. [ C(RESULT_MISS) ] = 0x01b7,
  287. },
  288. },
  289. [ C(DTLB) ] = {
  290. [ C(OP_READ) ] = {
  291. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  292. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  293. },
  294. [ C(OP_WRITE) ] = {
  295. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  296. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  297. },
  298. [ C(OP_PREFETCH) ] = {
  299. [ C(RESULT_ACCESS) ] = 0x0,
  300. [ C(RESULT_MISS) ] = 0x0,
  301. },
  302. },
  303. [ C(ITLB) ] = {
  304. [ C(OP_READ) ] = {
  305. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  306. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  307. },
  308. [ C(OP_WRITE) ] = {
  309. [ C(RESULT_ACCESS) ] = -1,
  310. [ C(RESULT_MISS) ] = -1,
  311. },
  312. [ C(OP_PREFETCH) ] = {
  313. [ C(RESULT_ACCESS) ] = -1,
  314. [ C(RESULT_MISS) ] = -1,
  315. },
  316. },
  317. [ C(BPU ) ] = {
  318. [ C(OP_READ) ] = {
  319. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  320. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  321. },
  322. [ C(OP_WRITE) ] = {
  323. [ C(RESULT_ACCESS) ] = -1,
  324. [ C(RESULT_MISS) ] = -1,
  325. },
  326. [ C(OP_PREFETCH) ] = {
  327. [ C(RESULT_ACCESS) ] = -1,
  328. [ C(RESULT_MISS) ] = -1,
  329. },
  330. },
  331. [ C(NODE) ] = {
  332. [ C(OP_READ) ] = {
  333. [ C(RESULT_ACCESS) ] = 0x01b7,
  334. [ C(RESULT_MISS) ] = 0x01b7,
  335. },
  336. [ C(OP_WRITE) ] = {
  337. [ C(RESULT_ACCESS) ] = 0x01b7,
  338. [ C(RESULT_MISS) ] = 0x01b7,
  339. },
  340. [ C(OP_PREFETCH) ] = {
  341. [ C(RESULT_ACCESS) ] = 0x01b7,
  342. [ C(RESULT_MISS) ] = 0x01b7,
  343. },
  344. },
  345. };
  346. /*
  347. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  348. * See IA32 SDM Vol 3B 30.6.1.3
  349. */
  350. #define NHM_DMND_DATA_RD (1 << 0)
  351. #define NHM_DMND_RFO (1 << 1)
  352. #define NHM_DMND_IFETCH (1 << 2)
  353. #define NHM_DMND_WB (1 << 3)
  354. #define NHM_PF_DATA_RD (1 << 4)
  355. #define NHM_PF_DATA_RFO (1 << 5)
  356. #define NHM_PF_IFETCH (1 << 6)
  357. #define NHM_OFFCORE_OTHER (1 << 7)
  358. #define NHM_UNCORE_HIT (1 << 8)
  359. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  360. #define NHM_OTHER_CORE_HITM (1 << 10)
  361. /* reserved */
  362. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  363. #define NHM_REMOTE_DRAM (1 << 13)
  364. #define NHM_LOCAL_DRAM (1 << 14)
  365. #define NHM_NON_DRAM (1 << 15)
  366. #define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
  367. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  368. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  369. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  370. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  371. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
  372. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  373. static __initconst const u64 nehalem_hw_cache_extra_regs
  374. [PERF_COUNT_HW_CACHE_MAX]
  375. [PERF_COUNT_HW_CACHE_OP_MAX]
  376. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  377. {
  378. [ C(LL ) ] = {
  379. [ C(OP_READ) ] = {
  380. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  381. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  382. },
  383. [ C(OP_WRITE) ] = {
  384. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  385. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  386. },
  387. [ C(OP_PREFETCH) ] = {
  388. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  389. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  390. },
  391. },
  392. [ C(NODE) ] = {
  393. [ C(OP_READ) ] = {
  394. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
  395. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
  396. },
  397. [ C(OP_WRITE) ] = {
  398. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
  399. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
  400. },
  401. [ C(OP_PREFETCH) ] = {
  402. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
  403. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
  404. },
  405. },
  406. };
  407. static __initconst const u64 nehalem_hw_cache_event_ids
  408. [PERF_COUNT_HW_CACHE_MAX]
  409. [PERF_COUNT_HW_CACHE_OP_MAX]
  410. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  411. {
  412. [ C(L1D) ] = {
  413. [ C(OP_READ) ] = {
  414. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  415. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  416. },
  417. [ C(OP_WRITE) ] = {
  418. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  419. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  420. },
  421. [ C(OP_PREFETCH) ] = {
  422. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  423. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  424. },
  425. },
  426. [ C(L1I ) ] = {
  427. [ C(OP_READ) ] = {
  428. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  429. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  430. },
  431. [ C(OP_WRITE) ] = {
  432. [ C(RESULT_ACCESS) ] = -1,
  433. [ C(RESULT_MISS) ] = -1,
  434. },
  435. [ C(OP_PREFETCH) ] = {
  436. [ C(RESULT_ACCESS) ] = 0x0,
  437. [ C(RESULT_MISS) ] = 0x0,
  438. },
  439. },
  440. [ C(LL ) ] = {
  441. [ C(OP_READ) ] = {
  442. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  443. [ C(RESULT_ACCESS) ] = 0x01b7,
  444. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  445. [ C(RESULT_MISS) ] = 0x01b7,
  446. },
  447. /*
  448. * Use RFO, not WRITEBACK, because a write miss would typically occur
  449. * on RFO.
  450. */
  451. [ C(OP_WRITE) ] = {
  452. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  453. [ C(RESULT_ACCESS) ] = 0x01b7,
  454. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  455. [ C(RESULT_MISS) ] = 0x01b7,
  456. },
  457. [ C(OP_PREFETCH) ] = {
  458. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  459. [ C(RESULT_ACCESS) ] = 0x01b7,
  460. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  461. [ C(RESULT_MISS) ] = 0x01b7,
  462. },
  463. },
  464. [ C(DTLB) ] = {
  465. [ C(OP_READ) ] = {
  466. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  467. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  468. },
  469. [ C(OP_WRITE) ] = {
  470. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  471. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  472. },
  473. [ C(OP_PREFETCH) ] = {
  474. [ C(RESULT_ACCESS) ] = 0x0,
  475. [ C(RESULT_MISS) ] = 0x0,
  476. },
  477. },
  478. [ C(ITLB) ] = {
  479. [ C(OP_READ) ] = {
  480. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  481. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  482. },
  483. [ C(OP_WRITE) ] = {
  484. [ C(RESULT_ACCESS) ] = -1,
  485. [ C(RESULT_MISS) ] = -1,
  486. },
  487. [ C(OP_PREFETCH) ] = {
  488. [ C(RESULT_ACCESS) ] = -1,
  489. [ C(RESULT_MISS) ] = -1,
  490. },
  491. },
  492. [ C(BPU ) ] = {
  493. [ C(OP_READ) ] = {
  494. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  495. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  496. },
  497. [ C(OP_WRITE) ] = {
  498. [ C(RESULT_ACCESS) ] = -1,
  499. [ C(RESULT_MISS) ] = -1,
  500. },
  501. [ C(OP_PREFETCH) ] = {
  502. [ C(RESULT_ACCESS) ] = -1,
  503. [ C(RESULT_MISS) ] = -1,
  504. },
  505. },
  506. [ C(NODE) ] = {
  507. [ C(OP_READ) ] = {
  508. [ C(RESULT_ACCESS) ] = 0x01b7,
  509. [ C(RESULT_MISS) ] = 0x01b7,
  510. },
  511. [ C(OP_WRITE) ] = {
  512. [ C(RESULT_ACCESS) ] = 0x01b7,
  513. [ C(RESULT_MISS) ] = 0x01b7,
  514. },
  515. [ C(OP_PREFETCH) ] = {
  516. [ C(RESULT_ACCESS) ] = 0x01b7,
  517. [ C(RESULT_MISS) ] = 0x01b7,
  518. },
  519. },
  520. };
  521. static __initconst const u64 core2_hw_cache_event_ids
  522. [PERF_COUNT_HW_CACHE_MAX]
  523. [PERF_COUNT_HW_CACHE_OP_MAX]
  524. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  525. {
  526. [ C(L1D) ] = {
  527. [ C(OP_READ) ] = {
  528. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  529. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  530. },
  531. [ C(OP_WRITE) ] = {
  532. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  533. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  534. },
  535. [ C(OP_PREFETCH) ] = {
  536. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  537. [ C(RESULT_MISS) ] = 0,
  538. },
  539. },
  540. [ C(L1I ) ] = {
  541. [ C(OP_READ) ] = {
  542. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  543. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  544. },
  545. [ C(OP_WRITE) ] = {
  546. [ C(RESULT_ACCESS) ] = -1,
  547. [ C(RESULT_MISS) ] = -1,
  548. },
  549. [ C(OP_PREFETCH) ] = {
  550. [ C(RESULT_ACCESS) ] = 0,
  551. [ C(RESULT_MISS) ] = 0,
  552. },
  553. },
  554. [ C(LL ) ] = {
  555. [ C(OP_READ) ] = {
  556. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  557. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  558. },
  559. [ C(OP_WRITE) ] = {
  560. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  561. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  562. },
  563. [ C(OP_PREFETCH) ] = {
  564. [ C(RESULT_ACCESS) ] = 0,
  565. [ C(RESULT_MISS) ] = 0,
  566. },
  567. },
  568. [ C(DTLB) ] = {
  569. [ C(OP_READ) ] = {
  570. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  571. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  572. },
  573. [ C(OP_WRITE) ] = {
  574. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  575. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  576. },
  577. [ C(OP_PREFETCH) ] = {
  578. [ C(RESULT_ACCESS) ] = 0,
  579. [ C(RESULT_MISS) ] = 0,
  580. },
  581. },
  582. [ C(ITLB) ] = {
  583. [ C(OP_READ) ] = {
  584. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  585. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  586. },
  587. [ C(OP_WRITE) ] = {
  588. [ C(RESULT_ACCESS) ] = -1,
  589. [ C(RESULT_MISS) ] = -1,
  590. },
  591. [ C(OP_PREFETCH) ] = {
  592. [ C(RESULT_ACCESS) ] = -1,
  593. [ C(RESULT_MISS) ] = -1,
  594. },
  595. },
  596. [ C(BPU ) ] = {
  597. [ C(OP_READ) ] = {
  598. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  599. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  600. },
  601. [ C(OP_WRITE) ] = {
  602. [ C(RESULT_ACCESS) ] = -1,
  603. [ C(RESULT_MISS) ] = -1,
  604. },
  605. [ C(OP_PREFETCH) ] = {
  606. [ C(RESULT_ACCESS) ] = -1,
  607. [ C(RESULT_MISS) ] = -1,
  608. },
  609. },
  610. };
  611. static __initconst const u64 atom_hw_cache_event_ids
  612. [PERF_COUNT_HW_CACHE_MAX]
  613. [PERF_COUNT_HW_CACHE_OP_MAX]
  614. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  615. {
  616. [ C(L1D) ] = {
  617. [ C(OP_READ) ] = {
  618. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  619. [ C(RESULT_MISS) ] = 0,
  620. },
  621. [ C(OP_WRITE) ] = {
  622. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  623. [ C(RESULT_MISS) ] = 0,
  624. },
  625. [ C(OP_PREFETCH) ] = {
  626. [ C(RESULT_ACCESS) ] = 0x0,
  627. [ C(RESULT_MISS) ] = 0,
  628. },
  629. },
  630. [ C(L1I ) ] = {
  631. [ C(OP_READ) ] = {
  632. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  633. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  634. },
  635. [ C(OP_WRITE) ] = {
  636. [ C(RESULT_ACCESS) ] = -1,
  637. [ C(RESULT_MISS) ] = -1,
  638. },
  639. [ C(OP_PREFETCH) ] = {
  640. [ C(RESULT_ACCESS) ] = 0,
  641. [ C(RESULT_MISS) ] = 0,
  642. },
  643. },
  644. [ C(LL ) ] = {
  645. [ C(OP_READ) ] = {
  646. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  647. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  648. },
  649. [ C(OP_WRITE) ] = {
  650. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  651. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  652. },
  653. [ C(OP_PREFETCH) ] = {
  654. [ C(RESULT_ACCESS) ] = 0,
  655. [ C(RESULT_MISS) ] = 0,
  656. },
  657. },
  658. [ C(DTLB) ] = {
  659. [ C(OP_READ) ] = {
  660. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  661. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  662. },
  663. [ C(OP_WRITE) ] = {
  664. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  665. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  666. },
  667. [ C(OP_PREFETCH) ] = {
  668. [ C(RESULT_ACCESS) ] = 0,
  669. [ C(RESULT_MISS) ] = 0,
  670. },
  671. },
  672. [ C(ITLB) ] = {
  673. [ C(OP_READ) ] = {
  674. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  675. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  676. },
  677. [ C(OP_WRITE) ] = {
  678. [ C(RESULT_ACCESS) ] = -1,
  679. [ C(RESULT_MISS) ] = -1,
  680. },
  681. [ C(OP_PREFETCH) ] = {
  682. [ C(RESULT_ACCESS) ] = -1,
  683. [ C(RESULT_MISS) ] = -1,
  684. },
  685. },
  686. [ C(BPU ) ] = {
  687. [ C(OP_READ) ] = {
  688. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  689. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  690. },
  691. [ C(OP_WRITE) ] = {
  692. [ C(RESULT_ACCESS) ] = -1,
  693. [ C(RESULT_MISS) ] = -1,
  694. },
  695. [ C(OP_PREFETCH) ] = {
  696. [ C(RESULT_ACCESS) ] = -1,
  697. [ C(RESULT_MISS) ] = -1,
  698. },
  699. },
  700. };
  701. static void intel_pmu_disable_all(void)
  702. {
  703. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  704. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  705. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  706. intel_pmu_disable_bts();
  707. intel_pmu_pebs_disable_all();
  708. intel_pmu_lbr_disable_all();
  709. }
  710. static void intel_pmu_enable_all(int added)
  711. {
  712. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  713. intel_pmu_pebs_enable_all();
  714. intel_pmu_lbr_enable_all();
  715. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  716. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  717. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  718. struct perf_event *event =
  719. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  720. if (WARN_ON_ONCE(!event))
  721. return;
  722. intel_pmu_enable_bts(event->hw.config);
  723. }
  724. }
  725. /*
  726. * Workaround for:
  727. * Intel Errata AAK100 (model 26)
  728. * Intel Errata AAP53 (model 30)
  729. * Intel Errata BD53 (model 44)
  730. *
  731. * The official story:
  732. * These chips need to be 'reset' when adding counters by programming the
  733. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  734. * in sequence on the same PMC or on different PMCs.
  735. *
  736. * In practise it appears some of these events do in fact count, and
  737. * we need to programm all 4 events.
  738. */
  739. static void intel_pmu_nhm_workaround(void)
  740. {
  741. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  742. static const unsigned long nhm_magic[4] = {
  743. 0x4300B5,
  744. 0x4300D2,
  745. 0x4300B1,
  746. 0x4300B1
  747. };
  748. struct perf_event *event;
  749. int i;
  750. /*
  751. * The Errata requires below steps:
  752. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  753. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  754. * the corresponding PMCx;
  755. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  756. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  757. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  758. */
  759. /*
  760. * The real steps we choose are a little different from above.
  761. * A) To reduce MSR operations, we don't run step 1) as they
  762. * are already cleared before this function is called;
  763. * B) Call x86_perf_event_update to save PMCx before configuring
  764. * PERFEVTSELx with magic number;
  765. * C) With step 5), we do clear only when the PERFEVTSELx is
  766. * not used currently.
  767. * D) Call x86_perf_event_set_period to restore PMCx;
  768. */
  769. /* We always operate 4 pairs of PERF Counters */
  770. for (i = 0; i < 4; i++) {
  771. event = cpuc->events[i];
  772. if (event)
  773. x86_perf_event_update(event);
  774. }
  775. for (i = 0; i < 4; i++) {
  776. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  777. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  778. }
  779. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  780. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  781. for (i = 0; i < 4; i++) {
  782. event = cpuc->events[i];
  783. if (event) {
  784. x86_perf_event_set_period(event);
  785. __x86_pmu_enable_event(&event->hw,
  786. ARCH_PERFMON_EVENTSEL_ENABLE);
  787. } else
  788. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  789. }
  790. }
  791. static void intel_pmu_nhm_enable_all(int added)
  792. {
  793. if (added)
  794. intel_pmu_nhm_workaround();
  795. intel_pmu_enable_all(added);
  796. }
  797. static inline u64 intel_pmu_get_status(void)
  798. {
  799. u64 status;
  800. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  801. return status;
  802. }
  803. static inline void intel_pmu_ack_status(u64 ack)
  804. {
  805. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  806. }
  807. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  808. {
  809. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  810. u64 ctrl_val, mask;
  811. mask = 0xfULL << (idx * 4);
  812. rdmsrl(hwc->config_base, ctrl_val);
  813. ctrl_val &= ~mask;
  814. wrmsrl(hwc->config_base, ctrl_val);
  815. }
  816. static void intel_pmu_disable_event(struct perf_event *event)
  817. {
  818. struct hw_perf_event *hwc = &event->hw;
  819. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  820. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  821. intel_pmu_disable_bts();
  822. intel_pmu_drain_bts_buffer();
  823. return;
  824. }
  825. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  826. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  827. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  828. intel_pmu_disable_fixed(hwc);
  829. return;
  830. }
  831. x86_pmu_disable_event(event);
  832. if (unlikely(event->attr.precise_ip))
  833. intel_pmu_pebs_disable(event);
  834. }
  835. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  836. {
  837. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  838. u64 ctrl_val, bits, mask;
  839. /*
  840. * Enable IRQ generation (0x8),
  841. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  842. * if requested:
  843. */
  844. bits = 0x8ULL;
  845. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  846. bits |= 0x2;
  847. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  848. bits |= 0x1;
  849. /*
  850. * ANY bit is supported in v3 and up
  851. */
  852. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  853. bits |= 0x4;
  854. bits <<= (idx * 4);
  855. mask = 0xfULL << (idx * 4);
  856. rdmsrl(hwc->config_base, ctrl_val);
  857. ctrl_val &= ~mask;
  858. ctrl_val |= bits;
  859. wrmsrl(hwc->config_base, ctrl_val);
  860. }
  861. static void intel_pmu_enable_event(struct perf_event *event)
  862. {
  863. struct hw_perf_event *hwc = &event->hw;
  864. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  865. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  866. if (!__this_cpu_read(cpu_hw_events.enabled))
  867. return;
  868. intel_pmu_enable_bts(hwc->config);
  869. return;
  870. }
  871. if (event->attr.exclude_host)
  872. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  873. if (event->attr.exclude_guest)
  874. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  875. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  876. intel_pmu_enable_fixed(hwc);
  877. return;
  878. }
  879. if (unlikely(event->attr.precise_ip))
  880. intel_pmu_pebs_enable(event);
  881. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  882. }
  883. /*
  884. * Save and restart an expired event. Called by NMI contexts,
  885. * so it has to be careful about preempting normal event ops:
  886. */
  887. int intel_pmu_save_and_restart(struct perf_event *event)
  888. {
  889. x86_perf_event_update(event);
  890. return x86_perf_event_set_period(event);
  891. }
  892. static void intel_pmu_reset(void)
  893. {
  894. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  895. unsigned long flags;
  896. int idx;
  897. if (!x86_pmu.num_counters)
  898. return;
  899. local_irq_save(flags);
  900. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  901. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  902. checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
  903. checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
  904. }
  905. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  906. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  907. if (ds)
  908. ds->bts_index = ds->bts_buffer_base;
  909. local_irq_restore(flags);
  910. }
  911. /*
  912. * This handler is triggered by the local APIC, so the APIC IRQ handling
  913. * rules apply:
  914. */
  915. static int intel_pmu_handle_irq(struct pt_regs *regs)
  916. {
  917. struct perf_sample_data data;
  918. struct cpu_hw_events *cpuc;
  919. int bit, loops;
  920. u64 status;
  921. int handled;
  922. perf_sample_data_init(&data, 0);
  923. cpuc = &__get_cpu_var(cpu_hw_events);
  924. /*
  925. * Some chipsets need to unmask the LVTPC in a particular spot
  926. * inside the nmi handler. As a result, the unmasking was pushed
  927. * into all the nmi handlers.
  928. *
  929. * This handler doesn't seem to have any issues with the unmasking
  930. * so it was left at the top.
  931. */
  932. apic_write(APIC_LVTPC, APIC_DM_NMI);
  933. intel_pmu_disable_all();
  934. handled = intel_pmu_drain_bts_buffer();
  935. status = intel_pmu_get_status();
  936. if (!status) {
  937. intel_pmu_enable_all(0);
  938. return handled;
  939. }
  940. loops = 0;
  941. again:
  942. intel_pmu_ack_status(status);
  943. if (++loops > 100) {
  944. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  945. perf_event_print_debug();
  946. intel_pmu_reset();
  947. goto done;
  948. }
  949. inc_irq_stat(apic_perf_irqs);
  950. intel_pmu_lbr_read();
  951. /*
  952. * PEBS overflow sets bit 62 in the global status register
  953. */
  954. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  955. handled++;
  956. x86_pmu.drain_pebs(regs);
  957. }
  958. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  959. struct perf_event *event = cpuc->events[bit];
  960. handled++;
  961. if (!test_bit(bit, cpuc->active_mask))
  962. continue;
  963. if (!intel_pmu_save_and_restart(event))
  964. continue;
  965. data.period = event->hw.last_period;
  966. if (perf_event_overflow(event, &data, regs))
  967. x86_pmu_stop(event, 0);
  968. }
  969. /*
  970. * Repeat if there is more work to be done:
  971. */
  972. status = intel_pmu_get_status();
  973. if (status)
  974. goto again;
  975. done:
  976. intel_pmu_enable_all(0);
  977. return handled;
  978. }
  979. static struct event_constraint *
  980. intel_bts_constraints(struct perf_event *event)
  981. {
  982. struct hw_perf_event *hwc = &event->hw;
  983. unsigned int hw_event, bts_event;
  984. if (event->attr.freq)
  985. return NULL;
  986. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  987. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  988. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  989. return &bts_constraint;
  990. return NULL;
  991. }
  992. static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
  993. {
  994. if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
  995. return false;
  996. if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
  997. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  998. event->hw.config |= 0x01bb;
  999. event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
  1000. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  1001. } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
  1002. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1003. event->hw.config |= 0x01b7;
  1004. event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
  1005. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  1006. }
  1007. if (event->hw.extra_reg.idx == orig_idx)
  1008. return false;
  1009. return true;
  1010. }
  1011. /*
  1012. * manage allocation of shared extra msr for certain events
  1013. *
  1014. * sharing can be:
  1015. * per-cpu: to be shared between the various events on a single PMU
  1016. * per-core: per-cpu + shared by HT threads
  1017. */
  1018. static struct event_constraint *
  1019. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  1020. struct perf_event *event)
  1021. {
  1022. struct event_constraint *c = &emptyconstraint;
  1023. struct hw_perf_event_extra *reg = &event->hw.extra_reg;
  1024. struct er_account *era;
  1025. unsigned long flags;
  1026. int orig_idx = reg->idx;
  1027. /* already allocated shared msr */
  1028. if (reg->alloc)
  1029. return &unconstrained;
  1030. again:
  1031. era = &cpuc->shared_regs->regs[reg->idx];
  1032. /*
  1033. * we use spin_lock_irqsave() to avoid lockdep issues when
  1034. * passing a fake cpuc
  1035. */
  1036. raw_spin_lock_irqsave(&era->lock, flags);
  1037. if (!atomic_read(&era->ref) || era->config == reg->config) {
  1038. /* lock in msr value */
  1039. era->config = reg->config;
  1040. era->reg = reg->reg;
  1041. /* one more user */
  1042. atomic_inc(&era->ref);
  1043. /* no need to reallocate during incremental event scheduling */
  1044. reg->alloc = 1;
  1045. /*
  1046. * All events using extra_reg are unconstrained.
  1047. * Avoids calling x86_get_event_constraints()
  1048. *
  1049. * Must revisit if extra_reg controlling events
  1050. * ever have constraints. Worst case we go through
  1051. * the regular event constraint table.
  1052. */
  1053. c = &unconstrained;
  1054. } else if (intel_try_alt_er(event, orig_idx)) {
  1055. raw_spin_unlock(&era->lock);
  1056. goto again;
  1057. }
  1058. raw_spin_unlock_irqrestore(&era->lock, flags);
  1059. return c;
  1060. }
  1061. static void
  1062. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  1063. struct hw_perf_event_extra *reg)
  1064. {
  1065. struct er_account *era;
  1066. /*
  1067. * only put constraint if extra reg was actually
  1068. * allocated. Also takes care of event which do
  1069. * not use an extra shared reg
  1070. */
  1071. if (!reg->alloc)
  1072. return;
  1073. era = &cpuc->shared_regs->regs[reg->idx];
  1074. /* one fewer user */
  1075. atomic_dec(&era->ref);
  1076. /* allocate again next time */
  1077. reg->alloc = 0;
  1078. }
  1079. static struct event_constraint *
  1080. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  1081. struct perf_event *event)
  1082. {
  1083. struct event_constraint *c = NULL;
  1084. if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
  1085. c = __intel_shared_reg_get_constraints(cpuc, event);
  1086. return c;
  1087. }
  1088. struct event_constraint *
  1089. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1090. {
  1091. struct event_constraint *c;
  1092. if (x86_pmu.event_constraints) {
  1093. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1094. if ((event->hw.config & c->cmask) == c->code)
  1095. return c;
  1096. }
  1097. }
  1098. return &unconstrained;
  1099. }
  1100. static struct event_constraint *
  1101. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1102. {
  1103. struct event_constraint *c;
  1104. c = intel_bts_constraints(event);
  1105. if (c)
  1106. return c;
  1107. c = intel_pebs_constraints(event);
  1108. if (c)
  1109. return c;
  1110. c = intel_shared_regs_constraints(cpuc, event);
  1111. if (c)
  1112. return c;
  1113. return x86_get_event_constraints(cpuc, event);
  1114. }
  1115. static void
  1116. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  1117. struct perf_event *event)
  1118. {
  1119. struct hw_perf_event_extra *reg;
  1120. reg = &event->hw.extra_reg;
  1121. if (reg->idx != EXTRA_REG_NONE)
  1122. __intel_shared_reg_put_constraints(cpuc, reg);
  1123. }
  1124. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  1125. struct perf_event *event)
  1126. {
  1127. intel_put_shared_regs_event_constraints(cpuc, event);
  1128. }
  1129. static int intel_pmu_hw_config(struct perf_event *event)
  1130. {
  1131. int ret = x86_pmu_hw_config(event);
  1132. if (ret)
  1133. return ret;
  1134. if (event->attr.precise_ip &&
  1135. (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  1136. /*
  1137. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  1138. * (0x003c) so that we can use it with PEBS.
  1139. *
  1140. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  1141. * PEBS capable. However we can use INST_RETIRED.ANY_P
  1142. * (0x00c0), which is a PEBS capable event, to get the same
  1143. * count.
  1144. *
  1145. * INST_RETIRED.ANY_P counts the number of cycles that retires
  1146. * CNTMASK instructions. By setting CNTMASK to a value (16)
  1147. * larger than the maximum number of instructions that can be
  1148. * retired per cycle (4) and then inverting the condition, we
  1149. * count all cycles that retire 16 or less instructions, which
  1150. * is every cycle.
  1151. *
  1152. * Thereby we gain a PEBS capable cycle counter.
  1153. */
  1154. u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
  1155. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  1156. event->hw.config = alt_config;
  1157. }
  1158. if (event->attr.type != PERF_TYPE_RAW)
  1159. return 0;
  1160. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  1161. return 0;
  1162. if (x86_pmu.version < 3)
  1163. return -EINVAL;
  1164. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1165. return -EACCES;
  1166. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  1167. return 0;
  1168. }
  1169. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  1170. {
  1171. if (x86_pmu.guest_get_msrs)
  1172. return x86_pmu.guest_get_msrs(nr);
  1173. *nr = 0;
  1174. return NULL;
  1175. }
  1176. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  1177. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  1178. {
  1179. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1180. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1181. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  1182. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  1183. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  1184. *nr = 1;
  1185. return arr;
  1186. }
  1187. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  1188. {
  1189. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1190. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1191. int idx;
  1192. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1193. struct perf_event *event = cpuc->events[idx];
  1194. arr[idx].msr = x86_pmu_config_addr(idx);
  1195. arr[idx].host = arr[idx].guest = 0;
  1196. if (!test_bit(idx, cpuc->active_mask))
  1197. continue;
  1198. arr[idx].host = arr[idx].guest =
  1199. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  1200. if (event->attr.exclude_host)
  1201. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1202. else if (event->attr.exclude_guest)
  1203. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1204. }
  1205. *nr = x86_pmu.num_counters;
  1206. return arr;
  1207. }
  1208. static void core_pmu_enable_event(struct perf_event *event)
  1209. {
  1210. if (!event->attr.exclude_host)
  1211. x86_pmu_enable_event(event);
  1212. }
  1213. static void core_pmu_enable_all(int added)
  1214. {
  1215. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1216. int idx;
  1217. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1218. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  1219. if (!test_bit(idx, cpuc->active_mask) ||
  1220. cpuc->events[idx]->attr.exclude_host)
  1221. continue;
  1222. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1223. }
  1224. }
  1225. static __initconst const struct x86_pmu core_pmu = {
  1226. .name = "core",
  1227. .handle_irq = x86_pmu_handle_irq,
  1228. .disable_all = x86_pmu_disable_all,
  1229. .enable_all = core_pmu_enable_all,
  1230. .enable = core_pmu_enable_event,
  1231. .disable = x86_pmu_disable_event,
  1232. .hw_config = x86_pmu_hw_config,
  1233. .schedule_events = x86_schedule_events,
  1234. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1235. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1236. .event_map = intel_pmu_event_map,
  1237. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1238. .apic = 1,
  1239. /*
  1240. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1241. * so we install an artificial 1<<31 period regardless of
  1242. * the generic event period:
  1243. */
  1244. .max_period = (1ULL << 31) - 1,
  1245. .get_event_constraints = intel_get_event_constraints,
  1246. .put_event_constraints = intel_put_event_constraints,
  1247. .event_constraints = intel_core_event_constraints,
  1248. .guest_get_msrs = core_guest_get_msrs,
  1249. };
  1250. struct intel_shared_regs *allocate_shared_regs(int cpu)
  1251. {
  1252. struct intel_shared_regs *regs;
  1253. int i;
  1254. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  1255. GFP_KERNEL, cpu_to_node(cpu));
  1256. if (regs) {
  1257. /*
  1258. * initialize the locks to keep lockdep happy
  1259. */
  1260. for (i = 0; i < EXTRA_REG_MAX; i++)
  1261. raw_spin_lock_init(&regs->regs[i].lock);
  1262. regs->core_id = -1;
  1263. }
  1264. return regs;
  1265. }
  1266. static int intel_pmu_cpu_prepare(int cpu)
  1267. {
  1268. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1269. if (!x86_pmu.extra_regs)
  1270. return NOTIFY_OK;
  1271. cpuc->shared_regs = allocate_shared_regs(cpu);
  1272. if (!cpuc->shared_regs)
  1273. return NOTIFY_BAD;
  1274. return NOTIFY_OK;
  1275. }
  1276. static void intel_pmu_cpu_starting(int cpu)
  1277. {
  1278. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1279. int core_id = topology_core_id(cpu);
  1280. int i;
  1281. init_debug_store_on_cpu(cpu);
  1282. /*
  1283. * Deal with CPUs that don't clear their LBRs on power-up.
  1284. */
  1285. intel_pmu_lbr_reset();
  1286. if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
  1287. return;
  1288. for_each_cpu(i, topology_thread_cpumask(cpu)) {
  1289. struct intel_shared_regs *pc;
  1290. pc = per_cpu(cpu_hw_events, i).shared_regs;
  1291. if (pc && pc->core_id == core_id) {
  1292. cpuc->kfree_on_online = cpuc->shared_regs;
  1293. cpuc->shared_regs = pc;
  1294. break;
  1295. }
  1296. }
  1297. cpuc->shared_regs->core_id = core_id;
  1298. cpuc->shared_regs->refcnt++;
  1299. }
  1300. static void intel_pmu_cpu_dying(int cpu)
  1301. {
  1302. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1303. struct intel_shared_regs *pc;
  1304. pc = cpuc->shared_regs;
  1305. if (pc) {
  1306. if (pc->core_id == -1 || --pc->refcnt == 0)
  1307. kfree(pc);
  1308. cpuc->shared_regs = NULL;
  1309. }
  1310. fini_debug_store_on_cpu(cpu);
  1311. }
  1312. static __initconst const struct x86_pmu intel_pmu = {
  1313. .name = "Intel",
  1314. .handle_irq = intel_pmu_handle_irq,
  1315. .disable_all = intel_pmu_disable_all,
  1316. .enable_all = intel_pmu_enable_all,
  1317. .enable = intel_pmu_enable_event,
  1318. .disable = intel_pmu_disable_event,
  1319. .hw_config = intel_pmu_hw_config,
  1320. .schedule_events = x86_schedule_events,
  1321. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1322. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1323. .event_map = intel_pmu_event_map,
  1324. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1325. .apic = 1,
  1326. /*
  1327. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1328. * so we install an artificial 1<<31 period regardless of
  1329. * the generic event period:
  1330. */
  1331. .max_period = (1ULL << 31) - 1,
  1332. .get_event_constraints = intel_get_event_constraints,
  1333. .put_event_constraints = intel_put_event_constraints,
  1334. .cpu_prepare = intel_pmu_cpu_prepare,
  1335. .cpu_starting = intel_pmu_cpu_starting,
  1336. .cpu_dying = intel_pmu_cpu_dying,
  1337. .guest_get_msrs = intel_guest_get_msrs,
  1338. };
  1339. static __init void intel_clovertown_quirk(void)
  1340. {
  1341. /*
  1342. * PEBS is unreliable due to:
  1343. *
  1344. * AJ67 - PEBS may experience CPL leaks
  1345. * AJ68 - PEBS PMI may be delayed by one event
  1346. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  1347. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  1348. *
  1349. * AJ67 could be worked around by restricting the OS/USR flags.
  1350. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  1351. *
  1352. * AJ106 could possibly be worked around by not allowing LBR
  1353. * usage from PEBS, including the fixup.
  1354. * AJ68 could possibly be worked around by always programming
  1355. * a pebs_event_reset[0] value and coping with the lost events.
  1356. *
  1357. * But taken together it might just make sense to not enable PEBS on
  1358. * these chips.
  1359. */
  1360. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1361. x86_pmu.pebs = 0;
  1362. x86_pmu.pebs_constraints = NULL;
  1363. }
  1364. static __init void intel_sandybridge_quirk(void)
  1365. {
  1366. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1367. x86_pmu.pebs = 0;
  1368. x86_pmu.pebs_constraints = NULL;
  1369. }
  1370. static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
  1371. { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
  1372. { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
  1373. { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
  1374. { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
  1375. { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
  1376. { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
  1377. { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
  1378. };
  1379. static __init void intel_arch_events_quirk(void)
  1380. {
  1381. int bit;
  1382. /* disable event that reported as not presend by cpuid */
  1383. for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
  1384. intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
  1385. printk(KERN_WARNING "CPUID marked event: \'%s\' unavailable\n",
  1386. intel_arch_events_map[bit].name);
  1387. }
  1388. }
  1389. static __init void intel_nehalem_quirk(void)
  1390. {
  1391. union cpuid10_ebx ebx;
  1392. ebx.full = x86_pmu.events_maskl;
  1393. if (ebx.split.no_branch_misses_retired) {
  1394. /*
  1395. * Erratum AAJ80 detected, we work it around by using
  1396. * the BR_MISP_EXEC.ANY event. This will over-count
  1397. * branch-misses, but it's still much better than the
  1398. * architectural event which is often completely bogus:
  1399. */
  1400. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  1401. ebx.split.no_branch_misses_retired = 0;
  1402. x86_pmu.events_maskl = ebx.full;
  1403. printk(KERN_INFO "CPU erratum AAJ80 worked around\n");
  1404. }
  1405. }
  1406. __init int intel_pmu_init(void)
  1407. {
  1408. union cpuid10_edx edx;
  1409. union cpuid10_eax eax;
  1410. union cpuid10_ebx ebx;
  1411. unsigned int unused;
  1412. int version;
  1413. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  1414. switch (boot_cpu_data.x86) {
  1415. case 0x6:
  1416. return p6_pmu_init();
  1417. case 0xf:
  1418. return p4_pmu_init();
  1419. }
  1420. return -ENODEV;
  1421. }
  1422. /*
  1423. * Check whether the Architectural PerfMon supports
  1424. * Branch Misses Retired hw_event or not.
  1425. */
  1426. cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
  1427. if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
  1428. return -ENODEV;
  1429. version = eax.split.version_id;
  1430. if (version < 2)
  1431. x86_pmu = core_pmu;
  1432. else
  1433. x86_pmu = intel_pmu;
  1434. x86_pmu.version = version;
  1435. x86_pmu.num_counters = eax.split.num_counters;
  1436. x86_pmu.cntval_bits = eax.split.bit_width;
  1437. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  1438. x86_pmu.events_maskl = ebx.full;
  1439. x86_pmu.events_mask_len = eax.split.mask_length;
  1440. /*
  1441. * Quirk: v2 perfmon does not report fixed-purpose events, so
  1442. * assume at least 3 events:
  1443. */
  1444. if (version > 1)
  1445. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1446. /*
  1447. * v2 and above have a perf capabilities MSR
  1448. */
  1449. if (version > 1) {
  1450. u64 capabilities;
  1451. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  1452. x86_pmu.intel_cap.capabilities = capabilities;
  1453. }
  1454. intel_ds_init();
  1455. x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
  1456. /*
  1457. * Install the hw-cache-events table:
  1458. */
  1459. switch (boot_cpu_data.x86_model) {
  1460. case 14: /* 65 nm core solo/duo, "Yonah" */
  1461. pr_cont("Core events, ");
  1462. break;
  1463. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  1464. x86_add_quirk(intel_clovertown_quirk);
  1465. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  1466. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  1467. case 29: /* six-core 45 nm xeon "Dunnington" */
  1468. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1469. sizeof(hw_cache_event_ids));
  1470. intel_pmu_lbr_init_core();
  1471. x86_pmu.event_constraints = intel_core2_event_constraints;
  1472. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  1473. pr_cont("Core2 events, ");
  1474. break;
  1475. case 26: /* 45 nm nehalem, "Bloomfield" */
  1476. case 30: /* 45 nm nehalem, "Lynnfield" */
  1477. case 46: /* 45 nm nehalem-ex, "Beckton" */
  1478. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1479. sizeof(hw_cache_event_ids));
  1480. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1481. sizeof(hw_cache_extra_regs));
  1482. intel_pmu_lbr_init_nhm();
  1483. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  1484. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  1485. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1486. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  1487. /* UOPS_ISSUED.STALLED_CYCLES */
  1488. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1489. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1490. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1491. x86_add_quirk(intel_nehalem_quirk);
  1492. pr_cont("Nehalem events, ");
  1493. break;
  1494. case 28: /* Atom */
  1495. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1496. sizeof(hw_cache_event_ids));
  1497. intel_pmu_lbr_init_atom();
  1498. x86_pmu.event_constraints = intel_gen_event_constraints;
  1499. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  1500. pr_cont("Atom events, ");
  1501. break;
  1502. case 37: /* 32 nm nehalem, "Clarkdale" */
  1503. case 44: /* 32 nm nehalem, "Gulftown" */
  1504. case 47: /* 32 nm Xeon E7 */
  1505. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  1506. sizeof(hw_cache_event_ids));
  1507. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1508. sizeof(hw_cache_extra_regs));
  1509. intel_pmu_lbr_init_nhm();
  1510. x86_pmu.event_constraints = intel_westmere_event_constraints;
  1511. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1512. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  1513. x86_pmu.extra_regs = intel_westmere_extra_regs;
  1514. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1515. /* UOPS_ISSUED.STALLED_CYCLES */
  1516. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1517. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1518. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1519. pr_cont("Westmere events, ");
  1520. break;
  1521. case 42: /* SandyBridge */
  1522. x86_add_quirk(intel_sandybridge_quirk);
  1523. case 45: /* SandyBridge, "Romely-EP" */
  1524. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  1525. sizeof(hw_cache_event_ids));
  1526. intel_pmu_lbr_init_nhm();
  1527. x86_pmu.event_constraints = intel_snb_event_constraints;
  1528. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  1529. x86_pmu.extra_regs = intel_snb_extra_regs;
  1530. /* all extra regs are per-cpu when HT is on */
  1531. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1532. x86_pmu.er_flags |= ERF_NO_HT_SHARING;
  1533. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  1534. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1535. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  1536. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
  1537. pr_cont("SandyBridge events, ");
  1538. break;
  1539. default:
  1540. switch (x86_pmu.version) {
  1541. case 1:
  1542. x86_pmu.event_constraints = intel_v1_event_constraints;
  1543. pr_cont("generic architected perfmon v1, ");
  1544. break;
  1545. default:
  1546. /*
  1547. * default constraints for v2 and up
  1548. */
  1549. x86_pmu.event_constraints = intel_gen_event_constraints;
  1550. pr_cont("generic architected perfmon, ");
  1551. break;
  1552. }
  1553. }
  1554. return 0;
  1555. }