bnx2.c 196 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/list.h>
  49. #include "bnx2.h"
  50. #include "bnx2_fw.h"
  51. #define DRV_MODULE_NAME "bnx2"
  52. #define PFX DRV_MODULE_NAME ": "
  53. #define DRV_MODULE_VERSION "2.0.1"
  54. #define DRV_MODULE_RELDATE "May 6, 2009"
  55. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
  56. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
  57. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
  58. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
  59. #define RUN_AT(x) (jiffies + (x))
  60. /* Time in jiffies before concluding the transmitter is hung. */
  61. #define TX_TIMEOUT (5*HZ)
  62. static char version[] __devinitdata =
  63. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  64. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  65. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  66. MODULE_LICENSE("GPL");
  67. MODULE_VERSION(DRV_MODULE_VERSION);
  68. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  69. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  70. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  71. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  72. static int disable_msi = 0;
  73. module_param(disable_msi, int, 0);
  74. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  75. typedef enum {
  76. BCM5706 = 0,
  77. NC370T,
  78. NC370I,
  79. BCM5706S,
  80. NC370F,
  81. BCM5708,
  82. BCM5708S,
  83. BCM5709,
  84. BCM5709S,
  85. BCM5716,
  86. BCM5716S,
  87. } board_t;
  88. /* indexed by board_t, above */
  89. static struct {
  90. char *name;
  91. } board_info[] __devinitdata = {
  92. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  93. { "HP NC370T Multifunction Gigabit Server Adapter" },
  94. { "HP NC370i Multifunction Gigabit Server Adapter" },
  95. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  96. { "HP NC370F Multifunction Gigabit Server Adapter" },
  97. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  98. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  99. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  100. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  101. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  102. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  103. };
  104. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  105. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  106. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  107. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  108. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  112. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  114. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  123. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  125. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  127. { 0, }
  128. };
  129. static struct flash_spec flash_table[] =
  130. {
  131. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  132. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  133. /* Slow EEPROM */
  134. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  135. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  136. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  137. "EEPROM - slow"},
  138. /* Expansion entry 0001 */
  139. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  140. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  141. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  142. "Entry 0001"},
  143. /* Saifun SA25F010 (non-buffered flash) */
  144. /* strap, cfg1, & write1 need updates */
  145. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  148. "Non-buffered flash (128kB)"},
  149. /* Saifun SA25F020 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  154. "Non-buffered flash (256kB)"},
  155. /* Expansion entry 0100 */
  156. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  159. "Entry 0100"},
  160. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  161. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  163. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  164. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  165. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  166. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  169. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  170. /* Saifun SA25F005 (non-buffered flash) */
  171. /* strap, cfg1, & write1 need updates */
  172. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  174. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  175. "Non-buffered flash (64kB)"},
  176. /* Fast EEPROM */
  177. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  178. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  179. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  180. "EEPROM - fast"},
  181. /* Expansion entry 1001 */
  182. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  183. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  184. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  185. "Entry 1001"},
  186. /* Expansion entry 1010 */
  187. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1010"},
  191. /* ATMEL AT45DB011B (buffered flash) */
  192. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  193. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  194. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  195. "Buffered flash (128kB)"},
  196. /* Expansion entry 1100 */
  197. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  198. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  199. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  200. "Entry 1100"},
  201. /* Expansion entry 1101 */
  202. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1101"},
  206. /* Ateml Expansion entry 1110 */
  207. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  208. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  209. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1110 (Atmel)"},
  211. /* ATMEL AT45DB021B (buffered flash) */
  212. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  215. "Buffered flash (256kB)"},
  216. };
  217. static struct flash_spec flash_5709 = {
  218. .flags = BNX2_NV_BUFFERED,
  219. .page_bits = BCM5709_FLASH_PAGE_BITS,
  220. .page_size = BCM5709_FLASH_PAGE_SIZE,
  221. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  222. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  223. .name = "5709 Buffered flash (256kB)",
  224. };
  225. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  226. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  227. {
  228. u32 diff;
  229. smp_mb();
  230. /* The ring uses 256 indices for 255 entries, one of them
  231. * needs to be skipped.
  232. */
  233. diff = txr->tx_prod - txr->tx_cons;
  234. if (unlikely(diff >= TX_DESC_CNT)) {
  235. diff &= 0xffff;
  236. if (diff == TX_DESC_CNT)
  237. diff = MAX_TX_DESC_CNT;
  238. }
  239. return (bp->tx_ring_size - diff);
  240. }
  241. static u32
  242. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  243. {
  244. u32 val;
  245. spin_lock_bh(&bp->indirect_lock);
  246. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  247. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  248. spin_unlock_bh(&bp->indirect_lock);
  249. return val;
  250. }
  251. static void
  252. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  253. {
  254. spin_lock_bh(&bp->indirect_lock);
  255. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  256. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  257. spin_unlock_bh(&bp->indirect_lock);
  258. }
  259. static void
  260. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  261. {
  262. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  263. }
  264. static u32
  265. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  266. {
  267. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  268. }
  269. static void
  270. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  271. {
  272. offset += cid_addr;
  273. spin_lock_bh(&bp->indirect_lock);
  274. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  275. int i;
  276. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  277. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  278. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  279. for (i = 0; i < 5; i++) {
  280. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  281. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  282. break;
  283. udelay(5);
  284. }
  285. } else {
  286. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  287. REG_WR(bp, BNX2_CTX_DATA, val);
  288. }
  289. spin_unlock_bh(&bp->indirect_lock);
  290. }
  291. static int
  292. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  293. {
  294. u32 val1;
  295. int i, ret;
  296. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  297. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  298. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  299. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  300. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  301. udelay(40);
  302. }
  303. val1 = (bp->phy_addr << 21) | (reg << 16) |
  304. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  305. BNX2_EMAC_MDIO_COMM_START_BUSY;
  306. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  307. for (i = 0; i < 50; i++) {
  308. udelay(10);
  309. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  310. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  311. udelay(5);
  312. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  313. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  314. break;
  315. }
  316. }
  317. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  318. *val = 0x0;
  319. ret = -EBUSY;
  320. }
  321. else {
  322. *val = val1;
  323. ret = 0;
  324. }
  325. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  326. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  327. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  328. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  329. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  330. udelay(40);
  331. }
  332. return ret;
  333. }
  334. static int
  335. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  336. {
  337. u32 val1;
  338. int i, ret;
  339. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  340. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  341. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  342. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  343. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  344. udelay(40);
  345. }
  346. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  347. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  348. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  349. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  350. for (i = 0; i < 50; i++) {
  351. udelay(10);
  352. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  353. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  354. udelay(5);
  355. break;
  356. }
  357. }
  358. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  359. ret = -EBUSY;
  360. else
  361. ret = 0;
  362. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  363. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  364. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  365. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  366. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  367. udelay(40);
  368. }
  369. return ret;
  370. }
  371. static void
  372. bnx2_disable_int(struct bnx2 *bp)
  373. {
  374. int i;
  375. struct bnx2_napi *bnapi;
  376. for (i = 0; i < bp->irq_nvecs; i++) {
  377. bnapi = &bp->bnx2_napi[i];
  378. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  379. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  380. }
  381. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  382. }
  383. static void
  384. bnx2_enable_int(struct bnx2 *bp)
  385. {
  386. int i;
  387. struct bnx2_napi *bnapi;
  388. for (i = 0; i < bp->irq_nvecs; i++) {
  389. bnapi = &bp->bnx2_napi[i];
  390. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  391. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  392. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  393. bnapi->last_status_idx);
  394. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  395. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  396. bnapi->last_status_idx);
  397. }
  398. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  399. }
  400. static void
  401. bnx2_disable_int_sync(struct bnx2 *bp)
  402. {
  403. int i;
  404. atomic_inc(&bp->intr_sem);
  405. bnx2_disable_int(bp);
  406. for (i = 0; i < bp->irq_nvecs; i++)
  407. synchronize_irq(bp->irq_tbl[i].vector);
  408. }
  409. static void
  410. bnx2_napi_disable(struct bnx2 *bp)
  411. {
  412. int i;
  413. for (i = 0; i < bp->irq_nvecs; i++)
  414. napi_disable(&bp->bnx2_napi[i].napi);
  415. }
  416. static void
  417. bnx2_napi_enable(struct bnx2 *bp)
  418. {
  419. int i;
  420. for (i = 0; i < bp->irq_nvecs; i++)
  421. napi_enable(&bp->bnx2_napi[i].napi);
  422. }
  423. static void
  424. bnx2_netif_stop(struct bnx2 *bp)
  425. {
  426. bnx2_disable_int_sync(bp);
  427. if (netif_running(bp->dev)) {
  428. bnx2_napi_disable(bp);
  429. netif_tx_disable(bp->dev);
  430. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  431. }
  432. }
  433. static void
  434. bnx2_netif_start(struct bnx2 *bp)
  435. {
  436. if (atomic_dec_and_test(&bp->intr_sem)) {
  437. if (netif_running(bp->dev)) {
  438. netif_tx_wake_all_queues(bp->dev);
  439. bnx2_napi_enable(bp);
  440. bnx2_enable_int(bp);
  441. }
  442. }
  443. }
  444. static void
  445. bnx2_free_tx_mem(struct bnx2 *bp)
  446. {
  447. int i;
  448. for (i = 0; i < bp->num_tx_rings; i++) {
  449. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  450. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  451. if (txr->tx_desc_ring) {
  452. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  453. txr->tx_desc_ring,
  454. txr->tx_desc_mapping);
  455. txr->tx_desc_ring = NULL;
  456. }
  457. kfree(txr->tx_buf_ring);
  458. txr->tx_buf_ring = NULL;
  459. }
  460. }
  461. static void
  462. bnx2_free_rx_mem(struct bnx2 *bp)
  463. {
  464. int i;
  465. for (i = 0; i < bp->num_rx_rings; i++) {
  466. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  467. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  468. int j;
  469. for (j = 0; j < bp->rx_max_ring; j++) {
  470. if (rxr->rx_desc_ring[j])
  471. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  472. rxr->rx_desc_ring[j],
  473. rxr->rx_desc_mapping[j]);
  474. rxr->rx_desc_ring[j] = NULL;
  475. }
  476. if (rxr->rx_buf_ring)
  477. vfree(rxr->rx_buf_ring);
  478. rxr->rx_buf_ring = NULL;
  479. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  480. if (rxr->rx_pg_desc_ring[j])
  481. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  482. rxr->rx_pg_desc_ring[j],
  483. rxr->rx_pg_desc_mapping[j]);
  484. rxr->rx_pg_desc_ring[j] = NULL;
  485. }
  486. if (rxr->rx_pg_ring)
  487. vfree(rxr->rx_pg_ring);
  488. rxr->rx_pg_ring = NULL;
  489. }
  490. }
  491. static int
  492. bnx2_alloc_tx_mem(struct bnx2 *bp)
  493. {
  494. int i;
  495. for (i = 0; i < bp->num_tx_rings; i++) {
  496. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  497. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  498. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  499. if (txr->tx_buf_ring == NULL)
  500. return -ENOMEM;
  501. txr->tx_desc_ring =
  502. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  503. &txr->tx_desc_mapping);
  504. if (txr->tx_desc_ring == NULL)
  505. return -ENOMEM;
  506. }
  507. return 0;
  508. }
  509. static int
  510. bnx2_alloc_rx_mem(struct bnx2 *bp)
  511. {
  512. int i;
  513. for (i = 0; i < bp->num_rx_rings; i++) {
  514. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  515. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  516. int j;
  517. rxr->rx_buf_ring =
  518. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  519. if (rxr->rx_buf_ring == NULL)
  520. return -ENOMEM;
  521. memset(rxr->rx_buf_ring, 0,
  522. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  523. for (j = 0; j < bp->rx_max_ring; j++) {
  524. rxr->rx_desc_ring[j] =
  525. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  526. &rxr->rx_desc_mapping[j]);
  527. if (rxr->rx_desc_ring[j] == NULL)
  528. return -ENOMEM;
  529. }
  530. if (bp->rx_pg_ring_size) {
  531. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  532. bp->rx_max_pg_ring);
  533. if (rxr->rx_pg_ring == NULL)
  534. return -ENOMEM;
  535. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  536. bp->rx_max_pg_ring);
  537. }
  538. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  539. rxr->rx_pg_desc_ring[j] =
  540. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  541. &rxr->rx_pg_desc_mapping[j]);
  542. if (rxr->rx_pg_desc_ring[j] == NULL)
  543. return -ENOMEM;
  544. }
  545. }
  546. return 0;
  547. }
  548. static void
  549. bnx2_free_mem(struct bnx2 *bp)
  550. {
  551. int i;
  552. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  553. bnx2_free_tx_mem(bp);
  554. bnx2_free_rx_mem(bp);
  555. for (i = 0; i < bp->ctx_pages; i++) {
  556. if (bp->ctx_blk[i]) {
  557. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  558. bp->ctx_blk[i],
  559. bp->ctx_blk_mapping[i]);
  560. bp->ctx_blk[i] = NULL;
  561. }
  562. }
  563. if (bnapi->status_blk.msi) {
  564. pci_free_consistent(bp->pdev, bp->status_stats_size,
  565. bnapi->status_blk.msi,
  566. bp->status_blk_mapping);
  567. bnapi->status_blk.msi = NULL;
  568. bp->stats_blk = NULL;
  569. }
  570. }
  571. static int
  572. bnx2_alloc_mem(struct bnx2 *bp)
  573. {
  574. int i, status_blk_size, err;
  575. struct bnx2_napi *bnapi;
  576. void *status_blk;
  577. /* Combine status and statistics blocks into one allocation. */
  578. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  579. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  580. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  581. BNX2_SBLK_MSIX_ALIGN_SIZE);
  582. bp->status_stats_size = status_blk_size +
  583. sizeof(struct statistics_block);
  584. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  585. &bp->status_blk_mapping);
  586. if (status_blk == NULL)
  587. goto alloc_mem_err;
  588. memset(status_blk, 0, bp->status_stats_size);
  589. bnapi = &bp->bnx2_napi[0];
  590. bnapi->status_blk.msi = status_blk;
  591. bnapi->hw_tx_cons_ptr =
  592. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  593. bnapi->hw_rx_cons_ptr =
  594. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  595. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  596. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  597. struct status_block_msix *sblk;
  598. bnapi = &bp->bnx2_napi[i];
  599. sblk = (void *) (status_blk +
  600. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  601. bnapi->status_blk.msix = sblk;
  602. bnapi->hw_tx_cons_ptr =
  603. &sblk->status_tx_quick_consumer_index;
  604. bnapi->hw_rx_cons_ptr =
  605. &sblk->status_rx_quick_consumer_index;
  606. bnapi->int_num = i << 24;
  607. }
  608. }
  609. bp->stats_blk = status_blk + status_blk_size;
  610. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  611. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  612. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  613. if (bp->ctx_pages == 0)
  614. bp->ctx_pages = 1;
  615. for (i = 0; i < bp->ctx_pages; i++) {
  616. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  617. BCM_PAGE_SIZE,
  618. &bp->ctx_blk_mapping[i]);
  619. if (bp->ctx_blk[i] == NULL)
  620. goto alloc_mem_err;
  621. }
  622. }
  623. err = bnx2_alloc_rx_mem(bp);
  624. if (err)
  625. goto alloc_mem_err;
  626. err = bnx2_alloc_tx_mem(bp);
  627. if (err)
  628. goto alloc_mem_err;
  629. return 0;
  630. alloc_mem_err:
  631. bnx2_free_mem(bp);
  632. return -ENOMEM;
  633. }
  634. static void
  635. bnx2_report_fw_link(struct bnx2 *bp)
  636. {
  637. u32 fw_link_status = 0;
  638. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  639. return;
  640. if (bp->link_up) {
  641. u32 bmsr;
  642. switch (bp->line_speed) {
  643. case SPEED_10:
  644. if (bp->duplex == DUPLEX_HALF)
  645. fw_link_status = BNX2_LINK_STATUS_10HALF;
  646. else
  647. fw_link_status = BNX2_LINK_STATUS_10FULL;
  648. break;
  649. case SPEED_100:
  650. if (bp->duplex == DUPLEX_HALF)
  651. fw_link_status = BNX2_LINK_STATUS_100HALF;
  652. else
  653. fw_link_status = BNX2_LINK_STATUS_100FULL;
  654. break;
  655. case SPEED_1000:
  656. if (bp->duplex == DUPLEX_HALF)
  657. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  658. else
  659. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  660. break;
  661. case SPEED_2500:
  662. if (bp->duplex == DUPLEX_HALF)
  663. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  664. else
  665. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  666. break;
  667. }
  668. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  669. if (bp->autoneg) {
  670. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  671. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  672. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  673. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  674. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  675. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  676. else
  677. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  678. }
  679. }
  680. else
  681. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  682. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  683. }
  684. static char *
  685. bnx2_xceiver_str(struct bnx2 *bp)
  686. {
  687. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  688. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  689. "Copper"));
  690. }
  691. static void
  692. bnx2_report_link(struct bnx2 *bp)
  693. {
  694. if (bp->link_up) {
  695. netif_carrier_on(bp->dev);
  696. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  697. bnx2_xceiver_str(bp));
  698. printk("%d Mbps ", bp->line_speed);
  699. if (bp->duplex == DUPLEX_FULL)
  700. printk("full duplex");
  701. else
  702. printk("half duplex");
  703. if (bp->flow_ctrl) {
  704. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  705. printk(", receive ");
  706. if (bp->flow_ctrl & FLOW_CTRL_TX)
  707. printk("& transmit ");
  708. }
  709. else {
  710. printk(", transmit ");
  711. }
  712. printk("flow control ON");
  713. }
  714. printk("\n");
  715. }
  716. else {
  717. netif_carrier_off(bp->dev);
  718. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  719. bnx2_xceiver_str(bp));
  720. }
  721. bnx2_report_fw_link(bp);
  722. }
  723. static void
  724. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  725. {
  726. u32 local_adv, remote_adv;
  727. bp->flow_ctrl = 0;
  728. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  729. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  730. if (bp->duplex == DUPLEX_FULL) {
  731. bp->flow_ctrl = bp->req_flow_ctrl;
  732. }
  733. return;
  734. }
  735. if (bp->duplex != DUPLEX_FULL) {
  736. return;
  737. }
  738. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  739. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  740. u32 val;
  741. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  742. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  743. bp->flow_ctrl |= FLOW_CTRL_TX;
  744. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  745. bp->flow_ctrl |= FLOW_CTRL_RX;
  746. return;
  747. }
  748. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  749. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  750. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  751. u32 new_local_adv = 0;
  752. u32 new_remote_adv = 0;
  753. if (local_adv & ADVERTISE_1000XPAUSE)
  754. new_local_adv |= ADVERTISE_PAUSE_CAP;
  755. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  756. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  757. if (remote_adv & ADVERTISE_1000XPAUSE)
  758. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  759. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  760. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  761. local_adv = new_local_adv;
  762. remote_adv = new_remote_adv;
  763. }
  764. /* See Table 28B-3 of 802.3ab-1999 spec. */
  765. if (local_adv & ADVERTISE_PAUSE_CAP) {
  766. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  767. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  768. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  769. }
  770. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  771. bp->flow_ctrl = FLOW_CTRL_RX;
  772. }
  773. }
  774. else {
  775. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  776. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  777. }
  778. }
  779. }
  780. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  781. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  782. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  783. bp->flow_ctrl = FLOW_CTRL_TX;
  784. }
  785. }
  786. }
  787. static int
  788. bnx2_5709s_linkup(struct bnx2 *bp)
  789. {
  790. u32 val, speed;
  791. bp->link_up = 1;
  792. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  793. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  794. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  795. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  796. bp->line_speed = bp->req_line_speed;
  797. bp->duplex = bp->req_duplex;
  798. return 0;
  799. }
  800. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  801. switch (speed) {
  802. case MII_BNX2_GP_TOP_AN_SPEED_10:
  803. bp->line_speed = SPEED_10;
  804. break;
  805. case MII_BNX2_GP_TOP_AN_SPEED_100:
  806. bp->line_speed = SPEED_100;
  807. break;
  808. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  809. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  810. bp->line_speed = SPEED_1000;
  811. break;
  812. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  813. bp->line_speed = SPEED_2500;
  814. break;
  815. }
  816. if (val & MII_BNX2_GP_TOP_AN_FD)
  817. bp->duplex = DUPLEX_FULL;
  818. else
  819. bp->duplex = DUPLEX_HALF;
  820. return 0;
  821. }
  822. static int
  823. bnx2_5708s_linkup(struct bnx2 *bp)
  824. {
  825. u32 val;
  826. bp->link_up = 1;
  827. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  828. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  829. case BCM5708S_1000X_STAT1_SPEED_10:
  830. bp->line_speed = SPEED_10;
  831. break;
  832. case BCM5708S_1000X_STAT1_SPEED_100:
  833. bp->line_speed = SPEED_100;
  834. break;
  835. case BCM5708S_1000X_STAT1_SPEED_1G:
  836. bp->line_speed = SPEED_1000;
  837. break;
  838. case BCM5708S_1000X_STAT1_SPEED_2G5:
  839. bp->line_speed = SPEED_2500;
  840. break;
  841. }
  842. if (val & BCM5708S_1000X_STAT1_FD)
  843. bp->duplex = DUPLEX_FULL;
  844. else
  845. bp->duplex = DUPLEX_HALF;
  846. return 0;
  847. }
  848. static int
  849. bnx2_5706s_linkup(struct bnx2 *bp)
  850. {
  851. u32 bmcr, local_adv, remote_adv, common;
  852. bp->link_up = 1;
  853. bp->line_speed = SPEED_1000;
  854. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  855. if (bmcr & BMCR_FULLDPLX) {
  856. bp->duplex = DUPLEX_FULL;
  857. }
  858. else {
  859. bp->duplex = DUPLEX_HALF;
  860. }
  861. if (!(bmcr & BMCR_ANENABLE)) {
  862. return 0;
  863. }
  864. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  865. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  866. common = local_adv & remote_adv;
  867. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  868. if (common & ADVERTISE_1000XFULL) {
  869. bp->duplex = DUPLEX_FULL;
  870. }
  871. else {
  872. bp->duplex = DUPLEX_HALF;
  873. }
  874. }
  875. return 0;
  876. }
  877. static int
  878. bnx2_copper_linkup(struct bnx2 *bp)
  879. {
  880. u32 bmcr;
  881. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  882. if (bmcr & BMCR_ANENABLE) {
  883. u32 local_adv, remote_adv, common;
  884. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  885. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  886. common = local_adv & (remote_adv >> 2);
  887. if (common & ADVERTISE_1000FULL) {
  888. bp->line_speed = SPEED_1000;
  889. bp->duplex = DUPLEX_FULL;
  890. }
  891. else if (common & ADVERTISE_1000HALF) {
  892. bp->line_speed = SPEED_1000;
  893. bp->duplex = DUPLEX_HALF;
  894. }
  895. else {
  896. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  897. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  898. common = local_adv & remote_adv;
  899. if (common & ADVERTISE_100FULL) {
  900. bp->line_speed = SPEED_100;
  901. bp->duplex = DUPLEX_FULL;
  902. }
  903. else if (common & ADVERTISE_100HALF) {
  904. bp->line_speed = SPEED_100;
  905. bp->duplex = DUPLEX_HALF;
  906. }
  907. else if (common & ADVERTISE_10FULL) {
  908. bp->line_speed = SPEED_10;
  909. bp->duplex = DUPLEX_FULL;
  910. }
  911. else if (common & ADVERTISE_10HALF) {
  912. bp->line_speed = SPEED_10;
  913. bp->duplex = DUPLEX_HALF;
  914. }
  915. else {
  916. bp->line_speed = 0;
  917. bp->link_up = 0;
  918. }
  919. }
  920. }
  921. else {
  922. if (bmcr & BMCR_SPEED100) {
  923. bp->line_speed = SPEED_100;
  924. }
  925. else {
  926. bp->line_speed = SPEED_10;
  927. }
  928. if (bmcr & BMCR_FULLDPLX) {
  929. bp->duplex = DUPLEX_FULL;
  930. }
  931. else {
  932. bp->duplex = DUPLEX_HALF;
  933. }
  934. }
  935. return 0;
  936. }
  937. static void
  938. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  939. {
  940. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  941. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  942. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  943. val |= 0x02 << 8;
  944. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  945. u32 lo_water, hi_water;
  946. if (bp->flow_ctrl & FLOW_CTRL_TX)
  947. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  948. else
  949. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  950. if (lo_water >= bp->rx_ring_size)
  951. lo_water = 0;
  952. hi_water = bp->rx_ring_size / 4;
  953. if (hi_water <= lo_water)
  954. lo_water = 0;
  955. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  956. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  957. if (hi_water > 0xf)
  958. hi_water = 0xf;
  959. else if (hi_water == 0)
  960. lo_water = 0;
  961. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  962. }
  963. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  964. }
  965. static void
  966. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  967. {
  968. int i;
  969. u32 cid;
  970. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  971. if (i == 1)
  972. cid = RX_RSS_CID;
  973. bnx2_init_rx_context(bp, cid);
  974. }
  975. }
  976. static void
  977. bnx2_set_mac_link(struct bnx2 *bp)
  978. {
  979. u32 val;
  980. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  981. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  982. (bp->duplex == DUPLEX_HALF)) {
  983. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  984. }
  985. /* Configure the EMAC mode register. */
  986. val = REG_RD(bp, BNX2_EMAC_MODE);
  987. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  988. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  989. BNX2_EMAC_MODE_25G_MODE);
  990. if (bp->link_up) {
  991. switch (bp->line_speed) {
  992. case SPEED_10:
  993. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  994. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  995. break;
  996. }
  997. /* fall through */
  998. case SPEED_100:
  999. val |= BNX2_EMAC_MODE_PORT_MII;
  1000. break;
  1001. case SPEED_2500:
  1002. val |= BNX2_EMAC_MODE_25G_MODE;
  1003. /* fall through */
  1004. case SPEED_1000:
  1005. val |= BNX2_EMAC_MODE_PORT_GMII;
  1006. break;
  1007. }
  1008. }
  1009. else {
  1010. val |= BNX2_EMAC_MODE_PORT_GMII;
  1011. }
  1012. /* Set the MAC to operate in the appropriate duplex mode. */
  1013. if (bp->duplex == DUPLEX_HALF)
  1014. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1015. REG_WR(bp, BNX2_EMAC_MODE, val);
  1016. /* Enable/disable rx PAUSE. */
  1017. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1018. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1019. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1020. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1021. /* Enable/disable tx PAUSE. */
  1022. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1023. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1024. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1025. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1026. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1027. /* Acknowledge the interrupt. */
  1028. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1029. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1030. bnx2_init_all_rx_contexts(bp);
  1031. }
  1032. static void
  1033. bnx2_enable_bmsr1(struct bnx2 *bp)
  1034. {
  1035. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1036. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1037. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1038. MII_BNX2_BLK_ADDR_GP_STATUS);
  1039. }
  1040. static void
  1041. bnx2_disable_bmsr1(struct bnx2 *bp)
  1042. {
  1043. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1044. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1045. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1046. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1047. }
  1048. static int
  1049. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1050. {
  1051. u32 up1;
  1052. int ret = 1;
  1053. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1054. return 0;
  1055. if (bp->autoneg & AUTONEG_SPEED)
  1056. bp->advertising |= ADVERTISED_2500baseX_Full;
  1057. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1058. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1059. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1060. if (!(up1 & BCM5708S_UP1_2G5)) {
  1061. up1 |= BCM5708S_UP1_2G5;
  1062. bnx2_write_phy(bp, bp->mii_up1, up1);
  1063. ret = 0;
  1064. }
  1065. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1066. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1067. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1068. return ret;
  1069. }
  1070. static int
  1071. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1072. {
  1073. u32 up1;
  1074. int ret = 0;
  1075. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1076. return 0;
  1077. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1078. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1079. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1080. if (up1 & BCM5708S_UP1_2G5) {
  1081. up1 &= ~BCM5708S_UP1_2G5;
  1082. bnx2_write_phy(bp, bp->mii_up1, up1);
  1083. ret = 1;
  1084. }
  1085. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1086. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1087. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1088. return ret;
  1089. }
  1090. static void
  1091. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1092. {
  1093. u32 bmcr;
  1094. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1095. return;
  1096. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1097. u32 val;
  1098. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1099. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1100. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1101. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1102. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1103. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1104. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1105. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1106. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1107. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1108. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1109. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1110. }
  1111. if (bp->autoneg & AUTONEG_SPEED) {
  1112. bmcr &= ~BMCR_ANENABLE;
  1113. if (bp->req_duplex == DUPLEX_FULL)
  1114. bmcr |= BMCR_FULLDPLX;
  1115. }
  1116. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1117. }
  1118. static void
  1119. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1120. {
  1121. u32 bmcr;
  1122. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1123. return;
  1124. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1125. u32 val;
  1126. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1127. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1128. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1129. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1130. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1131. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1132. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1133. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1134. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1135. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1136. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1137. }
  1138. if (bp->autoneg & AUTONEG_SPEED)
  1139. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1140. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1141. }
  1142. static void
  1143. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1144. {
  1145. u32 val;
  1146. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1147. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1148. if (start)
  1149. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1150. else
  1151. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1152. }
  1153. static int
  1154. bnx2_set_link(struct bnx2 *bp)
  1155. {
  1156. u32 bmsr;
  1157. u8 link_up;
  1158. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1159. bp->link_up = 1;
  1160. return 0;
  1161. }
  1162. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1163. return 0;
  1164. link_up = bp->link_up;
  1165. bnx2_enable_bmsr1(bp);
  1166. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1167. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1168. bnx2_disable_bmsr1(bp);
  1169. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1170. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1171. u32 val, an_dbg;
  1172. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1173. bnx2_5706s_force_link_dn(bp, 0);
  1174. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1175. }
  1176. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1177. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1178. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1179. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1180. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1181. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1182. bmsr |= BMSR_LSTATUS;
  1183. else
  1184. bmsr &= ~BMSR_LSTATUS;
  1185. }
  1186. if (bmsr & BMSR_LSTATUS) {
  1187. bp->link_up = 1;
  1188. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1189. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1190. bnx2_5706s_linkup(bp);
  1191. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1192. bnx2_5708s_linkup(bp);
  1193. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1194. bnx2_5709s_linkup(bp);
  1195. }
  1196. else {
  1197. bnx2_copper_linkup(bp);
  1198. }
  1199. bnx2_resolve_flow_ctrl(bp);
  1200. }
  1201. else {
  1202. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1203. (bp->autoneg & AUTONEG_SPEED))
  1204. bnx2_disable_forced_2g5(bp);
  1205. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1206. u32 bmcr;
  1207. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1208. bmcr |= BMCR_ANENABLE;
  1209. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1210. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1211. }
  1212. bp->link_up = 0;
  1213. }
  1214. if (bp->link_up != link_up) {
  1215. bnx2_report_link(bp);
  1216. }
  1217. bnx2_set_mac_link(bp);
  1218. return 0;
  1219. }
  1220. static int
  1221. bnx2_reset_phy(struct bnx2 *bp)
  1222. {
  1223. int i;
  1224. u32 reg;
  1225. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1226. #define PHY_RESET_MAX_WAIT 100
  1227. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1228. udelay(10);
  1229. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1230. if (!(reg & BMCR_RESET)) {
  1231. udelay(20);
  1232. break;
  1233. }
  1234. }
  1235. if (i == PHY_RESET_MAX_WAIT) {
  1236. return -EBUSY;
  1237. }
  1238. return 0;
  1239. }
  1240. static u32
  1241. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1242. {
  1243. u32 adv = 0;
  1244. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1245. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1246. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1247. adv = ADVERTISE_1000XPAUSE;
  1248. }
  1249. else {
  1250. adv = ADVERTISE_PAUSE_CAP;
  1251. }
  1252. }
  1253. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1254. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1255. adv = ADVERTISE_1000XPSE_ASYM;
  1256. }
  1257. else {
  1258. adv = ADVERTISE_PAUSE_ASYM;
  1259. }
  1260. }
  1261. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1262. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1263. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1264. }
  1265. else {
  1266. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1267. }
  1268. }
  1269. return adv;
  1270. }
  1271. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1272. static int
  1273. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1274. __releases(&bp->phy_lock)
  1275. __acquires(&bp->phy_lock)
  1276. {
  1277. u32 speed_arg = 0, pause_adv;
  1278. pause_adv = bnx2_phy_get_pause_adv(bp);
  1279. if (bp->autoneg & AUTONEG_SPEED) {
  1280. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1281. if (bp->advertising & ADVERTISED_10baseT_Half)
  1282. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1283. if (bp->advertising & ADVERTISED_10baseT_Full)
  1284. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1285. if (bp->advertising & ADVERTISED_100baseT_Half)
  1286. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1287. if (bp->advertising & ADVERTISED_100baseT_Full)
  1288. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1289. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1290. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1291. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1292. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1293. } else {
  1294. if (bp->req_line_speed == SPEED_2500)
  1295. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1296. else if (bp->req_line_speed == SPEED_1000)
  1297. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1298. else if (bp->req_line_speed == SPEED_100) {
  1299. if (bp->req_duplex == DUPLEX_FULL)
  1300. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1301. else
  1302. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1303. } else if (bp->req_line_speed == SPEED_10) {
  1304. if (bp->req_duplex == DUPLEX_FULL)
  1305. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1306. else
  1307. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1308. }
  1309. }
  1310. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1311. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1312. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1313. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1314. if (port == PORT_TP)
  1315. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1316. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1317. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1318. spin_unlock_bh(&bp->phy_lock);
  1319. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1320. spin_lock_bh(&bp->phy_lock);
  1321. return 0;
  1322. }
  1323. static int
  1324. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1325. __releases(&bp->phy_lock)
  1326. __acquires(&bp->phy_lock)
  1327. {
  1328. u32 adv, bmcr;
  1329. u32 new_adv = 0;
  1330. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1331. return (bnx2_setup_remote_phy(bp, port));
  1332. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1333. u32 new_bmcr;
  1334. int force_link_down = 0;
  1335. if (bp->req_line_speed == SPEED_2500) {
  1336. if (!bnx2_test_and_enable_2g5(bp))
  1337. force_link_down = 1;
  1338. } else if (bp->req_line_speed == SPEED_1000) {
  1339. if (bnx2_test_and_disable_2g5(bp))
  1340. force_link_down = 1;
  1341. }
  1342. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1343. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1344. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1345. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1346. new_bmcr |= BMCR_SPEED1000;
  1347. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1348. if (bp->req_line_speed == SPEED_2500)
  1349. bnx2_enable_forced_2g5(bp);
  1350. else if (bp->req_line_speed == SPEED_1000) {
  1351. bnx2_disable_forced_2g5(bp);
  1352. new_bmcr &= ~0x2000;
  1353. }
  1354. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1355. if (bp->req_line_speed == SPEED_2500)
  1356. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1357. else
  1358. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1359. }
  1360. if (bp->req_duplex == DUPLEX_FULL) {
  1361. adv |= ADVERTISE_1000XFULL;
  1362. new_bmcr |= BMCR_FULLDPLX;
  1363. }
  1364. else {
  1365. adv |= ADVERTISE_1000XHALF;
  1366. new_bmcr &= ~BMCR_FULLDPLX;
  1367. }
  1368. if ((new_bmcr != bmcr) || (force_link_down)) {
  1369. /* Force a link down visible on the other side */
  1370. if (bp->link_up) {
  1371. bnx2_write_phy(bp, bp->mii_adv, adv &
  1372. ~(ADVERTISE_1000XFULL |
  1373. ADVERTISE_1000XHALF));
  1374. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1375. BMCR_ANRESTART | BMCR_ANENABLE);
  1376. bp->link_up = 0;
  1377. netif_carrier_off(bp->dev);
  1378. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1379. bnx2_report_link(bp);
  1380. }
  1381. bnx2_write_phy(bp, bp->mii_adv, adv);
  1382. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1383. } else {
  1384. bnx2_resolve_flow_ctrl(bp);
  1385. bnx2_set_mac_link(bp);
  1386. }
  1387. return 0;
  1388. }
  1389. bnx2_test_and_enable_2g5(bp);
  1390. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1391. new_adv |= ADVERTISE_1000XFULL;
  1392. new_adv |= bnx2_phy_get_pause_adv(bp);
  1393. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1394. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1395. bp->serdes_an_pending = 0;
  1396. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1397. /* Force a link down visible on the other side */
  1398. if (bp->link_up) {
  1399. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1400. spin_unlock_bh(&bp->phy_lock);
  1401. msleep(20);
  1402. spin_lock_bh(&bp->phy_lock);
  1403. }
  1404. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1405. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1406. BMCR_ANENABLE);
  1407. /* Speed up link-up time when the link partner
  1408. * does not autonegotiate which is very common
  1409. * in blade servers. Some blade servers use
  1410. * IPMI for kerboard input and it's important
  1411. * to minimize link disruptions. Autoneg. involves
  1412. * exchanging base pages plus 3 next pages and
  1413. * normally completes in about 120 msec.
  1414. */
  1415. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1416. bp->serdes_an_pending = 1;
  1417. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1418. } else {
  1419. bnx2_resolve_flow_ctrl(bp);
  1420. bnx2_set_mac_link(bp);
  1421. }
  1422. return 0;
  1423. }
  1424. #define ETHTOOL_ALL_FIBRE_SPEED \
  1425. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1426. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1427. (ADVERTISED_1000baseT_Full)
  1428. #define ETHTOOL_ALL_COPPER_SPEED \
  1429. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1430. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1431. ADVERTISED_1000baseT_Full)
  1432. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1433. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1434. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1435. static void
  1436. bnx2_set_default_remote_link(struct bnx2 *bp)
  1437. {
  1438. u32 link;
  1439. if (bp->phy_port == PORT_TP)
  1440. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1441. else
  1442. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1443. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1444. bp->req_line_speed = 0;
  1445. bp->autoneg |= AUTONEG_SPEED;
  1446. bp->advertising = ADVERTISED_Autoneg;
  1447. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1448. bp->advertising |= ADVERTISED_10baseT_Half;
  1449. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1450. bp->advertising |= ADVERTISED_10baseT_Full;
  1451. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1452. bp->advertising |= ADVERTISED_100baseT_Half;
  1453. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1454. bp->advertising |= ADVERTISED_100baseT_Full;
  1455. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1456. bp->advertising |= ADVERTISED_1000baseT_Full;
  1457. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1458. bp->advertising |= ADVERTISED_2500baseX_Full;
  1459. } else {
  1460. bp->autoneg = 0;
  1461. bp->advertising = 0;
  1462. bp->req_duplex = DUPLEX_FULL;
  1463. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1464. bp->req_line_speed = SPEED_10;
  1465. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1466. bp->req_duplex = DUPLEX_HALF;
  1467. }
  1468. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1469. bp->req_line_speed = SPEED_100;
  1470. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1471. bp->req_duplex = DUPLEX_HALF;
  1472. }
  1473. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1474. bp->req_line_speed = SPEED_1000;
  1475. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1476. bp->req_line_speed = SPEED_2500;
  1477. }
  1478. }
  1479. static void
  1480. bnx2_set_default_link(struct bnx2 *bp)
  1481. {
  1482. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1483. bnx2_set_default_remote_link(bp);
  1484. return;
  1485. }
  1486. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1487. bp->req_line_speed = 0;
  1488. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1489. u32 reg;
  1490. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1491. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1492. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1493. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1494. bp->autoneg = 0;
  1495. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1496. bp->req_duplex = DUPLEX_FULL;
  1497. }
  1498. } else
  1499. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1500. }
  1501. static void
  1502. bnx2_send_heart_beat(struct bnx2 *bp)
  1503. {
  1504. u32 msg;
  1505. u32 addr;
  1506. spin_lock(&bp->indirect_lock);
  1507. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1508. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1509. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1510. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1511. spin_unlock(&bp->indirect_lock);
  1512. }
  1513. static void
  1514. bnx2_remote_phy_event(struct bnx2 *bp)
  1515. {
  1516. u32 msg;
  1517. u8 link_up = bp->link_up;
  1518. u8 old_port;
  1519. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1520. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1521. bnx2_send_heart_beat(bp);
  1522. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1523. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1524. bp->link_up = 0;
  1525. else {
  1526. u32 speed;
  1527. bp->link_up = 1;
  1528. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1529. bp->duplex = DUPLEX_FULL;
  1530. switch (speed) {
  1531. case BNX2_LINK_STATUS_10HALF:
  1532. bp->duplex = DUPLEX_HALF;
  1533. case BNX2_LINK_STATUS_10FULL:
  1534. bp->line_speed = SPEED_10;
  1535. break;
  1536. case BNX2_LINK_STATUS_100HALF:
  1537. bp->duplex = DUPLEX_HALF;
  1538. case BNX2_LINK_STATUS_100BASE_T4:
  1539. case BNX2_LINK_STATUS_100FULL:
  1540. bp->line_speed = SPEED_100;
  1541. break;
  1542. case BNX2_LINK_STATUS_1000HALF:
  1543. bp->duplex = DUPLEX_HALF;
  1544. case BNX2_LINK_STATUS_1000FULL:
  1545. bp->line_speed = SPEED_1000;
  1546. break;
  1547. case BNX2_LINK_STATUS_2500HALF:
  1548. bp->duplex = DUPLEX_HALF;
  1549. case BNX2_LINK_STATUS_2500FULL:
  1550. bp->line_speed = SPEED_2500;
  1551. break;
  1552. default:
  1553. bp->line_speed = 0;
  1554. break;
  1555. }
  1556. bp->flow_ctrl = 0;
  1557. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1558. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1559. if (bp->duplex == DUPLEX_FULL)
  1560. bp->flow_ctrl = bp->req_flow_ctrl;
  1561. } else {
  1562. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1563. bp->flow_ctrl |= FLOW_CTRL_TX;
  1564. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1565. bp->flow_ctrl |= FLOW_CTRL_RX;
  1566. }
  1567. old_port = bp->phy_port;
  1568. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1569. bp->phy_port = PORT_FIBRE;
  1570. else
  1571. bp->phy_port = PORT_TP;
  1572. if (old_port != bp->phy_port)
  1573. bnx2_set_default_link(bp);
  1574. }
  1575. if (bp->link_up != link_up)
  1576. bnx2_report_link(bp);
  1577. bnx2_set_mac_link(bp);
  1578. }
  1579. static int
  1580. bnx2_set_remote_link(struct bnx2 *bp)
  1581. {
  1582. u32 evt_code;
  1583. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1584. switch (evt_code) {
  1585. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1586. bnx2_remote_phy_event(bp);
  1587. break;
  1588. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1589. default:
  1590. bnx2_send_heart_beat(bp);
  1591. break;
  1592. }
  1593. return 0;
  1594. }
  1595. static int
  1596. bnx2_setup_copper_phy(struct bnx2 *bp)
  1597. __releases(&bp->phy_lock)
  1598. __acquires(&bp->phy_lock)
  1599. {
  1600. u32 bmcr;
  1601. u32 new_bmcr;
  1602. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1603. if (bp->autoneg & AUTONEG_SPEED) {
  1604. u32 adv_reg, adv1000_reg;
  1605. u32 new_adv_reg = 0;
  1606. u32 new_adv1000_reg = 0;
  1607. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1608. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1609. ADVERTISE_PAUSE_ASYM);
  1610. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1611. adv1000_reg &= PHY_ALL_1000_SPEED;
  1612. if (bp->advertising & ADVERTISED_10baseT_Half)
  1613. new_adv_reg |= ADVERTISE_10HALF;
  1614. if (bp->advertising & ADVERTISED_10baseT_Full)
  1615. new_adv_reg |= ADVERTISE_10FULL;
  1616. if (bp->advertising & ADVERTISED_100baseT_Half)
  1617. new_adv_reg |= ADVERTISE_100HALF;
  1618. if (bp->advertising & ADVERTISED_100baseT_Full)
  1619. new_adv_reg |= ADVERTISE_100FULL;
  1620. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1621. new_adv1000_reg |= ADVERTISE_1000FULL;
  1622. new_adv_reg |= ADVERTISE_CSMA;
  1623. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1624. if ((adv1000_reg != new_adv1000_reg) ||
  1625. (adv_reg != new_adv_reg) ||
  1626. ((bmcr & BMCR_ANENABLE) == 0)) {
  1627. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1628. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1629. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1630. BMCR_ANENABLE);
  1631. }
  1632. else if (bp->link_up) {
  1633. /* Flow ctrl may have changed from auto to forced */
  1634. /* or vice-versa. */
  1635. bnx2_resolve_flow_ctrl(bp);
  1636. bnx2_set_mac_link(bp);
  1637. }
  1638. return 0;
  1639. }
  1640. new_bmcr = 0;
  1641. if (bp->req_line_speed == SPEED_100) {
  1642. new_bmcr |= BMCR_SPEED100;
  1643. }
  1644. if (bp->req_duplex == DUPLEX_FULL) {
  1645. new_bmcr |= BMCR_FULLDPLX;
  1646. }
  1647. if (new_bmcr != bmcr) {
  1648. u32 bmsr;
  1649. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1650. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1651. if (bmsr & BMSR_LSTATUS) {
  1652. /* Force link down */
  1653. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1654. spin_unlock_bh(&bp->phy_lock);
  1655. msleep(50);
  1656. spin_lock_bh(&bp->phy_lock);
  1657. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1658. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1659. }
  1660. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1661. /* Normally, the new speed is setup after the link has
  1662. * gone down and up again. In some cases, link will not go
  1663. * down so we need to set up the new speed here.
  1664. */
  1665. if (bmsr & BMSR_LSTATUS) {
  1666. bp->line_speed = bp->req_line_speed;
  1667. bp->duplex = bp->req_duplex;
  1668. bnx2_resolve_flow_ctrl(bp);
  1669. bnx2_set_mac_link(bp);
  1670. }
  1671. } else {
  1672. bnx2_resolve_flow_ctrl(bp);
  1673. bnx2_set_mac_link(bp);
  1674. }
  1675. return 0;
  1676. }
  1677. static int
  1678. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1679. __releases(&bp->phy_lock)
  1680. __acquires(&bp->phy_lock)
  1681. {
  1682. if (bp->loopback == MAC_LOOPBACK)
  1683. return 0;
  1684. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1685. return (bnx2_setup_serdes_phy(bp, port));
  1686. }
  1687. else {
  1688. return (bnx2_setup_copper_phy(bp));
  1689. }
  1690. }
  1691. static int
  1692. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1693. {
  1694. u32 val;
  1695. bp->mii_bmcr = MII_BMCR + 0x10;
  1696. bp->mii_bmsr = MII_BMSR + 0x10;
  1697. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1698. bp->mii_adv = MII_ADVERTISE + 0x10;
  1699. bp->mii_lpa = MII_LPA + 0x10;
  1700. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1701. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1702. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1703. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1704. if (reset_phy)
  1705. bnx2_reset_phy(bp);
  1706. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1707. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1708. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1709. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1710. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1711. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1712. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1713. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1714. val |= BCM5708S_UP1_2G5;
  1715. else
  1716. val &= ~BCM5708S_UP1_2G5;
  1717. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1718. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1719. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1720. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1721. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1722. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1723. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1724. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1725. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1726. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1727. return 0;
  1728. }
  1729. static int
  1730. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1731. {
  1732. u32 val;
  1733. if (reset_phy)
  1734. bnx2_reset_phy(bp);
  1735. bp->mii_up1 = BCM5708S_UP1;
  1736. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1737. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1738. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1739. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1740. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1741. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1742. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1743. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1744. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1745. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1746. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1747. val |= BCM5708S_UP1_2G5;
  1748. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1749. }
  1750. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1751. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1752. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1753. /* increase tx signal amplitude */
  1754. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1755. BCM5708S_BLK_ADDR_TX_MISC);
  1756. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1757. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1758. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1759. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1760. }
  1761. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1762. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1763. if (val) {
  1764. u32 is_backplane;
  1765. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1766. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1767. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1768. BCM5708S_BLK_ADDR_TX_MISC);
  1769. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1770. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1771. BCM5708S_BLK_ADDR_DIG);
  1772. }
  1773. }
  1774. return 0;
  1775. }
  1776. static int
  1777. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1778. {
  1779. if (reset_phy)
  1780. bnx2_reset_phy(bp);
  1781. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1782. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1783. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1784. if (bp->dev->mtu > 1500) {
  1785. u32 val;
  1786. /* Set extended packet length bit */
  1787. bnx2_write_phy(bp, 0x18, 0x7);
  1788. bnx2_read_phy(bp, 0x18, &val);
  1789. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1790. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1791. bnx2_read_phy(bp, 0x1c, &val);
  1792. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1793. }
  1794. else {
  1795. u32 val;
  1796. bnx2_write_phy(bp, 0x18, 0x7);
  1797. bnx2_read_phy(bp, 0x18, &val);
  1798. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1799. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1800. bnx2_read_phy(bp, 0x1c, &val);
  1801. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1802. }
  1803. return 0;
  1804. }
  1805. static int
  1806. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1807. {
  1808. u32 val;
  1809. if (reset_phy)
  1810. bnx2_reset_phy(bp);
  1811. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1812. bnx2_write_phy(bp, 0x18, 0x0c00);
  1813. bnx2_write_phy(bp, 0x17, 0x000a);
  1814. bnx2_write_phy(bp, 0x15, 0x310b);
  1815. bnx2_write_phy(bp, 0x17, 0x201f);
  1816. bnx2_write_phy(bp, 0x15, 0x9506);
  1817. bnx2_write_phy(bp, 0x17, 0x401f);
  1818. bnx2_write_phy(bp, 0x15, 0x14e2);
  1819. bnx2_write_phy(bp, 0x18, 0x0400);
  1820. }
  1821. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1822. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1823. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1824. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1825. val &= ~(1 << 8);
  1826. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1827. }
  1828. if (bp->dev->mtu > 1500) {
  1829. /* Set extended packet length bit */
  1830. bnx2_write_phy(bp, 0x18, 0x7);
  1831. bnx2_read_phy(bp, 0x18, &val);
  1832. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1833. bnx2_read_phy(bp, 0x10, &val);
  1834. bnx2_write_phy(bp, 0x10, val | 0x1);
  1835. }
  1836. else {
  1837. bnx2_write_phy(bp, 0x18, 0x7);
  1838. bnx2_read_phy(bp, 0x18, &val);
  1839. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1840. bnx2_read_phy(bp, 0x10, &val);
  1841. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1842. }
  1843. /* ethernet@wirespeed */
  1844. bnx2_write_phy(bp, 0x18, 0x7007);
  1845. bnx2_read_phy(bp, 0x18, &val);
  1846. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1847. return 0;
  1848. }
  1849. static int
  1850. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1851. __releases(&bp->phy_lock)
  1852. __acquires(&bp->phy_lock)
  1853. {
  1854. u32 val;
  1855. int rc = 0;
  1856. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1857. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1858. bp->mii_bmcr = MII_BMCR;
  1859. bp->mii_bmsr = MII_BMSR;
  1860. bp->mii_bmsr1 = MII_BMSR;
  1861. bp->mii_adv = MII_ADVERTISE;
  1862. bp->mii_lpa = MII_LPA;
  1863. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1864. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1865. goto setup_phy;
  1866. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1867. bp->phy_id = val << 16;
  1868. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1869. bp->phy_id |= val & 0xffff;
  1870. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1871. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1872. rc = bnx2_init_5706s_phy(bp, reset_phy);
  1873. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1874. rc = bnx2_init_5708s_phy(bp, reset_phy);
  1875. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1876. rc = bnx2_init_5709s_phy(bp, reset_phy);
  1877. }
  1878. else {
  1879. rc = bnx2_init_copper_phy(bp, reset_phy);
  1880. }
  1881. setup_phy:
  1882. if (!rc)
  1883. rc = bnx2_setup_phy(bp, bp->phy_port);
  1884. return rc;
  1885. }
  1886. static int
  1887. bnx2_set_mac_loopback(struct bnx2 *bp)
  1888. {
  1889. u32 mac_mode;
  1890. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1891. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1892. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1893. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1894. bp->link_up = 1;
  1895. return 0;
  1896. }
  1897. static int bnx2_test_link(struct bnx2 *);
  1898. static int
  1899. bnx2_set_phy_loopback(struct bnx2 *bp)
  1900. {
  1901. u32 mac_mode;
  1902. int rc, i;
  1903. spin_lock_bh(&bp->phy_lock);
  1904. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  1905. BMCR_SPEED1000);
  1906. spin_unlock_bh(&bp->phy_lock);
  1907. if (rc)
  1908. return rc;
  1909. for (i = 0; i < 10; i++) {
  1910. if (bnx2_test_link(bp) == 0)
  1911. break;
  1912. msleep(100);
  1913. }
  1914. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1915. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1916. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1917. BNX2_EMAC_MODE_25G_MODE);
  1918. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  1919. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1920. bp->link_up = 1;
  1921. return 0;
  1922. }
  1923. static int
  1924. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  1925. {
  1926. int i;
  1927. u32 val;
  1928. bp->fw_wr_seq++;
  1929. msg_data |= bp->fw_wr_seq;
  1930. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  1931. if (!ack)
  1932. return 0;
  1933. /* wait for an acknowledgement. */
  1934. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  1935. msleep(10);
  1936. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  1937. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1938. break;
  1939. }
  1940. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  1941. return 0;
  1942. /* If we timed out, inform the firmware that this is the case. */
  1943. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  1944. if (!silent)
  1945. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  1946. "%x\n", msg_data);
  1947. msg_data &= ~BNX2_DRV_MSG_CODE;
  1948. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1949. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  1950. return -EBUSY;
  1951. }
  1952. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  1953. return -EIO;
  1954. return 0;
  1955. }
  1956. static int
  1957. bnx2_init_5709_context(struct bnx2 *bp)
  1958. {
  1959. int i, ret = 0;
  1960. u32 val;
  1961. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  1962. val |= (BCM_PAGE_BITS - 8) << 16;
  1963. REG_WR(bp, BNX2_CTX_COMMAND, val);
  1964. for (i = 0; i < 10; i++) {
  1965. val = REG_RD(bp, BNX2_CTX_COMMAND);
  1966. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  1967. break;
  1968. udelay(2);
  1969. }
  1970. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  1971. return -EBUSY;
  1972. for (i = 0; i < bp->ctx_pages; i++) {
  1973. int j;
  1974. if (bp->ctx_blk[i])
  1975. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  1976. else
  1977. return -ENOMEM;
  1978. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  1979. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  1980. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  1981. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  1982. (u64) bp->ctx_blk_mapping[i] >> 32);
  1983. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  1984. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  1985. for (j = 0; j < 10; j++) {
  1986. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  1987. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  1988. break;
  1989. udelay(5);
  1990. }
  1991. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  1992. ret = -EBUSY;
  1993. break;
  1994. }
  1995. }
  1996. return ret;
  1997. }
  1998. static void
  1999. bnx2_init_context(struct bnx2 *bp)
  2000. {
  2001. u32 vcid;
  2002. vcid = 96;
  2003. while (vcid) {
  2004. u32 vcid_addr, pcid_addr, offset;
  2005. int i;
  2006. vcid--;
  2007. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2008. u32 new_vcid;
  2009. vcid_addr = GET_PCID_ADDR(vcid);
  2010. if (vcid & 0x8) {
  2011. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2012. }
  2013. else {
  2014. new_vcid = vcid;
  2015. }
  2016. pcid_addr = GET_PCID_ADDR(new_vcid);
  2017. }
  2018. else {
  2019. vcid_addr = GET_CID_ADDR(vcid);
  2020. pcid_addr = vcid_addr;
  2021. }
  2022. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2023. vcid_addr += (i << PHY_CTX_SHIFT);
  2024. pcid_addr += (i << PHY_CTX_SHIFT);
  2025. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2026. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2027. /* Zero out the context. */
  2028. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2029. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2030. }
  2031. }
  2032. }
  2033. static int
  2034. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2035. {
  2036. u16 *good_mbuf;
  2037. u32 good_mbuf_cnt;
  2038. u32 val;
  2039. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2040. if (good_mbuf == NULL) {
  2041. printk(KERN_ERR PFX "Failed to allocate memory in "
  2042. "bnx2_alloc_bad_rbuf\n");
  2043. return -ENOMEM;
  2044. }
  2045. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2046. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2047. good_mbuf_cnt = 0;
  2048. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2049. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2050. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2051. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2052. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2053. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2054. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2055. /* The addresses with Bit 9 set are bad memory blocks. */
  2056. if (!(val & (1 << 9))) {
  2057. good_mbuf[good_mbuf_cnt] = (u16) val;
  2058. good_mbuf_cnt++;
  2059. }
  2060. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2061. }
  2062. /* Free the good ones back to the mbuf pool thus discarding
  2063. * all the bad ones. */
  2064. while (good_mbuf_cnt) {
  2065. good_mbuf_cnt--;
  2066. val = good_mbuf[good_mbuf_cnt];
  2067. val = (val << 9) | val | 1;
  2068. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2069. }
  2070. kfree(good_mbuf);
  2071. return 0;
  2072. }
  2073. static void
  2074. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2075. {
  2076. u32 val;
  2077. val = (mac_addr[0] << 8) | mac_addr[1];
  2078. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2079. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2080. (mac_addr[4] << 8) | mac_addr[5];
  2081. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2082. }
  2083. static inline int
  2084. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2085. {
  2086. dma_addr_t mapping;
  2087. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2088. struct rx_bd *rxbd =
  2089. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2090. struct page *page = alloc_page(GFP_ATOMIC);
  2091. if (!page)
  2092. return -ENOMEM;
  2093. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2094. PCI_DMA_FROMDEVICE);
  2095. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2096. __free_page(page);
  2097. return -EIO;
  2098. }
  2099. rx_pg->page = page;
  2100. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2101. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2102. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2103. return 0;
  2104. }
  2105. static void
  2106. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2107. {
  2108. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2109. struct page *page = rx_pg->page;
  2110. if (!page)
  2111. return;
  2112. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2113. PCI_DMA_FROMDEVICE);
  2114. __free_page(page);
  2115. rx_pg->page = NULL;
  2116. }
  2117. static inline int
  2118. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2119. {
  2120. struct sk_buff *skb;
  2121. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2122. dma_addr_t mapping;
  2123. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2124. unsigned long align;
  2125. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2126. if (skb == NULL) {
  2127. return -ENOMEM;
  2128. }
  2129. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2130. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2131. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2132. PCI_DMA_FROMDEVICE);
  2133. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2134. dev_kfree_skb(skb);
  2135. return -EIO;
  2136. }
  2137. rx_buf->skb = skb;
  2138. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2139. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2140. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2141. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2142. return 0;
  2143. }
  2144. static int
  2145. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2146. {
  2147. struct status_block *sblk = bnapi->status_blk.msi;
  2148. u32 new_link_state, old_link_state;
  2149. int is_set = 1;
  2150. new_link_state = sblk->status_attn_bits & event;
  2151. old_link_state = sblk->status_attn_bits_ack & event;
  2152. if (new_link_state != old_link_state) {
  2153. if (new_link_state)
  2154. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2155. else
  2156. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2157. } else
  2158. is_set = 0;
  2159. return is_set;
  2160. }
  2161. static void
  2162. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2163. {
  2164. spin_lock(&bp->phy_lock);
  2165. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2166. bnx2_set_link(bp);
  2167. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2168. bnx2_set_remote_link(bp);
  2169. spin_unlock(&bp->phy_lock);
  2170. }
  2171. static inline u16
  2172. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2173. {
  2174. u16 cons;
  2175. /* Tell compiler that status block fields can change. */
  2176. barrier();
  2177. cons = *bnapi->hw_tx_cons_ptr;
  2178. barrier();
  2179. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2180. cons++;
  2181. return cons;
  2182. }
  2183. static int
  2184. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2185. {
  2186. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2187. u16 hw_cons, sw_cons, sw_ring_cons;
  2188. int tx_pkt = 0, index;
  2189. struct netdev_queue *txq;
  2190. index = (bnapi - bp->bnx2_napi);
  2191. txq = netdev_get_tx_queue(bp->dev, index);
  2192. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2193. sw_cons = txr->tx_cons;
  2194. while (sw_cons != hw_cons) {
  2195. struct sw_tx_bd *tx_buf;
  2196. struct sk_buff *skb;
  2197. int i, last;
  2198. sw_ring_cons = TX_RING_IDX(sw_cons);
  2199. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2200. skb = tx_buf->skb;
  2201. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2202. prefetch(&skb->end);
  2203. /* partial BD completions possible with TSO packets */
  2204. if (tx_buf->is_gso) {
  2205. u16 last_idx, last_ring_idx;
  2206. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2207. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2208. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2209. last_idx++;
  2210. }
  2211. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2212. break;
  2213. }
  2214. }
  2215. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  2216. tx_buf->skb = NULL;
  2217. last = tx_buf->nr_frags;
  2218. for (i = 0; i < last; i++) {
  2219. sw_cons = NEXT_TX_BD(sw_cons);
  2220. }
  2221. sw_cons = NEXT_TX_BD(sw_cons);
  2222. dev_kfree_skb(skb);
  2223. tx_pkt++;
  2224. if (tx_pkt == budget)
  2225. break;
  2226. if (hw_cons == sw_cons)
  2227. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2228. }
  2229. txr->hw_tx_cons = hw_cons;
  2230. txr->tx_cons = sw_cons;
  2231. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2232. * before checking for netif_tx_queue_stopped(). Without the
  2233. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2234. * will miss it and cause the queue to be stopped forever.
  2235. */
  2236. smp_mb();
  2237. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2238. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2239. __netif_tx_lock(txq, smp_processor_id());
  2240. if ((netif_tx_queue_stopped(txq)) &&
  2241. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2242. netif_tx_wake_queue(txq);
  2243. __netif_tx_unlock(txq);
  2244. }
  2245. return tx_pkt;
  2246. }
  2247. static void
  2248. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2249. struct sk_buff *skb, int count)
  2250. {
  2251. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2252. struct rx_bd *cons_bd, *prod_bd;
  2253. int i;
  2254. u16 hw_prod, prod;
  2255. u16 cons = rxr->rx_pg_cons;
  2256. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2257. /* The caller was unable to allocate a new page to replace the
  2258. * last one in the frags array, so we need to recycle that page
  2259. * and then free the skb.
  2260. */
  2261. if (skb) {
  2262. struct page *page;
  2263. struct skb_shared_info *shinfo;
  2264. shinfo = skb_shinfo(skb);
  2265. shinfo->nr_frags--;
  2266. page = shinfo->frags[shinfo->nr_frags].page;
  2267. shinfo->frags[shinfo->nr_frags].page = NULL;
  2268. cons_rx_pg->page = page;
  2269. dev_kfree_skb(skb);
  2270. }
  2271. hw_prod = rxr->rx_pg_prod;
  2272. for (i = 0; i < count; i++) {
  2273. prod = RX_PG_RING_IDX(hw_prod);
  2274. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2275. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2276. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2277. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2278. if (prod != cons) {
  2279. prod_rx_pg->page = cons_rx_pg->page;
  2280. cons_rx_pg->page = NULL;
  2281. pci_unmap_addr_set(prod_rx_pg, mapping,
  2282. pci_unmap_addr(cons_rx_pg, mapping));
  2283. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2284. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2285. }
  2286. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2287. hw_prod = NEXT_RX_BD(hw_prod);
  2288. }
  2289. rxr->rx_pg_prod = hw_prod;
  2290. rxr->rx_pg_cons = cons;
  2291. }
  2292. static inline void
  2293. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2294. struct sk_buff *skb, u16 cons, u16 prod)
  2295. {
  2296. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2297. struct rx_bd *cons_bd, *prod_bd;
  2298. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2299. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2300. pci_dma_sync_single_for_device(bp->pdev,
  2301. pci_unmap_addr(cons_rx_buf, mapping),
  2302. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2303. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2304. prod_rx_buf->skb = skb;
  2305. if (cons == prod)
  2306. return;
  2307. pci_unmap_addr_set(prod_rx_buf, mapping,
  2308. pci_unmap_addr(cons_rx_buf, mapping));
  2309. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2310. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2311. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2312. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2313. }
  2314. static int
  2315. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2316. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2317. u32 ring_idx)
  2318. {
  2319. int err;
  2320. u16 prod = ring_idx & 0xffff;
  2321. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2322. if (unlikely(err)) {
  2323. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2324. if (hdr_len) {
  2325. unsigned int raw_len = len + 4;
  2326. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2327. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2328. }
  2329. return err;
  2330. }
  2331. skb_reserve(skb, BNX2_RX_OFFSET);
  2332. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2333. PCI_DMA_FROMDEVICE);
  2334. if (hdr_len == 0) {
  2335. skb_put(skb, len);
  2336. return 0;
  2337. } else {
  2338. unsigned int i, frag_len, frag_size, pages;
  2339. struct sw_pg *rx_pg;
  2340. u16 pg_cons = rxr->rx_pg_cons;
  2341. u16 pg_prod = rxr->rx_pg_prod;
  2342. frag_size = len + 4 - hdr_len;
  2343. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2344. skb_put(skb, hdr_len);
  2345. for (i = 0; i < pages; i++) {
  2346. dma_addr_t mapping_old;
  2347. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2348. if (unlikely(frag_len <= 4)) {
  2349. unsigned int tail = 4 - frag_len;
  2350. rxr->rx_pg_cons = pg_cons;
  2351. rxr->rx_pg_prod = pg_prod;
  2352. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2353. pages - i);
  2354. skb->len -= tail;
  2355. if (i == 0) {
  2356. skb->tail -= tail;
  2357. } else {
  2358. skb_frag_t *frag =
  2359. &skb_shinfo(skb)->frags[i - 1];
  2360. frag->size -= tail;
  2361. skb->data_len -= tail;
  2362. skb->truesize -= tail;
  2363. }
  2364. return 0;
  2365. }
  2366. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2367. /* Don't unmap yet. If we're unable to allocate a new
  2368. * page, we need to recycle the page and the DMA addr.
  2369. */
  2370. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2371. if (i == pages - 1)
  2372. frag_len -= 4;
  2373. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2374. rx_pg->page = NULL;
  2375. err = bnx2_alloc_rx_page(bp, rxr,
  2376. RX_PG_RING_IDX(pg_prod));
  2377. if (unlikely(err)) {
  2378. rxr->rx_pg_cons = pg_cons;
  2379. rxr->rx_pg_prod = pg_prod;
  2380. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2381. pages - i);
  2382. return err;
  2383. }
  2384. pci_unmap_page(bp->pdev, mapping_old,
  2385. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2386. frag_size -= frag_len;
  2387. skb->data_len += frag_len;
  2388. skb->truesize += frag_len;
  2389. skb->len += frag_len;
  2390. pg_prod = NEXT_RX_BD(pg_prod);
  2391. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2392. }
  2393. rxr->rx_pg_prod = pg_prod;
  2394. rxr->rx_pg_cons = pg_cons;
  2395. }
  2396. return 0;
  2397. }
  2398. static inline u16
  2399. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2400. {
  2401. u16 cons;
  2402. /* Tell compiler that status block fields can change. */
  2403. barrier();
  2404. cons = *bnapi->hw_rx_cons_ptr;
  2405. barrier();
  2406. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2407. cons++;
  2408. return cons;
  2409. }
  2410. static int
  2411. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2412. {
  2413. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2414. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2415. struct l2_fhdr *rx_hdr;
  2416. int rx_pkt = 0, pg_ring_used = 0;
  2417. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2418. sw_cons = rxr->rx_cons;
  2419. sw_prod = rxr->rx_prod;
  2420. /* Memory barrier necessary as speculative reads of the rx
  2421. * buffer can be ahead of the index in the status block
  2422. */
  2423. rmb();
  2424. while (sw_cons != hw_cons) {
  2425. unsigned int len, hdr_len;
  2426. u32 status;
  2427. struct sw_bd *rx_buf;
  2428. struct sk_buff *skb;
  2429. dma_addr_t dma_addr;
  2430. u16 vtag = 0;
  2431. int hw_vlan __maybe_unused = 0;
  2432. sw_ring_cons = RX_RING_IDX(sw_cons);
  2433. sw_ring_prod = RX_RING_IDX(sw_prod);
  2434. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2435. skb = rx_buf->skb;
  2436. rx_buf->skb = NULL;
  2437. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2438. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2439. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2440. PCI_DMA_FROMDEVICE);
  2441. rx_hdr = (struct l2_fhdr *) skb->data;
  2442. len = rx_hdr->l2_fhdr_pkt_len;
  2443. status = rx_hdr->l2_fhdr_status;
  2444. hdr_len = 0;
  2445. if (status & L2_FHDR_STATUS_SPLIT) {
  2446. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2447. pg_ring_used = 1;
  2448. } else if (len > bp->rx_jumbo_thresh) {
  2449. hdr_len = bp->rx_jumbo_thresh;
  2450. pg_ring_used = 1;
  2451. }
  2452. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2453. L2_FHDR_ERRORS_PHY_DECODE |
  2454. L2_FHDR_ERRORS_ALIGNMENT |
  2455. L2_FHDR_ERRORS_TOO_SHORT |
  2456. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2457. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2458. sw_ring_prod);
  2459. if (pg_ring_used) {
  2460. int pages;
  2461. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2462. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2463. }
  2464. goto next_rx;
  2465. }
  2466. len -= 4;
  2467. if (len <= bp->rx_copy_thresh) {
  2468. struct sk_buff *new_skb;
  2469. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2470. if (new_skb == NULL) {
  2471. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2472. sw_ring_prod);
  2473. goto next_rx;
  2474. }
  2475. /* aligned copy */
  2476. skb_copy_from_linear_data_offset(skb,
  2477. BNX2_RX_OFFSET - 6,
  2478. new_skb->data, len + 6);
  2479. skb_reserve(new_skb, 6);
  2480. skb_put(new_skb, len);
  2481. bnx2_reuse_rx_skb(bp, rxr, skb,
  2482. sw_ring_cons, sw_ring_prod);
  2483. skb = new_skb;
  2484. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2485. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2486. goto next_rx;
  2487. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2488. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2489. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2490. #ifdef BCM_VLAN
  2491. if (bp->vlgrp)
  2492. hw_vlan = 1;
  2493. else
  2494. #endif
  2495. {
  2496. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2497. __skb_push(skb, 4);
  2498. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2499. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2500. ve->h_vlan_TCI = htons(vtag);
  2501. len += 4;
  2502. }
  2503. }
  2504. skb->protocol = eth_type_trans(skb, bp->dev);
  2505. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2506. (ntohs(skb->protocol) != 0x8100)) {
  2507. dev_kfree_skb(skb);
  2508. goto next_rx;
  2509. }
  2510. skb->ip_summed = CHECKSUM_NONE;
  2511. if (bp->rx_csum &&
  2512. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2513. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2514. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2515. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2516. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2517. }
  2518. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2519. #ifdef BCM_VLAN
  2520. if (hw_vlan)
  2521. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2522. else
  2523. #endif
  2524. netif_receive_skb(skb);
  2525. rx_pkt++;
  2526. next_rx:
  2527. sw_cons = NEXT_RX_BD(sw_cons);
  2528. sw_prod = NEXT_RX_BD(sw_prod);
  2529. if ((rx_pkt == budget))
  2530. break;
  2531. /* Refresh hw_cons to see if there is new work */
  2532. if (sw_cons == hw_cons) {
  2533. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2534. rmb();
  2535. }
  2536. }
  2537. rxr->rx_cons = sw_cons;
  2538. rxr->rx_prod = sw_prod;
  2539. if (pg_ring_used)
  2540. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2541. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2542. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2543. mmiowb();
  2544. return rx_pkt;
  2545. }
  2546. /* MSI ISR - The only difference between this and the INTx ISR
  2547. * is that the MSI interrupt is always serviced.
  2548. */
  2549. static irqreturn_t
  2550. bnx2_msi(int irq, void *dev_instance)
  2551. {
  2552. struct bnx2_napi *bnapi = dev_instance;
  2553. struct bnx2 *bp = bnapi->bp;
  2554. prefetch(bnapi->status_blk.msi);
  2555. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2556. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2557. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2558. /* Return here if interrupt is disabled. */
  2559. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2560. return IRQ_HANDLED;
  2561. napi_schedule(&bnapi->napi);
  2562. return IRQ_HANDLED;
  2563. }
  2564. static irqreturn_t
  2565. bnx2_msi_1shot(int irq, void *dev_instance)
  2566. {
  2567. struct bnx2_napi *bnapi = dev_instance;
  2568. struct bnx2 *bp = bnapi->bp;
  2569. prefetch(bnapi->status_blk.msi);
  2570. /* Return here if interrupt is disabled. */
  2571. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2572. return IRQ_HANDLED;
  2573. napi_schedule(&bnapi->napi);
  2574. return IRQ_HANDLED;
  2575. }
  2576. static irqreturn_t
  2577. bnx2_interrupt(int irq, void *dev_instance)
  2578. {
  2579. struct bnx2_napi *bnapi = dev_instance;
  2580. struct bnx2 *bp = bnapi->bp;
  2581. struct status_block *sblk = bnapi->status_blk.msi;
  2582. /* When using INTx, it is possible for the interrupt to arrive
  2583. * at the CPU before the status block posted prior to the
  2584. * interrupt. Reading a register will flush the status block.
  2585. * When using MSI, the MSI message will always complete after
  2586. * the status block write.
  2587. */
  2588. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2589. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2590. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2591. return IRQ_NONE;
  2592. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2593. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2594. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2595. /* Read back to deassert IRQ immediately to avoid too many
  2596. * spurious interrupts.
  2597. */
  2598. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2599. /* Return here if interrupt is shared and is disabled. */
  2600. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2601. return IRQ_HANDLED;
  2602. if (napi_schedule_prep(&bnapi->napi)) {
  2603. bnapi->last_status_idx = sblk->status_idx;
  2604. __napi_schedule(&bnapi->napi);
  2605. }
  2606. return IRQ_HANDLED;
  2607. }
  2608. static inline int
  2609. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2610. {
  2611. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2612. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2613. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2614. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2615. return 1;
  2616. return 0;
  2617. }
  2618. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2619. STATUS_ATTN_BITS_TIMER_ABORT)
  2620. static inline int
  2621. bnx2_has_work(struct bnx2_napi *bnapi)
  2622. {
  2623. struct status_block *sblk = bnapi->status_blk.msi;
  2624. if (bnx2_has_fast_work(bnapi))
  2625. return 1;
  2626. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2627. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2628. return 1;
  2629. return 0;
  2630. }
  2631. static void
  2632. bnx2_chk_missed_msi(struct bnx2 *bp)
  2633. {
  2634. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2635. u32 msi_ctrl;
  2636. if (bnx2_has_work(bnapi)) {
  2637. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2638. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2639. return;
  2640. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2641. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2642. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2643. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2644. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2645. }
  2646. }
  2647. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2648. }
  2649. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2650. {
  2651. struct status_block *sblk = bnapi->status_blk.msi;
  2652. u32 status_attn_bits = sblk->status_attn_bits;
  2653. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2654. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2655. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2656. bnx2_phy_int(bp, bnapi);
  2657. /* This is needed to take care of transient status
  2658. * during link changes.
  2659. */
  2660. REG_WR(bp, BNX2_HC_COMMAND,
  2661. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2662. REG_RD(bp, BNX2_HC_COMMAND);
  2663. }
  2664. }
  2665. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2666. int work_done, int budget)
  2667. {
  2668. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2669. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2670. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2671. bnx2_tx_int(bp, bnapi, 0);
  2672. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2673. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2674. return work_done;
  2675. }
  2676. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2677. {
  2678. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2679. struct bnx2 *bp = bnapi->bp;
  2680. int work_done = 0;
  2681. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2682. while (1) {
  2683. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2684. if (unlikely(work_done >= budget))
  2685. break;
  2686. bnapi->last_status_idx = sblk->status_idx;
  2687. /* status idx must be read before checking for more work. */
  2688. rmb();
  2689. if (likely(!bnx2_has_fast_work(bnapi))) {
  2690. napi_complete(napi);
  2691. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2692. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2693. bnapi->last_status_idx);
  2694. break;
  2695. }
  2696. }
  2697. return work_done;
  2698. }
  2699. static int bnx2_poll(struct napi_struct *napi, int budget)
  2700. {
  2701. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2702. struct bnx2 *bp = bnapi->bp;
  2703. int work_done = 0;
  2704. struct status_block *sblk = bnapi->status_blk.msi;
  2705. while (1) {
  2706. bnx2_poll_link(bp, bnapi);
  2707. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2708. /* bnapi->last_status_idx is used below to tell the hw how
  2709. * much work has been processed, so we must read it before
  2710. * checking for more work.
  2711. */
  2712. bnapi->last_status_idx = sblk->status_idx;
  2713. if (unlikely(work_done >= budget))
  2714. break;
  2715. rmb();
  2716. if (likely(!bnx2_has_work(bnapi))) {
  2717. napi_complete(napi);
  2718. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2719. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2720. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2721. bnapi->last_status_idx);
  2722. break;
  2723. }
  2724. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2725. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2726. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2727. bnapi->last_status_idx);
  2728. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2729. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2730. bnapi->last_status_idx);
  2731. break;
  2732. }
  2733. }
  2734. return work_done;
  2735. }
  2736. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2737. * from set_multicast.
  2738. */
  2739. static void
  2740. bnx2_set_rx_mode(struct net_device *dev)
  2741. {
  2742. struct bnx2 *bp = netdev_priv(dev);
  2743. u32 rx_mode, sort_mode;
  2744. struct netdev_hw_addr *ha;
  2745. int i;
  2746. if (!netif_running(dev))
  2747. return;
  2748. spin_lock_bh(&bp->phy_lock);
  2749. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2750. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2751. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2752. #ifdef BCM_VLAN
  2753. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2754. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2755. #else
  2756. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2757. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2758. #endif
  2759. if (dev->flags & IFF_PROMISC) {
  2760. /* Promiscuous mode. */
  2761. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2762. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2763. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2764. }
  2765. else if (dev->flags & IFF_ALLMULTI) {
  2766. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2767. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2768. 0xffffffff);
  2769. }
  2770. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2771. }
  2772. else {
  2773. /* Accept one or more multicast(s). */
  2774. struct dev_mc_list *mclist;
  2775. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2776. u32 regidx;
  2777. u32 bit;
  2778. u32 crc;
  2779. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2780. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2781. i++, mclist = mclist->next) {
  2782. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2783. bit = crc & 0xff;
  2784. regidx = (bit & 0xe0) >> 5;
  2785. bit &= 0x1f;
  2786. mc_filter[regidx] |= (1 << bit);
  2787. }
  2788. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2789. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2790. mc_filter[i]);
  2791. }
  2792. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2793. }
  2794. if (dev->uc_count > BNX2_MAX_UNICAST_ADDRESSES) {
  2795. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2796. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2797. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2798. } else if (!(dev->flags & IFF_PROMISC)) {
  2799. /* Add all entries into to the match filter list */
  2800. i = 0;
  2801. list_for_each_entry(ha, &dev->uc_list, list) {
  2802. bnx2_set_mac_addr(bp, ha->addr,
  2803. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2804. sort_mode |= (1 <<
  2805. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2806. i++;
  2807. }
  2808. }
  2809. if (rx_mode != bp->rx_mode) {
  2810. bp->rx_mode = rx_mode;
  2811. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2812. }
  2813. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2814. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2815. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2816. spin_unlock_bh(&bp->phy_lock);
  2817. }
  2818. static int __devinit
  2819. check_fw_section(const struct firmware *fw,
  2820. const struct bnx2_fw_file_section *section,
  2821. u32 alignment, bool non_empty)
  2822. {
  2823. u32 offset = be32_to_cpu(section->offset);
  2824. u32 len = be32_to_cpu(section->len);
  2825. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2826. return -EINVAL;
  2827. if ((non_empty && len == 0) || len > fw->size - offset ||
  2828. len & (alignment - 1))
  2829. return -EINVAL;
  2830. return 0;
  2831. }
  2832. static int __devinit
  2833. check_mips_fw_entry(const struct firmware *fw,
  2834. const struct bnx2_mips_fw_file_entry *entry)
  2835. {
  2836. if (check_fw_section(fw, &entry->text, 4, true) ||
  2837. check_fw_section(fw, &entry->data, 4, false) ||
  2838. check_fw_section(fw, &entry->rodata, 4, false))
  2839. return -EINVAL;
  2840. return 0;
  2841. }
  2842. static int __devinit
  2843. bnx2_request_firmware(struct bnx2 *bp)
  2844. {
  2845. const char *mips_fw_file, *rv2p_fw_file;
  2846. const struct bnx2_mips_fw_file *mips_fw;
  2847. const struct bnx2_rv2p_fw_file *rv2p_fw;
  2848. int rc;
  2849. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2850. mips_fw_file = FW_MIPS_FILE_09;
  2851. rv2p_fw_file = FW_RV2P_FILE_09;
  2852. } else {
  2853. mips_fw_file = FW_MIPS_FILE_06;
  2854. rv2p_fw_file = FW_RV2P_FILE_06;
  2855. }
  2856. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  2857. if (rc) {
  2858. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  2859. mips_fw_file);
  2860. return rc;
  2861. }
  2862. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  2863. if (rc) {
  2864. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  2865. rv2p_fw_file);
  2866. return rc;
  2867. }
  2868. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  2869. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  2870. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  2871. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  2872. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  2873. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  2874. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  2875. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  2876. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  2877. mips_fw_file);
  2878. return -EINVAL;
  2879. }
  2880. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  2881. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  2882. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  2883. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  2884. rv2p_fw_file);
  2885. return -EINVAL;
  2886. }
  2887. return 0;
  2888. }
  2889. static u32
  2890. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  2891. {
  2892. switch (idx) {
  2893. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  2894. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  2895. rv2p_code |= RV2P_BD_PAGE_SIZE;
  2896. break;
  2897. }
  2898. return rv2p_code;
  2899. }
  2900. static int
  2901. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  2902. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  2903. {
  2904. u32 rv2p_code_len, file_offset;
  2905. __be32 *rv2p_code;
  2906. int i;
  2907. u32 val, cmd, addr;
  2908. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  2909. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  2910. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  2911. if (rv2p_proc == RV2P_PROC1) {
  2912. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  2913. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  2914. } else {
  2915. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  2916. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  2917. }
  2918. for (i = 0; i < rv2p_code_len; i += 8) {
  2919. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  2920. rv2p_code++;
  2921. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  2922. rv2p_code++;
  2923. val = (i / 8) | cmd;
  2924. REG_WR(bp, addr, val);
  2925. }
  2926. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  2927. for (i = 0; i < 8; i++) {
  2928. u32 loc, code;
  2929. loc = be32_to_cpu(fw_entry->fixup[i]);
  2930. if (loc && ((loc * 4) < rv2p_code_len)) {
  2931. code = be32_to_cpu(*(rv2p_code + loc - 1));
  2932. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  2933. code = be32_to_cpu(*(rv2p_code + loc));
  2934. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  2935. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  2936. val = (loc / 2) | cmd;
  2937. REG_WR(bp, addr, val);
  2938. }
  2939. }
  2940. /* Reset the processor, un-stall is done later. */
  2941. if (rv2p_proc == RV2P_PROC1) {
  2942. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  2943. }
  2944. else {
  2945. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  2946. }
  2947. return 0;
  2948. }
  2949. static int
  2950. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  2951. const struct bnx2_mips_fw_file_entry *fw_entry)
  2952. {
  2953. u32 addr, len, file_offset;
  2954. __be32 *data;
  2955. u32 offset;
  2956. u32 val;
  2957. /* Halt the CPU. */
  2958. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  2959. val |= cpu_reg->mode_value_halt;
  2960. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  2961. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2962. /* Load the Text area. */
  2963. addr = be32_to_cpu(fw_entry->text.addr);
  2964. len = be32_to_cpu(fw_entry->text.len);
  2965. file_offset = be32_to_cpu(fw_entry->text.offset);
  2966. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  2967. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  2968. if (len) {
  2969. int j;
  2970. for (j = 0; j < (len / 4); j++, offset += 4)
  2971. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  2972. }
  2973. /* Load the Data area. */
  2974. addr = be32_to_cpu(fw_entry->data.addr);
  2975. len = be32_to_cpu(fw_entry->data.len);
  2976. file_offset = be32_to_cpu(fw_entry->data.offset);
  2977. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  2978. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  2979. if (len) {
  2980. int j;
  2981. for (j = 0; j < (len / 4); j++, offset += 4)
  2982. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  2983. }
  2984. /* Load the Read-Only area. */
  2985. addr = be32_to_cpu(fw_entry->rodata.addr);
  2986. len = be32_to_cpu(fw_entry->rodata.len);
  2987. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  2988. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  2989. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  2990. if (len) {
  2991. int j;
  2992. for (j = 0; j < (len / 4); j++, offset += 4)
  2993. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  2994. }
  2995. /* Clear the pre-fetch instruction. */
  2996. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  2997. val = be32_to_cpu(fw_entry->start_addr);
  2998. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  2999. /* Start the CPU. */
  3000. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3001. val &= ~cpu_reg->mode_value_halt;
  3002. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3003. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3004. return 0;
  3005. }
  3006. static int
  3007. bnx2_init_cpus(struct bnx2 *bp)
  3008. {
  3009. const struct bnx2_mips_fw_file *mips_fw =
  3010. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3011. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3012. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3013. int rc;
  3014. /* Initialize the RV2P processor. */
  3015. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3016. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3017. /* Initialize the RX Processor. */
  3018. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3019. if (rc)
  3020. goto init_cpu_err;
  3021. /* Initialize the TX Processor. */
  3022. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3023. if (rc)
  3024. goto init_cpu_err;
  3025. /* Initialize the TX Patch-up Processor. */
  3026. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3027. if (rc)
  3028. goto init_cpu_err;
  3029. /* Initialize the Completion Processor. */
  3030. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3031. if (rc)
  3032. goto init_cpu_err;
  3033. /* Initialize the Command Processor. */
  3034. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3035. init_cpu_err:
  3036. return rc;
  3037. }
  3038. static int
  3039. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3040. {
  3041. u16 pmcsr;
  3042. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3043. switch (state) {
  3044. case PCI_D0: {
  3045. u32 val;
  3046. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3047. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3048. PCI_PM_CTRL_PME_STATUS);
  3049. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3050. /* delay required during transition out of D3hot */
  3051. msleep(20);
  3052. val = REG_RD(bp, BNX2_EMAC_MODE);
  3053. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3054. val &= ~BNX2_EMAC_MODE_MPKT;
  3055. REG_WR(bp, BNX2_EMAC_MODE, val);
  3056. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3057. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3058. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3059. break;
  3060. }
  3061. case PCI_D3hot: {
  3062. int i;
  3063. u32 val, wol_msg;
  3064. if (bp->wol) {
  3065. u32 advertising;
  3066. u8 autoneg;
  3067. autoneg = bp->autoneg;
  3068. advertising = bp->advertising;
  3069. if (bp->phy_port == PORT_TP) {
  3070. bp->autoneg = AUTONEG_SPEED;
  3071. bp->advertising = ADVERTISED_10baseT_Half |
  3072. ADVERTISED_10baseT_Full |
  3073. ADVERTISED_100baseT_Half |
  3074. ADVERTISED_100baseT_Full |
  3075. ADVERTISED_Autoneg;
  3076. }
  3077. spin_lock_bh(&bp->phy_lock);
  3078. bnx2_setup_phy(bp, bp->phy_port);
  3079. spin_unlock_bh(&bp->phy_lock);
  3080. bp->autoneg = autoneg;
  3081. bp->advertising = advertising;
  3082. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3083. val = REG_RD(bp, BNX2_EMAC_MODE);
  3084. /* Enable port mode. */
  3085. val &= ~BNX2_EMAC_MODE_PORT;
  3086. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3087. BNX2_EMAC_MODE_ACPI_RCVD |
  3088. BNX2_EMAC_MODE_MPKT;
  3089. if (bp->phy_port == PORT_TP)
  3090. val |= BNX2_EMAC_MODE_PORT_MII;
  3091. else {
  3092. val |= BNX2_EMAC_MODE_PORT_GMII;
  3093. if (bp->line_speed == SPEED_2500)
  3094. val |= BNX2_EMAC_MODE_25G_MODE;
  3095. }
  3096. REG_WR(bp, BNX2_EMAC_MODE, val);
  3097. /* receive all multicast */
  3098. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3099. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3100. 0xffffffff);
  3101. }
  3102. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3103. BNX2_EMAC_RX_MODE_SORT_MODE);
  3104. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3105. BNX2_RPM_SORT_USER0_MC_EN;
  3106. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3107. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3108. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3109. BNX2_RPM_SORT_USER0_ENA);
  3110. /* Need to enable EMAC and RPM for WOL. */
  3111. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3112. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3113. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3114. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3115. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3116. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3117. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3118. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3119. }
  3120. else {
  3121. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3122. }
  3123. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3124. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3125. 1, 0);
  3126. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3127. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3128. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3129. if (bp->wol)
  3130. pmcsr |= 3;
  3131. }
  3132. else {
  3133. pmcsr |= 3;
  3134. }
  3135. if (bp->wol) {
  3136. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3137. }
  3138. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3139. pmcsr);
  3140. /* No more memory access after this point until
  3141. * device is brought back to D0.
  3142. */
  3143. udelay(50);
  3144. break;
  3145. }
  3146. default:
  3147. return -EINVAL;
  3148. }
  3149. return 0;
  3150. }
  3151. static int
  3152. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3153. {
  3154. u32 val;
  3155. int j;
  3156. /* Request access to the flash interface. */
  3157. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3158. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3159. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3160. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3161. break;
  3162. udelay(5);
  3163. }
  3164. if (j >= NVRAM_TIMEOUT_COUNT)
  3165. return -EBUSY;
  3166. return 0;
  3167. }
  3168. static int
  3169. bnx2_release_nvram_lock(struct bnx2 *bp)
  3170. {
  3171. int j;
  3172. u32 val;
  3173. /* Relinquish nvram interface. */
  3174. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3175. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3176. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3177. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3178. break;
  3179. udelay(5);
  3180. }
  3181. if (j >= NVRAM_TIMEOUT_COUNT)
  3182. return -EBUSY;
  3183. return 0;
  3184. }
  3185. static int
  3186. bnx2_enable_nvram_write(struct bnx2 *bp)
  3187. {
  3188. u32 val;
  3189. val = REG_RD(bp, BNX2_MISC_CFG);
  3190. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3191. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3192. int j;
  3193. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3194. REG_WR(bp, BNX2_NVM_COMMAND,
  3195. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3196. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3197. udelay(5);
  3198. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3199. if (val & BNX2_NVM_COMMAND_DONE)
  3200. break;
  3201. }
  3202. if (j >= NVRAM_TIMEOUT_COUNT)
  3203. return -EBUSY;
  3204. }
  3205. return 0;
  3206. }
  3207. static void
  3208. bnx2_disable_nvram_write(struct bnx2 *bp)
  3209. {
  3210. u32 val;
  3211. val = REG_RD(bp, BNX2_MISC_CFG);
  3212. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3213. }
  3214. static void
  3215. bnx2_enable_nvram_access(struct bnx2 *bp)
  3216. {
  3217. u32 val;
  3218. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3219. /* Enable both bits, even on read. */
  3220. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3221. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3222. }
  3223. static void
  3224. bnx2_disable_nvram_access(struct bnx2 *bp)
  3225. {
  3226. u32 val;
  3227. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3228. /* Disable both bits, even after read. */
  3229. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3230. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3231. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3232. }
  3233. static int
  3234. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3235. {
  3236. u32 cmd;
  3237. int j;
  3238. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3239. /* Buffered flash, no erase needed */
  3240. return 0;
  3241. /* Build an erase command */
  3242. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3243. BNX2_NVM_COMMAND_DOIT;
  3244. /* Need to clear DONE bit separately. */
  3245. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3246. /* Address of the NVRAM to read from. */
  3247. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3248. /* Issue an erase command. */
  3249. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3250. /* Wait for completion. */
  3251. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3252. u32 val;
  3253. udelay(5);
  3254. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3255. if (val & BNX2_NVM_COMMAND_DONE)
  3256. break;
  3257. }
  3258. if (j >= NVRAM_TIMEOUT_COUNT)
  3259. return -EBUSY;
  3260. return 0;
  3261. }
  3262. static int
  3263. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3264. {
  3265. u32 cmd;
  3266. int j;
  3267. /* Build the command word. */
  3268. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3269. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3270. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3271. offset = ((offset / bp->flash_info->page_size) <<
  3272. bp->flash_info->page_bits) +
  3273. (offset % bp->flash_info->page_size);
  3274. }
  3275. /* Need to clear DONE bit separately. */
  3276. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3277. /* Address of the NVRAM to read from. */
  3278. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3279. /* Issue a read command. */
  3280. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3281. /* Wait for completion. */
  3282. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3283. u32 val;
  3284. udelay(5);
  3285. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3286. if (val & BNX2_NVM_COMMAND_DONE) {
  3287. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3288. memcpy(ret_val, &v, 4);
  3289. break;
  3290. }
  3291. }
  3292. if (j >= NVRAM_TIMEOUT_COUNT)
  3293. return -EBUSY;
  3294. return 0;
  3295. }
  3296. static int
  3297. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3298. {
  3299. u32 cmd;
  3300. __be32 val32;
  3301. int j;
  3302. /* Build the command word. */
  3303. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3304. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3305. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3306. offset = ((offset / bp->flash_info->page_size) <<
  3307. bp->flash_info->page_bits) +
  3308. (offset % bp->flash_info->page_size);
  3309. }
  3310. /* Need to clear DONE bit separately. */
  3311. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3312. memcpy(&val32, val, 4);
  3313. /* Write the data. */
  3314. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3315. /* Address of the NVRAM to write to. */
  3316. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3317. /* Issue the write command. */
  3318. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3319. /* Wait for completion. */
  3320. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3321. udelay(5);
  3322. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3323. break;
  3324. }
  3325. if (j >= NVRAM_TIMEOUT_COUNT)
  3326. return -EBUSY;
  3327. return 0;
  3328. }
  3329. static int
  3330. bnx2_init_nvram(struct bnx2 *bp)
  3331. {
  3332. u32 val;
  3333. int j, entry_count, rc = 0;
  3334. struct flash_spec *flash;
  3335. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3336. bp->flash_info = &flash_5709;
  3337. goto get_flash_size;
  3338. }
  3339. /* Determine the selected interface. */
  3340. val = REG_RD(bp, BNX2_NVM_CFG1);
  3341. entry_count = ARRAY_SIZE(flash_table);
  3342. if (val & 0x40000000) {
  3343. /* Flash interface has been reconfigured */
  3344. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3345. j++, flash++) {
  3346. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3347. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3348. bp->flash_info = flash;
  3349. break;
  3350. }
  3351. }
  3352. }
  3353. else {
  3354. u32 mask;
  3355. /* Not yet been reconfigured */
  3356. if (val & (1 << 23))
  3357. mask = FLASH_BACKUP_STRAP_MASK;
  3358. else
  3359. mask = FLASH_STRAP_MASK;
  3360. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3361. j++, flash++) {
  3362. if ((val & mask) == (flash->strapping & mask)) {
  3363. bp->flash_info = flash;
  3364. /* Request access to the flash interface. */
  3365. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3366. return rc;
  3367. /* Enable access to flash interface */
  3368. bnx2_enable_nvram_access(bp);
  3369. /* Reconfigure the flash interface */
  3370. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3371. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3372. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3373. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3374. /* Disable access to flash interface */
  3375. bnx2_disable_nvram_access(bp);
  3376. bnx2_release_nvram_lock(bp);
  3377. break;
  3378. }
  3379. }
  3380. } /* if (val & 0x40000000) */
  3381. if (j == entry_count) {
  3382. bp->flash_info = NULL;
  3383. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3384. return -ENODEV;
  3385. }
  3386. get_flash_size:
  3387. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3388. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3389. if (val)
  3390. bp->flash_size = val;
  3391. else
  3392. bp->flash_size = bp->flash_info->total_size;
  3393. return rc;
  3394. }
  3395. static int
  3396. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3397. int buf_size)
  3398. {
  3399. int rc = 0;
  3400. u32 cmd_flags, offset32, len32, extra;
  3401. if (buf_size == 0)
  3402. return 0;
  3403. /* Request access to the flash interface. */
  3404. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3405. return rc;
  3406. /* Enable access to flash interface */
  3407. bnx2_enable_nvram_access(bp);
  3408. len32 = buf_size;
  3409. offset32 = offset;
  3410. extra = 0;
  3411. cmd_flags = 0;
  3412. if (offset32 & 3) {
  3413. u8 buf[4];
  3414. u32 pre_len;
  3415. offset32 &= ~3;
  3416. pre_len = 4 - (offset & 3);
  3417. if (pre_len >= len32) {
  3418. pre_len = len32;
  3419. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3420. BNX2_NVM_COMMAND_LAST;
  3421. }
  3422. else {
  3423. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3424. }
  3425. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3426. if (rc)
  3427. return rc;
  3428. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3429. offset32 += 4;
  3430. ret_buf += pre_len;
  3431. len32 -= pre_len;
  3432. }
  3433. if (len32 & 3) {
  3434. extra = 4 - (len32 & 3);
  3435. len32 = (len32 + 4) & ~3;
  3436. }
  3437. if (len32 == 4) {
  3438. u8 buf[4];
  3439. if (cmd_flags)
  3440. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3441. else
  3442. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3443. BNX2_NVM_COMMAND_LAST;
  3444. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3445. memcpy(ret_buf, buf, 4 - extra);
  3446. }
  3447. else if (len32 > 0) {
  3448. u8 buf[4];
  3449. /* Read the first word. */
  3450. if (cmd_flags)
  3451. cmd_flags = 0;
  3452. else
  3453. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3454. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3455. /* Advance to the next dword. */
  3456. offset32 += 4;
  3457. ret_buf += 4;
  3458. len32 -= 4;
  3459. while (len32 > 4 && rc == 0) {
  3460. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3461. /* Advance to the next dword. */
  3462. offset32 += 4;
  3463. ret_buf += 4;
  3464. len32 -= 4;
  3465. }
  3466. if (rc)
  3467. return rc;
  3468. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3469. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3470. memcpy(ret_buf, buf, 4 - extra);
  3471. }
  3472. /* Disable access to flash interface */
  3473. bnx2_disable_nvram_access(bp);
  3474. bnx2_release_nvram_lock(bp);
  3475. return rc;
  3476. }
  3477. static int
  3478. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3479. int buf_size)
  3480. {
  3481. u32 written, offset32, len32;
  3482. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3483. int rc = 0;
  3484. int align_start, align_end;
  3485. buf = data_buf;
  3486. offset32 = offset;
  3487. len32 = buf_size;
  3488. align_start = align_end = 0;
  3489. if ((align_start = (offset32 & 3))) {
  3490. offset32 &= ~3;
  3491. len32 += align_start;
  3492. if (len32 < 4)
  3493. len32 = 4;
  3494. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3495. return rc;
  3496. }
  3497. if (len32 & 3) {
  3498. align_end = 4 - (len32 & 3);
  3499. len32 += align_end;
  3500. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3501. return rc;
  3502. }
  3503. if (align_start || align_end) {
  3504. align_buf = kmalloc(len32, GFP_KERNEL);
  3505. if (align_buf == NULL)
  3506. return -ENOMEM;
  3507. if (align_start) {
  3508. memcpy(align_buf, start, 4);
  3509. }
  3510. if (align_end) {
  3511. memcpy(align_buf + len32 - 4, end, 4);
  3512. }
  3513. memcpy(align_buf + align_start, data_buf, buf_size);
  3514. buf = align_buf;
  3515. }
  3516. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3517. flash_buffer = kmalloc(264, GFP_KERNEL);
  3518. if (flash_buffer == NULL) {
  3519. rc = -ENOMEM;
  3520. goto nvram_write_end;
  3521. }
  3522. }
  3523. written = 0;
  3524. while ((written < len32) && (rc == 0)) {
  3525. u32 page_start, page_end, data_start, data_end;
  3526. u32 addr, cmd_flags;
  3527. int i;
  3528. /* Find the page_start addr */
  3529. page_start = offset32 + written;
  3530. page_start -= (page_start % bp->flash_info->page_size);
  3531. /* Find the page_end addr */
  3532. page_end = page_start + bp->flash_info->page_size;
  3533. /* Find the data_start addr */
  3534. data_start = (written == 0) ? offset32 : page_start;
  3535. /* Find the data_end addr */
  3536. data_end = (page_end > offset32 + len32) ?
  3537. (offset32 + len32) : page_end;
  3538. /* Request access to the flash interface. */
  3539. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3540. goto nvram_write_end;
  3541. /* Enable access to flash interface */
  3542. bnx2_enable_nvram_access(bp);
  3543. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3544. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3545. int j;
  3546. /* Read the whole page into the buffer
  3547. * (non-buffer flash only) */
  3548. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3549. if (j == (bp->flash_info->page_size - 4)) {
  3550. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3551. }
  3552. rc = bnx2_nvram_read_dword(bp,
  3553. page_start + j,
  3554. &flash_buffer[j],
  3555. cmd_flags);
  3556. if (rc)
  3557. goto nvram_write_end;
  3558. cmd_flags = 0;
  3559. }
  3560. }
  3561. /* Enable writes to flash interface (unlock write-protect) */
  3562. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3563. goto nvram_write_end;
  3564. /* Loop to write back the buffer data from page_start to
  3565. * data_start */
  3566. i = 0;
  3567. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3568. /* Erase the page */
  3569. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3570. goto nvram_write_end;
  3571. /* Re-enable the write again for the actual write */
  3572. bnx2_enable_nvram_write(bp);
  3573. for (addr = page_start; addr < data_start;
  3574. addr += 4, i += 4) {
  3575. rc = bnx2_nvram_write_dword(bp, addr,
  3576. &flash_buffer[i], cmd_flags);
  3577. if (rc != 0)
  3578. goto nvram_write_end;
  3579. cmd_flags = 0;
  3580. }
  3581. }
  3582. /* Loop to write the new data from data_start to data_end */
  3583. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3584. if ((addr == page_end - 4) ||
  3585. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3586. (addr == data_end - 4))) {
  3587. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3588. }
  3589. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3590. cmd_flags);
  3591. if (rc != 0)
  3592. goto nvram_write_end;
  3593. cmd_flags = 0;
  3594. buf += 4;
  3595. }
  3596. /* Loop to write back the buffer data from data_end
  3597. * to page_end */
  3598. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3599. for (addr = data_end; addr < page_end;
  3600. addr += 4, i += 4) {
  3601. if (addr == page_end-4) {
  3602. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3603. }
  3604. rc = bnx2_nvram_write_dword(bp, addr,
  3605. &flash_buffer[i], cmd_flags);
  3606. if (rc != 0)
  3607. goto nvram_write_end;
  3608. cmd_flags = 0;
  3609. }
  3610. }
  3611. /* Disable writes to flash interface (lock write-protect) */
  3612. bnx2_disable_nvram_write(bp);
  3613. /* Disable access to flash interface */
  3614. bnx2_disable_nvram_access(bp);
  3615. bnx2_release_nvram_lock(bp);
  3616. /* Increment written */
  3617. written += data_end - data_start;
  3618. }
  3619. nvram_write_end:
  3620. kfree(flash_buffer);
  3621. kfree(align_buf);
  3622. return rc;
  3623. }
  3624. static void
  3625. bnx2_init_fw_cap(struct bnx2 *bp)
  3626. {
  3627. u32 val, sig = 0;
  3628. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3629. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3630. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3631. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3632. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3633. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3634. return;
  3635. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3636. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3637. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3638. }
  3639. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3640. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3641. u32 link;
  3642. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3643. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3644. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3645. bp->phy_port = PORT_FIBRE;
  3646. else
  3647. bp->phy_port = PORT_TP;
  3648. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3649. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3650. }
  3651. if (netif_running(bp->dev) && sig)
  3652. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3653. }
  3654. static void
  3655. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3656. {
  3657. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3658. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3659. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3660. }
  3661. static int
  3662. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3663. {
  3664. u32 val;
  3665. int i, rc = 0;
  3666. u8 old_port;
  3667. /* Wait for the current PCI transaction to complete before
  3668. * issuing a reset. */
  3669. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3670. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3671. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3672. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3673. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3674. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3675. udelay(5);
  3676. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3677. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3678. /* Deposit a driver reset signature so the firmware knows that
  3679. * this is a soft reset. */
  3680. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3681. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3682. /* Do a dummy read to force the chip to complete all current transaction
  3683. * before we issue a reset. */
  3684. val = REG_RD(bp, BNX2_MISC_ID);
  3685. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3686. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3687. REG_RD(bp, BNX2_MISC_COMMAND);
  3688. udelay(5);
  3689. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3690. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3691. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3692. } else {
  3693. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3694. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3695. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3696. /* Chip reset. */
  3697. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3698. /* Reading back any register after chip reset will hang the
  3699. * bus on 5706 A0 and A1. The msleep below provides plenty
  3700. * of margin for write posting.
  3701. */
  3702. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3703. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3704. msleep(20);
  3705. /* Reset takes approximate 30 usec */
  3706. for (i = 0; i < 10; i++) {
  3707. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3708. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3709. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3710. break;
  3711. udelay(10);
  3712. }
  3713. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3714. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3715. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3716. return -EBUSY;
  3717. }
  3718. }
  3719. /* Make sure byte swapping is properly configured. */
  3720. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3721. if (val != 0x01020304) {
  3722. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3723. return -ENODEV;
  3724. }
  3725. /* Wait for the firmware to finish its initialization. */
  3726. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3727. if (rc)
  3728. return rc;
  3729. spin_lock_bh(&bp->phy_lock);
  3730. old_port = bp->phy_port;
  3731. bnx2_init_fw_cap(bp);
  3732. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3733. old_port != bp->phy_port)
  3734. bnx2_set_default_remote_link(bp);
  3735. spin_unlock_bh(&bp->phy_lock);
  3736. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3737. /* Adjust the voltage regular to two steps lower. The default
  3738. * of this register is 0x0000000e. */
  3739. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3740. /* Remove bad rbuf memory from the free pool. */
  3741. rc = bnx2_alloc_bad_rbuf(bp);
  3742. }
  3743. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3744. bnx2_setup_msix_tbl(bp);
  3745. return rc;
  3746. }
  3747. static int
  3748. bnx2_init_chip(struct bnx2 *bp)
  3749. {
  3750. u32 val, mtu;
  3751. int rc, i;
  3752. /* Make sure the interrupt is not active. */
  3753. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3754. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3755. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3756. #ifdef __BIG_ENDIAN
  3757. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3758. #endif
  3759. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3760. DMA_READ_CHANS << 12 |
  3761. DMA_WRITE_CHANS << 16;
  3762. val |= (0x2 << 20) | (1 << 11);
  3763. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3764. val |= (1 << 23);
  3765. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3766. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3767. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3768. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3769. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3770. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3771. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3772. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3773. }
  3774. if (bp->flags & BNX2_FLAG_PCIX) {
  3775. u16 val16;
  3776. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3777. &val16);
  3778. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3779. val16 & ~PCI_X_CMD_ERO);
  3780. }
  3781. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3782. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3783. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3784. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3785. /* Initialize context mapping and zero out the quick contexts. The
  3786. * context block must have already been enabled. */
  3787. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3788. rc = bnx2_init_5709_context(bp);
  3789. if (rc)
  3790. return rc;
  3791. } else
  3792. bnx2_init_context(bp);
  3793. if ((rc = bnx2_init_cpus(bp)) != 0)
  3794. return rc;
  3795. bnx2_init_nvram(bp);
  3796. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3797. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3798. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3799. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3800. if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
  3801. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3802. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3803. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3804. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3805. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3806. val = (BCM_PAGE_BITS - 8) << 24;
  3807. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3808. /* Configure page size. */
  3809. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3810. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3811. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3812. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3813. val = bp->mac_addr[0] +
  3814. (bp->mac_addr[1] << 8) +
  3815. (bp->mac_addr[2] << 16) +
  3816. bp->mac_addr[3] +
  3817. (bp->mac_addr[4] << 8) +
  3818. (bp->mac_addr[5] << 16);
  3819. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3820. /* Program the MTU. Also include 4 bytes for CRC32. */
  3821. mtu = bp->dev->mtu;
  3822. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3823. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3824. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3825. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3826. if (mtu < 1500)
  3827. mtu = 1500;
  3828. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3829. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3830. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  3831. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  3832. bp->bnx2_napi[i].last_status_idx = 0;
  3833. bp->idle_chk_status_idx = 0xffff;
  3834. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3835. /* Set up how to generate a link change interrupt. */
  3836. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3837. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3838. (u64) bp->status_blk_mapping & 0xffffffff);
  3839. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3840. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3841. (u64) bp->stats_blk_mapping & 0xffffffff);
  3842. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  3843. (u64) bp->stats_blk_mapping >> 32);
  3844. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  3845. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  3846. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  3847. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  3848. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  3849. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  3850. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  3851. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  3852. REG_WR(bp, BNX2_HC_COM_TICKS,
  3853. (bp->com_ticks_int << 16) | bp->com_ticks);
  3854. REG_WR(bp, BNX2_HC_CMD_TICKS,
  3855. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  3856. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  3857. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  3858. else
  3859. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  3860. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  3861. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  3862. val = BNX2_HC_CONFIG_COLLECT_STATS;
  3863. else {
  3864. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  3865. BNX2_HC_CONFIG_COLLECT_STATS;
  3866. }
  3867. if (bp->irq_nvecs > 1) {
  3868. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  3869. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  3870. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  3871. }
  3872. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  3873. val |= BNX2_HC_CONFIG_ONE_SHOT;
  3874. REG_WR(bp, BNX2_HC_CONFIG, val);
  3875. for (i = 1; i < bp->irq_nvecs; i++) {
  3876. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  3877. BNX2_HC_SB_CONFIG_1;
  3878. REG_WR(bp, base,
  3879. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  3880. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  3881. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  3882. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  3883. (bp->tx_quick_cons_trip_int << 16) |
  3884. bp->tx_quick_cons_trip);
  3885. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  3886. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  3887. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  3888. (bp->rx_quick_cons_trip_int << 16) |
  3889. bp->rx_quick_cons_trip);
  3890. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  3891. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  3892. }
  3893. /* Clear internal stats counters. */
  3894. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  3895. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  3896. /* Initialize the receive filter. */
  3897. bnx2_set_rx_mode(bp->dev);
  3898. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3899. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3900. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3901. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3902. }
  3903. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  3904. 1, 0);
  3905. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  3906. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  3907. udelay(20);
  3908. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  3909. return rc;
  3910. }
  3911. static void
  3912. bnx2_clear_ring_states(struct bnx2 *bp)
  3913. {
  3914. struct bnx2_napi *bnapi;
  3915. struct bnx2_tx_ring_info *txr;
  3916. struct bnx2_rx_ring_info *rxr;
  3917. int i;
  3918. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  3919. bnapi = &bp->bnx2_napi[i];
  3920. txr = &bnapi->tx_ring;
  3921. rxr = &bnapi->rx_ring;
  3922. txr->tx_cons = 0;
  3923. txr->hw_tx_cons = 0;
  3924. rxr->rx_prod_bseq = 0;
  3925. rxr->rx_prod = 0;
  3926. rxr->rx_cons = 0;
  3927. rxr->rx_pg_prod = 0;
  3928. rxr->rx_pg_cons = 0;
  3929. }
  3930. }
  3931. static void
  3932. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  3933. {
  3934. u32 val, offset0, offset1, offset2, offset3;
  3935. u32 cid_addr = GET_CID_ADDR(cid);
  3936. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3937. offset0 = BNX2_L2CTX_TYPE_XI;
  3938. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  3939. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  3940. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  3941. } else {
  3942. offset0 = BNX2_L2CTX_TYPE;
  3943. offset1 = BNX2_L2CTX_CMD_TYPE;
  3944. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  3945. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  3946. }
  3947. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  3948. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  3949. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  3950. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  3951. val = (u64) txr->tx_desc_mapping >> 32;
  3952. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  3953. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  3954. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  3955. }
  3956. static void
  3957. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  3958. {
  3959. struct tx_bd *txbd;
  3960. u32 cid = TX_CID;
  3961. struct bnx2_napi *bnapi;
  3962. struct bnx2_tx_ring_info *txr;
  3963. bnapi = &bp->bnx2_napi[ring_num];
  3964. txr = &bnapi->tx_ring;
  3965. if (ring_num == 0)
  3966. cid = TX_CID;
  3967. else
  3968. cid = TX_TSS_CID + ring_num - 1;
  3969. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  3970. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  3971. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  3972. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  3973. txr->tx_prod = 0;
  3974. txr->tx_prod_bseq = 0;
  3975. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  3976. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  3977. bnx2_init_tx_context(bp, cid, txr);
  3978. }
  3979. static void
  3980. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  3981. int num_rings)
  3982. {
  3983. int i;
  3984. struct rx_bd *rxbd;
  3985. for (i = 0; i < num_rings; i++) {
  3986. int j;
  3987. rxbd = &rx_ring[i][0];
  3988. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  3989. rxbd->rx_bd_len = buf_size;
  3990. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  3991. }
  3992. if (i == (num_rings - 1))
  3993. j = 0;
  3994. else
  3995. j = i + 1;
  3996. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  3997. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  3998. }
  3999. }
  4000. static void
  4001. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4002. {
  4003. int i;
  4004. u16 prod, ring_prod;
  4005. u32 cid, rx_cid_addr, val;
  4006. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4007. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4008. if (ring_num == 0)
  4009. cid = RX_CID;
  4010. else
  4011. cid = RX_RSS_CID + ring_num - 1;
  4012. rx_cid_addr = GET_CID_ADDR(cid);
  4013. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4014. bp->rx_buf_use_size, bp->rx_max_ring);
  4015. bnx2_init_rx_context(bp, cid);
  4016. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4017. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4018. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4019. }
  4020. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4021. if (bp->rx_pg_ring_size) {
  4022. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4023. rxr->rx_pg_desc_mapping,
  4024. PAGE_SIZE, bp->rx_max_pg_ring);
  4025. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4026. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4027. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4028. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4029. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4030. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4031. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4032. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4033. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4034. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4035. }
  4036. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4037. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4038. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4039. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4040. ring_prod = prod = rxr->rx_pg_prod;
  4041. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4042. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
  4043. break;
  4044. prod = NEXT_RX_BD(prod);
  4045. ring_prod = RX_PG_RING_IDX(prod);
  4046. }
  4047. rxr->rx_pg_prod = prod;
  4048. ring_prod = prod = rxr->rx_prod;
  4049. for (i = 0; i < bp->rx_ring_size; i++) {
  4050. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
  4051. break;
  4052. prod = NEXT_RX_BD(prod);
  4053. ring_prod = RX_RING_IDX(prod);
  4054. }
  4055. rxr->rx_prod = prod;
  4056. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4057. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4058. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4059. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4060. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4061. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4062. }
  4063. static void
  4064. bnx2_init_all_rings(struct bnx2 *bp)
  4065. {
  4066. int i;
  4067. u32 val;
  4068. bnx2_clear_ring_states(bp);
  4069. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4070. for (i = 0; i < bp->num_tx_rings; i++)
  4071. bnx2_init_tx_ring(bp, i);
  4072. if (bp->num_tx_rings > 1)
  4073. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4074. (TX_TSS_CID << 7));
  4075. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4076. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4077. for (i = 0; i < bp->num_rx_rings; i++)
  4078. bnx2_init_rx_ring(bp, i);
  4079. if (bp->num_rx_rings > 1) {
  4080. u32 tbl_32;
  4081. u8 *tbl = (u8 *) &tbl_32;
  4082. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4083. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4084. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4085. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4086. if ((i % 4) == 3)
  4087. bnx2_reg_wr_ind(bp,
  4088. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4089. cpu_to_be32(tbl_32));
  4090. }
  4091. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4092. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4093. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4094. }
  4095. }
  4096. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4097. {
  4098. u32 max, num_rings = 1;
  4099. while (ring_size > MAX_RX_DESC_CNT) {
  4100. ring_size -= MAX_RX_DESC_CNT;
  4101. num_rings++;
  4102. }
  4103. /* round to next power of 2 */
  4104. max = max_size;
  4105. while ((max & num_rings) == 0)
  4106. max >>= 1;
  4107. if (num_rings != max)
  4108. max <<= 1;
  4109. return max;
  4110. }
  4111. static void
  4112. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4113. {
  4114. u32 rx_size, rx_space, jumbo_size;
  4115. /* 8 for CRC and VLAN */
  4116. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4117. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4118. sizeof(struct skb_shared_info);
  4119. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4120. bp->rx_pg_ring_size = 0;
  4121. bp->rx_max_pg_ring = 0;
  4122. bp->rx_max_pg_ring_idx = 0;
  4123. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4124. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4125. jumbo_size = size * pages;
  4126. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4127. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4128. bp->rx_pg_ring_size = jumbo_size;
  4129. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4130. MAX_RX_PG_RINGS);
  4131. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4132. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4133. bp->rx_copy_thresh = 0;
  4134. }
  4135. bp->rx_buf_use_size = rx_size;
  4136. /* hw alignment */
  4137. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4138. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4139. bp->rx_ring_size = size;
  4140. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4141. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4142. }
  4143. static void
  4144. bnx2_free_tx_skbs(struct bnx2 *bp)
  4145. {
  4146. int i;
  4147. for (i = 0; i < bp->num_tx_rings; i++) {
  4148. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4149. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4150. int j;
  4151. if (txr->tx_buf_ring == NULL)
  4152. continue;
  4153. for (j = 0; j < TX_DESC_CNT; ) {
  4154. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4155. struct sk_buff *skb = tx_buf->skb;
  4156. if (skb == NULL) {
  4157. j++;
  4158. continue;
  4159. }
  4160. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4161. tx_buf->skb = NULL;
  4162. j += skb_shinfo(skb)->nr_frags + 1;
  4163. dev_kfree_skb(skb);
  4164. }
  4165. }
  4166. }
  4167. static void
  4168. bnx2_free_rx_skbs(struct bnx2 *bp)
  4169. {
  4170. int i;
  4171. for (i = 0; i < bp->num_rx_rings; i++) {
  4172. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4173. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4174. int j;
  4175. if (rxr->rx_buf_ring == NULL)
  4176. return;
  4177. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4178. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4179. struct sk_buff *skb = rx_buf->skb;
  4180. if (skb == NULL)
  4181. continue;
  4182. pci_unmap_single(bp->pdev,
  4183. pci_unmap_addr(rx_buf, mapping),
  4184. bp->rx_buf_use_size,
  4185. PCI_DMA_FROMDEVICE);
  4186. rx_buf->skb = NULL;
  4187. dev_kfree_skb(skb);
  4188. }
  4189. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4190. bnx2_free_rx_page(bp, rxr, j);
  4191. }
  4192. }
  4193. static void
  4194. bnx2_free_skbs(struct bnx2 *bp)
  4195. {
  4196. bnx2_free_tx_skbs(bp);
  4197. bnx2_free_rx_skbs(bp);
  4198. }
  4199. static int
  4200. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4201. {
  4202. int rc;
  4203. rc = bnx2_reset_chip(bp, reset_code);
  4204. bnx2_free_skbs(bp);
  4205. if (rc)
  4206. return rc;
  4207. if ((rc = bnx2_init_chip(bp)) != 0)
  4208. return rc;
  4209. bnx2_init_all_rings(bp);
  4210. return 0;
  4211. }
  4212. static int
  4213. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4214. {
  4215. int rc;
  4216. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4217. return rc;
  4218. spin_lock_bh(&bp->phy_lock);
  4219. bnx2_init_phy(bp, reset_phy);
  4220. bnx2_set_link(bp);
  4221. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4222. bnx2_remote_phy_event(bp);
  4223. spin_unlock_bh(&bp->phy_lock);
  4224. return 0;
  4225. }
  4226. static int
  4227. bnx2_shutdown_chip(struct bnx2 *bp)
  4228. {
  4229. u32 reset_code;
  4230. if (bp->flags & BNX2_FLAG_NO_WOL)
  4231. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4232. else if (bp->wol)
  4233. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4234. else
  4235. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4236. return bnx2_reset_chip(bp, reset_code);
  4237. }
  4238. static int
  4239. bnx2_test_registers(struct bnx2 *bp)
  4240. {
  4241. int ret;
  4242. int i, is_5709;
  4243. static const struct {
  4244. u16 offset;
  4245. u16 flags;
  4246. #define BNX2_FL_NOT_5709 1
  4247. u32 rw_mask;
  4248. u32 ro_mask;
  4249. } reg_tbl[] = {
  4250. { 0x006c, 0, 0x00000000, 0x0000003f },
  4251. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4252. { 0x0094, 0, 0x00000000, 0x00000000 },
  4253. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4254. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4255. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4256. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4257. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4258. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4259. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4260. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4261. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4262. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4263. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4264. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4265. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4266. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4267. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4268. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4269. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4270. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4271. { 0x1000, 0, 0x00000000, 0x00000001 },
  4272. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4273. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4274. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4275. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4276. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4277. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4278. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4279. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4280. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4281. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4282. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4283. { 0x1800, 0, 0x00000000, 0x00000001 },
  4284. { 0x1804, 0, 0x00000000, 0x00000003 },
  4285. { 0x2800, 0, 0x00000000, 0x00000001 },
  4286. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4287. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4288. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4289. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4290. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4291. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4292. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4293. { 0x2840, 0, 0x00000000, 0xffffffff },
  4294. { 0x2844, 0, 0x00000000, 0xffffffff },
  4295. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4296. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4297. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4298. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4299. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4300. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4301. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4302. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4303. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4304. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4305. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4306. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4307. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4308. { 0x5004, 0, 0x00000000, 0x0000007f },
  4309. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4310. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4311. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4312. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4313. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4314. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4315. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4316. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4317. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4318. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4319. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4320. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4321. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4322. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4323. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4324. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4325. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4326. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4327. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4328. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4329. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4330. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4331. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4332. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4333. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4334. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4335. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4336. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4337. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4338. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4339. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4340. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4341. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4342. { 0xffff, 0, 0x00000000, 0x00000000 },
  4343. };
  4344. ret = 0;
  4345. is_5709 = 0;
  4346. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4347. is_5709 = 1;
  4348. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4349. u32 offset, rw_mask, ro_mask, save_val, val;
  4350. u16 flags = reg_tbl[i].flags;
  4351. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4352. continue;
  4353. offset = (u32) reg_tbl[i].offset;
  4354. rw_mask = reg_tbl[i].rw_mask;
  4355. ro_mask = reg_tbl[i].ro_mask;
  4356. save_val = readl(bp->regview + offset);
  4357. writel(0, bp->regview + offset);
  4358. val = readl(bp->regview + offset);
  4359. if ((val & rw_mask) != 0) {
  4360. goto reg_test_err;
  4361. }
  4362. if ((val & ro_mask) != (save_val & ro_mask)) {
  4363. goto reg_test_err;
  4364. }
  4365. writel(0xffffffff, bp->regview + offset);
  4366. val = readl(bp->regview + offset);
  4367. if ((val & rw_mask) != rw_mask) {
  4368. goto reg_test_err;
  4369. }
  4370. if ((val & ro_mask) != (save_val & ro_mask)) {
  4371. goto reg_test_err;
  4372. }
  4373. writel(save_val, bp->regview + offset);
  4374. continue;
  4375. reg_test_err:
  4376. writel(save_val, bp->regview + offset);
  4377. ret = -ENODEV;
  4378. break;
  4379. }
  4380. return ret;
  4381. }
  4382. static int
  4383. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4384. {
  4385. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4386. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4387. int i;
  4388. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4389. u32 offset;
  4390. for (offset = 0; offset < size; offset += 4) {
  4391. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4392. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4393. test_pattern[i]) {
  4394. return -ENODEV;
  4395. }
  4396. }
  4397. }
  4398. return 0;
  4399. }
  4400. static int
  4401. bnx2_test_memory(struct bnx2 *bp)
  4402. {
  4403. int ret = 0;
  4404. int i;
  4405. static struct mem_entry {
  4406. u32 offset;
  4407. u32 len;
  4408. } mem_tbl_5706[] = {
  4409. { 0x60000, 0x4000 },
  4410. { 0xa0000, 0x3000 },
  4411. { 0xe0000, 0x4000 },
  4412. { 0x120000, 0x4000 },
  4413. { 0x1a0000, 0x4000 },
  4414. { 0x160000, 0x4000 },
  4415. { 0xffffffff, 0 },
  4416. },
  4417. mem_tbl_5709[] = {
  4418. { 0x60000, 0x4000 },
  4419. { 0xa0000, 0x3000 },
  4420. { 0xe0000, 0x4000 },
  4421. { 0x120000, 0x4000 },
  4422. { 0x1a0000, 0x4000 },
  4423. { 0xffffffff, 0 },
  4424. };
  4425. struct mem_entry *mem_tbl;
  4426. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4427. mem_tbl = mem_tbl_5709;
  4428. else
  4429. mem_tbl = mem_tbl_5706;
  4430. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4431. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4432. mem_tbl[i].len)) != 0) {
  4433. return ret;
  4434. }
  4435. }
  4436. return ret;
  4437. }
  4438. #define BNX2_MAC_LOOPBACK 0
  4439. #define BNX2_PHY_LOOPBACK 1
  4440. static int
  4441. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4442. {
  4443. unsigned int pkt_size, num_pkts, i;
  4444. struct sk_buff *skb, *rx_skb;
  4445. unsigned char *packet;
  4446. u16 rx_start_idx, rx_idx;
  4447. dma_addr_t map;
  4448. struct tx_bd *txbd;
  4449. struct sw_bd *rx_buf;
  4450. struct l2_fhdr *rx_hdr;
  4451. int ret = -ENODEV;
  4452. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4453. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4454. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4455. tx_napi = bnapi;
  4456. txr = &tx_napi->tx_ring;
  4457. rxr = &bnapi->rx_ring;
  4458. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4459. bp->loopback = MAC_LOOPBACK;
  4460. bnx2_set_mac_loopback(bp);
  4461. }
  4462. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4463. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4464. return 0;
  4465. bp->loopback = PHY_LOOPBACK;
  4466. bnx2_set_phy_loopback(bp);
  4467. }
  4468. else
  4469. return -EINVAL;
  4470. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4471. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4472. if (!skb)
  4473. return -ENOMEM;
  4474. packet = skb_put(skb, pkt_size);
  4475. memcpy(packet, bp->dev->dev_addr, 6);
  4476. memset(packet + 6, 0x0, 8);
  4477. for (i = 14; i < pkt_size; i++)
  4478. packet[i] = (unsigned char) (i & 0xff);
  4479. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  4480. dev_kfree_skb(skb);
  4481. return -EIO;
  4482. }
  4483. map = skb_shinfo(skb)->dma_maps[0];
  4484. REG_WR(bp, BNX2_HC_COMMAND,
  4485. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4486. REG_RD(bp, BNX2_HC_COMMAND);
  4487. udelay(5);
  4488. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4489. num_pkts = 0;
  4490. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4491. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4492. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4493. txbd->tx_bd_mss_nbytes = pkt_size;
  4494. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4495. num_pkts++;
  4496. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4497. txr->tx_prod_bseq += pkt_size;
  4498. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4499. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4500. udelay(100);
  4501. REG_WR(bp, BNX2_HC_COMMAND,
  4502. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4503. REG_RD(bp, BNX2_HC_COMMAND);
  4504. udelay(5);
  4505. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4506. dev_kfree_skb(skb);
  4507. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4508. goto loopback_test_done;
  4509. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4510. if (rx_idx != rx_start_idx + num_pkts) {
  4511. goto loopback_test_done;
  4512. }
  4513. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4514. rx_skb = rx_buf->skb;
  4515. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4516. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4517. pci_dma_sync_single_for_cpu(bp->pdev,
  4518. pci_unmap_addr(rx_buf, mapping),
  4519. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4520. if (rx_hdr->l2_fhdr_status &
  4521. (L2_FHDR_ERRORS_BAD_CRC |
  4522. L2_FHDR_ERRORS_PHY_DECODE |
  4523. L2_FHDR_ERRORS_ALIGNMENT |
  4524. L2_FHDR_ERRORS_TOO_SHORT |
  4525. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4526. goto loopback_test_done;
  4527. }
  4528. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4529. goto loopback_test_done;
  4530. }
  4531. for (i = 14; i < pkt_size; i++) {
  4532. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4533. goto loopback_test_done;
  4534. }
  4535. }
  4536. ret = 0;
  4537. loopback_test_done:
  4538. bp->loopback = 0;
  4539. return ret;
  4540. }
  4541. #define BNX2_MAC_LOOPBACK_FAILED 1
  4542. #define BNX2_PHY_LOOPBACK_FAILED 2
  4543. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4544. BNX2_PHY_LOOPBACK_FAILED)
  4545. static int
  4546. bnx2_test_loopback(struct bnx2 *bp)
  4547. {
  4548. int rc = 0;
  4549. if (!netif_running(bp->dev))
  4550. return BNX2_LOOPBACK_FAILED;
  4551. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4552. spin_lock_bh(&bp->phy_lock);
  4553. bnx2_init_phy(bp, 1);
  4554. spin_unlock_bh(&bp->phy_lock);
  4555. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4556. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4557. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4558. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4559. return rc;
  4560. }
  4561. #define NVRAM_SIZE 0x200
  4562. #define CRC32_RESIDUAL 0xdebb20e3
  4563. static int
  4564. bnx2_test_nvram(struct bnx2 *bp)
  4565. {
  4566. __be32 buf[NVRAM_SIZE / 4];
  4567. u8 *data = (u8 *) buf;
  4568. int rc = 0;
  4569. u32 magic, csum;
  4570. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4571. goto test_nvram_done;
  4572. magic = be32_to_cpu(buf[0]);
  4573. if (magic != 0x669955aa) {
  4574. rc = -ENODEV;
  4575. goto test_nvram_done;
  4576. }
  4577. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4578. goto test_nvram_done;
  4579. csum = ether_crc_le(0x100, data);
  4580. if (csum != CRC32_RESIDUAL) {
  4581. rc = -ENODEV;
  4582. goto test_nvram_done;
  4583. }
  4584. csum = ether_crc_le(0x100, data + 0x100);
  4585. if (csum != CRC32_RESIDUAL) {
  4586. rc = -ENODEV;
  4587. }
  4588. test_nvram_done:
  4589. return rc;
  4590. }
  4591. static int
  4592. bnx2_test_link(struct bnx2 *bp)
  4593. {
  4594. u32 bmsr;
  4595. if (!netif_running(bp->dev))
  4596. return -ENODEV;
  4597. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4598. if (bp->link_up)
  4599. return 0;
  4600. return -ENODEV;
  4601. }
  4602. spin_lock_bh(&bp->phy_lock);
  4603. bnx2_enable_bmsr1(bp);
  4604. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4605. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4606. bnx2_disable_bmsr1(bp);
  4607. spin_unlock_bh(&bp->phy_lock);
  4608. if (bmsr & BMSR_LSTATUS) {
  4609. return 0;
  4610. }
  4611. return -ENODEV;
  4612. }
  4613. static int
  4614. bnx2_test_intr(struct bnx2 *bp)
  4615. {
  4616. int i;
  4617. u16 status_idx;
  4618. if (!netif_running(bp->dev))
  4619. return -ENODEV;
  4620. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4621. /* This register is not touched during run-time. */
  4622. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4623. REG_RD(bp, BNX2_HC_COMMAND);
  4624. for (i = 0; i < 10; i++) {
  4625. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4626. status_idx) {
  4627. break;
  4628. }
  4629. msleep_interruptible(10);
  4630. }
  4631. if (i < 10)
  4632. return 0;
  4633. return -ENODEV;
  4634. }
  4635. /* Determining link for parallel detection. */
  4636. static int
  4637. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4638. {
  4639. u32 mode_ctl, an_dbg, exp;
  4640. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4641. return 0;
  4642. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4643. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4644. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4645. return 0;
  4646. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4647. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4648. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4649. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4650. return 0;
  4651. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4652. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4653. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4654. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4655. return 0;
  4656. return 1;
  4657. }
  4658. static void
  4659. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4660. {
  4661. int check_link = 1;
  4662. spin_lock(&bp->phy_lock);
  4663. if (bp->serdes_an_pending) {
  4664. bp->serdes_an_pending--;
  4665. check_link = 0;
  4666. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4667. u32 bmcr;
  4668. bp->current_interval = BNX2_TIMER_INTERVAL;
  4669. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4670. if (bmcr & BMCR_ANENABLE) {
  4671. if (bnx2_5706_serdes_has_link(bp)) {
  4672. bmcr &= ~BMCR_ANENABLE;
  4673. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4674. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4675. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4676. }
  4677. }
  4678. }
  4679. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4680. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4681. u32 phy2;
  4682. bnx2_write_phy(bp, 0x17, 0x0f01);
  4683. bnx2_read_phy(bp, 0x15, &phy2);
  4684. if (phy2 & 0x20) {
  4685. u32 bmcr;
  4686. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4687. bmcr |= BMCR_ANENABLE;
  4688. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4689. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4690. }
  4691. } else
  4692. bp->current_interval = BNX2_TIMER_INTERVAL;
  4693. if (check_link) {
  4694. u32 val;
  4695. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4696. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4697. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4698. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4699. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4700. bnx2_5706s_force_link_dn(bp, 1);
  4701. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4702. } else
  4703. bnx2_set_link(bp);
  4704. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4705. bnx2_set_link(bp);
  4706. }
  4707. spin_unlock(&bp->phy_lock);
  4708. }
  4709. static void
  4710. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4711. {
  4712. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4713. return;
  4714. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4715. bp->serdes_an_pending = 0;
  4716. return;
  4717. }
  4718. spin_lock(&bp->phy_lock);
  4719. if (bp->serdes_an_pending)
  4720. bp->serdes_an_pending--;
  4721. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4722. u32 bmcr;
  4723. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4724. if (bmcr & BMCR_ANENABLE) {
  4725. bnx2_enable_forced_2g5(bp);
  4726. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4727. } else {
  4728. bnx2_disable_forced_2g5(bp);
  4729. bp->serdes_an_pending = 2;
  4730. bp->current_interval = BNX2_TIMER_INTERVAL;
  4731. }
  4732. } else
  4733. bp->current_interval = BNX2_TIMER_INTERVAL;
  4734. spin_unlock(&bp->phy_lock);
  4735. }
  4736. static void
  4737. bnx2_timer(unsigned long data)
  4738. {
  4739. struct bnx2 *bp = (struct bnx2 *) data;
  4740. if (!netif_running(bp->dev))
  4741. return;
  4742. if (atomic_read(&bp->intr_sem) != 0)
  4743. goto bnx2_restart_timer;
  4744. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4745. BNX2_FLAG_USING_MSI)
  4746. bnx2_chk_missed_msi(bp);
  4747. bnx2_send_heart_beat(bp);
  4748. bp->stats_blk->stat_FwRxDrop =
  4749. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4750. /* workaround occasional corrupted counters */
  4751. if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
  4752. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4753. BNX2_HC_COMMAND_STATS_NOW);
  4754. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4755. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4756. bnx2_5706_serdes_timer(bp);
  4757. else
  4758. bnx2_5708_serdes_timer(bp);
  4759. }
  4760. bnx2_restart_timer:
  4761. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4762. }
  4763. static int
  4764. bnx2_request_irq(struct bnx2 *bp)
  4765. {
  4766. unsigned long flags;
  4767. struct bnx2_irq *irq;
  4768. int rc = 0, i;
  4769. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4770. flags = 0;
  4771. else
  4772. flags = IRQF_SHARED;
  4773. for (i = 0; i < bp->irq_nvecs; i++) {
  4774. irq = &bp->irq_tbl[i];
  4775. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4776. &bp->bnx2_napi[i]);
  4777. if (rc)
  4778. break;
  4779. irq->requested = 1;
  4780. }
  4781. return rc;
  4782. }
  4783. static void
  4784. bnx2_free_irq(struct bnx2 *bp)
  4785. {
  4786. struct bnx2_irq *irq;
  4787. int i;
  4788. for (i = 0; i < bp->irq_nvecs; i++) {
  4789. irq = &bp->irq_tbl[i];
  4790. if (irq->requested)
  4791. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4792. irq->requested = 0;
  4793. }
  4794. if (bp->flags & BNX2_FLAG_USING_MSI)
  4795. pci_disable_msi(bp->pdev);
  4796. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4797. pci_disable_msix(bp->pdev);
  4798. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4799. }
  4800. static void
  4801. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4802. {
  4803. int i, rc;
  4804. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4805. struct net_device *dev = bp->dev;
  4806. const int len = sizeof(bp->irq_tbl[0].name);
  4807. bnx2_setup_msix_tbl(bp);
  4808. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4809. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4810. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  4811. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4812. msix_ent[i].entry = i;
  4813. msix_ent[i].vector = 0;
  4814. }
  4815. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  4816. if (rc != 0)
  4817. return;
  4818. bp->irq_nvecs = msix_vecs;
  4819. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  4820. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4821. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4822. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  4823. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  4824. }
  4825. }
  4826. static void
  4827. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  4828. {
  4829. int cpus = num_online_cpus();
  4830. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  4831. bp->irq_tbl[0].handler = bnx2_interrupt;
  4832. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  4833. bp->irq_nvecs = 1;
  4834. bp->irq_tbl[0].vector = bp->pdev->irq;
  4835. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  4836. bnx2_enable_msix(bp, msix_vecs);
  4837. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  4838. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  4839. if (pci_enable_msi(bp->pdev) == 0) {
  4840. bp->flags |= BNX2_FLAG_USING_MSI;
  4841. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4842. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  4843. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  4844. } else
  4845. bp->irq_tbl[0].handler = bnx2_msi;
  4846. bp->irq_tbl[0].vector = bp->pdev->irq;
  4847. }
  4848. }
  4849. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  4850. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  4851. bp->num_rx_rings = bp->irq_nvecs;
  4852. }
  4853. /* Called with rtnl_lock */
  4854. static int
  4855. bnx2_open(struct net_device *dev)
  4856. {
  4857. struct bnx2 *bp = netdev_priv(dev);
  4858. int rc;
  4859. netif_carrier_off(dev);
  4860. bnx2_set_power_state(bp, PCI_D0);
  4861. bnx2_disable_int(bp);
  4862. bnx2_setup_int_mode(bp, disable_msi);
  4863. bnx2_napi_enable(bp);
  4864. rc = bnx2_alloc_mem(bp);
  4865. if (rc)
  4866. goto open_err;
  4867. rc = bnx2_request_irq(bp);
  4868. if (rc)
  4869. goto open_err;
  4870. rc = bnx2_init_nic(bp, 1);
  4871. if (rc)
  4872. goto open_err;
  4873. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4874. atomic_set(&bp->intr_sem, 0);
  4875. bnx2_enable_int(bp);
  4876. if (bp->flags & BNX2_FLAG_USING_MSI) {
  4877. /* Test MSI to make sure it is working
  4878. * If MSI test fails, go back to INTx mode
  4879. */
  4880. if (bnx2_test_intr(bp) != 0) {
  4881. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  4882. " using MSI, switching to INTx mode. Please"
  4883. " report this failure to the PCI maintainer"
  4884. " and include system chipset information.\n",
  4885. bp->dev->name);
  4886. bnx2_disable_int(bp);
  4887. bnx2_free_irq(bp);
  4888. bnx2_setup_int_mode(bp, 1);
  4889. rc = bnx2_init_nic(bp, 0);
  4890. if (!rc)
  4891. rc = bnx2_request_irq(bp);
  4892. if (rc) {
  4893. del_timer_sync(&bp->timer);
  4894. goto open_err;
  4895. }
  4896. bnx2_enable_int(bp);
  4897. }
  4898. }
  4899. if (bp->flags & BNX2_FLAG_USING_MSI)
  4900. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  4901. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4902. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  4903. netif_tx_start_all_queues(dev);
  4904. return 0;
  4905. open_err:
  4906. bnx2_napi_disable(bp);
  4907. bnx2_free_skbs(bp);
  4908. bnx2_free_irq(bp);
  4909. bnx2_free_mem(bp);
  4910. return rc;
  4911. }
  4912. static void
  4913. bnx2_reset_task(struct work_struct *work)
  4914. {
  4915. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  4916. if (!netif_running(bp->dev))
  4917. return;
  4918. bnx2_netif_stop(bp);
  4919. bnx2_init_nic(bp, 1);
  4920. atomic_set(&bp->intr_sem, 1);
  4921. bnx2_netif_start(bp);
  4922. }
  4923. static void
  4924. bnx2_tx_timeout(struct net_device *dev)
  4925. {
  4926. struct bnx2 *bp = netdev_priv(dev);
  4927. /* This allows the netif to be shutdown gracefully before resetting */
  4928. schedule_work(&bp->reset_task);
  4929. }
  4930. #ifdef BCM_VLAN
  4931. /* Called with rtnl_lock */
  4932. static void
  4933. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  4934. {
  4935. struct bnx2 *bp = netdev_priv(dev);
  4936. bnx2_netif_stop(bp);
  4937. bp->vlgrp = vlgrp;
  4938. bnx2_set_rx_mode(dev);
  4939. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  4940. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  4941. bnx2_netif_start(bp);
  4942. }
  4943. #endif
  4944. /* Called with netif_tx_lock.
  4945. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  4946. * netif_wake_queue().
  4947. */
  4948. static int
  4949. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4950. {
  4951. struct bnx2 *bp = netdev_priv(dev);
  4952. dma_addr_t mapping;
  4953. struct tx_bd *txbd;
  4954. struct sw_tx_bd *tx_buf;
  4955. u32 len, vlan_tag_flags, last_frag, mss;
  4956. u16 prod, ring_prod;
  4957. int i;
  4958. struct bnx2_napi *bnapi;
  4959. struct bnx2_tx_ring_info *txr;
  4960. struct netdev_queue *txq;
  4961. struct skb_shared_info *sp;
  4962. /* Determine which tx ring we will be placed on */
  4963. i = skb_get_queue_mapping(skb);
  4964. bnapi = &bp->bnx2_napi[i];
  4965. txr = &bnapi->tx_ring;
  4966. txq = netdev_get_tx_queue(dev, i);
  4967. if (unlikely(bnx2_tx_avail(bp, txr) <
  4968. (skb_shinfo(skb)->nr_frags + 1))) {
  4969. netif_tx_stop_queue(txq);
  4970. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  4971. dev->name);
  4972. return NETDEV_TX_BUSY;
  4973. }
  4974. len = skb_headlen(skb);
  4975. prod = txr->tx_prod;
  4976. ring_prod = TX_RING_IDX(prod);
  4977. vlan_tag_flags = 0;
  4978. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4979. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  4980. }
  4981. #ifdef BCM_VLAN
  4982. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  4983. vlan_tag_flags |=
  4984. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  4985. }
  4986. #endif
  4987. if ((mss = skb_shinfo(skb)->gso_size)) {
  4988. u32 tcp_opt_len;
  4989. struct iphdr *iph;
  4990. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  4991. tcp_opt_len = tcp_optlen(skb);
  4992. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  4993. u32 tcp_off = skb_transport_offset(skb) -
  4994. sizeof(struct ipv6hdr) - ETH_HLEN;
  4995. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  4996. TX_BD_FLAGS_SW_FLAGS;
  4997. if (likely(tcp_off == 0))
  4998. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  4999. else {
  5000. tcp_off >>= 3;
  5001. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5002. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5003. ((tcp_off & 0x10) <<
  5004. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5005. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5006. }
  5007. } else {
  5008. iph = ip_hdr(skb);
  5009. if (tcp_opt_len || (iph->ihl > 5)) {
  5010. vlan_tag_flags |= ((iph->ihl - 5) +
  5011. (tcp_opt_len >> 2)) << 8;
  5012. }
  5013. }
  5014. } else
  5015. mss = 0;
  5016. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  5017. dev_kfree_skb(skb);
  5018. return NETDEV_TX_OK;
  5019. }
  5020. sp = skb_shinfo(skb);
  5021. mapping = sp->dma_maps[0];
  5022. tx_buf = &txr->tx_buf_ring[ring_prod];
  5023. tx_buf->skb = skb;
  5024. txbd = &txr->tx_desc_ring[ring_prod];
  5025. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5026. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5027. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5028. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5029. last_frag = skb_shinfo(skb)->nr_frags;
  5030. tx_buf->nr_frags = last_frag;
  5031. tx_buf->is_gso = skb_is_gso(skb);
  5032. for (i = 0; i < last_frag; i++) {
  5033. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5034. prod = NEXT_TX_BD(prod);
  5035. ring_prod = TX_RING_IDX(prod);
  5036. txbd = &txr->tx_desc_ring[ring_prod];
  5037. len = frag->size;
  5038. mapping = sp->dma_maps[i + 1];
  5039. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5040. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5041. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5042. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5043. }
  5044. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5045. prod = NEXT_TX_BD(prod);
  5046. txr->tx_prod_bseq += skb->len;
  5047. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5048. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5049. mmiowb();
  5050. txr->tx_prod = prod;
  5051. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5052. netif_tx_stop_queue(txq);
  5053. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5054. netif_tx_wake_queue(txq);
  5055. }
  5056. return NETDEV_TX_OK;
  5057. }
  5058. /* Called with rtnl_lock */
  5059. static int
  5060. bnx2_close(struct net_device *dev)
  5061. {
  5062. struct bnx2 *bp = netdev_priv(dev);
  5063. cancel_work_sync(&bp->reset_task);
  5064. bnx2_disable_int_sync(bp);
  5065. bnx2_napi_disable(bp);
  5066. del_timer_sync(&bp->timer);
  5067. bnx2_shutdown_chip(bp);
  5068. bnx2_free_irq(bp);
  5069. bnx2_free_skbs(bp);
  5070. bnx2_free_mem(bp);
  5071. bp->link_up = 0;
  5072. netif_carrier_off(bp->dev);
  5073. bnx2_set_power_state(bp, PCI_D3hot);
  5074. return 0;
  5075. }
  5076. #define GET_NET_STATS64(ctr) \
  5077. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5078. (unsigned long) (ctr##_lo)
  5079. #define GET_NET_STATS32(ctr) \
  5080. (ctr##_lo)
  5081. #if (BITS_PER_LONG == 64)
  5082. #define GET_NET_STATS GET_NET_STATS64
  5083. #else
  5084. #define GET_NET_STATS GET_NET_STATS32
  5085. #endif
  5086. static struct net_device_stats *
  5087. bnx2_get_stats(struct net_device *dev)
  5088. {
  5089. struct bnx2 *bp = netdev_priv(dev);
  5090. struct statistics_block *stats_blk = bp->stats_blk;
  5091. struct net_device_stats *net_stats = &dev->stats;
  5092. if (bp->stats_blk == NULL) {
  5093. return net_stats;
  5094. }
  5095. net_stats->rx_packets =
  5096. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  5097. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  5098. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  5099. net_stats->tx_packets =
  5100. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  5101. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  5102. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  5103. net_stats->rx_bytes =
  5104. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  5105. net_stats->tx_bytes =
  5106. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  5107. net_stats->multicast =
  5108. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  5109. net_stats->collisions =
  5110. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  5111. net_stats->rx_length_errors =
  5112. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  5113. stats_blk->stat_EtherStatsOverrsizePkts);
  5114. net_stats->rx_over_errors =
  5115. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  5116. net_stats->rx_frame_errors =
  5117. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  5118. net_stats->rx_crc_errors =
  5119. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  5120. net_stats->rx_errors = net_stats->rx_length_errors +
  5121. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5122. net_stats->rx_crc_errors;
  5123. net_stats->tx_aborted_errors =
  5124. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  5125. stats_blk->stat_Dot3StatsLateCollisions);
  5126. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5127. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5128. net_stats->tx_carrier_errors = 0;
  5129. else {
  5130. net_stats->tx_carrier_errors =
  5131. (unsigned long)
  5132. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  5133. }
  5134. net_stats->tx_errors =
  5135. (unsigned long)
  5136. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  5137. +
  5138. net_stats->tx_aborted_errors +
  5139. net_stats->tx_carrier_errors;
  5140. net_stats->rx_missed_errors =
  5141. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  5142. stats_blk->stat_FwRxDrop);
  5143. return net_stats;
  5144. }
  5145. /* All ethtool functions called with rtnl_lock */
  5146. static int
  5147. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5148. {
  5149. struct bnx2 *bp = netdev_priv(dev);
  5150. int support_serdes = 0, support_copper = 0;
  5151. cmd->supported = SUPPORTED_Autoneg;
  5152. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5153. support_serdes = 1;
  5154. support_copper = 1;
  5155. } else if (bp->phy_port == PORT_FIBRE)
  5156. support_serdes = 1;
  5157. else
  5158. support_copper = 1;
  5159. if (support_serdes) {
  5160. cmd->supported |= SUPPORTED_1000baseT_Full |
  5161. SUPPORTED_FIBRE;
  5162. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5163. cmd->supported |= SUPPORTED_2500baseX_Full;
  5164. }
  5165. if (support_copper) {
  5166. cmd->supported |= SUPPORTED_10baseT_Half |
  5167. SUPPORTED_10baseT_Full |
  5168. SUPPORTED_100baseT_Half |
  5169. SUPPORTED_100baseT_Full |
  5170. SUPPORTED_1000baseT_Full |
  5171. SUPPORTED_TP;
  5172. }
  5173. spin_lock_bh(&bp->phy_lock);
  5174. cmd->port = bp->phy_port;
  5175. cmd->advertising = bp->advertising;
  5176. if (bp->autoneg & AUTONEG_SPEED) {
  5177. cmd->autoneg = AUTONEG_ENABLE;
  5178. }
  5179. else {
  5180. cmd->autoneg = AUTONEG_DISABLE;
  5181. }
  5182. if (netif_carrier_ok(dev)) {
  5183. cmd->speed = bp->line_speed;
  5184. cmd->duplex = bp->duplex;
  5185. }
  5186. else {
  5187. cmd->speed = -1;
  5188. cmd->duplex = -1;
  5189. }
  5190. spin_unlock_bh(&bp->phy_lock);
  5191. cmd->transceiver = XCVR_INTERNAL;
  5192. cmd->phy_address = bp->phy_addr;
  5193. return 0;
  5194. }
  5195. static int
  5196. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5197. {
  5198. struct bnx2 *bp = netdev_priv(dev);
  5199. u8 autoneg = bp->autoneg;
  5200. u8 req_duplex = bp->req_duplex;
  5201. u16 req_line_speed = bp->req_line_speed;
  5202. u32 advertising = bp->advertising;
  5203. int err = -EINVAL;
  5204. spin_lock_bh(&bp->phy_lock);
  5205. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5206. goto err_out_unlock;
  5207. if (cmd->port != bp->phy_port &&
  5208. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5209. goto err_out_unlock;
  5210. /* If device is down, we can store the settings only if the user
  5211. * is setting the currently active port.
  5212. */
  5213. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5214. goto err_out_unlock;
  5215. if (cmd->autoneg == AUTONEG_ENABLE) {
  5216. autoneg |= AUTONEG_SPEED;
  5217. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5218. /* allow advertising 1 speed */
  5219. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  5220. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  5221. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  5222. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  5223. if (cmd->port == PORT_FIBRE)
  5224. goto err_out_unlock;
  5225. advertising = cmd->advertising;
  5226. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  5227. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  5228. (cmd->port == PORT_TP))
  5229. goto err_out_unlock;
  5230. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  5231. advertising = cmd->advertising;
  5232. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  5233. goto err_out_unlock;
  5234. else {
  5235. if (cmd->port == PORT_FIBRE)
  5236. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5237. else
  5238. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5239. }
  5240. advertising |= ADVERTISED_Autoneg;
  5241. }
  5242. else {
  5243. if (cmd->port == PORT_FIBRE) {
  5244. if ((cmd->speed != SPEED_1000 &&
  5245. cmd->speed != SPEED_2500) ||
  5246. (cmd->duplex != DUPLEX_FULL))
  5247. goto err_out_unlock;
  5248. if (cmd->speed == SPEED_2500 &&
  5249. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5250. goto err_out_unlock;
  5251. }
  5252. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5253. goto err_out_unlock;
  5254. autoneg &= ~AUTONEG_SPEED;
  5255. req_line_speed = cmd->speed;
  5256. req_duplex = cmd->duplex;
  5257. advertising = 0;
  5258. }
  5259. bp->autoneg = autoneg;
  5260. bp->advertising = advertising;
  5261. bp->req_line_speed = req_line_speed;
  5262. bp->req_duplex = req_duplex;
  5263. err = 0;
  5264. /* If device is down, the new settings will be picked up when it is
  5265. * brought up.
  5266. */
  5267. if (netif_running(dev))
  5268. err = bnx2_setup_phy(bp, cmd->port);
  5269. err_out_unlock:
  5270. spin_unlock_bh(&bp->phy_lock);
  5271. return err;
  5272. }
  5273. static void
  5274. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5275. {
  5276. struct bnx2 *bp = netdev_priv(dev);
  5277. strcpy(info->driver, DRV_MODULE_NAME);
  5278. strcpy(info->version, DRV_MODULE_VERSION);
  5279. strcpy(info->bus_info, pci_name(bp->pdev));
  5280. strcpy(info->fw_version, bp->fw_version);
  5281. }
  5282. #define BNX2_REGDUMP_LEN (32 * 1024)
  5283. static int
  5284. bnx2_get_regs_len(struct net_device *dev)
  5285. {
  5286. return BNX2_REGDUMP_LEN;
  5287. }
  5288. static void
  5289. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5290. {
  5291. u32 *p = _p, i, offset;
  5292. u8 *orig_p = _p;
  5293. struct bnx2 *bp = netdev_priv(dev);
  5294. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5295. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5296. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5297. 0x1040, 0x1048, 0x1080, 0x10a4,
  5298. 0x1400, 0x1490, 0x1498, 0x14f0,
  5299. 0x1500, 0x155c, 0x1580, 0x15dc,
  5300. 0x1600, 0x1658, 0x1680, 0x16d8,
  5301. 0x1800, 0x1820, 0x1840, 0x1854,
  5302. 0x1880, 0x1894, 0x1900, 0x1984,
  5303. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5304. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5305. 0x2000, 0x2030, 0x23c0, 0x2400,
  5306. 0x2800, 0x2820, 0x2830, 0x2850,
  5307. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5308. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5309. 0x4080, 0x4090, 0x43c0, 0x4458,
  5310. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5311. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5312. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5313. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5314. 0x6800, 0x6848, 0x684c, 0x6860,
  5315. 0x6888, 0x6910, 0x8000 };
  5316. regs->version = 0;
  5317. memset(p, 0, BNX2_REGDUMP_LEN);
  5318. if (!netif_running(bp->dev))
  5319. return;
  5320. i = 0;
  5321. offset = reg_boundaries[0];
  5322. p += offset;
  5323. while (offset < BNX2_REGDUMP_LEN) {
  5324. *p++ = REG_RD(bp, offset);
  5325. offset += 4;
  5326. if (offset == reg_boundaries[i + 1]) {
  5327. offset = reg_boundaries[i + 2];
  5328. p = (u32 *) (orig_p + offset);
  5329. i += 2;
  5330. }
  5331. }
  5332. }
  5333. static void
  5334. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5335. {
  5336. struct bnx2 *bp = netdev_priv(dev);
  5337. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5338. wol->supported = 0;
  5339. wol->wolopts = 0;
  5340. }
  5341. else {
  5342. wol->supported = WAKE_MAGIC;
  5343. if (bp->wol)
  5344. wol->wolopts = WAKE_MAGIC;
  5345. else
  5346. wol->wolopts = 0;
  5347. }
  5348. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5349. }
  5350. static int
  5351. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5352. {
  5353. struct bnx2 *bp = netdev_priv(dev);
  5354. if (wol->wolopts & ~WAKE_MAGIC)
  5355. return -EINVAL;
  5356. if (wol->wolopts & WAKE_MAGIC) {
  5357. if (bp->flags & BNX2_FLAG_NO_WOL)
  5358. return -EINVAL;
  5359. bp->wol = 1;
  5360. }
  5361. else {
  5362. bp->wol = 0;
  5363. }
  5364. return 0;
  5365. }
  5366. static int
  5367. bnx2_nway_reset(struct net_device *dev)
  5368. {
  5369. struct bnx2 *bp = netdev_priv(dev);
  5370. u32 bmcr;
  5371. if (!netif_running(dev))
  5372. return -EAGAIN;
  5373. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5374. return -EINVAL;
  5375. }
  5376. spin_lock_bh(&bp->phy_lock);
  5377. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5378. int rc;
  5379. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5380. spin_unlock_bh(&bp->phy_lock);
  5381. return rc;
  5382. }
  5383. /* Force a link down visible on the other side */
  5384. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5385. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5386. spin_unlock_bh(&bp->phy_lock);
  5387. msleep(20);
  5388. spin_lock_bh(&bp->phy_lock);
  5389. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5390. bp->serdes_an_pending = 1;
  5391. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5392. }
  5393. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5394. bmcr &= ~BMCR_LOOPBACK;
  5395. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5396. spin_unlock_bh(&bp->phy_lock);
  5397. return 0;
  5398. }
  5399. static int
  5400. bnx2_get_eeprom_len(struct net_device *dev)
  5401. {
  5402. struct bnx2 *bp = netdev_priv(dev);
  5403. if (bp->flash_info == NULL)
  5404. return 0;
  5405. return (int) bp->flash_size;
  5406. }
  5407. static int
  5408. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5409. u8 *eebuf)
  5410. {
  5411. struct bnx2 *bp = netdev_priv(dev);
  5412. int rc;
  5413. if (!netif_running(dev))
  5414. return -EAGAIN;
  5415. /* parameters already validated in ethtool_get_eeprom */
  5416. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5417. return rc;
  5418. }
  5419. static int
  5420. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5421. u8 *eebuf)
  5422. {
  5423. struct bnx2 *bp = netdev_priv(dev);
  5424. int rc;
  5425. if (!netif_running(dev))
  5426. return -EAGAIN;
  5427. /* parameters already validated in ethtool_set_eeprom */
  5428. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5429. return rc;
  5430. }
  5431. static int
  5432. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5433. {
  5434. struct bnx2 *bp = netdev_priv(dev);
  5435. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5436. coal->rx_coalesce_usecs = bp->rx_ticks;
  5437. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5438. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5439. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5440. coal->tx_coalesce_usecs = bp->tx_ticks;
  5441. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5442. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5443. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5444. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5445. return 0;
  5446. }
  5447. static int
  5448. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5449. {
  5450. struct bnx2 *bp = netdev_priv(dev);
  5451. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5452. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5453. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5454. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5455. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5456. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5457. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5458. if (bp->rx_quick_cons_trip_int > 0xff)
  5459. bp->rx_quick_cons_trip_int = 0xff;
  5460. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5461. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5462. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5463. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5464. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5465. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5466. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5467. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5468. 0xff;
  5469. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5470. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  5471. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5472. bp->stats_ticks = USEC_PER_SEC;
  5473. }
  5474. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5475. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5476. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5477. if (netif_running(bp->dev)) {
  5478. bnx2_netif_stop(bp);
  5479. bnx2_init_nic(bp, 0);
  5480. bnx2_netif_start(bp);
  5481. }
  5482. return 0;
  5483. }
  5484. static void
  5485. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5486. {
  5487. struct bnx2 *bp = netdev_priv(dev);
  5488. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5489. ering->rx_mini_max_pending = 0;
  5490. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5491. ering->rx_pending = bp->rx_ring_size;
  5492. ering->rx_mini_pending = 0;
  5493. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5494. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5495. ering->tx_pending = bp->tx_ring_size;
  5496. }
  5497. static int
  5498. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5499. {
  5500. if (netif_running(bp->dev)) {
  5501. bnx2_netif_stop(bp);
  5502. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5503. bnx2_free_skbs(bp);
  5504. bnx2_free_mem(bp);
  5505. }
  5506. bnx2_set_rx_ring_size(bp, rx);
  5507. bp->tx_ring_size = tx;
  5508. if (netif_running(bp->dev)) {
  5509. int rc;
  5510. rc = bnx2_alloc_mem(bp);
  5511. if (rc)
  5512. return rc;
  5513. bnx2_init_nic(bp, 0);
  5514. bnx2_netif_start(bp);
  5515. }
  5516. return 0;
  5517. }
  5518. static int
  5519. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5520. {
  5521. struct bnx2 *bp = netdev_priv(dev);
  5522. int rc;
  5523. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5524. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5525. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5526. return -EINVAL;
  5527. }
  5528. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5529. return rc;
  5530. }
  5531. static void
  5532. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5533. {
  5534. struct bnx2 *bp = netdev_priv(dev);
  5535. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5536. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5537. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5538. }
  5539. static int
  5540. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5541. {
  5542. struct bnx2 *bp = netdev_priv(dev);
  5543. bp->req_flow_ctrl = 0;
  5544. if (epause->rx_pause)
  5545. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5546. if (epause->tx_pause)
  5547. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5548. if (epause->autoneg) {
  5549. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5550. }
  5551. else {
  5552. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5553. }
  5554. if (netif_running(dev)) {
  5555. spin_lock_bh(&bp->phy_lock);
  5556. bnx2_setup_phy(bp, bp->phy_port);
  5557. spin_unlock_bh(&bp->phy_lock);
  5558. }
  5559. return 0;
  5560. }
  5561. static u32
  5562. bnx2_get_rx_csum(struct net_device *dev)
  5563. {
  5564. struct bnx2 *bp = netdev_priv(dev);
  5565. return bp->rx_csum;
  5566. }
  5567. static int
  5568. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5569. {
  5570. struct bnx2 *bp = netdev_priv(dev);
  5571. bp->rx_csum = data;
  5572. return 0;
  5573. }
  5574. static int
  5575. bnx2_set_tso(struct net_device *dev, u32 data)
  5576. {
  5577. struct bnx2 *bp = netdev_priv(dev);
  5578. if (data) {
  5579. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5580. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5581. dev->features |= NETIF_F_TSO6;
  5582. } else
  5583. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5584. NETIF_F_TSO_ECN);
  5585. return 0;
  5586. }
  5587. #define BNX2_NUM_STATS 46
  5588. static struct {
  5589. char string[ETH_GSTRING_LEN];
  5590. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  5591. { "rx_bytes" },
  5592. { "rx_error_bytes" },
  5593. { "tx_bytes" },
  5594. { "tx_error_bytes" },
  5595. { "rx_ucast_packets" },
  5596. { "rx_mcast_packets" },
  5597. { "rx_bcast_packets" },
  5598. { "tx_ucast_packets" },
  5599. { "tx_mcast_packets" },
  5600. { "tx_bcast_packets" },
  5601. { "tx_mac_errors" },
  5602. { "tx_carrier_errors" },
  5603. { "rx_crc_errors" },
  5604. { "rx_align_errors" },
  5605. { "tx_single_collisions" },
  5606. { "tx_multi_collisions" },
  5607. { "tx_deferred" },
  5608. { "tx_excess_collisions" },
  5609. { "tx_late_collisions" },
  5610. { "tx_total_collisions" },
  5611. { "rx_fragments" },
  5612. { "rx_jabbers" },
  5613. { "rx_undersize_packets" },
  5614. { "rx_oversize_packets" },
  5615. { "rx_64_byte_packets" },
  5616. { "rx_65_to_127_byte_packets" },
  5617. { "rx_128_to_255_byte_packets" },
  5618. { "rx_256_to_511_byte_packets" },
  5619. { "rx_512_to_1023_byte_packets" },
  5620. { "rx_1024_to_1522_byte_packets" },
  5621. { "rx_1523_to_9022_byte_packets" },
  5622. { "tx_64_byte_packets" },
  5623. { "tx_65_to_127_byte_packets" },
  5624. { "tx_128_to_255_byte_packets" },
  5625. { "tx_256_to_511_byte_packets" },
  5626. { "tx_512_to_1023_byte_packets" },
  5627. { "tx_1024_to_1522_byte_packets" },
  5628. { "tx_1523_to_9022_byte_packets" },
  5629. { "rx_xon_frames" },
  5630. { "rx_xoff_frames" },
  5631. { "tx_xon_frames" },
  5632. { "tx_xoff_frames" },
  5633. { "rx_mac_ctrl_frames" },
  5634. { "rx_filtered_packets" },
  5635. { "rx_discards" },
  5636. { "rx_fw_discards" },
  5637. };
  5638. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5639. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5640. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5641. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5642. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5643. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5644. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5645. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5646. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5647. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5648. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5649. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5650. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5651. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5652. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5653. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5654. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5655. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5656. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5657. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5658. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5659. STATS_OFFSET32(stat_EtherStatsCollisions),
  5660. STATS_OFFSET32(stat_EtherStatsFragments),
  5661. STATS_OFFSET32(stat_EtherStatsJabbers),
  5662. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5663. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5664. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5665. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5666. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5667. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5668. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5669. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5670. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5671. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5672. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5673. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5674. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5675. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5676. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5677. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5678. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5679. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5680. STATS_OFFSET32(stat_OutXonSent),
  5681. STATS_OFFSET32(stat_OutXoffSent),
  5682. STATS_OFFSET32(stat_MacControlFramesReceived),
  5683. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5684. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5685. STATS_OFFSET32(stat_FwRxDrop),
  5686. };
  5687. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5688. * skipped because of errata.
  5689. */
  5690. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5691. 8,0,8,8,8,8,8,8,8,8,
  5692. 4,0,4,4,4,4,4,4,4,4,
  5693. 4,4,4,4,4,4,4,4,4,4,
  5694. 4,4,4,4,4,4,4,4,4,4,
  5695. 4,4,4,4,4,4,
  5696. };
  5697. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5698. 8,0,8,8,8,8,8,8,8,8,
  5699. 4,4,4,4,4,4,4,4,4,4,
  5700. 4,4,4,4,4,4,4,4,4,4,
  5701. 4,4,4,4,4,4,4,4,4,4,
  5702. 4,4,4,4,4,4,
  5703. };
  5704. #define BNX2_NUM_TESTS 6
  5705. static struct {
  5706. char string[ETH_GSTRING_LEN];
  5707. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5708. { "register_test (offline)" },
  5709. { "memory_test (offline)" },
  5710. { "loopback_test (offline)" },
  5711. { "nvram_test (online)" },
  5712. { "interrupt_test (online)" },
  5713. { "link_test (online)" },
  5714. };
  5715. static int
  5716. bnx2_get_sset_count(struct net_device *dev, int sset)
  5717. {
  5718. switch (sset) {
  5719. case ETH_SS_TEST:
  5720. return BNX2_NUM_TESTS;
  5721. case ETH_SS_STATS:
  5722. return BNX2_NUM_STATS;
  5723. default:
  5724. return -EOPNOTSUPP;
  5725. }
  5726. }
  5727. static void
  5728. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5729. {
  5730. struct bnx2 *bp = netdev_priv(dev);
  5731. bnx2_set_power_state(bp, PCI_D0);
  5732. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  5733. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  5734. int i;
  5735. bnx2_netif_stop(bp);
  5736. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  5737. bnx2_free_skbs(bp);
  5738. if (bnx2_test_registers(bp) != 0) {
  5739. buf[0] = 1;
  5740. etest->flags |= ETH_TEST_FL_FAILED;
  5741. }
  5742. if (bnx2_test_memory(bp) != 0) {
  5743. buf[1] = 1;
  5744. etest->flags |= ETH_TEST_FL_FAILED;
  5745. }
  5746. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  5747. etest->flags |= ETH_TEST_FL_FAILED;
  5748. if (!netif_running(bp->dev))
  5749. bnx2_shutdown_chip(bp);
  5750. else {
  5751. bnx2_init_nic(bp, 1);
  5752. bnx2_netif_start(bp);
  5753. }
  5754. /* wait for link up */
  5755. for (i = 0; i < 7; i++) {
  5756. if (bp->link_up)
  5757. break;
  5758. msleep_interruptible(1000);
  5759. }
  5760. }
  5761. if (bnx2_test_nvram(bp) != 0) {
  5762. buf[3] = 1;
  5763. etest->flags |= ETH_TEST_FL_FAILED;
  5764. }
  5765. if (bnx2_test_intr(bp) != 0) {
  5766. buf[4] = 1;
  5767. etest->flags |= ETH_TEST_FL_FAILED;
  5768. }
  5769. if (bnx2_test_link(bp) != 0) {
  5770. buf[5] = 1;
  5771. etest->flags |= ETH_TEST_FL_FAILED;
  5772. }
  5773. if (!netif_running(bp->dev))
  5774. bnx2_set_power_state(bp, PCI_D3hot);
  5775. }
  5776. static void
  5777. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  5778. {
  5779. switch (stringset) {
  5780. case ETH_SS_STATS:
  5781. memcpy(buf, bnx2_stats_str_arr,
  5782. sizeof(bnx2_stats_str_arr));
  5783. break;
  5784. case ETH_SS_TEST:
  5785. memcpy(buf, bnx2_tests_str_arr,
  5786. sizeof(bnx2_tests_str_arr));
  5787. break;
  5788. }
  5789. }
  5790. static void
  5791. bnx2_get_ethtool_stats(struct net_device *dev,
  5792. struct ethtool_stats *stats, u64 *buf)
  5793. {
  5794. struct bnx2 *bp = netdev_priv(dev);
  5795. int i;
  5796. u32 *hw_stats = (u32 *) bp->stats_blk;
  5797. u8 *stats_len_arr = NULL;
  5798. if (hw_stats == NULL) {
  5799. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  5800. return;
  5801. }
  5802. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  5803. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  5804. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  5805. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5806. stats_len_arr = bnx2_5706_stats_len_arr;
  5807. else
  5808. stats_len_arr = bnx2_5708_stats_len_arr;
  5809. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5810. if (stats_len_arr[i] == 0) {
  5811. /* skip this counter */
  5812. buf[i] = 0;
  5813. continue;
  5814. }
  5815. if (stats_len_arr[i] == 4) {
  5816. /* 4-byte counter */
  5817. buf[i] = (u64)
  5818. *(hw_stats + bnx2_stats_offset_arr[i]);
  5819. continue;
  5820. }
  5821. /* 8-byte counter */
  5822. buf[i] = (((u64) *(hw_stats +
  5823. bnx2_stats_offset_arr[i])) << 32) +
  5824. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  5825. }
  5826. }
  5827. static int
  5828. bnx2_phys_id(struct net_device *dev, u32 data)
  5829. {
  5830. struct bnx2 *bp = netdev_priv(dev);
  5831. int i;
  5832. u32 save;
  5833. bnx2_set_power_state(bp, PCI_D0);
  5834. if (data == 0)
  5835. data = 2;
  5836. save = REG_RD(bp, BNX2_MISC_CFG);
  5837. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  5838. for (i = 0; i < (data * 2); i++) {
  5839. if ((i % 2) == 0) {
  5840. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  5841. }
  5842. else {
  5843. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  5844. BNX2_EMAC_LED_1000MB_OVERRIDE |
  5845. BNX2_EMAC_LED_100MB_OVERRIDE |
  5846. BNX2_EMAC_LED_10MB_OVERRIDE |
  5847. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  5848. BNX2_EMAC_LED_TRAFFIC);
  5849. }
  5850. msleep_interruptible(500);
  5851. if (signal_pending(current))
  5852. break;
  5853. }
  5854. REG_WR(bp, BNX2_EMAC_LED, 0);
  5855. REG_WR(bp, BNX2_MISC_CFG, save);
  5856. if (!netif_running(dev))
  5857. bnx2_set_power_state(bp, PCI_D3hot);
  5858. return 0;
  5859. }
  5860. static int
  5861. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  5862. {
  5863. struct bnx2 *bp = netdev_priv(dev);
  5864. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5865. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  5866. else
  5867. return (ethtool_op_set_tx_csum(dev, data));
  5868. }
  5869. static const struct ethtool_ops bnx2_ethtool_ops = {
  5870. .get_settings = bnx2_get_settings,
  5871. .set_settings = bnx2_set_settings,
  5872. .get_drvinfo = bnx2_get_drvinfo,
  5873. .get_regs_len = bnx2_get_regs_len,
  5874. .get_regs = bnx2_get_regs,
  5875. .get_wol = bnx2_get_wol,
  5876. .set_wol = bnx2_set_wol,
  5877. .nway_reset = bnx2_nway_reset,
  5878. .get_link = ethtool_op_get_link,
  5879. .get_eeprom_len = bnx2_get_eeprom_len,
  5880. .get_eeprom = bnx2_get_eeprom,
  5881. .set_eeprom = bnx2_set_eeprom,
  5882. .get_coalesce = bnx2_get_coalesce,
  5883. .set_coalesce = bnx2_set_coalesce,
  5884. .get_ringparam = bnx2_get_ringparam,
  5885. .set_ringparam = bnx2_set_ringparam,
  5886. .get_pauseparam = bnx2_get_pauseparam,
  5887. .set_pauseparam = bnx2_set_pauseparam,
  5888. .get_rx_csum = bnx2_get_rx_csum,
  5889. .set_rx_csum = bnx2_set_rx_csum,
  5890. .set_tx_csum = bnx2_set_tx_csum,
  5891. .set_sg = ethtool_op_set_sg,
  5892. .set_tso = bnx2_set_tso,
  5893. .self_test = bnx2_self_test,
  5894. .get_strings = bnx2_get_strings,
  5895. .phys_id = bnx2_phys_id,
  5896. .get_ethtool_stats = bnx2_get_ethtool_stats,
  5897. .get_sset_count = bnx2_get_sset_count,
  5898. };
  5899. /* Called with rtnl_lock */
  5900. static int
  5901. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5902. {
  5903. struct mii_ioctl_data *data = if_mii(ifr);
  5904. struct bnx2 *bp = netdev_priv(dev);
  5905. int err;
  5906. switch(cmd) {
  5907. case SIOCGMIIPHY:
  5908. data->phy_id = bp->phy_addr;
  5909. /* fallthru */
  5910. case SIOCGMIIREG: {
  5911. u32 mii_regval;
  5912. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5913. return -EOPNOTSUPP;
  5914. if (!netif_running(dev))
  5915. return -EAGAIN;
  5916. spin_lock_bh(&bp->phy_lock);
  5917. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  5918. spin_unlock_bh(&bp->phy_lock);
  5919. data->val_out = mii_regval;
  5920. return err;
  5921. }
  5922. case SIOCSMIIREG:
  5923. if (!capable(CAP_NET_ADMIN))
  5924. return -EPERM;
  5925. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5926. return -EOPNOTSUPP;
  5927. if (!netif_running(dev))
  5928. return -EAGAIN;
  5929. spin_lock_bh(&bp->phy_lock);
  5930. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  5931. spin_unlock_bh(&bp->phy_lock);
  5932. return err;
  5933. default:
  5934. /* do nothing */
  5935. break;
  5936. }
  5937. return -EOPNOTSUPP;
  5938. }
  5939. /* Called with rtnl_lock */
  5940. static int
  5941. bnx2_change_mac_addr(struct net_device *dev, void *p)
  5942. {
  5943. struct sockaddr *addr = p;
  5944. struct bnx2 *bp = netdev_priv(dev);
  5945. if (!is_valid_ether_addr(addr->sa_data))
  5946. return -EINVAL;
  5947. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  5948. if (netif_running(dev))
  5949. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  5950. return 0;
  5951. }
  5952. /* Called with rtnl_lock */
  5953. static int
  5954. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  5955. {
  5956. struct bnx2 *bp = netdev_priv(dev);
  5957. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  5958. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  5959. return -EINVAL;
  5960. dev->mtu = new_mtu;
  5961. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  5962. }
  5963. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5964. static void
  5965. poll_bnx2(struct net_device *dev)
  5966. {
  5967. struct bnx2 *bp = netdev_priv(dev);
  5968. int i;
  5969. for (i = 0; i < bp->irq_nvecs; i++) {
  5970. disable_irq(bp->irq_tbl[i].vector);
  5971. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  5972. enable_irq(bp->irq_tbl[i].vector);
  5973. }
  5974. }
  5975. #endif
  5976. static void __devinit
  5977. bnx2_get_5709_media(struct bnx2 *bp)
  5978. {
  5979. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  5980. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  5981. u32 strap;
  5982. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  5983. return;
  5984. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  5985. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  5986. return;
  5987. }
  5988. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  5989. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  5990. else
  5991. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  5992. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  5993. switch (strap) {
  5994. case 0x4:
  5995. case 0x5:
  5996. case 0x6:
  5997. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  5998. return;
  5999. }
  6000. } else {
  6001. switch (strap) {
  6002. case 0x1:
  6003. case 0x2:
  6004. case 0x4:
  6005. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6006. return;
  6007. }
  6008. }
  6009. }
  6010. static void __devinit
  6011. bnx2_get_pci_speed(struct bnx2 *bp)
  6012. {
  6013. u32 reg;
  6014. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6015. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6016. u32 clkreg;
  6017. bp->flags |= BNX2_FLAG_PCIX;
  6018. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6019. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6020. switch (clkreg) {
  6021. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6022. bp->bus_speed_mhz = 133;
  6023. break;
  6024. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6025. bp->bus_speed_mhz = 100;
  6026. break;
  6027. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6028. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6029. bp->bus_speed_mhz = 66;
  6030. break;
  6031. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6032. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6033. bp->bus_speed_mhz = 50;
  6034. break;
  6035. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6036. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6037. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6038. bp->bus_speed_mhz = 33;
  6039. break;
  6040. }
  6041. }
  6042. else {
  6043. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6044. bp->bus_speed_mhz = 66;
  6045. else
  6046. bp->bus_speed_mhz = 33;
  6047. }
  6048. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6049. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6050. }
  6051. static int __devinit
  6052. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6053. {
  6054. struct bnx2 *bp;
  6055. unsigned long mem_len;
  6056. int rc, i, j;
  6057. u32 reg;
  6058. u64 dma_mask, persist_dma_mask;
  6059. SET_NETDEV_DEV(dev, &pdev->dev);
  6060. bp = netdev_priv(dev);
  6061. bp->flags = 0;
  6062. bp->phy_flags = 0;
  6063. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6064. rc = pci_enable_device(pdev);
  6065. if (rc) {
  6066. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6067. goto err_out;
  6068. }
  6069. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6070. dev_err(&pdev->dev,
  6071. "Cannot find PCI device base address, aborting.\n");
  6072. rc = -ENODEV;
  6073. goto err_out_disable;
  6074. }
  6075. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6076. if (rc) {
  6077. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6078. goto err_out_disable;
  6079. }
  6080. pci_set_master(pdev);
  6081. pci_save_state(pdev);
  6082. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6083. if (bp->pm_cap == 0) {
  6084. dev_err(&pdev->dev,
  6085. "Cannot find power management capability, aborting.\n");
  6086. rc = -EIO;
  6087. goto err_out_release;
  6088. }
  6089. bp->dev = dev;
  6090. bp->pdev = pdev;
  6091. spin_lock_init(&bp->phy_lock);
  6092. spin_lock_init(&bp->indirect_lock);
  6093. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6094. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6095. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS);
  6096. dev->mem_end = dev->mem_start + mem_len;
  6097. dev->irq = pdev->irq;
  6098. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6099. if (!bp->regview) {
  6100. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6101. rc = -ENOMEM;
  6102. goto err_out_release;
  6103. }
  6104. /* Configure byte swap and enable write to the reg_window registers.
  6105. * Rely on CPU to do target byte swapping on big endian systems
  6106. * The chip's target access swapping will not swap all accesses
  6107. */
  6108. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6109. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6110. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6111. bnx2_set_power_state(bp, PCI_D0);
  6112. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6113. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6114. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6115. dev_err(&pdev->dev,
  6116. "Cannot find PCIE capability, aborting.\n");
  6117. rc = -EIO;
  6118. goto err_out_unmap;
  6119. }
  6120. bp->flags |= BNX2_FLAG_PCIE;
  6121. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6122. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6123. } else {
  6124. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6125. if (bp->pcix_cap == 0) {
  6126. dev_err(&pdev->dev,
  6127. "Cannot find PCIX capability, aborting.\n");
  6128. rc = -EIO;
  6129. goto err_out_unmap;
  6130. }
  6131. }
  6132. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6133. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6134. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6135. }
  6136. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6137. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6138. bp->flags |= BNX2_FLAG_MSI_CAP;
  6139. }
  6140. /* 5708 cannot support DMA addresses > 40-bit. */
  6141. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6142. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6143. else
  6144. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6145. /* Configure DMA attributes. */
  6146. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6147. dev->features |= NETIF_F_HIGHDMA;
  6148. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6149. if (rc) {
  6150. dev_err(&pdev->dev,
  6151. "pci_set_consistent_dma_mask failed, aborting.\n");
  6152. goto err_out_unmap;
  6153. }
  6154. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6155. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6156. goto err_out_unmap;
  6157. }
  6158. if (!(bp->flags & BNX2_FLAG_PCIE))
  6159. bnx2_get_pci_speed(bp);
  6160. /* 5706A0 may falsely detect SERR and PERR. */
  6161. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6162. reg = REG_RD(bp, PCI_COMMAND);
  6163. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6164. REG_WR(bp, PCI_COMMAND, reg);
  6165. }
  6166. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6167. !(bp->flags & BNX2_FLAG_PCIX)) {
  6168. dev_err(&pdev->dev,
  6169. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6170. goto err_out_unmap;
  6171. }
  6172. bnx2_init_nvram(bp);
  6173. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6174. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6175. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6176. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6177. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6178. } else
  6179. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6180. /* Get the permanent MAC address. First we need to make sure the
  6181. * firmware is actually running.
  6182. */
  6183. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6184. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6185. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6186. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6187. rc = -ENODEV;
  6188. goto err_out_unmap;
  6189. }
  6190. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6191. for (i = 0, j = 0; i < 3; i++) {
  6192. u8 num, k, skip0;
  6193. num = (u8) (reg >> (24 - (i * 8)));
  6194. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6195. if (num >= k || !skip0 || k == 1) {
  6196. bp->fw_version[j++] = (num / k) + '0';
  6197. skip0 = 0;
  6198. }
  6199. }
  6200. if (i != 2)
  6201. bp->fw_version[j++] = '.';
  6202. }
  6203. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6204. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6205. bp->wol = 1;
  6206. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6207. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6208. for (i = 0; i < 30; i++) {
  6209. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6210. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6211. break;
  6212. msleep(10);
  6213. }
  6214. }
  6215. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6216. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6217. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6218. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6219. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6220. bp->fw_version[j++] = ' ';
  6221. for (i = 0; i < 3; i++) {
  6222. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6223. reg = swab32(reg);
  6224. memcpy(&bp->fw_version[j], &reg, 4);
  6225. j += 4;
  6226. }
  6227. }
  6228. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6229. bp->mac_addr[0] = (u8) (reg >> 8);
  6230. bp->mac_addr[1] = (u8) reg;
  6231. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6232. bp->mac_addr[2] = (u8) (reg >> 24);
  6233. bp->mac_addr[3] = (u8) (reg >> 16);
  6234. bp->mac_addr[4] = (u8) (reg >> 8);
  6235. bp->mac_addr[5] = (u8) reg;
  6236. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6237. bnx2_set_rx_ring_size(bp, 255);
  6238. bp->rx_csum = 1;
  6239. bp->tx_quick_cons_trip_int = 20;
  6240. bp->tx_quick_cons_trip = 20;
  6241. bp->tx_ticks_int = 80;
  6242. bp->tx_ticks = 80;
  6243. bp->rx_quick_cons_trip_int = 6;
  6244. bp->rx_quick_cons_trip = 6;
  6245. bp->rx_ticks_int = 18;
  6246. bp->rx_ticks = 18;
  6247. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6248. bp->current_interval = BNX2_TIMER_INTERVAL;
  6249. bp->phy_addr = 1;
  6250. /* Disable WOL support if we are running on a SERDES chip. */
  6251. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6252. bnx2_get_5709_media(bp);
  6253. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6254. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6255. bp->phy_port = PORT_TP;
  6256. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6257. bp->phy_port = PORT_FIBRE;
  6258. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6259. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6260. bp->flags |= BNX2_FLAG_NO_WOL;
  6261. bp->wol = 0;
  6262. }
  6263. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6264. /* Don't do parallel detect on this board because of
  6265. * some board problems. The link will not go down
  6266. * if we do parallel detect.
  6267. */
  6268. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6269. pdev->subsystem_device == 0x310c)
  6270. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6271. } else {
  6272. bp->phy_addr = 2;
  6273. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6274. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6275. }
  6276. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6277. CHIP_NUM(bp) == CHIP_NUM_5708)
  6278. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6279. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6280. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6281. CHIP_REV(bp) == CHIP_REV_Bx))
  6282. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6283. bnx2_init_fw_cap(bp);
  6284. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6285. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6286. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6287. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6288. bp->flags |= BNX2_FLAG_NO_WOL;
  6289. bp->wol = 0;
  6290. }
  6291. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6292. bp->tx_quick_cons_trip_int =
  6293. bp->tx_quick_cons_trip;
  6294. bp->tx_ticks_int = bp->tx_ticks;
  6295. bp->rx_quick_cons_trip_int =
  6296. bp->rx_quick_cons_trip;
  6297. bp->rx_ticks_int = bp->rx_ticks;
  6298. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6299. bp->com_ticks_int = bp->com_ticks;
  6300. bp->cmd_ticks_int = bp->cmd_ticks;
  6301. }
  6302. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6303. *
  6304. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6305. * with byte enables disabled on the unused 32-bit word. This is legal
  6306. * but causes problems on the AMD 8132 which will eventually stop
  6307. * responding after a while.
  6308. *
  6309. * AMD believes this incompatibility is unique to the 5706, and
  6310. * prefers to locally disable MSI rather than globally disabling it.
  6311. */
  6312. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6313. struct pci_dev *amd_8132 = NULL;
  6314. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6315. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6316. amd_8132))) {
  6317. if (amd_8132->revision >= 0x10 &&
  6318. amd_8132->revision <= 0x13) {
  6319. disable_msi = 1;
  6320. pci_dev_put(amd_8132);
  6321. break;
  6322. }
  6323. }
  6324. }
  6325. bnx2_set_default_link(bp);
  6326. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6327. init_timer(&bp->timer);
  6328. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6329. bp->timer.data = (unsigned long) bp;
  6330. bp->timer.function = bnx2_timer;
  6331. return 0;
  6332. err_out_unmap:
  6333. if (bp->regview) {
  6334. iounmap(bp->regview);
  6335. bp->regview = NULL;
  6336. }
  6337. err_out_release:
  6338. pci_release_regions(pdev);
  6339. err_out_disable:
  6340. pci_disable_device(pdev);
  6341. pci_set_drvdata(pdev, NULL);
  6342. err_out:
  6343. return rc;
  6344. }
  6345. static char * __devinit
  6346. bnx2_bus_string(struct bnx2 *bp, char *str)
  6347. {
  6348. char *s = str;
  6349. if (bp->flags & BNX2_FLAG_PCIE) {
  6350. s += sprintf(s, "PCI Express");
  6351. } else {
  6352. s += sprintf(s, "PCI");
  6353. if (bp->flags & BNX2_FLAG_PCIX)
  6354. s += sprintf(s, "-X");
  6355. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6356. s += sprintf(s, " 32-bit");
  6357. else
  6358. s += sprintf(s, " 64-bit");
  6359. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6360. }
  6361. return str;
  6362. }
  6363. static void __devinit
  6364. bnx2_init_napi(struct bnx2 *bp)
  6365. {
  6366. int i;
  6367. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6368. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6369. int (*poll)(struct napi_struct *, int);
  6370. if (i == 0)
  6371. poll = bnx2_poll;
  6372. else
  6373. poll = bnx2_poll_msix;
  6374. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6375. bnapi->bp = bp;
  6376. }
  6377. }
  6378. static const struct net_device_ops bnx2_netdev_ops = {
  6379. .ndo_open = bnx2_open,
  6380. .ndo_start_xmit = bnx2_start_xmit,
  6381. .ndo_stop = bnx2_close,
  6382. .ndo_get_stats = bnx2_get_stats,
  6383. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6384. .ndo_do_ioctl = bnx2_ioctl,
  6385. .ndo_validate_addr = eth_validate_addr,
  6386. .ndo_set_mac_address = bnx2_change_mac_addr,
  6387. .ndo_change_mtu = bnx2_change_mtu,
  6388. .ndo_tx_timeout = bnx2_tx_timeout,
  6389. #ifdef BCM_VLAN
  6390. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6391. #endif
  6392. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6393. .ndo_poll_controller = poll_bnx2,
  6394. #endif
  6395. };
  6396. static int __devinit
  6397. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6398. {
  6399. static int version_printed = 0;
  6400. struct net_device *dev = NULL;
  6401. struct bnx2 *bp;
  6402. int rc;
  6403. char str[40];
  6404. if (version_printed++ == 0)
  6405. printk(KERN_INFO "%s", version);
  6406. /* dev zeroed in init_etherdev */
  6407. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6408. if (!dev)
  6409. return -ENOMEM;
  6410. rc = bnx2_init_board(pdev, dev);
  6411. if (rc < 0) {
  6412. free_netdev(dev);
  6413. return rc;
  6414. }
  6415. dev->netdev_ops = &bnx2_netdev_ops;
  6416. dev->watchdog_timeo = TX_TIMEOUT;
  6417. dev->ethtool_ops = &bnx2_ethtool_ops;
  6418. bp = netdev_priv(dev);
  6419. bnx2_init_napi(bp);
  6420. pci_set_drvdata(pdev, dev);
  6421. rc = bnx2_request_firmware(bp);
  6422. if (rc)
  6423. goto error;
  6424. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6425. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6426. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6427. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6428. dev->features |= NETIF_F_IPV6_CSUM;
  6429. #ifdef BCM_VLAN
  6430. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6431. #endif
  6432. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6433. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6434. dev->features |= NETIF_F_TSO6;
  6435. if ((rc = register_netdev(dev))) {
  6436. dev_err(&pdev->dev, "Cannot register net device\n");
  6437. goto error;
  6438. }
  6439. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6440. "IRQ %d, node addr %pM\n",
  6441. dev->name,
  6442. board_info[ent->driver_data].name,
  6443. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6444. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6445. bnx2_bus_string(bp, str),
  6446. dev->base_addr,
  6447. bp->pdev->irq, dev->dev_addr);
  6448. return 0;
  6449. error:
  6450. if (bp->mips_firmware)
  6451. release_firmware(bp->mips_firmware);
  6452. if (bp->rv2p_firmware)
  6453. release_firmware(bp->rv2p_firmware);
  6454. if (bp->regview)
  6455. iounmap(bp->regview);
  6456. pci_release_regions(pdev);
  6457. pci_disable_device(pdev);
  6458. pci_set_drvdata(pdev, NULL);
  6459. free_netdev(dev);
  6460. return rc;
  6461. }
  6462. static void __devexit
  6463. bnx2_remove_one(struct pci_dev *pdev)
  6464. {
  6465. struct net_device *dev = pci_get_drvdata(pdev);
  6466. struct bnx2 *bp = netdev_priv(dev);
  6467. flush_scheduled_work();
  6468. unregister_netdev(dev);
  6469. if (bp->mips_firmware)
  6470. release_firmware(bp->mips_firmware);
  6471. if (bp->rv2p_firmware)
  6472. release_firmware(bp->rv2p_firmware);
  6473. if (bp->regview)
  6474. iounmap(bp->regview);
  6475. free_netdev(dev);
  6476. pci_release_regions(pdev);
  6477. pci_disable_device(pdev);
  6478. pci_set_drvdata(pdev, NULL);
  6479. }
  6480. static int
  6481. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6482. {
  6483. struct net_device *dev = pci_get_drvdata(pdev);
  6484. struct bnx2 *bp = netdev_priv(dev);
  6485. /* PCI register 4 needs to be saved whether netif_running() or not.
  6486. * MSI address and data need to be saved if using MSI and
  6487. * netif_running().
  6488. */
  6489. pci_save_state(pdev);
  6490. if (!netif_running(dev))
  6491. return 0;
  6492. flush_scheduled_work();
  6493. bnx2_netif_stop(bp);
  6494. netif_device_detach(dev);
  6495. del_timer_sync(&bp->timer);
  6496. bnx2_shutdown_chip(bp);
  6497. bnx2_free_skbs(bp);
  6498. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6499. return 0;
  6500. }
  6501. static int
  6502. bnx2_resume(struct pci_dev *pdev)
  6503. {
  6504. struct net_device *dev = pci_get_drvdata(pdev);
  6505. struct bnx2 *bp = netdev_priv(dev);
  6506. pci_restore_state(pdev);
  6507. if (!netif_running(dev))
  6508. return 0;
  6509. bnx2_set_power_state(bp, PCI_D0);
  6510. netif_device_attach(dev);
  6511. bnx2_init_nic(bp, 1);
  6512. bnx2_netif_start(bp);
  6513. return 0;
  6514. }
  6515. /**
  6516. * bnx2_io_error_detected - called when PCI error is detected
  6517. * @pdev: Pointer to PCI device
  6518. * @state: The current pci connection state
  6519. *
  6520. * This function is called after a PCI bus error affecting
  6521. * this device has been detected.
  6522. */
  6523. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6524. pci_channel_state_t state)
  6525. {
  6526. struct net_device *dev = pci_get_drvdata(pdev);
  6527. struct bnx2 *bp = netdev_priv(dev);
  6528. rtnl_lock();
  6529. netif_device_detach(dev);
  6530. if (netif_running(dev)) {
  6531. bnx2_netif_stop(bp);
  6532. del_timer_sync(&bp->timer);
  6533. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6534. }
  6535. pci_disable_device(pdev);
  6536. rtnl_unlock();
  6537. /* Request a slot slot reset. */
  6538. return PCI_ERS_RESULT_NEED_RESET;
  6539. }
  6540. /**
  6541. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6542. * @pdev: Pointer to PCI device
  6543. *
  6544. * Restart the card from scratch, as if from a cold-boot.
  6545. */
  6546. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6547. {
  6548. struct net_device *dev = pci_get_drvdata(pdev);
  6549. struct bnx2 *bp = netdev_priv(dev);
  6550. rtnl_lock();
  6551. if (pci_enable_device(pdev)) {
  6552. dev_err(&pdev->dev,
  6553. "Cannot re-enable PCI device after reset.\n");
  6554. rtnl_unlock();
  6555. return PCI_ERS_RESULT_DISCONNECT;
  6556. }
  6557. pci_set_master(pdev);
  6558. pci_restore_state(pdev);
  6559. if (netif_running(dev)) {
  6560. bnx2_set_power_state(bp, PCI_D0);
  6561. bnx2_init_nic(bp, 1);
  6562. }
  6563. rtnl_unlock();
  6564. return PCI_ERS_RESULT_RECOVERED;
  6565. }
  6566. /**
  6567. * bnx2_io_resume - called when traffic can start flowing again.
  6568. * @pdev: Pointer to PCI device
  6569. *
  6570. * This callback is called when the error recovery driver tells us that
  6571. * its OK to resume normal operation.
  6572. */
  6573. static void bnx2_io_resume(struct pci_dev *pdev)
  6574. {
  6575. struct net_device *dev = pci_get_drvdata(pdev);
  6576. struct bnx2 *bp = netdev_priv(dev);
  6577. rtnl_lock();
  6578. if (netif_running(dev))
  6579. bnx2_netif_start(bp);
  6580. netif_device_attach(dev);
  6581. rtnl_unlock();
  6582. }
  6583. static struct pci_error_handlers bnx2_err_handler = {
  6584. .error_detected = bnx2_io_error_detected,
  6585. .slot_reset = bnx2_io_slot_reset,
  6586. .resume = bnx2_io_resume,
  6587. };
  6588. static struct pci_driver bnx2_pci_driver = {
  6589. .name = DRV_MODULE_NAME,
  6590. .id_table = bnx2_pci_tbl,
  6591. .probe = bnx2_init_one,
  6592. .remove = __devexit_p(bnx2_remove_one),
  6593. .suspend = bnx2_suspend,
  6594. .resume = bnx2_resume,
  6595. .err_handler = &bnx2_err_handler,
  6596. };
  6597. static int __init bnx2_init(void)
  6598. {
  6599. return pci_register_driver(&bnx2_pci_driver);
  6600. }
  6601. static void __exit bnx2_cleanup(void)
  6602. {
  6603. pci_unregister_driver(&bnx2_pci_driver);
  6604. }
  6605. module_init(bnx2_init);
  6606. module_exit(bnx2_cleanup);