volumes.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/bio.h>
  20. #include <linux/slab.h>
  21. #include <linux/buffer_head.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/random.h>
  24. #include <linux/iocontext.h>
  25. #include <asm/div64.h>
  26. #include "compat.h"
  27. #include "ctree.h"
  28. #include "extent_map.h"
  29. #include "disk-io.h"
  30. #include "transaction.h"
  31. #include "print-tree.h"
  32. #include "volumes.h"
  33. #include "async-thread.h"
  34. struct map_lookup {
  35. u64 type;
  36. int io_align;
  37. int io_width;
  38. int stripe_len;
  39. int sector_size;
  40. int num_stripes;
  41. int sub_stripes;
  42. struct btrfs_bio_stripe stripes[];
  43. };
  44. static int init_first_rw_device(struct btrfs_trans_handle *trans,
  45. struct btrfs_root *root,
  46. struct btrfs_device *device);
  47. static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  48. #define map_lookup_size(n) (sizeof(struct map_lookup) + \
  49. (sizeof(struct btrfs_bio_stripe) * (n)))
  50. static DEFINE_MUTEX(uuid_mutex);
  51. static LIST_HEAD(fs_uuids);
  52. void btrfs_lock_volumes(void)
  53. {
  54. mutex_lock(&uuid_mutex);
  55. }
  56. void btrfs_unlock_volumes(void)
  57. {
  58. mutex_unlock(&uuid_mutex);
  59. }
  60. static void lock_chunks(struct btrfs_root *root)
  61. {
  62. mutex_lock(&root->fs_info->chunk_mutex);
  63. }
  64. static void unlock_chunks(struct btrfs_root *root)
  65. {
  66. mutex_unlock(&root->fs_info->chunk_mutex);
  67. }
  68. static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
  69. {
  70. struct btrfs_device *device;
  71. WARN_ON(fs_devices->opened);
  72. while (!list_empty(&fs_devices->devices)) {
  73. device = list_entry(fs_devices->devices.next,
  74. struct btrfs_device, dev_list);
  75. list_del(&device->dev_list);
  76. kfree(device->name);
  77. kfree(device);
  78. }
  79. kfree(fs_devices);
  80. }
  81. int btrfs_cleanup_fs_uuids(void)
  82. {
  83. struct btrfs_fs_devices *fs_devices;
  84. while (!list_empty(&fs_uuids)) {
  85. fs_devices = list_entry(fs_uuids.next,
  86. struct btrfs_fs_devices, list);
  87. list_del(&fs_devices->list);
  88. free_fs_devices(fs_devices);
  89. }
  90. return 0;
  91. }
  92. static noinline struct btrfs_device *__find_device(struct list_head *head,
  93. u64 devid, u8 *uuid)
  94. {
  95. struct btrfs_device *dev;
  96. list_for_each_entry(dev, head, dev_list) {
  97. if (dev->devid == devid &&
  98. (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
  99. return dev;
  100. }
  101. }
  102. return NULL;
  103. }
  104. static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
  105. {
  106. struct btrfs_fs_devices *fs_devices;
  107. list_for_each_entry(fs_devices, &fs_uuids, list) {
  108. if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
  109. return fs_devices;
  110. }
  111. return NULL;
  112. }
  113. static void requeue_list(struct btrfs_pending_bios *pending_bios,
  114. struct bio *head, struct bio *tail)
  115. {
  116. struct bio *old_head;
  117. old_head = pending_bios->head;
  118. pending_bios->head = head;
  119. if (pending_bios->tail)
  120. tail->bi_next = old_head;
  121. else
  122. pending_bios->tail = tail;
  123. }
  124. /*
  125. * we try to collect pending bios for a device so we don't get a large
  126. * number of procs sending bios down to the same device. This greatly
  127. * improves the schedulers ability to collect and merge the bios.
  128. *
  129. * But, it also turns into a long list of bios to process and that is sure
  130. * to eventually make the worker thread block. The solution here is to
  131. * make some progress and then put this work struct back at the end of
  132. * the list if the block device is congested. This way, multiple devices
  133. * can make progress from a single worker thread.
  134. */
  135. static noinline int run_scheduled_bios(struct btrfs_device *device)
  136. {
  137. struct bio *pending;
  138. struct backing_dev_info *bdi;
  139. struct btrfs_fs_info *fs_info;
  140. struct btrfs_pending_bios *pending_bios;
  141. struct bio *tail;
  142. struct bio *cur;
  143. int again = 0;
  144. unsigned long num_run;
  145. unsigned long num_sync_run;
  146. unsigned long batch_run = 0;
  147. unsigned long limit;
  148. unsigned long last_waited = 0;
  149. int force_reg = 0;
  150. bdi = blk_get_backing_dev_info(device->bdev);
  151. fs_info = device->dev_root->fs_info;
  152. limit = btrfs_async_submit_limit(fs_info);
  153. limit = limit * 2 / 3;
  154. /* we want to make sure that every time we switch from the sync
  155. * list to the normal list, we unplug
  156. */
  157. num_sync_run = 0;
  158. loop:
  159. spin_lock(&device->io_lock);
  160. loop_lock:
  161. num_run = 0;
  162. /* take all the bios off the list at once and process them
  163. * later on (without the lock held). But, remember the
  164. * tail and other pointers so the bios can be properly reinserted
  165. * into the list if we hit congestion
  166. */
  167. if (!force_reg && device->pending_sync_bios.head) {
  168. pending_bios = &device->pending_sync_bios;
  169. force_reg = 1;
  170. } else {
  171. pending_bios = &device->pending_bios;
  172. force_reg = 0;
  173. }
  174. pending = pending_bios->head;
  175. tail = pending_bios->tail;
  176. WARN_ON(pending && !tail);
  177. /*
  178. * if pending was null this time around, no bios need processing
  179. * at all and we can stop. Otherwise it'll loop back up again
  180. * and do an additional check so no bios are missed.
  181. *
  182. * device->running_pending is used to synchronize with the
  183. * schedule_bio code.
  184. */
  185. if (device->pending_sync_bios.head == NULL &&
  186. device->pending_bios.head == NULL) {
  187. again = 0;
  188. device->running_pending = 0;
  189. } else {
  190. again = 1;
  191. device->running_pending = 1;
  192. }
  193. pending_bios->head = NULL;
  194. pending_bios->tail = NULL;
  195. spin_unlock(&device->io_lock);
  196. /*
  197. * if we're doing the regular priority list, make sure we unplug
  198. * for any high prio bios we've sent down
  199. */
  200. if (pending_bios == &device->pending_bios && num_sync_run > 0) {
  201. num_sync_run = 0;
  202. blk_run_backing_dev(bdi, NULL);
  203. }
  204. while (pending) {
  205. rmb();
  206. /* we want to work on both lists, but do more bios on the
  207. * sync list than the regular list
  208. */
  209. if ((num_run > 32 &&
  210. pending_bios != &device->pending_sync_bios &&
  211. device->pending_sync_bios.head) ||
  212. (num_run > 64 && pending_bios == &device->pending_sync_bios &&
  213. device->pending_bios.head)) {
  214. spin_lock(&device->io_lock);
  215. requeue_list(pending_bios, pending, tail);
  216. goto loop_lock;
  217. }
  218. cur = pending;
  219. pending = pending->bi_next;
  220. cur->bi_next = NULL;
  221. atomic_dec(&fs_info->nr_async_bios);
  222. if (atomic_read(&fs_info->nr_async_bios) < limit &&
  223. waitqueue_active(&fs_info->async_submit_wait))
  224. wake_up(&fs_info->async_submit_wait);
  225. BUG_ON(atomic_read(&cur->bi_cnt) == 0);
  226. if (cur->bi_rw & REQ_SYNC)
  227. num_sync_run++;
  228. submit_bio(cur->bi_rw, cur);
  229. num_run++;
  230. batch_run++;
  231. if (need_resched()) {
  232. if (num_sync_run) {
  233. blk_run_backing_dev(bdi, NULL);
  234. num_sync_run = 0;
  235. }
  236. cond_resched();
  237. }
  238. /*
  239. * we made progress, there is more work to do and the bdi
  240. * is now congested. Back off and let other work structs
  241. * run instead
  242. */
  243. if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
  244. fs_info->fs_devices->open_devices > 1) {
  245. struct io_context *ioc;
  246. ioc = current->io_context;
  247. /*
  248. * the main goal here is that we don't want to
  249. * block if we're going to be able to submit
  250. * more requests without blocking.
  251. *
  252. * This code does two great things, it pokes into
  253. * the elevator code from a filesystem _and_
  254. * it makes assumptions about how batching works.
  255. */
  256. if (ioc && ioc->nr_batch_requests > 0 &&
  257. time_before(jiffies, ioc->last_waited + HZ/50UL) &&
  258. (last_waited == 0 ||
  259. ioc->last_waited == last_waited)) {
  260. /*
  261. * we want to go through our batch of
  262. * requests and stop. So, we copy out
  263. * the ioc->last_waited time and test
  264. * against it before looping
  265. */
  266. last_waited = ioc->last_waited;
  267. if (need_resched()) {
  268. if (num_sync_run) {
  269. blk_run_backing_dev(bdi, NULL);
  270. num_sync_run = 0;
  271. }
  272. cond_resched();
  273. }
  274. continue;
  275. }
  276. spin_lock(&device->io_lock);
  277. requeue_list(pending_bios, pending, tail);
  278. device->running_pending = 1;
  279. spin_unlock(&device->io_lock);
  280. btrfs_requeue_work(&device->work);
  281. goto done;
  282. }
  283. }
  284. if (num_sync_run) {
  285. num_sync_run = 0;
  286. blk_run_backing_dev(bdi, NULL);
  287. }
  288. /*
  289. * IO has already been through a long path to get here. Checksumming,
  290. * async helper threads, perhaps compression. We've done a pretty
  291. * good job of collecting a batch of IO and should just unplug
  292. * the device right away.
  293. *
  294. * This will help anyone who is waiting on the IO, they might have
  295. * already unplugged, but managed to do so before the bio they
  296. * cared about found its way down here.
  297. */
  298. blk_run_backing_dev(bdi, NULL);
  299. cond_resched();
  300. if (again)
  301. goto loop;
  302. spin_lock(&device->io_lock);
  303. if (device->pending_bios.head || device->pending_sync_bios.head)
  304. goto loop_lock;
  305. spin_unlock(&device->io_lock);
  306. done:
  307. return 0;
  308. }
  309. static void pending_bios_fn(struct btrfs_work *work)
  310. {
  311. struct btrfs_device *device;
  312. device = container_of(work, struct btrfs_device, work);
  313. run_scheduled_bios(device);
  314. }
  315. static noinline int device_list_add(const char *path,
  316. struct btrfs_super_block *disk_super,
  317. u64 devid, struct btrfs_fs_devices **fs_devices_ret)
  318. {
  319. struct btrfs_device *device;
  320. struct btrfs_fs_devices *fs_devices;
  321. u64 found_transid = btrfs_super_generation(disk_super);
  322. char *name;
  323. fs_devices = find_fsid(disk_super->fsid);
  324. if (!fs_devices) {
  325. fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
  326. if (!fs_devices)
  327. return -ENOMEM;
  328. INIT_LIST_HEAD(&fs_devices->devices);
  329. INIT_LIST_HEAD(&fs_devices->alloc_list);
  330. list_add(&fs_devices->list, &fs_uuids);
  331. memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
  332. fs_devices->latest_devid = devid;
  333. fs_devices->latest_trans = found_transid;
  334. mutex_init(&fs_devices->device_list_mutex);
  335. device = NULL;
  336. } else {
  337. device = __find_device(&fs_devices->devices, devid,
  338. disk_super->dev_item.uuid);
  339. }
  340. if (!device) {
  341. if (fs_devices->opened)
  342. return -EBUSY;
  343. device = kzalloc(sizeof(*device), GFP_NOFS);
  344. if (!device) {
  345. /* we can safely leave the fs_devices entry around */
  346. return -ENOMEM;
  347. }
  348. device->devid = devid;
  349. device->work.func = pending_bios_fn;
  350. memcpy(device->uuid, disk_super->dev_item.uuid,
  351. BTRFS_UUID_SIZE);
  352. device->barriers = 1;
  353. spin_lock_init(&device->io_lock);
  354. device->name = kstrdup(path, GFP_NOFS);
  355. if (!device->name) {
  356. kfree(device);
  357. return -ENOMEM;
  358. }
  359. INIT_LIST_HEAD(&device->dev_alloc_list);
  360. mutex_lock(&fs_devices->device_list_mutex);
  361. list_add(&device->dev_list, &fs_devices->devices);
  362. mutex_unlock(&fs_devices->device_list_mutex);
  363. device->fs_devices = fs_devices;
  364. fs_devices->num_devices++;
  365. } else if (!device->name || strcmp(device->name, path)) {
  366. name = kstrdup(path, GFP_NOFS);
  367. if (!name)
  368. return -ENOMEM;
  369. kfree(device->name);
  370. device->name = name;
  371. if (device->missing) {
  372. fs_devices->missing_devices--;
  373. device->missing = 0;
  374. }
  375. }
  376. if (found_transid > fs_devices->latest_trans) {
  377. fs_devices->latest_devid = devid;
  378. fs_devices->latest_trans = found_transid;
  379. }
  380. *fs_devices_ret = fs_devices;
  381. return 0;
  382. }
  383. static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
  384. {
  385. struct btrfs_fs_devices *fs_devices;
  386. struct btrfs_device *device;
  387. struct btrfs_device *orig_dev;
  388. fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
  389. if (!fs_devices)
  390. return ERR_PTR(-ENOMEM);
  391. INIT_LIST_HEAD(&fs_devices->devices);
  392. INIT_LIST_HEAD(&fs_devices->alloc_list);
  393. INIT_LIST_HEAD(&fs_devices->list);
  394. mutex_init(&fs_devices->device_list_mutex);
  395. fs_devices->latest_devid = orig->latest_devid;
  396. fs_devices->latest_trans = orig->latest_trans;
  397. memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
  398. mutex_lock(&orig->device_list_mutex);
  399. list_for_each_entry(orig_dev, &orig->devices, dev_list) {
  400. device = kzalloc(sizeof(*device), GFP_NOFS);
  401. if (!device)
  402. goto error;
  403. device->name = kstrdup(orig_dev->name, GFP_NOFS);
  404. if (!device->name) {
  405. kfree(device);
  406. goto error;
  407. }
  408. device->devid = orig_dev->devid;
  409. device->work.func = pending_bios_fn;
  410. memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
  411. device->barriers = 1;
  412. spin_lock_init(&device->io_lock);
  413. INIT_LIST_HEAD(&device->dev_list);
  414. INIT_LIST_HEAD(&device->dev_alloc_list);
  415. list_add(&device->dev_list, &fs_devices->devices);
  416. device->fs_devices = fs_devices;
  417. fs_devices->num_devices++;
  418. }
  419. mutex_unlock(&orig->device_list_mutex);
  420. return fs_devices;
  421. error:
  422. mutex_unlock(&orig->device_list_mutex);
  423. free_fs_devices(fs_devices);
  424. return ERR_PTR(-ENOMEM);
  425. }
  426. int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
  427. {
  428. struct btrfs_device *device, *next;
  429. mutex_lock(&uuid_mutex);
  430. again:
  431. mutex_lock(&fs_devices->device_list_mutex);
  432. list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
  433. if (device->in_fs_metadata)
  434. continue;
  435. if (device->bdev) {
  436. close_bdev_exclusive(device->bdev, device->mode);
  437. device->bdev = NULL;
  438. fs_devices->open_devices--;
  439. }
  440. if (device->writeable) {
  441. list_del_init(&device->dev_alloc_list);
  442. device->writeable = 0;
  443. fs_devices->rw_devices--;
  444. }
  445. list_del_init(&device->dev_list);
  446. fs_devices->num_devices--;
  447. kfree(device->name);
  448. kfree(device);
  449. }
  450. mutex_unlock(&fs_devices->device_list_mutex);
  451. if (fs_devices->seed) {
  452. fs_devices = fs_devices->seed;
  453. goto again;
  454. }
  455. mutex_unlock(&uuid_mutex);
  456. return 0;
  457. }
  458. static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
  459. {
  460. struct btrfs_device *device;
  461. if (--fs_devices->opened > 0)
  462. return 0;
  463. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  464. if (device->bdev) {
  465. close_bdev_exclusive(device->bdev, device->mode);
  466. fs_devices->open_devices--;
  467. }
  468. if (device->writeable) {
  469. list_del_init(&device->dev_alloc_list);
  470. fs_devices->rw_devices--;
  471. }
  472. device->bdev = NULL;
  473. device->writeable = 0;
  474. device->in_fs_metadata = 0;
  475. }
  476. WARN_ON(fs_devices->open_devices);
  477. WARN_ON(fs_devices->rw_devices);
  478. fs_devices->opened = 0;
  479. fs_devices->seeding = 0;
  480. return 0;
  481. }
  482. int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
  483. {
  484. struct btrfs_fs_devices *seed_devices = NULL;
  485. int ret;
  486. mutex_lock(&uuid_mutex);
  487. ret = __btrfs_close_devices(fs_devices);
  488. if (!fs_devices->opened) {
  489. seed_devices = fs_devices->seed;
  490. fs_devices->seed = NULL;
  491. }
  492. mutex_unlock(&uuid_mutex);
  493. while (seed_devices) {
  494. fs_devices = seed_devices;
  495. seed_devices = fs_devices->seed;
  496. __btrfs_close_devices(fs_devices);
  497. free_fs_devices(fs_devices);
  498. }
  499. return ret;
  500. }
  501. static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
  502. fmode_t flags, void *holder)
  503. {
  504. struct block_device *bdev;
  505. struct list_head *head = &fs_devices->devices;
  506. struct btrfs_device *device;
  507. struct block_device *latest_bdev = NULL;
  508. struct buffer_head *bh;
  509. struct btrfs_super_block *disk_super;
  510. u64 latest_devid = 0;
  511. u64 latest_transid = 0;
  512. u64 devid;
  513. int seeding = 1;
  514. int ret = 0;
  515. list_for_each_entry(device, head, dev_list) {
  516. if (device->bdev)
  517. continue;
  518. if (!device->name)
  519. continue;
  520. bdev = open_bdev_exclusive(device->name, flags, holder);
  521. if (IS_ERR(bdev)) {
  522. printk(KERN_INFO "open %s failed\n", device->name);
  523. goto error;
  524. }
  525. set_blocksize(bdev, 4096);
  526. bh = btrfs_read_dev_super(bdev);
  527. if (!bh)
  528. goto error_close;
  529. disk_super = (struct btrfs_super_block *)bh->b_data;
  530. devid = btrfs_stack_device_id(&disk_super->dev_item);
  531. if (devid != device->devid)
  532. goto error_brelse;
  533. if (memcmp(device->uuid, disk_super->dev_item.uuid,
  534. BTRFS_UUID_SIZE))
  535. goto error_brelse;
  536. device->generation = btrfs_super_generation(disk_super);
  537. if (!latest_transid || device->generation > latest_transid) {
  538. latest_devid = devid;
  539. latest_transid = device->generation;
  540. latest_bdev = bdev;
  541. }
  542. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
  543. device->writeable = 0;
  544. } else {
  545. device->writeable = !bdev_read_only(bdev);
  546. seeding = 0;
  547. }
  548. device->bdev = bdev;
  549. device->in_fs_metadata = 0;
  550. device->mode = flags;
  551. if (!blk_queue_nonrot(bdev_get_queue(bdev)))
  552. fs_devices->rotating = 1;
  553. fs_devices->open_devices++;
  554. if (device->writeable) {
  555. fs_devices->rw_devices++;
  556. list_add(&device->dev_alloc_list,
  557. &fs_devices->alloc_list);
  558. }
  559. continue;
  560. error_brelse:
  561. brelse(bh);
  562. error_close:
  563. close_bdev_exclusive(bdev, FMODE_READ);
  564. error:
  565. continue;
  566. }
  567. if (fs_devices->open_devices == 0) {
  568. ret = -EIO;
  569. goto out;
  570. }
  571. fs_devices->seeding = seeding;
  572. fs_devices->opened = 1;
  573. fs_devices->latest_bdev = latest_bdev;
  574. fs_devices->latest_devid = latest_devid;
  575. fs_devices->latest_trans = latest_transid;
  576. fs_devices->total_rw_bytes = 0;
  577. out:
  578. return ret;
  579. }
  580. int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
  581. fmode_t flags, void *holder)
  582. {
  583. int ret;
  584. mutex_lock(&uuid_mutex);
  585. if (fs_devices->opened) {
  586. fs_devices->opened++;
  587. ret = 0;
  588. } else {
  589. ret = __btrfs_open_devices(fs_devices, flags, holder);
  590. }
  591. mutex_unlock(&uuid_mutex);
  592. return ret;
  593. }
  594. int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
  595. struct btrfs_fs_devices **fs_devices_ret)
  596. {
  597. struct btrfs_super_block *disk_super;
  598. struct block_device *bdev;
  599. struct buffer_head *bh;
  600. int ret;
  601. u64 devid;
  602. u64 transid;
  603. mutex_lock(&uuid_mutex);
  604. bdev = open_bdev_exclusive(path, flags, holder);
  605. if (IS_ERR(bdev)) {
  606. ret = PTR_ERR(bdev);
  607. goto error;
  608. }
  609. ret = set_blocksize(bdev, 4096);
  610. if (ret)
  611. goto error_close;
  612. bh = btrfs_read_dev_super(bdev);
  613. if (!bh) {
  614. ret = -EIO;
  615. goto error_close;
  616. }
  617. disk_super = (struct btrfs_super_block *)bh->b_data;
  618. devid = btrfs_stack_device_id(&disk_super->dev_item);
  619. transid = btrfs_super_generation(disk_super);
  620. if (disk_super->label[0])
  621. printk(KERN_INFO "device label %s ", disk_super->label);
  622. else {
  623. /* FIXME, make a readl uuid parser */
  624. printk(KERN_INFO "device fsid %llx-%llx ",
  625. *(unsigned long long *)disk_super->fsid,
  626. *(unsigned long long *)(disk_super->fsid + 8));
  627. }
  628. printk(KERN_CONT "devid %llu transid %llu %s\n",
  629. (unsigned long long)devid, (unsigned long long)transid, path);
  630. ret = device_list_add(path, disk_super, devid, fs_devices_ret);
  631. brelse(bh);
  632. error_close:
  633. close_bdev_exclusive(bdev, flags);
  634. error:
  635. mutex_unlock(&uuid_mutex);
  636. return ret;
  637. }
  638. /*
  639. * this uses a pretty simple search, the expectation is that it is
  640. * called very infrequently and that a given device has a small number
  641. * of extents
  642. */
  643. int find_free_dev_extent(struct btrfs_trans_handle *trans,
  644. struct btrfs_device *device, u64 num_bytes,
  645. u64 *start, u64 *max_avail)
  646. {
  647. struct btrfs_key key;
  648. struct btrfs_root *root = device->dev_root;
  649. struct btrfs_dev_extent *dev_extent = NULL;
  650. struct btrfs_path *path;
  651. u64 hole_size = 0;
  652. u64 last_byte = 0;
  653. u64 search_start = 0;
  654. u64 search_end = device->total_bytes;
  655. int ret;
  656. int slot = 0;
  657. int start_found;
  658. struct extent_buffer *l;
  659. path = btrfs_alloc_path();
  660. if (!path)
  661. return -ENOMEM;
  662. path->reada = 2;
  663. start_found = 0;
  664. /* FIXME use last free of some kind */
  665. /* we don't want to overwrite the superblock on the drive,
  666. * so we make sure to start at an offset of at least 1MB
  667. */
  668. search_start = max((u64)1024 * 1024, search_start);
  669. if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
  670. search_start = max(root->fs_info->alloc_start, search_start);
  671. key.objectid = device->devid;
  672. key.offset = search_start;
  673. key.type = BTRFS_DEV_EXTENT_KEY;
  674. ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
  675. if (ret < 0)
  676. goto error;
  677. if (ret > 0) {
  678. ret = btrfs_previous_item(root, path, key.objectid, key.type);
  679. if (ret < 0)
  680. goto error;
  681. if (ret > 0)
  682. start_found = 1;
  683. }
  684. l = path->nodes[0];
  685. btrfs_item_key_to_cpu(l, &key, path->slots[0]);
  686. while (1) {
  687. l = path->nodes[0];
  688. slot = path->slots[0];
  689. if (slot >= btrfs_header_nritems(l)) {
  690. ret = btrfs_next_leaf(root, path);
  691. if (ret == 0)
  692. continue;
  693. if (ret < 0)
  694. goto error;
  695. no_more_items:
  696. if (!start_found) {
  697. if (search_start >= search_end) {
  698. ret = -ENOSPC;
  699. goto error;
  700. }
  701. *start = search_start;
  702. start_found = 1;
  703. goto check_pending;
  704. }
  705. *start = last_byte > search_start ?
  706. last_byte : search_start;
  707. if (search_end <= *start) {
  708. ret = -ENOSPC;
  709. goto error;
  710. }
  711. goto check_pending;
  712. }
  713. btrfs_item_key_to_cpu(l, &key, slot);
  714. if (key.objectid < device->devid)
  715. goto next;
  716. if (key.objectid > device->devid)
  717. goto no_more_items;
  718. if (key.offset >= search_start && key.offset > last_byte &&
  719. start_found) {
  720. if (last_byte < search_start)
  721. last_byte = search_start;
  722. hole_size = key.offset - last_byte;
  723. if (hole_size > *max_avail)
  724. *max_avail = hole_size;
  725. if (key.offset > last_byte &&
  726. hole_size >= num_bytes) {
  727. *start = last_byte;
  728. goto check_pending;
  729. }
  730. }
  731. if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
  732. goto next;
  733. start_found = 1;
  734. dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
  735. last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
  736. next:
  737. path->slots[0]++;
  738. cond_resched();
  739. }
  740. check_pending:
  741. /* we have to make sure we didn't find an extent that has already
  742. * been allocated by the map tree or the original allocation
  743. */
  744. BUG_ON(*start < search_start);
  745. if (*start + num_bytes > search_end) {
  746. ret = -ENOSPC;
  747. goto error;
  748. }
  749. /* check for pending inserts here */
  750. ret = 0;
  751. error:
  752. btrfs_free_path(path);
  753. return ret;
  754. }
  755. static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
  756. struct btrfs_device *device,
  757. u64 start)
  758. {
  759. int ret;
  760. struct btrfs_path *path;
  761. struct btrfs_root *root = device->dev_root;
  762. struct btrfs_key key;
  763. struct btrfs_key found_key;
  764. struct extent_buffer *leaf = NULL;
  765. struct btrfs_dev_extent *extent = NULL;
  766. path = btrfs_alloc_path();
  767. if (!path)
  768. return -ENOMEM;
  769. key.objectid = device->devid;
  770. key.offset = start;
  771. key.type = BTRFS_DEV_EXTENT_KEY;
  772. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  773. if (ret > 0) {
  774. ret = btrfs_previous_item(root, path, key.objectid,
  775. BTRFS_DEV_EXTENT_KEY);
  776. BUG_ON(ret);
  777. leaf = path->nodes[0];
  778. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  779. extent = btrfs_item_ptr(leaf, path->slots[0],
  780. struct btrfs_dev_extent);
  781. BUG_ON(found_key.offset > start || found_key.offset +
  782. btrfs_dev_extent_length(leaf, extent) < start);
  783. ret = 0;
  784. } else if (ret == 0) {
  785. leaf = path->nodes[0];
  786. extent = btrfs_item_ptr(leaf, path->slots[0],
  787. struct btrfs_dev_extent);
  788. }
  789. BUG_ON(ret);
  790. if (device->bytes_used > 0)
  791. device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
  792. ret = btrfs_del_item(trans, root, path);
  793. BUG_ON(ret);
  794. btrfs_free_path(path);
  795. return ret;
  796. }
  797. int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
  798. struct btrfs_device *device,
  799. u64 chunk_tree, u64 chunk_objectid,
  800. u64 chunk_offset, u64 start, u64 num_bytes)
  801. {
  802. int ret;
  803. struct btrfs_path *path;
  804. struct btrfs_root *root = device->dev_root;
  805. struct btrfs_dev_extent *extent;
  806. struct extent_buffer *leaf;
  807. struct btrfs_key key;
  808. WARN_ON(!device->in_fs_metadata);
  809. path = btrfs_alloc_path();
  810. if (!path)
  811. return -ENOMEM;
  812. key.objectid = device->devid;
  813. key.offset = start;
  814. key.type = BTRFS_DEV_EXTENT_KEY;
  815. ret = btrfs_insert_empty_item(trans, root, path, &key,
  816. sizeof(*extent));
  817. BUG_ON(ret);
  818. leaf = path->nodes[0];
  819. extent = btrfs_item_ptr(leaf, path->slots[0],
  820. struct btrfs_dev_extent);
  821. btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
  822. btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
  823. btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
  824. write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
  825. (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
  826. BTRFS_UUID_SIZE);
  827. btrfs_set_dev_extent_length(leaf, extent, num_bytes);
  828. btrfs_mark_buffer_dirty(leaf);
  829. btrfs_free_path(path);
  830. return ret;
  831. }
  832. static noinline int find_next_chunk(struct btrfs_root *root,
  833. u64 objectid, u64 *offset)
  834. {
  835. struct btrfs_path *path;
  836. int ret;
  837. struct btrfs_key key;
  838. struct btrfs_chunk *chunk;
  839. struct btrfs_key found_key;
  840. path = btrfs_alloc_path();
  841. BUG_ON(!path);
  842. key.objectid = objectid;
  843. key.offset = (u64)-1;
  844. key.type = BTRFS_CHUNK_ITEM_KEY;
  845. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  846. if (ret < 0)
  847. goto error;
  848. BUG_ON(ret == 0);
  849. ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
  850. if (ret) {
  851. *offset = 0;
  852. } else {
  853. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  854. path->slots[0]);
  855. if (found_key.objectid != objectid)
  856. *offset = 0;
  857. else {
  858. chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
  859. struct btrfs_chunk);
  860. *offset = found_key.offset +
  861. btrfs_chunk_length(path->nodes[0], chunk);
  862. }
  863. }
  864. ret = 0;
  865. error:
  866. btrfs_free_path(path);
  867. return ret;
  868. }
  869. static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
  870. {
  871. int ret;
  872. struct btrfs_key key;
  873. struct btrfs_key found_key;
  874. struct btrfs_path *path;
  875. root = root->fs_info->chunk_root;
  876. path = btrfs_alloc_path();
  877. if (!path)
  878. return -ENOMEM;
  879. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  880. key.type = BTRFS_DEV_ITEM_KEY;
  881. key.offset = (u64)-1;
  882. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  883. if (ret < 0)
  884. goto error;
  885. BUG_ON(ret == 0);
  886. ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
  887. BTRFS_DEV_ITEM_KEY);
  888. if (ret) {
  889. *objectid = 1;
  890. } else {
  891. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  892. path->slots[0]);
  893. *objectid = found_key.offset + 1;
  894. }
  895. ret = 0;
  896. error:
  897. btrfs_free_path(path);
  898. return ret;
  899. }
  900. /*
  901. * the device information is stored in the chunk root
  902. * the btrfs_device struct should be fully filled in
  903. */
  904. int btrfs_add_device(struct btrfs_trans_handle *trans,
  905. struct btrfs_root *root,
  906. struct btrfs_device *device)
  907. {
  908. int ret;
  909. struct btrfs_path *path;
  910. struct btrfs_dev_item *dev_item;
  911. struct extent_buffer *leaf;
  912. struct btrfs_key key;
  913. unsigned long ptr;
  914. root = root->fs_info->chunk_root;
  915. path = btrfs_alloc_path();
  916. if (!path)
  917. return -ENOMEM;
  918. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  919. key.type = BTRFS_DEV_ITEM_KEY;
  920. key.offset = device->devid;
  921. ret = btrfs_insert_empty_item(trans, root, path, &key,
  922. sizeof(*dev_item));
  923. if (ret)
  924. goto out;
  925. leaf = path->nodes[0];
  926. dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
  927. btrfs_set_device_id(leaf, dev_item, device->devid);
  928. btrfs_set_device_generation(leaf, dev_item, 0);
  929. btrfs_set_device_type(leaf, dev_item, device->type);
  930. btrfs_set_device_io_align(leaf, dev_item, device->io_align);
  931. btrfs_set_device_io_width(leaf, dev_item, device->io_width);
  932. btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
  933. btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
  934. btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
  935. btrfs_set_device_group(leaf, dev_item, 0);
  936. btrfs_set_device_seek_speed(leaf, dev_item, 0);
  937. btrfs_set_device_bandwidth(leaf, dev_item, 0);
  938. btrfs_set_device_start_offset(leaf, dev_item, 0);
  939. ptr = (unsigned long)btrfs_device_uuid(dev_item);
  940. write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
  941. ptr = (unsigned long)btrfs_device_fsid(dev_item);
  942. write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
  943. btrfs_mark_buffer_dirty(leaf);
  944. ret = 0;
  945. out:
  946. btrfs_free_path(path);
  947. return ret;
  948. }
  949. static int btrfs_rm_dev_item(struct btrfs_root *root,
  950. struct btrfs_device *device)
  951. {
  952. int ret;
  953. struct btrfs_path *path;
  954. struct btrfs_key key;
  955. struct btrfs_trans_handle *trans;
  956. root = root->fs_info->chunk_root;
  957. path = btrfs_alloc_path();
  958. if (!path)
  959. return -ENOMEM;
  960. trans = btrfs_start_transaction(root, 0);
  961. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  962. key.type = BTRFS_DEV_ITEM_KEY;
  963. key.offset = device->devid;
  964. lock_chunks(root);
  965. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  966. if (ret < 0)
  967. goto out;
  968. if (ret > 0) {
  969. ret = -ENOENT;
  970. goto out;
  971. }
  972. ret = btrfs_del_item(trans, root, path);
  973. if (ret)
  974. goto out;
  975. out:
  976. btrfs_free_path(path);
  977. unlock_chunks(root);
  978. btrfs_commit_transaction(trans, root);
  979. return ret;
  980. }
  981. int btrfs_rm_device(struct btrfs_root *root, char *device_path)
  982. {
  983. struct btrfs_device *device;
  984. struct btrfs_device *next_device;
  985. struct block_device *bdev;
  986. struct buffer_head *bh = NULL;
  987. struct btrfs_super_block *disk_super;
  988. u64 all_avail;
  989. u64 devid;
  990. u64 num_devices;
  991. u8 *dev_uuid;
  992. int ret = 0;
  993. mutex_lock(&uuid_mutex);
  994. mutex_lock(&root->fs_info->volume_mutex);
  995. all_avail = root->fs_info->avail_data_alloc_bits |
  996. root->fs_info->avail_system_alloc_bits |
  997. root->fs_info->avail_metadata_alloc_bits;
  998. if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
  999. root->fs_info->fs_devices->num_devices <= 4) {
  1000. printk(KERN_ERR "btrfs: unable to go below four devices "
  1001. "on raid10\n");
  1002. ret = -EINVAL;
  1003. goto out;
  1004. }
  1005. if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
  1006. root->fs_info->fs_devices->num_devices <= 2) {
  1007. printk(KERN_ERR "btrfs: unable to go below two "
  1008. "devices on raid1\n");
  1009. ret = -EINVAL;
  1010. goto out;
  1011. }
  1012. if (strcmp(device_path, "missing") == 0) {
  1013. struct list_head *devices;
  1014. struct btrfs_device *tmp;
  1015. device = NULL;
  1016. devices = &root->fs_info->fs_devices->devices;
  1017. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1018. list_for_each_entry(tmp, devices, dev_list) {
  1019. if (tmp->in_fs_metadata && !tmp->bdev) {
  1020. device = tmp;
  1021. break;
  1022. }
  1023. }
  1024. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1025. bdev = NULL;
  1026. bh = NULL;
  1027. disk_super = NULL;
  1028. if (!device) {
  1029. printk(KERN_ERR "btrfs: no missing devices found to "
  1030. "remove\n");
  1031. goto out;
  1032. }
  1033. } else {
  1034. bdev = open_bdev_exclusive(device_path, FMODE_READ,
  1035. root->fs_info->bdev_holder);
  1036. if (IS_ERR(bdev)) {
  1037. ret = PTR_ERR(bdev);
  1038. goto out;
  1039. }
  1040. set_blocksize(bdev, 4096);
  1041. bh = btrfs_read_dev_super(bdev);
  1042. if (!bh) {
  1043. ret = -EIO;
  1044. goto error_close;
  1045. }
  1046. disk_super = (struct btrfs_super_block *)bh->b_data;
  1047. devid = btrfs_stack_device_id(&disk_super->dev_item);
  1048. dev_uuid = disk_super->dev_item.uuid;
  1049. device = btrfs_find_device(root, devid, dev_uuid,
  1050. disk_super->fsid);
  1051. if (!device) {
  1052. ret = -ENOENT;
  1053. goto error_brelse;
  1054. }
  1055. }
  1056. if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
  1057. printk(KERN_ERR "btrfs: unable to remove the only writeable "
  1058. "device\n");
  1059. ret = -EINVAL;
  1060. goto error_brelse;
  1061. }
  1062. if (device->writeable) {
  1063. list_del_init(&device->dev_alloc_list);
  1064. root->fs_info->fs_devices->rw_devices--;
  1065. }
  1066. ret = btrfs_shrink_device(device, 0);
  1067. if (ret)
  1068. goto error_brelse;
  1069. ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
  1070. if (ret)
  1071. goto error_brelse;
  1072. device->in_fs_metadata = 0;
  1073. /*
  1074. * the device list mutex makes sure that we don't change
  1075. * the device list while someone else is writing out all
  1076. * the device supers.
  1077. */
  1078. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1079. list_del_init(&device->dev_list);
  1080. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1081. device->fs_devices->num_devices--;
  1082. if (device->missing)
  1083. root->fs_info->fs_devices->missing_devices--;
  1084. next_device = list_entry(root->fs_info->fs_devices->devices.next,
  1085. struct btrfs_device, dev_list);
  1086. if (device->bdev == root->fs_info->sb->s_bdev)
  1087. root->fs_info->sb->s_bdev = next_device->bdev;
  1088. if (device->bdev == root->fs_info->fs_devices->latest_bdev)
  1089. root->fs_info->fs_devices->latest_bdev = next_device->bdev;
  1090. if (device->bdev) {
  1091. close_bdev_exclusive(device->bdev, device->mode);
  1092. device->bdev = NULL;
  1093. device->fs_devices->open_devices--;
  1094. }
  1095. num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1096. btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
  1097. if (device->fs_devices->open_devices == 0) {
  1098. struct btrfs_fs_devices *fs_devices;
  1099. fs_devices = root->fs_info->fs_devices;
  1100. while (fs_devices) {
  1101. if (fs_devices->seed == device->fs_devices)
  1102. break;
  1103. fs_devices = fs_devices->seed;
  1104. }
  1105. fs_devices->seed = device->fs_devices->seed;
  1106. device->fs_devices->seed = NULL;
  1107. __btrfs_close_devices(device->fs_devices);
  1108. free_fs_devices(device->fs_devices);
  1109. }
  1110. /*
  1111. * at this point, the device is zero sized. We want to
  1112. * remove it from the devices list and zero out the old super
  1113. */
  1114. if (device->writeable) {
  1115. /* make sure this device isn't detected as part of
  1116. * the FS anymore
  1117. */
  1118. memset(&disk_super->magic, 0, sizeof(disk_super->magic));
  1119. set_buffer_dirty(bh);
  1120. sync_dirty_buffer(bh);
  1121. }
  1122. kfree(device->name);
  1123. kfree(device);
  1124. ret = 0;
  1125. error_brelse:
  1126. brelse(bh);
  1127. error_close:
  1128. if (bdev)
  1129. close_bdev_exclusive(bdev, FMODE_READ);
  1130. out:
  1131. mutex_unlock(&root->fs_info->volume_mutex);
  1132. mutex_unlock(&uuid_mutex);
  1133. return ret;
  1134. }
  1135. /*
  1136. * does all the dirty work required for changing file system's UUID.
  1137. */
  1138. static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
  1139. struct btrfs_root *root)
  1140. {
  1141. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  1142. struct btrfs_fs_devices *old_devices;
  1143. struct btrfs_fs_devices *seed_devices;
  1144. struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
  1145. struct btrfs_device *device;
  1146. u64 super_flags;
  1147. BUG_ON(!mutex_is_locked(&uuid_mutex));
  1148. if (!fs_devices->seeding)
  1149. return -EINVAL;
  1150. seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
  1151. if (!seed_devices)
  1152. return -ENOMEM;
  1153. old_devices = clone_fs_devices(fs_devices);
  1154. if (IS_ERR(old_devices)) {
  1155. kfree(seed_devices);
  1156. return PTR_ERR(old_devices);
  1157. }
  1158. list_add(&old_devices->list, &fs_uuids);
  1159. memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
  1160. seed_devices->opened = 1;
  1161. INIT_LIST_HEAD(&seed_devices->devices);
  1162. INIT_LIST_HEAD(&seed_devices->alloc_list);
  1163. mutex_init(&seed_devices->device_list_mutex);
  1164. list_splice_init(&fs_devices->devices, &seed_devices->devices);
  1165. list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
  1166. list_for_each_entry(device, &seed_devices->devices, dev_list) {
  1167. device->fs_devices = seed_devices;
  1168. }
  1169. fs_devices->seeding = 0;
  1170. fs_devices->num_devices = 0;
  1171. fs_devices->open_devices = 0;
  1172. fs_devices->seed = seed_devices;
  1173. generate_random_uuid(fs_devices->fsid);
  1174. memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
  1175. memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
  1176. super_flags = btrfs_super_flags(disk_super) &
  1177. ~BTRFS_SUPER_FLAG_SEEDING;
  1178. btrfs_set_super_flags(disk_super, super_flags);
  1179. return 0;
  1180. }
  1181. /*
  1182. * strore the expected generation for seed devices in device items.
  1183. */
  1184. static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
  1185. struct btrfs_root *root)
  1186. {
  1187. struct btrfs_path *path;
  1188. struct extent_buffer *leaf;
  1189. struct btrfs_dev_item *dev_item;
  1190. struct btrfs_device *device;
  1191. struct btrfs_key key;
  1192. u8 fs_uuid[BTRFS_UUID_SIZE];
  1193. u8 dev_uuid[BTRFS_UUID_SIZE];
  1194. u64 devid;
  1195. int ret;
  1196. path = btrfs_alloc_path();
  1197. if (!path)
  1198. return -ENOMEM;
  1199. root = root->fs_info->chunk_root;
  1200. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  1201. key.offset = 0;
  1202. key.type = BTRFS_DEV_ITEM_KEY;
  1203. while (1) {
  1204. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1205. if (ret < 0)
  1206. goto error;
  1207. leaf = path->nodes[0];
  1208. next_slot:
  1209. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  1210. ret = btrfs_next_leaf(root, path);
  1211. if (ret > 0)
  1212. break;
  1213. if (ret < 0)
  1214. goto error;
  1215. leaf = path->nodes[0];
  1216. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1217. btrfs_release_path(root, path);
  1218. continue;
  1219. }
  1220. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1221. if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
  1222. key.type != BTRFS_DEV_ITEM_KEY)
  1223. break;
  1224. dev_item = btrfs_item_ptr(leaf, path->slots[0],
  1225. struct btrfs_dev_item);
  1226. devid = btrfs_device_id(leaf, dev_item);
  1227. read_extent_buffer(leaf, dev_uuid,
  1228. (unsigned long)btrfs_device_uuid(dev_item),
  1229. BTRFS_UUID_SIZE);
  1230. read_extent_buffer(leaf, fs_uuid,
  1231. (unsigned long)btrfs_device_fsid(dev_item),
  1232. BTRFS_UUID_SIZE);
  1233. device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
  1234. BUG_ON(!device);
  1235. if (device->fs_devices->seeding) {
  1236. btrfs_set_device_generation(leaf, dev_item,
  1237. device->generation);
  1238. btrfs_mark_buffer_dirty(leaf);
  1239. }
  1240. path->slots[0]++;
  1241. goto next_slot;
  1242. }
  1243. ret = 0;
  1244. error:
  1245. btrfs_free_path(path);
  1246. return ret;
  1247. }
  1248. int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
  1249. {
  1250. struct btrfs_trans_handle *trans;
  1251. struct btrfs_device *device;
  1252. struct block_device *bdev;
  1253. struct list_head *devices;
  1254. struct super_block *sb = root->fs_info->sb;
  1255. u64 total_bytes;
  1256. int seeding_dev = 0;
  1257. int ret = 0;
  1258. if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
  1259. return -EINVAL;
  1260. bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
  1261. if (IS_ERR(bdev))
  1262. return PTR_ERR(bdev);
  1263. if (root->fs_info->fs_devices->seeding) {
  1264. seeding_dev = 1;
  1265. down_write(&sb->s_umount);
  1266. mutex_lock(&uuid_mutex);
  1267. }
  1268. filemap_write_and_wait(bdev->bd_inode->i_mapping);
  1269. mutex_lock(&root->fs_info->volume_mutex);
  1270. devices = &root->fs_info->fs_devices->devices;
  1271. /*
  1272. * we have the volume lock, so we don't need the extra
  1273. * device list mutex while reading the list here.
  1274. */
  1275. list_for_each_entry(device, devices, dev_list) {
  1276. if (device->bdev == bdev) {
  1277. ret = -EEXIST;
  1278. goto error;
  1279. }
  1280. }
  1281. device = kzalloc(sizeof(*device), GFP_NOFS);
  1282. if (!device) {
  1283. /* we can safely leave the fs_devices entry around */
  1284. ret = -ENOMEM;
  1285. goto error;
  1286. }
  1287. device->name = kstrdup(device_path, GFP_NOFS);
  1288. if (!device->name) {
  1289. kfree(device);
  1290. ret = -ENOMEM;
  1291. goto error;
  1292. }
  1293. ret = find_next_devid(root, &device->devid);
  1294. if (ret) {
  1295. kfree(device);
  1296. goto error;
  1297. }
  1298. trans = btrfs_start_transaction(root, 0);
  1299. lock_chunks(root);
  1300. device->barriers = 1;
  1301. device->writeable = 1;
  1302. device->work.func = pending_bios_fn;
  1303. generate_random_uuid(device->uuid);
  1304. spin_lock_init(&device->io_lock);
  1305. device->generation = trans->transid;
  1306. device->io_width = root->sectorsize;
  1307. device->io_align = root->sectorsize;
  1308. device->sector_size = root->sectorsize;
  1309. device->total_bytes = i_size_read(bdev->bd_inode);
  1310. device->disk_total_bytes = device->total_bytes;
  1311. device->dev_root = root->fs_info->dev_root;
  1312. device->bdev = bdev;
  1313. device->in_fs_metadata = 1;
  1314. device->mode = 0;
  1315. set_blocksize(device->bdev, 4096);
  1316. if (seeding_dev) {
  1317. sb->s_flags &= ~MS_RDONLY;
  1318. ret = btrfs_prepare_sprout(trans, root);
  1319. BUG_ON(ret);
  1320. }
  1321. device->fs_devices = root->fs_info->fs_devices;
  1322. /*
  1323. * we don't want write_supers to jump in here with our device
  1324. * half setup
  1325. */
  1326. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1327. list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
  1328. list_add(&device->dev_alloc_list,
  1329. &root->fs_info->fs_devices->alloc_list);
  1330. root->fs_info->fs_devices->num_devices++;
  1331. root->fs_info->fs_devices->open_devices++;
  1332. root->fs_info->fs_devices->rw_devices++;
  1333. root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
  1334. if (!blk_queue_nonrot(bdev_get_queue(bdev)))
  1335. root->fs_info->fs_devices->rotating = 1;
  1336. total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
  1337. btrfs_set_super_total_bytes(&root->fs_info->super_copy,
  1338. total_bytes + device->total_bytes);
  1339. total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
  1340. btrfs_set_super_num_devices(&root->fs_info->super_copy,
  1341. total_bytes + 1);
  1342. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1343. if (seeding_dev) {
  1344. ret = init_first_rw_device(trans, root, device);
  1345. BUG_ON(ret);
  1346. ret = btrfs_finish_sprout(trans, root);
  1347. BUG_ON(ret);
  1348. } else {
  1349. ret = btrfs_add_device(trans, root, device);
  1350. }
  1351. /*
  1352. * we've got more storage, clear any full flags on the space
  1353. * infos
  1354. */
  1355. btrfs_clear_space_info_full(root->fs_info);
  1356. unlock_chunks(root);
  1357. btrfs_commit_transaction(trans, root);
  1358. if (seeding_dev) {
  1359. mutex_unlock(&uuid_mutex);
  1360. up_write(&sb->s_umount);
  1361. ret = btrfs_relocate_sys_chunks(root);
  1362. BUG_ON(ret);
  1363. }
  1364. out:
  1365. mutex_unlock(&root->fs_info->volume_mutex);
  1366. return ret;
  1367. error:
  1368. close_bdev_exclusive(bdev, 0);
  1369. if (seeding_dev) {
  1370. mutex_unlock(&uuid_mutex);
  1371. up_write(&sb->s_umount);
  1372. }
  1373. goto out;
  1374. }
  1375. static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
  1376. struct btrfs_device *device)
  1377. {
  1378. int ret;
  1379. struct btrfs_path *path;
  1380. struct btrfs_root *root;
  1381. struct btrfs_dev_item *dev_item;
  1382. struct extent_buffer *leaf;
  1383. struct btrfs_key key;
  1384. root = device->dev_root->fs_info->chunk_root;
  1385. path = btrfs_alloc_path();
  1386. if (!path)
  1387. return -ENOMEM;
  1388. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  1389. key.type = BTRFS_DEV_ITEM_KEY;
  1390. key.offset = device->devid;
  1391. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1392. if (ret < 0)
  1393. goto out;
  1394. if (ret > 0) {
  1395. ret = -ENOENT;
  1396. goto out;
  1397. }
  1398. leaf = path->nodes[0];
  1399. dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
  1400. btrfs_set_device_id(leaf, dev_item, device->devid);
  1401. btrfs_set_device_type(leaf, dev_item, device->type);
  1402. btrfs_set_device_io_align(leaf, dev_item, device->io_align);
  1403. btrfs_set_device_io_width(leaf, dev_item, device->io_width);
  1404. btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
  1405. btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
  1406. btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
  1407. btrfs_mark_buffer_dirty(leaf);
  1408. out:
  1409. btrfs_free_path(path);
  1410. return ret;
  1411. }
  1412. static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
  1413. struct btrfs_device *device, u64 new_size)
  1414. {
  1415. struct btrfs_super_block *super_copy =
  1416. &device->dev_root->fs_info->super_copy;
  1417. u64 old_total = btrfs_super_total_bytes(super_copy);
  1418. u64 diff = new_size - device->total_bytes;
  1419. if (!device->writeable)
  1420. return -EACCES;
  1421. if (new_size <= device->total_bytes)
  1422. return -EINVAL;
  1423. btrfs_set_super_total_bytes(super_copy, old_total + diff);
  1424. device->fs_devices->total_rw_bytes += diff;
  1425. device->total_bytes = new_size;
  1426. device->disk_total_bytes = new_size;
  1427. btrfs_clear_space_info_full(device->dev_root->fs_info);
  1428. return btrfs_update_device(trans, device);
  1429. }
  1430. int btrfs_grow_device(struct btrfs_trans_handle *trans,
  1431. struct btrfs_device *device, u64 new_size)
  1432. {
  1433. int ret;
  1434. lock_chunks(device->dev_root);
  1435. ret = __btrfs_grow_device(trans, device, new_size);
  1436. unlock_chunks(device->dev_root);
  1437. return ret;
  1438. }
  1439. static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
  1440. struct btrfs_root *root,
  1441. u64 chunk_tree, u64 chunk_objectid,
  1442. u64 chunk_offset)
  1443. {
  1444. int ret;
  1445. struct btrfs_path *path;
  1446. struct btrfs_key key;
  1447. root = root->fs_info->chunk_root;
  1448. path = btrfs_alloc_path();
  1449. if (!path)
  1450. return -ENOMEM;
  1451. key.objectid = chunk_objectid;
  1452. key.offset = chunk_offset;
  1453. key.type = BTRFS_CHUNK_ITEM_KEY;
  1454. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1455. BUG_ON(ret);
  1456. ret = btrfs_del_item(trans, root, path);
  1457. BUG_ON(ret);
  1458. btrfs_free_path(path);
  1459. return 0;
  1460. }
  1461. static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
  1462. chunk_offset)
  1463. {
  1464. struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
  1465. struct btrfs_disk_key *disk_key;
  1466. struct btrfs_chunk *chunk;
  1467. u8 *ptr;
  1468. int ret = 0;
  1469. u32 num_stripes;
  1470. u32 array_size;
  1471. u32 len = 0;
  1472. u32 cur;
  1473. struct btrfs_key key;
  1474. array_size = btrfs_super_sys_array_size(super_copy);
  1475. ptr = super_copy->sys_chunk_array;
  1476. cur = 0;
  1477. while (cur < array_size) {
  1478. disk_key = (struct btrfs_disk_key *)ptr;
  1479. btrfs_disk_key_to_cpu(&key, disk_key);
  1480. len = sizeof(*disk_key);
  1481. if (key.type == BTRFS_CHUNK_ITEM_KEY) {
  1482. chunk = (struct btrfs_chunk *)(ptr + len);
  1483. num_stripes = btrfs_stack_chunk_num_stripes(chunk);
  1484. len += btrfs_chunk_item_size(num_stripes);
  1485. } else {
  1486. ret = -EIO;
  1487. break;
  1488. }
  1489. if (key.objectid == chunk_objectid &&
  1490. key.offset == chunk_offset) {
  1491. memmove(ptr, ptr + len, array_size - (cur + len));
  1492. array_size -= len;
  1493. btrfs_set_super_sys_array_size(super_copy, array_size);
  1494. } else {
  1495. ptr += len;
  1496. cur += len;
  1497. }
  1498. }
  1499. return ret;
  1500. }
  1501. static int btrfs_relocate_chunk(struct btrfs_root *root,
  1502. u64 chunk_tree, u64 chunk_objectid,
  1503. u64 chunk_offset)
  1504. {
  1505. struct extent_map_tree *em_tree;
  1506. struct btrfs_root *extent_root;
  1507. struct btrfs_trans_handle *trans;
  1508. struct extent_map *em;
  1509. struct map_lookup *map;
  1510. int ret;
  1511. int i;
  1512. root = root->fs_info->chunk_root;
  1513. extent_root = root->fs_info->extent_root;
  1514. em_tree = &root->fs_info->mapping_tree.map_tree;
  1515. ret = btrfs_can_relocate(extent_root, chunk_offset);
  1516. if (ret)
  1517. return -ENOSPC;
  1518. /* step one, relocate all the extents inside this chunk */
  1519. ret = btrfs_relocate_block_group(extent_root, chunk_offset);
  1520. if (ret)
  1521. return ret;
  1522. trans = btrfs_start_transaction(root, 0);
  1523. BUG_ON(!trans);
  1524. lock_chunks(root);
  1525. /*
  1526. * step two, delete the device extents and the
  1527. * chunk tree entries
  1528. */
  1529. read_lock(&em_tree->lock);
  1530. em = lookup_extent_mapping(em_tree, chunk_offset, 1);
  1531. read_unlock(&em_tree->lock);
  1532. BUG_ON(em->start > chunk_offset ||
  1533. em->start + em->len < chunk_offset);
  1534. map = (struct map_lookup *)em->bdev;
  1535. for (i = 0; i < map->num_stripes; i++) {
  1536. ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
  1537. map->stripes[i].physical);
  1538. BUG_ON(ret);
  1539. if (map->stripes[i].dev) {
  1540. ret = btrfs_update_device(trans, map->stripes[i].dev);
  1541. BUG_ON(ret);
  1542. }
  1543. }
  1544. ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
  1545. chunk_offset);
  1546. BUG_ON(ret);
  1547. if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
  1548. ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
  1549. BUG_ON(ret);
  1550. }
  1551. ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
  1552. BUG_ON(ret);
  1553. write_lock(&em_tree->lock);
  1554. remove_extent_mapping(em_tree, em);
  1555. write_unlock(&em_tree->lock);
  1556. kfree(map);
  1557. em->bdev = NULL;
  1558. /* once for the tree */
  1559. free_extent_map(em);
  1560. /* once for us */
  1561. free_extent_map(em);
  1562. unlock_chunks(root);
  1563. btrfs_end_transaction(trans, root);
  1564. return 0;
  1565. }
  1566. static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
  1567. {
  1568. struct btrfs_root *chunk_root = root->fs_info->chunk_root;
  1569. struct btrfs_path *path;
  1570. struct extent_buffer *leaf;
  1571. struct btrfs_chunk *chunk;
  1572. struct btrfs_key key;
  1573. struct btrfs_key found_key;
  1574. u64 chunk_tree = chunk_root->root_key.objectid;
  1575. u64 chunk_type;
  1576. bool retried = false;
  1577. int failed = 0;
  1578. int ret;
  1579. path = btrfs_alloc_path();
  1580. if (!path)
  1581. return -ENOMEM;
  1582. again:
  1583. key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
  1584. key.offset = (u64)-1;
  1585. key.type = BTRFS_CHUNK_ITEM_KEY;
  1586. while (1) {
  1587. ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
  1588. if (ret < 0)
  1589. goto error;
  1590. BUG_ON(ret == 0);
  1591. ret = btrfs_previous_item(chunk_root, path, key.objectid,
  1592. key.type);
  1593. if (ret < 0)
  1594. goto error;
  1595. if (ret > 0)
  1596. break;
  1597. leaf = path->nodes[0];
  1598. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  1599. chunk = btrfs_item_ptr(leaf, path->slots[0],
  1600. struct btrfs_chunk);
  1601. chunk_type = btrfs_chunk_type(leaf, chunk);
  1602. btrfs_release_path(chunk_root, path);
  1603. if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
  1604. ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
  1605. found_key.objectid,
  1606. found_key.offset);
  1607. if (ret == -ENOSPC)
  1608. failed++;
  1609. else if (ret)
  1610. BUG();
  1611. }
  1612. if (found_key.offset == 0)
  1613. break;
  1614. key.offset = found_key.offset - 1;
  1615. }
  1616. ret = 0;
  1617. if (failed && !retried) {
  1618. failed = 0;
  1619. retried = true;
  1620. goto again;
  1621. } else if (failed && retried) {
  1622. WARN_ON(1);
  1623. ret = -ENOSPC;
  1624. }
  1625. error:
  1626. btrfs_free_path(path);
  1627. return ret;
  1628. }
  1629. static u64 div_factor(u64 num, int factor)
  1630. {
  1631. if (factor == 10)
  1632. return num;
  1633. num *= factor;
  1634. do_div(num, 10);
  1635. return num;
  1636. }
  1637. int btrfs_balance(struct btrfs_root *dev_root)
  1638. {
  1639. int ret;
  1640. struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
  1641. struct btrfs_device *device;
  1642. u64 old_size;
  1643. u64 size_to_free;
  1644. struct btrfs_path *path;
  1645. struct btrfs_key key;
  1646. struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
  1647. struct btrfs_trans_handle *trans;
  1648. struct btrfs_key found_key;
  1649. if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
  1650. return -EROFS;
  1651. mutex_lock(&dev_root->fs_info->volume_mutex);
  1652. dev_root = dev_root->fs_info->dev_root;
  1653. /* step one make some room on all the devices */
  1654. list_for_each_entry(device, devices, dev_list) {
  1655. old_size = device->total_bytes;
  1656. size_to_free = div_factor(old_size, 1);
  1657. size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
  1658. if (!device->writeable ||
  1659. device->total_bytes - device->bytes_used > size_to_free)
  1660. continue;
  1661. ret = btrfs_shrink_device(device, old_size - size_to_free);
  1662. if (ret == -ENOSPC)
  1663. break;
  1664. BUG_ON(ret);
  1665. trans = btrfs_start_transaction(dev_root, 0);
  1666. BUG_ON(!trans);
  1667. ret = btrfs_grow_device(trans, device, old_size);
  1668. BUG_ON(ret);
  1669. btrfs_end_transaction(trans, dev_root);
  1670. }
  1671. /* step two, relocate all the chunks */
  1672. path = btrfs_alloc_path();
  1673. BUG_ON(!path);
  1674. key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
  1675. key.offset = (u64)-1;
  1676. key.type = BTRFS_CHUNK_ITEM_KEY;
  1677. while (1) {
  1678. ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
  1679. if (ret < 0)
  1680. goto error;
  1681. /*
  1682. * this shouldn't happen, it means the last relocate
  1683. * failed
  1684. */
  1685. if (ret == 0)
  1686. break;
  1687. ret = btrfs_previous_item(chunk_root, path, 0,
  1688. BTRFS_CHUNK_ITEM_KEY);
  1689. if (ret)
  1690. break;
  1691. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  1692. path->slots[0]);
  1693. if (found_key.objectid != key.objectid)
  1694. break;
  1695. /* chunk zero is special */
  1696. if (found_key.offset == 0)
  1697. break;
  1698. btrfs_release_path(chunk_root, path);
  1699. ret = btrfs_relocate_chunk(chunk_root,
  1700. chunk_root->root_key.objectid,
  1701. found_key.objectid,
  1702. found_key.offset);
  1703. BUG_ON(ret && ret != -ENOSPC);
  1704. key.offset = found_key.offset - 1;
  1705. }
  1706. ret = 0;
  1707. error:
  1708. btrfs_free_path(path);
  1709. mutex_unlock(&dev_root->fs_info->volume_mutex);
  1710. return ret;
  1711. }
  1712. /*
  1713. * shrinking a device means finding all of the device extents past
  1714. * the new size, and then following the back refs to the chunks.
  1715. * The chunk relocation code actually frees the device extent
  1716. */
  1717. int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
  1718. {
  1719. struct btrfs_trans_handle *trans;
  1720. struct btrfs_root *root = device->dev_root;
  1721. struct btrfs_dev_extent *dev_extent = NULL;
  1722. struct btrfs_path *path;
  1723. u64 length;
  1724. u64 chunk_tree;
  1725. u64 chunk_objectid;
  1726. u64 chunk_offset;
  1727. int ret;
  1728. int slot;
  1729. int failed = 0;
  1730. bool retried = false;
  1731. struct extent_buffer *l;
  1732. struct btrfs_key key;
  1733. struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
  1734. u64 old_total = btrfs_super_total_bytes(super_copy);
  1735. u64 old_size = device->total_bytes;
  1736. u64 diff = device->total_bytes - new_size;
  1737. if (new_size >= device->total_bytes)
  1738. return -EINVAL;
  1739. path = btrfs_alloc_path();
  1740. if (!path)
  1741. return -ENOMEM;
  1742. path->reada = 2;
  1743. lock_chunks(root);
  1744. device->total_bytes = new_size;
  1745. if (device->writeable)
  1746. device->fs_devices->total_rw_bytes -= diff;
  1747. unlock_chunks(root);
  1748. again:
  1749. key.objectid = device->devid;
  1750. key.offset = (u64)-1;
  1751. key.type = BTRFS_DEV_EXTENT_KEY;
  1752. while (1) {
  1753. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1754. if (ret < 0)
  1755. goto done;
  1756. ret = btrfs_previous_item(root, path, 0, key.type);
  1757. if (ret < 0)
  1758. goto done;
  1759. if (ret) {
  1760. ret = 0;
  1761. btrfs_release_path(root, path);
  1762. break;
  1763. }
  1764. l = path->nodes[0];
  1765. slot = path->slots[0];
  1766. btrfs_item_key_to_cpu(l, &key, path->slots[0]);
  1767. if (key.objectid != device->devid) {
  1768. btrfs_release_path(root, path);
  1769. break;
  1770. }
  1771. dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
  1772. length = btrfs_dev_extent_length(l, dev_extent);
  1773. if (key.offset + length <= new_size) {
  1774. btrfs_release_path(root, path);
  1775. break;
  1776. }
  1777. chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
  1778. chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
  1779. chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
  1780. btrfs_release_path(root, path);
  1781. ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
  1782. chunk_offset);
  1783. if (ret && ret != -ENOSPC)
  1784. goto done;
  1785. if (ret == -ENOSPC)
  1786. failed++;
  1787. key.offset -= 1;
  1788. }
  1789. if (failed && !retried) {
  1790. failed = 0;
  1791. retried = true;
  1792. goto again;
  1793. } else if (failed && retried) {
  1794. ret = -ENOSPC;
  1795. lock_chunks(root);
  1796. device->total_bytes = old_size;
  1797. if (device->writeable)
  1798. device->fs_devices->total_rw_bytes += diff;
  1799. unlock_chunks(root);
  1800. goto done;
  1801. }
  1802. /* Shrinking succeeded, else we would be at "done". */
  1803. trans = btrfs_start_transaction(root, 0);
  1804. lock_chunks(root);
  1805. device->disk_total_bytes = new_size;
  1806. /* Now btrfs_update_device() will change the on-disk size. */
  1807. ret = btrfs_update_device(trans, device);
  1808. if (ret) {
  1809. unlock_chunks(root);
  1810. btrfs_end_transaction(trans, root);
  1811. goto done;
  1812. }
  1813. WARN_ON(diff > old_total);
  1814. btrfs_set_super_total_bytes(super_copy, old_total - diff);
  1815. unlock_chunks(root);
  1816. btrfs_end_transaction(trans, root);
  1817. done:
  1818. btrfs_free_path(path);
  1819. return ret;
  1820. }
  1821. static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
  1822. struct btrfs_root *root,
  1823. struct btrfs_key *key,
  1824. struct btrfs_chunk *chunk, int item_size)
  1825. {
  1826. struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
  1827. struct btrfs_disk_key disk_key;
  1828. u32 array_size;
  1829. u8 *ptr;
  1830. array_size = btrfs_super_sys_array_size(super_copy);
  1831. if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
  1832. return -EFBIG;
  1833. ptr = super_copy->sys_chunk_array + array_size;
  1834. btrfs_cpu_key_to_disk(&disk_key, key);
  1835. memcpy(ptr, &disk_key, sizeof(disk_key));
  1836. ptr += sizeof(disk_key);
  1837. memcpy(ptr, chunk, item_size);
  1838. item_size += sizeof(disk_key);
  1839. btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
  1840. return 0;
  1841. }
  1842. static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
  1843. int num_stripes, int sub_stripes)
  1844. {
  1845. if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
  1846. return calc_size;
  1847. else if (type & BTRFS_BLOCK_GROUP_RAID10)
  1848. return calc_size * (num_stripes / sub_stripes);
  1849. else
  1850. return calc_size * num_stripes;
  1851. }
  1852. static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
  1853. struct btrfs_root *extent_root,
  1854. struct map_lookup **map_ret,
  1855. u64 *num_bytes, u64 *stripe_size,
  1856. u64 start, u64 type)
  1857. {
  1858. struct btrfs_fs_info *info = extent_root->fs_info;
  1859. struct btrfs_device *device = NULL;
  1860. struct btrfs_fs_devices *fs_devices = info->fs_devices;
  1861. struct list_head *cur;
  1862. struct map_lookup *map = NULL;
  1863. struct extent_map_tree *em_tree;
  1864. struct extent_map *em;
  1865. struct list_head private_devs;
  1866. int min_stripe_size = 1 * 1024 * 1024;
  1867. u64 calc_size = 1024 * 1024 * 1024;
  1868. u64 max_chunk_size = calc_size;
  1869. u64 min_free;
  1870. u64 avail;
  1871. u64 max_avail = 0;
  1872. u64 dev_offset;
  1873. int num_stripes = 1;
  1874. int min_stripes = 1;
  1875. int sub_stripes = 0;
  1876. int looped = 0;
  1877. int ret;
  1878. int index;
  1879. int stripe_len = 64 * 1024;
  1880. if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
  1881. (type & BTRFS_BLOCK_GROUP_DUP)) {
  1882. WARN_ON(1);
  1883. type &= ~BTRFS_BLOCK_GROUP_DUP;
  1884. }
  1885. if (list_empty(&fs_devices->alloc_list))
  1886. return -ENOSPC;
  1887. if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
  1888. num_stripes = fs_devices->rw_devices;
  1889. min_stripes = 2;
  1890. }
  1891. if (type & (BTRFS_BLOCK_GROUP_DUP)) {
  1892. num_stripes = 2;
  1893. min_stripes = 2;
  1894. }
  1895. if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
  1896. if (fs_devices->rw_devices < 2)
  1897. return -ENOSPC;
  1898. num_stripes = 2;
  1899. min_stripes = 2;
  1900. }
  1901. if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
  1902. num_stripes = fs_devices->rw_devices;
  1903. if (num_stripes < 4)
  1904. return -ENOSPC;
  1905. num_stripes &= ~(u32)1;
  1906. sub_stripes = 2;
  1907. min_stripes = 4;
  1908. }
  1909. if (type & BTRFS_BLOCK_GROUP_DATA) {
  1910. max_chunk_size = 10 * calc_size;
  1911. min_stripe_size = 64 * 1024 * 1024;
  1912. } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
  1913. max_chunk_size = 256 * 1024 * 1024;
  1914. min_stripe_size = 32 * 1024 * 1024;
  1915. } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
  1916. calc_size = 8 * 1024 * 1024;
  1917. max_chunk_size = calc_size * 2;
  1918. min_stripe_size = 1 * 1024 * 1024;
  1919. }
  1920. /* we don't want a chunk larger than 10% of writeable space */
  1921. max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
  1922. max_chunk_size);
  1923. again:
  1924. max_avail = 0;
  1925. if (!map || map->num_stripes != num_stripes) {
  1926. kfree(map);
  1927. map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
  1928. if (!map)
  1929. return -ENOMEM;
  1930. map->num_stripes = num_stripes;
  1931. }
  1932. if (calc_size * num_stripes > max_chunk_size) {
  1933. calc_size = max_chunk_size;
  1934. do_div(calc_size, num_stripes);
  1935. do_div(calc_size, stripe_len);
  1936. calc_size *= stripe_len;
  1937. }
  1938. /* we don't want tiny stripes */
  1939. if (!looped)
  1940. calc_size = max_t(u64, min_stripe_size, calc_size);
  1941. /*
  1942. * we're about to do_div by the stripe_len so lets make sure
  1943. * we end up with something bigger than a stripe
  1944. */
  1945. calc_size = max_t(u64, calc_size, stripe_len * 4);
  1946. do_div(calc_size, stripe_len);
  1947. calc_size *= stripe_len;
  1948. cur = fs_devices->alloc_list.next;
  1949. index = 0;
  1950. if (type & BTRFS_BLOCK_GROUP_DUP)
  1951. min_free = calc_size * 2;
  1952. else
  1953. min_free = calc_size;
  1954. /*
  1955. * we add 1MB because we never use the first 1MB of the device, unless
  1956. * we've looped, then we are likely allocating the maximum amount of
  1957. * space left already
  1958. */
  1959. if (!looped)
  1960. min_free += 1024 * 1024;
  1961. INIT_LIST_HEAD(&private_devs);
  1962. while (index < num_stripes) {
  1963. device = list_entry(cur, struct btrfs_device, dev_alloc_list);
  1964. BUG_ON(!device->writeable);
  1965. if (device->total_bytes > device->bytes_used)
  1966. avail = device->total_bytes - device->bytes_used;
  1967. else
  1968. avail = 0;
  1969. cur = cur->next;
  1970. if (device->in_fs_metadata && avail >= min_free) {
  1971. ret = find_free_dev_extent(trans, device,
  1972. min_free, &dev_offset,
  1973. &max_avail);
  1974. if (ret == 0) {
  1975. list_move_tail(&device->dev_alloc_list,
  1976. &private_devs);
  1977. map->stripes[index].dev = device;
  1978. map->stripes[index].physical = dev_offset;
  1979. index++;
  1980. if (type & BTRFS_BLOCK_GROUP_DUP) {
  1981. map->stripes[index].dev = device;
  1982. map->stripes[index].physical =
  1983. dev_offset + calc_size;
  1984. index++;
  1985. }
  1986. }
  1987. } else if (device->in_fs_metadata && avail > max_avail)
  1988. max_avail = avail;
  1989. if (cur == &fs_devices->alloc_list)
  1990. break;
  1991. }
  1992. list_splice(&private_devs, &fs_devices->alloc_list);
  1993. if (index < num_stripes) {
  1994. if (index >= min_stripes) {
  1995. num_stripes = index;
  1996. if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
  1997. num_stripes /= sub_stripes;
  1998. num_stripes *= sub_stripes;
  1999. }
  2000. looped = 1;
  2001. goto again;
  2002. }
  2003. if (!looped && max_avail > 0) {
  2004. looped = 1;
  2005. calc_size = max_avail;
  2006. goto again;
  2007. }
  2008. kfree(map);
  2009. return -ENOSPC;
  2010. }
  2011. map->sector_size = extent_root->sectorsize;
  2012. map->stripe_len = stripe_len;
  2013. map->io_align = stripe_len;
  2014. map->io_width = stripe_len;
  2015. map->type = type;
  2016. map->num_stripes = num_stripes;
  2017. map->sub_stripes = sub_stripes;
  2018. *map_ret = map;
  2019. *stripe_size = calc_size;
  2020. *num_bytes = chunk_bytes_by_type(type, calc_size,
  2021. num_stripes, sub_stripes);
  2022. em = alloc_extent_map(GFP_NOFS);
  2023. if (!em) {
  2024. kfree(map);
  2025. return -ENOMEM;
  2026. }
  2027. em->bdev = (struct block_device *)map;
  2028. em->start = start;
  2029. em->len = *num_bytes;
  2030. em->block_start = 0;
  2031. em->block_len = em->len;
  2032. em_tree = &extent_root->fs_info->mapping_tree.map_tree;
  2033. write_lock(&em_tree->lock);
  2034. ret = add_extent_mapping(em_tree, em);
  2035. write_unlock(&em_tree->lock);
  2036. BUG_ON(ret);
  2037. free_extent_map(em);
  2038. ret = btrfs_make_block_group(trans, extent_root, 0, type,
  2039. BTRFS_FIRST_CHUNK_TREE_OBJECTID,
  2040. start, *num_bytes);
  2041. BUG_ON(ret);
  2042. index = 0;
  2043. while (index < map->num_stripes) {
  2044. device = map->stripes[index].dev;
  2045. dev_offset = map->stripes[index].physical;
  2046. ret = btrfs_alloc_dev_extent(trans, device,
  2047. info->chunk_root->root_key.objectid,
  2048. BTRFS_FIRST_CHUNK_TREE_OBJECTID,
  2049. start, dev_offset, calc_size);
  2050. BUG_ON(ret);
  2051. index++;
  2052. }
  2053. return 0;
  2054. }
  2055. static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
  2056. struct btrfs_root *extent_root,
  2057. struct map_lookup *map, u64 chunk_offset,
  2058. u64 chunk_size, u64 stripe_size)
  2059. {
  2060. u64 dev_offset;
  2061. struct btrfs_key key;
  2062. struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
  2063. struct btrfs_device *device;
  2064. struct btrfs_chunk *chunk;
  2065. struct btrfs_stripe *stripe;
  2066. size_t item_size = btrfs_chunk_item_size(map->num_stripes);
  2067. int index = 0;
  2068. int ret;
  2069. chunk = kzalloc(item_size, GFP_NOFS);
  2070. if (!chunk)
  2071. return -ENOMEM;
  2072. index = 0;
  2073. while (index < map->num_stripes) {
  2074. device = map->stripes[index].dev;
  2075. device->bytes_used += stripe_size;
  2076. ret = btrfs_update_device(trans, device);
  2077. BUG_ON(ret);
  2078. index++;
  2079. }
  2080. index = 0;
  2081. stripe = &chunk->stripe;
  2082. while (index < map->num_stripes) {
  2083. device = map->stripes[index].dev;
  2084. dev_offset = map->stripes[index].physical;
  2085. btrfs_set_stack_stripe_devid(stripe, device->devid);
  2086. btrfs_set_stack_stripe_offset(stripe, dev_offset);
  2087. memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
  2088. stripe++;
  2089. index++;
  2090. }
  2091. btrfs_set_stack_chunk_length(chunk, chunk_size);
  2092. btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
  2093. btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
  2094. btrfs_set_stack_chunk_type(chunk, map->type);
  2095. btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
  2096. btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
  2097. btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
  2098. btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
  2099. btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
  2100. key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
  2101. key.type = BTRFS_CHUNK_ITEM_KEY;
  2102. key.offset = chunk_offset;
  2103. ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
  2104. BUG_ON(ret);
  2105. if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
  2106. ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
  2107. item_size);
  2108. BUG_ON(ret);
  2109. }
  2110. kfree(chunk);
  2111. return 0;
  2112. }
  2113. /*
  2114. * Chunk allocation falls into two parts. The first part does works
  2115. * that make the new allocated chunk useable, but not do any operation
  2116. * that modifies the chunk tree. The second part does the works that
  2117. * require modifying the chunk tree. This division is important for the
  2118. * bootstrap process of adding storage to a seed btrfs.
  2119. */
  2120. int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
  2121. struct btrfs_root *extent_root, u64 type)
  2122. {
  2123. u64 chunk_offset;
  2124. u64 chunk_size;
  2125. u64 stripe_size;
  2126. struct map_lookup *map;
  2127. struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
  2128. int ret;
  2129. ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
  2130. &chunk_offset);
  2131. if (ret)
  2132. return ret;
  2133. ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
  2134. &stripe_size, chunk_offset, type);
  2135. if (ret)
  2136. return ret;
  2137. ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
  2138. chunk_size, stripe_size);
  2139. BUG_ON(ret);
  2140. return 0;
  2141. }
  2142. static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
  2143. struct btrfs_root *root,
  2144. struct btrfs_device *device)
  2145. {
  2146. u64 chunk_offset;
  2147. u64 sys_chunk_offset;
  2148. u64 chunk_size;
  2149. u64 sys_chunk_size;
  2150. u64 stripe_size;
  2151. u64 sys_stripe_size;
  2152. u64 alloc_profile;
  2153. struct map_lookup *map;
  2154. struct map_lookup *sys_map;
  2155. struct btrfs_fs_info *fs_info = root->fs_info;
  2156. struct btrfs_root *extent_root = fs_info->extent_root;
  2157. int ret;
  2158. ret = find_next_chunk(fs_info->chunk_root,
  2159. BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
  2160. BUG_ON(ret);
  2161. alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
  2162. (fs_info->metadata_alloc_profile &
  2163. fs_info->avail_metadata_alloc_bits);
  2164. alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
  2165. ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
  2166. &stripe_size, chunk_offset, alloc_profile);
  2167. BUG_ON(ret);
  2168. sys_chunk_offset = chunk_offset + chunk_size;
  2169. alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
  2170. (fs_info->system_alloc_profile &
  2171. fs_info->avail_system_alloc_bits);
  2172. alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
  2173. ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
  2174. &sys_chunk_size, &sys_stripe_size,
  2175. sys_chunk_offset, alloc_profile);
  2176. BUG_ON(ret);
  2177. ret = btrfs_add_device(trans, fs_info->chunk_root, device);
  2178. BUG_ON(ret);
  2179. /*
  2180. * Modifying chunk tree needs allocating new blocks from both
  2181. * system block group and metadata block group. So we only can
  2182. * do operations require modifying the chunk tree after both
  2183. * block groups were created.
  2184. */
  2185. ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
  2186. chunk_size, stripe_size);
  2187. BUG_ON(ret);
  2188. ret = __finish_chunk_alloc(trans, extent_root, sys_map,
  2189. sys_chunk_offset, sys_chunk_size,
  2190. sys_stripe_size);
  2191. BUG_ON(ret);
  2192. return 0;
  2193. }
  2194. int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
  2195. {
  2196. struct extent_map *em;
  2197. struct map_lookup *map;
  2198. struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
  2199. int readonly = 0;
  2200. int i;
  2201. read_lock(&map_tree->map_tree.lock);
  2202. em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
  2203. read_unlock(&map_tree->map_tree.lock);
  2204. if (!em)
  2205. return 1;
  2206. if (btrfs_test_opt(root, DEGRADED)) {
  2207. free_extent_map(em);
  2208. return 0;
  2209. }
  2210. map = (struct map_lookup *)em->bdev;
  2211. for (i = 0; i < map->num_stripes; i++) {
  2212. if (!map->stripes[i].dev->writeable) {
  2213. readonly = 1;
  2214. break;
  2215. }
  2216. }
  2217. free_extent_map(em);
  2218. return readonly;
  2219. }
  2220. void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
  2221. {
  2222. extent_map_tree_init(&tree->map_tree, GFP_NOFS);
  2223. }
  2224. void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
  2225. {
  2226. struct extent_map *em;
  2227. while (1) {
  2228. write_lock(&tree->map_tree.lock);
  2229. em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
  2230. if (em)
  2231. remove_extent_mapping(&tree->map_tree, em);
  2232. write_unlock(&tree->map_tree.lock);
  2233. if (!em)
  2234. break;
  2235. kfree(em->bdev);
  2236. /* once for us */
  2237. free_extent_map(em);
  2238. /* once for the tree */
  2239. free_extent_map(em);
  2240. }
  2241. }
  2242. int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
  2243. {
  2244. struct extent_map *em;
  2245. struct map_lookup *map;
  2246. struct extent_map_tree *em_tree = &map_tree->map_tree;
  2247. int ret;
  2248. read_lock(&em_tree->lock);
  2249. em = lookup_extent_mapping(em_tree, logical, len);
  2250. read_unlock(&em_tree->lock);
  2251. BUG_ON(!em);
  2252. BUG_ON(em->start > logical || em->start + em->len < logical);
  2253. map = (struct map_lookup *)em->bdev;
  2254. if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
  2255. ret = map->num_stripes;
  2256. else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
  2257. ret = map->sub_stripes;
  2258. else
  2259. ret = 1;
  2260. free_extent_map(em);
  2261. return ret;
  2262. }
  2263. static int find_live_mirror(struct map_lookup *map, int first, int num,
  2264. int optimal)
  2265. {
  2266. int i;
  2267. if (map->stripes[optimal].dev->bdev)
  2268. return optimal;
  2269. for (i = first; i < first + num; i++) {
  2270. if (map->stripes[i].dev->bdev)
  2271. return i;
  2272. }
  2273. /* we couldn't find one that doesn't fail. Just return something
  2274. * and the io error handling code will clean up eventually
  2275. */
  2276. return optimal;
  2277. }
  2278. static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
  2279. u64 logical, u64 *length,
  2280. struct btrfs_multi_bio **multi_ret,
  2281. int mirror_num, struct page *unplug_page)
  2282. {
  2283. struct extent_map *em;
  2284. struct map_lookup *map;
  2285. struct extent_map_tree *em_tree = &map_tree->map_tree;
  2286. u64 offset;
  2287. u64 stripe_offset;
  2288. u64 stripe_nr;
  2289. int stripes_allocated = 8;
  2290. int stripes_required = 1;
  2291. int stripe_index;
  2292. int i;
  2293. int num_stripes;
  2294. int max_errors = 0;
  2295. struct btrfs_multi_bio *multi = NULL;
  2296. if (multi_ret && !(rw & REQ_WRITE))
  2297. stripes_allocated = 1;
  2298. again:
  2299. if (multi_ret) {
  2300. multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
  2301. GFP_NOFS);
  2302. if (!multi)
  2303. return -ENOMEM;
  2304. atomic_set(&multi->error, 0);
  2305. }
  2306. read_lock(&em_tree->lock);
  2307. em = lookup_extent_mapping(em_tree, logical, *length);
  2308. read_unlock(&em_tree->lock);
  2309. if (!em && unplug_page) {
  2310. kfree(multi);
  2311. return 0;
  2312. }
  2313. if (!em) {
  2314. printk(KERN_CRIT "unable to find logical %llu len %llu\n",
  2315. (unsigned long long)logical,
  2316. (unsigned long long)*length);
  2317. BUG();
  2318. }
  2319. BUG_ON(em->start > logical || em->start + em->len < logical);
  2320. map = (struct map_lookup *)em->bdev;
  2321. offset = logical - em->start;
  2322. if (mirror_num > map->num_stripes)
  2323. mirror_num = 0;
  2324. /* if our multi bio struct is too small, back off and try again */
  2325. if (rw & REQ_WRITE) {
  2326. if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
  2327. BTRFS_BLOCK_GROUP_DUP)) {
  2328. stripes_required = map->num_stripes;
  2329. max_errors = 1;
  2330. } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
  2331. stripes_required = map->sub_stripes;
  2332. max_errors = 1;
  2333. }
  2334. }
  2335. if (multi_ret && (rw & REQ_WRITE) &&
  2336. stripes_allocated < stripes_required) {
  2337. stripes_allocated = map->num_stripes;
  2338. free_extent_map(em);
  2339. kfree(multi);
  2340. goto again;
  2341. }
  2342. stripe_nr = offset;
  2343. /*
  2344. * stripe_nr counts the total number of stripes we have to stride
  2345. * to get to this block
  2346. */
  2347. do_div(stripe_nr, map->stripe_len);
  2348. stripe_offset = stripe_nr * map->stripe_len;
  2349. BUG_ON(offset < stripe_offset);
  2350. /* stripe_offset is the offset of this block in its stripe*/
  2351. stripe_offset = offset - stripe_offset;
  2352. if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
  2353. BTRFS_BLOCK_GROUP_RAID10 |
  2354. BTRFS_BLOCK_GROUP_DUP)) {
  2355. /* we limit the length of each bio to what fits in a stripe */
  2356. *length = min_t(u64, em->len - offset,
  2357. map->stripe_len - stripe_offset);
  2358. } else {
  2359. *length = em->len - offset;
  2360. }
  2361. if (!multi_ret && !unplug_page)
  2362. goto out;
  2363. num_stripes = 1;
  2364. stripe_index = 0;
  2365. if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
  2366. if (unplug_page || (rw & REQ_WRITE))
  2367. num_stripes = map->num_stripes;
  2368. else if (mirror_num)
  2369. stripe_index = mirror_num - 1;
  2370. else {
  2371. stripe_index = find_live_mirror(map, 0,
  2372. map->num_stripes,
  2373. current->pid % map->num_stripes);
  2374. }
  2375. } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
  2376. if (rw & REQ_WRITE)
  2377. num_stripes = map->num_stripes;
  2378. else if (mirror_num)
  2379. stripe_index = mirror_num - 1;
  2380. } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
  2381. int factor = map->num_stripes / map->sub_stripes;
  2382. stripe_index = do_div(stripe_nr, factor);
  2383. stripe_index *= map->sub_stripes;
  2384. if (unplug_page || (rw & REQ_WRITE))
  2385. num_stripes = map->sub_stripes;
  2386. else if (mirror_num)
  2387. stripe_index += mirror_num - 1;
  2388. else {
  2389. stripe_index = find_live_mirror(map, stripe_index,
  2390. map->sub_stripes, stripe_index +
  2391. current->pid % map->sub_stripes);
  2392. }
  2393. } else {
  2394. /*
  2395. * after this do_div call, stripe_nr is the number of stripes
  2396. * on this device we have to walk to find the data, and
  2397. * stripe_index is the number of our device in the stripe array
  2398. */
  2399. stripe_index = do_div(stripe_nr, map->num_stripes);
  2400. }
  2401. BUG_ON(stripe_index >= map->num_stripes);
  2402. for (i = 0; i < num_stripes; i++) {
  2403. if (unplug_page) {
  2404. struct btrfs_device *device;
  2405. struct backing_dev_info *bdi;
  2406. device = map->stripes[stripe_index].dev;
  2407. if (device->bdev) {
  2408. bdi = blk_get_backing_dev_info(device->bdev);
  2409. if (bdi->unplug_io_fn)
  2410. bdi->unplug_io_fn(bdi, unplug_page);
  2411. }
  2412. } else {
  2413. multi->stripes[i].physical =
  2414. map->stripes[stripe_index].physical +
  2415. stripe_offset + stripe_nr * map->stripe_len;
  2416. multi->stripes[i].dev = map->stripes[stripe_index].dev;
  2417. }
  2418. stripe_index++;
  2419. }
  2420. if (multi_ret) {
  2421. *multi_ret = multi;
  2422. multi->num_stripes = num_stripes;
  2423. multi->max_errors = max_errors;
  2424. }
  2425. out:
  2426. free_extent_map(em);
  2427. return 0;
  2428. }
  2429. int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
  2430. u64 logical, u64 *length,
  2431. struct btrfs_multi_bio **multi_ret, int mirror_num)
  2432. {
  2433. return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
  2434. mirror_num, NULL);
  2435. }
  2436. int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
  2437. u64 chunk_start, u64 physical, u64 devid,
  2438. u64 **logical, int *naddrs, int *stripe_len)
  2439. {
  2440. struct extent_map_tree *em_tree = &map_tree->map_tree;
  2441. struct extent_map *em;
  2442. struct map_lookup *map;
  2443. u64 *buf;
  2444. u64 bytenr;
  2445. u64 length;
  2446. u64 stripe_nr;
  2447. int i, j, nr = 0;
  2448. read_lock(&em_tree->lock);
  2449. em = lookup_extent_mapping(em_tree, chunk_start, 1);
  2450. read_unlock(&em_tree->lock);
  2451. BUG_ON(!em || em->start != chunk_start);
  2452. map = (struct map_lookup *)em->bdev;
  2453. length = em->len;
  2454. if (map->type & BTRFS_BLOCK_GROUP_RAID10)
  2455. do_div(length, map->num_stripes / map->sub_stripes);
  2456. else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
  2457. do_div(length, map->num_stripes);
  2458. buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
  2459. BUG_ON(!buf);
  2460. for (i = 0; i < map->num_stripes; i++) {
  2461. if (devid && map->stripes[i].dev->devid != devid)
  2462. continue;
  2463. if (map->stripes[i].physical > physical ||
  2464. map->stripes[i].physical + length <= physical)
  2465. continue;
  2466. stripe_nr = physical - map->stripes[i].physical;
  2467. do_div(stripe_nr, map->stripe_len);
  2468. if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
  2469. stripe_nr = stripe_nr * map->num_stripes + i;
  2470. do_div(stripe_nr, map->sub_stripes);
  2471. } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
  2472. stripe_nr = stripe_nr * map->num_stripes + i;
  2473. }
  2474. bytenr = chunk_start + stripe_nr * map->stripe_len;
  2475. WARN_ON(nr >= map->num_stripes);
  2476. for (j = 0; j < nr; j++) {
  2477. if (buf[j] == bytenr)
  2478. break;
  2479. }
  2480. if (j == nr) {
  2481. WARN_ON(nr >= map->num_stripes);
  2482. buf[nr++] = bytenr;
  2483. }
  2484. }
  2485. *logical = buf;
  2486. *naddrs = nr;
  2487. *stripe_len = map->stripe_len;
  2488. free_extent_map(em);
  2489. return 0;
  2490. }
  2491. int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
  2492. u64 logical, struct page *page)
  2493. {
  2494. u64 length = PAGE_CACHE_SIZE;
  2495. return __btrfs_map_block(map_tree, READ, logical, &length,
  2496. NULL, 0, page);
  2497. }
  2498. static void end_bio_multi_stripe(struct bio *bio, int err)
  2499. {
  2500. struct btrfs_multi_bio *multi = bio->bi_private;
  2501. int is_orig_bio = 0;
  2502. if (err)
  2503. atomic_inc(&multi->error);
  2504. if (bio == multi->orig_bio)
  2505. is_orig_bio = 1;
  2506. if (atomic_dec_and_test(&multi->stripes_pending)) {
  2507. if (!is_orig_bio) {
  2508. bio_put(bio);
  2509. bio = multi->orig_bio;
  2510. }
  2511. bio->bi_private = multi->private;
  2512. bio->bi_end_io = multi->end_io;
  2513. /* only send an error to the higher layers if it is
  2514. * beyond the tolerance of the multi-bio
  2515. */
  2516. if (atomic_read(&multi->error) > multi->max_errors) {
  2517. err = -EIO;
  2518. } else if (err) {
  2519. /*
  2520. * this bio is actually up to date, we didn't
  2521. * go over the max number of errors
  2522. */
  2523. set_bit(BIO_UPTODATE, &bio->bi_flags);
  2524. err = 0;
  2525. }
  2526. kfree(multi);
  2527. bio_endio(bio, err);
  2528. } else if (!is_orig_bio) {
  2529. bio_put(bio);
  2530. }
  2531. }
  2532. struct async_sched {
  2533. struct bio *bio;
  2534. int rw;
  2535. struct btrfs_fs_info *info;
  2536. struct btrfs_work work;
  2537. };
  2538. /*
  2539. * see run_scheduled_bios for a description of why bios are collected for
  2540. * async submit.
  2541. *
  2542. * This will add one bio to the pending list for a device and make sure
  2543. * the work struct is scheduled.
  2544. */
  2545. static noinline int schedule_bio(struct btrfs_root *root,
  2546. struct btrfs_device *device,
  2547. int rw, struct bio *bio)
  2548. {
  2549. int should_queue = 1;
  2550. struct btrfs_pending_bios *pending_bios;
  2551. /* don't bother with additional async steps for reads, right now */
  2552. if (!(rw & REQ_WRITE)) {
  2553. bio_get(bio);
  2554. submit_bio(rw, bio);
  2555. bio_put(bio);
  2556. return 0;
  2557. }
  2558. /*
  2559. * nr_async_bios allows us to reliably return congestion to the
  2560. * higher layers. Otherwise, the async bio makes it appear we have
  2561. * made progress against dirty pages when we've really just put it
  2562. * on a queue for later
  2563. */
  2564. atomic_inc(&root->fs_info->nr_async_bios);
  2565. WARN_ON(bio->bi_next);
  2566. bio->bi_next = NULL;
  2567. bio->bi_rw |= rw;
  2568. spin_lock(&device->io_lock);
  2569. if (bio->bi_rw & REQ_SYNC)
  2570. pending_bios = &device->pending_sync_bios;
  2571. else
  2572. pending_bios = &device->pending_bios;
  2573. if (pending_bios->tail)
  2574. pending_bios->tail->bi_next = bio;
  2575. pending_bios->tail = bio;
  2576. if (!pending_bios->head)
  2577. pending_bios->head = bio;
  2578. if (device->running_pending)
  2579. should_queue = 0;
  2580. spin_unlock(&device->io_lock);
  2581. if (should_queue)
  2582. btrfs_queue_worker(&root->fs_info->submit_workers,
  2583. &device->work);
  2584. return 0;
  2585. }
  2586. int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
  2587. int mirror_num, int async_submit)
  2588. {
  2589. struct btrfs_mapping_tree *map_tree;
  2590. struct btrfs_device *dev;
  2591. struct bio *first_bio = bio;
  2592. u64 logical = (u64)bio->bi_sector << 9;
  2593. u64 length = 0;
  2594. u64 map_length;
  2595. struct btrfs_multi_bio *multi = NULL;
  2596. int ret;
  2597. int dev_nr = 0;
  2598. int total_devs = 1;
  2599. length = bio->bi_size;
  2600. map_tree = &root->fs_info->mapping_tree;
  2601. map_length = length;
  2602. ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
  2603. mirror_num);
  2604. BUG_ON(ret);
  2605. total_devs = multi->num_stripes;
  2606. if (map_length < length) {
  2607. printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
  2608. "len %llu\n", (unsigned long long)logical,
  2609. (unsigned long long)length,
  2610. (unsigned long long)map_length);
  2611. BUG();
  2612. }
  2613. multi->end_io = first_bio->bi_end_io;
  2614. multi->private = first_bio->bi_private;
  2615. multi->orig_bio = first_bio;
  2616. atomic_set(&multi->stripes_pending, multi->num_stripes);
  2617. while (dev_nr < total_devs) {
  2618. if (total_devs > 1) {
  2619. if (dev_nr < total_devs - 1) {
  2620. bio = bio_clone(first_bio, GFP_NOFS);
  2621. BUG_ON(!bio);
  2622. } else {
  2623. bio = first_bio;
  2624. }
  2625. bio->bi_private = multi;
  2626. bio->bi_end_io = end_bio_multi_stripe;
  2627. }
  2628. bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
  2629. dev = multi->stripes[dev_nr].dev;
  2630. if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
  2631. bio->bi_bdev = dev->bdev;
  2632. if (async_submit)
  2633. schedule_bio(root, dev, rw, bio);
  2634. else
  2635. submit_bio(rw, bio);
  2636. } else {
  2637. bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
  2638. bio->bi_sector = logical >> 9;
  2639. bio_endio(bio, -EIO);
  2640. }
  2641. dev_nr++;
  2642. }
  2643. if (total_devs == 1)
  2644. kfree(multi);
  2645. return 0;
  2646. }
  2647. struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
  2648. u8 *uuid, u8 *fsid)
  2649. {
  2650. struct btrfs_device *device;
  2651. struct btrfs_fs_devices *cur_devices;
  2652. cur_devices = root->fs_info->fs_devices;
  2653. while (cur_devices) {
  2654. if (!fsid ||
  2655. !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
  2656. device = __find_device(&cur_devices->devices,
  2657. devid, uuid);
  2658. if (device)
  2659. return device;
  2660. }
  2661. cur_devices = cur_devices->seed;
  2662. }
  2663. return NULL;
  2664. }
  2665. static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
  2666. u64 devid, u8 *dev_uuid)
  2667. {
  2668. struct btrfs_device *device;
  2669. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  2670. device = kzalloc(sizeof(*device), GFP_NOFS);
  2671. if (!device)
  2672. return NULL;
  2673. list_add(&device->dev_list,
  2674. &fs_devices->devices);
  2675. device->barriers = 1;
  2676. device->dev_root = root->fs_info->dev_root;
  2677. device->devid = devid;
  2678. device->work.func = pending_bios_fn;
  2679. device->fs_devices = fs_devices;
  2680. device->missing = 1;
  2681. fs_devices->num_devices++;
  2682. fs_devices->missing_devices++;
  2683. spin_lock_init(&device->io_lock);
  2684. INIT_LIST_HEAD(&device->dev_alloc_list);
  2685. memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
  2686. return device;
  2687. }
  2688. static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
  2689. struct extent_buffer *leaf,
  2690. struct btrfs_chunk *chunk)
  2691. {
  2692. struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
  2693. struct map_lookup *map;
  2694. struct extent_map *em;
  2695. u64 logical;
  2696. u64 length;
  2697. u64 devid;
  2698. u8 uuid[BTRFS_UUID_SIZE];
  2699. int num_stripes;
  2700. int ret;
  2701. int i;
  2702. logical = key->offset;
  2703. length = btrfs_chunk_length(leaf, chunk);
  2704. read_lock(&map_tree->map_tree.lock);
  2705. em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
  2706. read_unlock(&map_tree->map_tree.lock);
  2707. /* already mapped? */
  2708. if (em && em->start <= logical && em->start + em->len > logical) {
  2709. free_extent_map(em);
  2710. return 0;
  2711. } else if (em) {
  2712. free_extent_map(em);
  2713. }
  2714. em = alloc_extent_map(GFP_NOFS);
  2715. if (!em)
  2716. return -ENOMEM;
  2717. num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
  2718. map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
  2719. if (!map) {
  2720. free_extent_map(em);
  2721. return -ENOMEM;
  2722. }
  2723. em->bdev = (struct block_device *)map;
  2724. em->start = logical;
  2725. em->len = length;
  2726. em->block_start = 0;
  2727. em->block_len = em->len;
  2728. map->num_stripes = num_stripes;
  2729. map->io_width = btrfs_chunk_io_width(leaf, chunk);
  2730. map->io_align = btrfs_chunk_io_align(leaf, chunk);
  2731. map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
  2732. map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
  2733. map->type = btrfs_chunk_type(leaf, chunk);
  2734. map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
  2735. for (i = 0; i < num_stripes; i++) {
  2736. map->stripes[i].physical =
  2737. btrfs_stripe_offset_nr(leaf, chunk, i);
  2738. devid = btrfs_stripe_devid_nr(leaf, chunk, i);
  2739. read_extent_buffer(leaf, uuid, (unsigned long)
  2740. btrfs_stripe_dev_uuid_nr(chunk, i),
  2741. BTRFS_UUID_SIZE);
  2742. map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
  2743. NULL);
  2744. if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
  2745. kfree(map);
  2746. free_extent_map(em);
  2747. return -EIO;
  2748. }
  2749. if (!map->stripes[i].dev) {
  2750. map->stripes[i].dev =
  2751. add_missing_dev(root, devid, uuid);
  2752. if (!map->stripes[i].dev) {
  2753. kfree(map);
  2754. free_extent_map(em);
  2755. return -EIO;
  2756. }
  2757. }
  2758. map->stripes[i].dev->in_fs_metadata = 1;
  2759. }
  2760. write_lock(&map_tree->map_tree.lock);
  2761. ret = add_extent_mapping(&map_tree->map_tree, em);
  2762. write_unlock(&map_tree->map_tree.lock);
  2763. BUG_ON(ret);
  2764. free_extent_map(em);
  2765. return 0;
  2766. }
  2767. static int fill_device_from_item(struct extent_buffer *leaf,
  2768. struct btrfs_dev_item *dev_item,
  2769. struct btrfs_device *device)
  2770. {
  2771. unsigned long ptr;
  2772. device->devid = btrfs_device_id(leaf, dev_item);
  2773. device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
  2774. device->total_bytes = device->disk_total_bytes;
  2775. device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
  2776. device->type = btrfs_device_type(leaf, dev_item);
  2777. device->io_align = btrfs_device_io_align(leaf, dev_item);
  2778. device->io_width = btrfs_device_io_width(leaf, dev_item);
  2779. device->sector_size = btrfs_device_sector_size(leaf, dev_item);
  2780. ptr = (unsigned long)btrfs_device_uuid(dev_item);
  2781. read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
  2782. return 0;
  2783. }
  2784. static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
  2785. {
  2786. struct btrfs_fs_devices *fs_devices;
  2787. int ret;
  2788. mutex_lock(&uuid_mutex);
  2789. fs_devices = root->fs_info->fs_devices->seed;
  2790. while (fs_devices) {
  2791. if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
  2792. ret = 0;
  2793. goto out;
  2794. }
  2795. fs_devices = fs_devices->seed;
  2796. }
  2797. fs_devices = find_fsid(fsid);
  2798. if (!fs_devices) {
  2799. ret = -ENOENT;
  2800. goto out;
  2801. }
  2802. fs_devices = clone_fs_devices(fs_devices);
  2803. if (IS_ERR(fs_devices)) {
  2804. ret = PTR_ERR(fs_devices);
  2805. goto out;
  2806. }
  2807. ret = __btrfs_open_devices(fs_devices, FMODE_READ,
  2808. root->fs_info->bdev_holder);
  2809. if (ret)
  2810. goto out;
  2811. if (!fs_devices->seeding) {
  2812. __btrfs_close_devices(fs_devices);
  2813. free_fs_devices(fs_devices);
  2814. ret = -EINVAL;
  2815. goto out;
  2816. }
  2817. fs_devices->seed = root->fs_info->fs_devices->seed;
  2818. root->fs_info->fs_devices->seed = fs_devices;
  2819. out:
  2820. mutex_unlock(&uuid_mutex);
  2821. return ret;
  2822. }
  2823. static int read_one_dev(struct btrfs_root *root,
  2824. struct extent_buffer *leaf,
  2825. struct btrfs_dev_item *dev_item)
  2826. {
  2827. struct btrfs_device *device;
  2828. u64 devid;
  2829. int ret;
  2830. u8 fs_uuid[BTRFS_UUID_SIZE];
  2831. u8 dev_uuid[BTRFS_UUID_SIZE];
  2832. devid = btrfs_device_id(leaf, dev_item);
  2833. read_extent_buffer(leaf, dev_uuid,
  2834. (unsigned long)btrfs_device_uuid(dev_item),
  2835. BTRFS_UUID_SIZE);
  2836. read_extent_buffer(leaf, fs_uuid,
  2837. (unsigned long)btrfs_device_fsid(dev_item),
  2838. BTRFS_UUID_SIZE);
  2839. if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
  2840. ret = open_seed_devices(root, fs_uuid);
  2841. if (ret && !btrfs_test_opt(root, DEGRADED))
  2842. return ret;
  2843. }
  2844. device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
  2845. if (!device || !device->bdev) {
  2846. if (!btrfs_test_opt(root, DEGRADED))
  2847. return -EIO;
  2848. if (!device) {
  2849. printk(KERN_WARNING "warning devid %llu missing\n",
  2850. (unsigned long long)devid);
  2851. device = add_missing_dev(root, devid, dev_uuid);
  2852. if (!device)
  2853. return -ENOMEM;
  2854. } else if (!device->missing) {
  2855. /*
  2856. * this happens when a device that was properly setup
  2857. * in the device info lists suddenly goes bad.
  2858. * device->bdev is NULL, and so we have to set
  2859. * device->missing to one here
  2860. */
  2861. root->fs_info->fs_devices->missing_devices++;
  2862. device->missing = 1;
  2863. }
  2864. }
  2865. if (device->fs_devices != root->fs_info->fs_devices) {
  2866. BUG_ON(device->writeable);
  2867. if (device->generation !=
  2868. btrfs_device_generation(leaf, dev_item))
  2869. return -EINVAL;
  2870. }
  2871. fill_device_from_item(leaf, dev_item, device);
  2872. device->dev_root = root->fs_info->dev_root;
  2873. device->in_fs_metadata = 1;
  2874. if (device->writeable)
  2875. device->fs_devices->total_rw_bytes += device->total_bytes;
  2876. ret = 0;
  2877. return ret;
  2878. }
  2879. int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
  2880. {
  2881. struct btrfs_dev_item *dev_item;
  2882. dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
  2883. dev_item);
  2884. return read_one_dev(root, buf, dev_item);
  2885. }
  2886. int btrfs_read_sys_array(struct btrfs_root *root)
  2887. {
  2888. struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
  2889. struct extent_buffer *sb;
  2890. struct btrfs_disk_key *disk_key;
  2891. struct btrfs_chunk *chunk;
  2892. u8 *ptr;
  2893. unsigned long sb_ptr;
  2894. int ret = 0;
  2895. u32 num_stripes;
  2896. u32 array_size;
  2897. u32 len = 0;
  2898. u32 cur;
  2899. struct btrfs_key key;
  2900. sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
  2901. BTRFS_SUPER_INFO_SIZE);
  2902. if (!sb)
  2903. return -ENOMEM;
  2904. btrfs_set_buffer_uptodate(sb);
  2905. btrfs_set_buffer_lockdep_class(sb, 0);
  2906. write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
  2907. array_size = btrfs_super_sys_array_size(super_copy);
  2908. ptr = super_copy->sys_chunk_array;
  2909. sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
  2910. cur = 0;
  2911. while (cur < array_size) {
  2912. disk_key = (struct btrfs_disk_key *)ptr;
  2913. btrfs_disk_key_to_cpu(&key, disk_key);
  2914. len = sizeof(*disk_key); ptr += len;
  2915. sb_ptr += len;
  2916. cur += len;
  2917. if (key.type == BTRFS_CHUNK_ITEM_KEY) {
  2918. chunk = (struct btrfs_chunk *)sb_ptr;
  2919. ret = read_one_chunk(root, &key, sb, chunk);
  2920. if (ret)
  2921. break;
  2922. num_stripes = btrfs_chunk_num_stripes(sb, chunk);
  2923. len = btrfs_chunk_item_size(num_stripes);
  2924. } else {
  2925. ret = -EIO;
  2926. break;
  2927. }
  2928. ptr += len;
  2929. sb_ptr += len;
  2930. cur += len;
  2931. }
  2932. free_extent_buffer(sb);
  2933. return ret;
  2934. }
  2935. int btrfs_read_chunk_tree(struct btrfs_root *root)
  2936. {
  2937. struct btrfs_path *path;
  2938. struct extent_buffer *leaf;
  2939. struct btrfs_key key;
  2940. struct btrfs_key found_key;
  2941. int ret;
  2942. int slot;
  2943. root = root->fs_info->chunk_root;
  2944. path = btrfs_alloc_path();
  2945. if (!path)
  2946. return -ENOMEM;
  2947. /* first we search for all of the device items, and then we
  2948. * read in all of the chunk items. This way we can create chunk
  2949. * mappings that reference all of the devices that are afound
  2950. */
  2951. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  2952. key.offset = 0;
  2953. key.type = 0;
  2954. again:
  2955. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2956. if (ret < 0)
  2957. goto error;
  2958. while (1) {
  2959. leaf = path->nodes[0];
  2960. slot = path->slots[0];
  2961. if (slot >= btrfs_header_nritems(leaf)) {
  2962. ret = btrfs_next_leaf(root, path);
  2963. if (ret == 0)
  2964. continue;
  2965. if (ret < 0)
  2966. goto error;
  2967. break;
  2968. }
  2969. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2970. if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
  2971. if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
  2972. break;
  2973. if (found_key.type == BTRFS_DEV_ITEM_KEY) {
  2974. struct btrfs_dev_item *dev_item;
  2975. dev_item = btrfs_item_ptr(leaf, slot,
  2976. struct btrfs_dev_item);
  2977. ret = read_one_dev(root, leaf, dev_item);
  2978. if (ret)
  2979. goto error;
  2980. }
  2981. } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
  2982. struct btrfs_chunk *chunk;
  2983. chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
  2984. ret = read_one_chunk(root, &found_key, leaf, chunk);
  2985. if (ret)
  2986. goto error;
  2987. }
  2988. path->slots[0]++;
  2989. }
  2990. if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
  2991. key.objectid = 0;
  2992. btrfs_release_path(root, path);
  2993. goto again;
  2994. }
  2995. ret = 0;
  2996. error:
  2997. btrfs_free_path(path);
  2998. return ret;
  2999. }