backref.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 data_offset;
  37. u64 data_len;
  38. struct extent_inode_elem *e;
  39. data_offset = btrfs_file_extent_offset(eb, fi);
  40. data_len = btrfs_file_extent_num_bytes(eb, fi);
  41. if (extent_item_pos < data_offset ||
  42. extent_item_pos >= data_offset + data_len)
  43. return 1;
  44. e = kmalloc(sizeof(*e), GFP_NOFS);
  45. if (!e)
  46. return -ENOMEM;
  47. e->next = *eie;
  48. e->inum = key->objectid;
  49. e->offset = key->offset + (extent_item_pos - data_offset);
  50. *eie = e;
  51. return 0;
  52. }
  53. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  54. u64 extent_item_pos,
  55. struct extent_inode_elem **eie)
  56. {
  57. u64 disk_byte;
  58. struct btrfs_key key;
  59. struct btrfs_file_extent_item *fi;
  60. int slot;
  61. int nritems;
  62. int extent_type;
  63. int ret;
  64. /*
  65. * from the shared data ref, we only have the leaf but we need
  66. * the key. thus, we must look into all items and see that we
  67. * find one (some) with a reference to our extent item.
  68. */
  69. nritems = btrfs_header_nritems(eb);
  70. for (slot = 0; slot < nritems; ++slot) {
  71. btrfs_item_key_to_cpu(eb, &key, slot);
  72. if (key.type != BTRFS_EXTENT_DATA_KEY)
  73. continue;
  74. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  75. extent_type = btrfs_file_extent_type(eb, fi);
  76. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  77. continue;
  78. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  79. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  80. if (disk_byte != wanted_disk_byte)
  81. continue;
  82. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  83. if (ret < 0)
  84. return ret;
  85. }
  86. return 0;
  87. }
  88. /*
  89. * this structure records all encountered refs on the way up to the root
  90. */
  91. struct __prelim_ref {
  92. struct list_head list;
  93. u64 root_id;
  94. struct btrfs_key key_for_search;
  95. int level;
  96. int count;
  97. struct extent_inode_elem *inode_list;
  98. u64 parent;
  99. u64 wanted_disk_byte;
  100. };
  101. /*
  102. * the rules for all callers of this function are:
  103. * - obtaining the parent is the goal
  104. * - if you add a key, you must know that it is a correct key
  105. * - if you cannot add the parent or a correct key, then we will look into the
  106. * block later to set a correct key
  107. *
  108. * delayed refs
  109. * ============
  110. * backref type | shared | indirect | shared | indirect
  111. * information | tree | tree | data | data
  112. * --------------------+--------+----------+--------+----------
  113. * parent logical | y | - | - | -
  114. * key to resolve | - | y | y | y
  115. * tree block logical | - | - | - | -
  116. * root for resolving | y | y | y | y
  117. *
  118. * - column 1: we've the parent -> done
  119. * - column 2, 3, 4: we use the key to find the parent
  120. *
  121. * on disk refs (inline or keyed)
  122. * ==============================
  123. * backref type | shared | indirect | shared | indirect
  124. * information | tree | tree | data | data
  125. * --------------------+--------+----------+--------+----------
  126. * parent logical | y | - | y | -
  127. * key to resolve | - | - | - | y
  128. * tree block logical | y | y | y | y
  129. * root for resolving | - | y | y | y
  130. *
  131. * - column 1, 3: we've the parent -> done
  132. * - column 2: we take the first key from the block to find the parent
  133. * (see __add_missing_keys)
  134. * - column 4: we use the key to find the parent
  135. *
  136. * additional information that's available but not required to find the parent
  137. * block might help in merging entries to gain some speed.
  138. */
  139. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  140. struct btrfs_key *key, int level,
  141. u64 parent, u64 wanted_disk_byte, int count)
  142. {
  143. struct __prelim_ref *ref;
  144. /* in case we're adding delayed refs, we're holding the refs spinlock */
  145. ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
  146. if (!ref)
  147. return -ENOMEM;
  148. ref->root_id = root_id;
  149. if (key)
  150. ref->key_for_search = *key;
  151. else
  152. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  153. ref->inode_list = NULL;
  154. ref->level = level;
  155. ref->count = count;
  156. ref->parent = parent;
  157. ref->wanted_disk_byte = wanted_disk_byte;
  158. list_add_tail(&ref->list, head);
  159. return 0;
  160. }
  161. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  162. struct ulist *parents, int level,
  163. struct btrfs_key *key_for_search, u64 time_seq,
  164. u64 wanted_disk_byte,
  165. const u64 *extent_item_pos)
  166. {
  167. int ret = 0;
  168. int slot;
  169. struct extent_buffer *eb;
  170. struct btrfs_key key;
  171. struct btrfs_file_extent_item *fi;
  172. struct extent_inode_elem *eie = NULL;
  173. u64 disk_byte;
  174. if (level != 0) {
  175. eb = path->nodes[level];
  176. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  177. if (ret < 0)
  178. return ret;
  179. return 0;
  180. }
  181. /*
  182. * We normally enter this function with the path already pointing to
  183. * the first item to check. But sometimes, we may enter it with
  184. * slot==nritems. In that case, go to the next leaf before we continue.
  185. */
  186. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  187. ret = btrfs_next_old_leaf(root, path, time_seq);
  188. while (!ret) {
  189. eb = path->nodes[0];
  190. slot = path->slots[0];
  191. btrfs_item_key_to_cpu(eb, &key, slot);
  192. if (key.objectid != key_for_search->objectid ||
  193. key.type != BTRFS_EXTENT_DATA_KEY)
  194. break;
  195. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  196. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  197. if (disk_byte == wanted_disk_byte) {
  198. eie = NULL;
  199. if (extent_item_pos) {
  200. ret = check_extent_in_eb(&key, eb, fi,
  201. *extent_item_pos,
  202. &eie);
  203. if (ret < 0)
  204. break;
  205. }
  206. if (!ret) {
  207. ret = ulist_add(parents, eb->start,
  208. (uintptr_t)eie, GFP_NOFS);
  209. if (ret < 0)
  210. break;
  211. if (!extent_item_pos) {
  212. ret = btrfs_next_old_leaf(root, path,
  213. time_seq);
  214. continue;
  215. }
  216. }
  217. }
  218. ret = btrfs_next_old_item(root, path, time_seq);
  219. }
  220. if (ret > 0)
  221. ret = 0;
  222. return ret;
  223. }
  224. /*
  225. * resolve an indirect backref in the form (root_id, key, level)
  226. * to a logical address
  227. */
  228. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  229. int search_commit_root,
  230. u64 time_seq,
  231. struct __prelim_ref *ref,
  232. struct ulist *parents,
  233. const u64 *extent_item_pos)
  234. {
  235. struct btrfs_path *path;
  236. struct btrfs_root *root;
  237. struct btrfs_key root_key;
  238. struct extent_buffer *eb;
  239. int ret = 0;
  240. int root_level;
  241. int level = ref->level;
  242. path = btrfs_alloc_path();
  243. if (!path)
  244. return -ENOMEM;
  245. path->search_commit_root = !!search_commit_root;
  246. root_key.objectid = ref->root_id;
  247. root_key.type = BTRFS_ROOT_ITEM_KEY;
  248. root_key.offset = (u64)-1;
  249. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  250. if (IS_ERR(root)) {
  251. ret = PTR_ERR(root);
  252. goto out;
  253. }
  254. root_level = btrfs_old_root_level(root, time_seq);
  255. if (root_level + 1 == level)
  256. goto out;
  257. path->lowest_level = level;
  258. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  259. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  260. "%d for key (%llu %u %llu)\n",
  261. (unsigned long long)ref->root_id, level, ref->count, ret,
  262. (unsigned long long)ref->key_for_search.objectid,
  263. ref->key_for_search.type,
  264. (unsigned long long)ref->key_for_search.offset);
  265. if (ret < 0)
  266. goto out;
  267. eb = path->nodes[level];
  268. while (!eb) {
  269. if (!level) {
  270. WARN_ON(1);
  271. ret = 1;
  272. goto out;
  273. }
  274. level--;
  275. eb = path->nodes[level];
  276. }
  277. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  278. time_seq, ref->wanted_disk_byte,
  279. extent_item_pos);
  280. out:
  281. btrfs_free_path(path);
  282. return ret;
  283. }
  284. /*
  285. * resolve all indirect backrefs from the list
  286. */
  287. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  288. int search_commit_root, u64 time_seq,
  289. struct list_head *head,
  290. const u64 *extent_item_pos)
  291. {
  292. int err;
  293. int ret = 0;
  294. struct __prelim_ref *ref;
  295. struct __prelim_ref *ref_safe;
  296. struct __prelim_ref *new_ref;
  297. struct ulist *parents;
  298. struct ulist_node *node;
  299. struct ulist_iterator uiter;
  300. parents = ulist_alloc(GFP_NOFS);
  301. if (!parents)
  302. return -ENOMEM;
  303. /*
  304. * _safe allows us to insert directly after the current item without
  305. * iterating over the newly inserted items.
  306. * we're also allowed to re-assign ref during iteration.
  307. */
  308. list_for_each_entry_safe(ref, ref_safe, head, list) {
  309. if (ref->parent) /* already direct */
  310. continue;
  311. if (ref->count == 0)
  312. continue;
  313. err = __resolve_indirect_ref(fs_info, search_commit_root,
  314. time_seq, ref, parents,
  315. extent_item_pos);
  316. if (err == -ENOMEM)
  317. goto out;
  318. if (err)
  319. continue;
  320. /* we put the first parent into the ref at hand */
  321. ULIST_ITER_INIT(&uiter);
  322. node = ulist_next(parents, &uiter);
  323. ref->parent = node ? node->val : 0;
  324. ref->inode_list = node ?
  325. (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
  326. /* additional parents require new refs being added here */
  327. while ((node = ulist_next(parents, &uiter))) {
  328. new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
  329. if (!new_ref) {
  330. ret = -ENOMEM;
  331. goto out;
  332. }
  333. memcpy(new_ref, ref, sizeof(*ref));
  334. new_ref->parent = node->val;
  335. new_ref->inode_list = (struct extent_inode_elem *)
  336. (uintptr_t)node->aux;
  337. list_add(&new_ref->list, &ref->list);
  338. }
  339. ulist_reinit(parents);
  340. }
  341. out:
  342. ulist_free(parents);
  343. return ret;
  344. }
  345. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  346. struct __prelim_ref *ref2)
  347. {
  348. if (ref1->level != ref2->level)
  349. return 0;
  350. if (ref1->root_id != ref2->root_id)
  351. return 0;
  352. if (ref1->key_for_search.type != ref2->key_for_search.type)
  353. return 0;
  354. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  355. return 0;
  356. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  357. return 0;
  358. if (ref1->parent != ref2->parent)
  359. return 0;
  360. return 1;
  361. }
  362. /*
  363. * read tree blocks and add keys where required.
  364. */
  365. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  366. struct list_head *head)
  367. {
  368. struct list_head *pos;
  369. struct extent_buffer *eb;
  370. list_for_each(pos, head) {
  371. struct __prelim_ref *ref;
  372. ref = list_entry(pos, struct __prelim_ref, list);
  373. if (ref->parent)
  374. continue;
  375. if (ref->key_for_search.type)
  376. continue;
  377. BUG_ON(!ref->wanted_disk_byte);
  378. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  379. fs_info->tree_root->leafsize, 0);
  380. BUG_ON(!eb);
  381. btrfs_tree_read_lock(eb);
  382. if (btrfs_header_level(eb) == 0)
  383. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  384. else
  385. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  386. btrfs_tree_read_unlock(eb);
  387. free_extent_buffer(eb);
  388. }
  389. return 0;
  390. }
  391. /*
  392. * merge two lists of backrefs and adjust counts accordingly
  393. *
  394. * mode = 1: merge identical keys, if key is set
  395. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  396. * additionally, we could even add a key range for the blocks we
  397. * looked into to merge even more (-> replace unresolved refs by those
  398. * having a parent).
  399. * mode = 2: merge identical parents
  400. */
  401. static void __merge_refs(struct list_head *head, int mode)
  402. {
  403. struct list_head *pos1;
  404. list_for_each(pos1, head) {
  405. struct list_head *n2;
  406. struct list_head *pos2;
  407. struct __prelim_ref *ref1;
  408. ref1 = list_entry(pos1, struct __prelim_ref, list);
  409. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  410. pos2 = n2, n2 = pos2->next) {
  411. struct __prelim_ref *ref2;
  412. struct __prelim_ref *xchg;
  413. struct extent_inode_elem *eie;
  414. ref2 = list_entry(pos2, struct __prelim_ref, list);
  415. if (mode == 1) {
  416. if (!ref_for_same_block(ref1, ref2))
  417. continue;
  418. if (!ref1->parent && ref2->parent) {
  419. xchg = ref1;
  420. ref1 = ref2;
  421. ref2 = xchg;
  422. }
  423. } else {
  424. if (ref1->parent != ref2->parent)
  425. continue;
  426. }
  427. eie = ref1->inode_list;
  428. while (eie && eie->next)
  429. eie = eie->next;
  430. if (eie)
  431. eie->next = ref2->inode_list;
  432. else
  433. ref1->inode_list = ref2->inode_list;
  434. ref1->count += ref2->count;
  435. list_del(&ref2->list);
  436. kfree(ref2);
  437. }
  438. }
  439. }
  440. /*
  441. * add all currently queued delayed refs from this head whose seq nr is
  442. * smaller or equal that seq to the list
  443. */
  444. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  445. struct list_head *prefs)
  446. {
  447. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  448. struct rb_node *n = &head->node.rb_node;
  449. struct btrfs_key key;
  450. struct btrfs_key op_key = {0};
  451. int sgn;
  452. int ret = 0;
  453. if (extent_op && extent_op->update_key)
  454. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  455. while ((n = rb_prev(n))) {
  456. struct btrfs_delayed_ref_node *node;
  457. node = rb_entry(n, struct btrfs_delayed_ref_node,
  458. rb_node);
  459. if (node->bytenr != head->node.bytenr)
  460. break;
  461. WARN_ON(node->is_head);
  462. if (node->seq > seq)
  463. continue;
  464. switch (node->action) {
  465. case BTRFS_ADD_DELAYED_EXTENT:
  466. case BTRFS_UPDATE_DELAYED_HEAD:
  467. WARN_ON(1);
  468. continue;
  469. case BTRFS_ADD_DELAYED_REF:
  470. sgn = 1;
  471. break;
  472. case BTRFS_DROP_DELAYED_REF:
  473. sgn = -1;
  474. break;
  475. default:
  476. BUG_ON(1);
  477. }
  478. switch (node->type) {
  479. case BTRFS_TREE_BLOCK_REF_KEY: {
  480. struct btrfs_delayed_tree_ref *ref;
  481. ref = btrfs_delayed_node_to_tree_ref(node);
  482. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  483. ref->level + 1, 0, node->bytenr,
  484. node->ref_mod * sgn);
  485. break;
  486. }
  487. case BTRFS_SHARED_BLOCK_REF_KEY: {
  488. struct btrfs_delayed_tree_ref *ref;
  489. ref = btrfs_delayed_node_to_tree_ref(node);
  490. ret = __add_prelim_ref(prefs, ref->root, NULL,
  491. ref->level + 1, ref->parent,
  492. node->bytenr,
  493. node->ref_mod * sgn);
  494. break;
  495. }
  496. case BTRFS_EXTENT_DATA_REF_KEY: {
  497. struct btrfs_delayed_data_ref *ref;
  498. ref = btrfs_delayed_node_to_data_ref(node);
  499. key.objectid = ref->objectid;
  500. key.type = BTRFS_EXTENT_DATA_KEY;
  501. key.offset = ref->offset;
  502. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  503. node->bytenr,
  504. node->ref_mod * sgn);
  505. break;
  506. }
  507. case BTRFS_SHARED_DATA_REF_KEY: {
  508. struct btrfs_delayed_data_ref *ref;
  509. ref = btrfs_delayed_node_to_data_ref(node);
  510. key.objectid = ref->objectid;
  511. key.type = BTRFS_EXTENT_DATA_KEY;
  512. key.offset = ref->offset;
  513. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  514. ref->parent, node->bytenr,
  515. node->ref_mod * sgn);
  516. break;
  517. }
  518. default:
  519. WARN_ON(1);
  520. }
  521. if (ret)
  522. return ret;
  523. }
  524. return 0;
  525. }
  526. /*
  527. * add all inline backrefs for bytenr to the list
  528. */
  529. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  530. struct btrfs_path *path, u64 bytenr,
  531. int *info_level, struct list_head *prefs)
  532. {
  533. int ret = 0;
  534. int slot;
  535. struct extent_buffer *leaf;
  536. struct btrfs_key key;
  537. unsigned long ptr;
  538. unsigned long end;
  539. struct btrfs_extent_item *ei;
  540. u64 flags;
  541. u64 item_size;
  542. /*
  543. * enumerate all inline refs
  544. */
  545. leaf = path->nodes[0];
  546. slot = path->slots[0];
  547. item_size = btrfs_item_size_nr(leaf, slot);
  548. BUG_ON(item_size < sizeof(*ei));
  549. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  550. flags = btrfs_extent_flags(leaf, ei);
  551. ptr = (unsigned long)(ei + 1);
  552. end = (unsigned long)ei + item_size;
  553. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  554. struct btrfs_tree_block_info *info;
  555. info = (struct btrfs_tree_block_info *)ptr;
  556. *info_level = btrfs_tree_block_level(leaf, info);
  557. ptr += sizeof(struct btrfs_tree_block_info);
  558. BUG_ON(ptr > end);
  559. } else {
  560. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  561. }
  562. while (ptr < end) {
  563. struct btrfs_extent_inline_ref *iref;
  564. u64 offset;
  565. int type;
  566. iref = (struct btrfs_extent_inline_ref *)ptr;
  567. type = btrfs_extent_inline_ref_type(leaf, iref);
  568. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  569. switch (type) {
  570. case BTRFS_SHARED_BLOCK_REF_KEY:
  571. ret = __add_prelim_ref(prefs, 0, NULL,
  572. *info_level + 1, offset,
  573. bytenr, 1);
  574. break;
  575. case BTRFS_SHARED_DATA_REF_KEY: {
  576. struct btrfs_shared_data_ref *sdref;
  577. int count;
  578. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  579. count = btrfs_shared_data_ref_count(leaf, sdref);
  580. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  581. bytenr, count);
  582. break;
  583. }
  584. case BTRFS_TREE_BLOCK_REF_KEY:
  585. ret = __add_prelim_ref(prefs, offset, NULL,
  586. *info_level + 1, 0,
  587. bytenr, 1);
  588. break;
  589. case BTRFS_EXTENT_DATA_REF_KEY: {
  590. struct btrfs_extent_data_ref *dref;
  591. int count;
  592. u64 root;
  593. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  594. count = btrfs_extent_data_ref_count(leaf, dref);
  595. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  596. dref);
  597. key.type = BTRFS_EXTENT_DATA_KEY;
  598. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  599. root = btrfs_extent_data_ref_root(leaf, dref);
  600. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  601. bytenr, count);
  602. break;
  603. }
  604. default:
  605. WARN_ON(1);
  606. }
  607. if (ret)
  608. return ret;
  609. ptr += btrfs_extent_inline_ref_size(type);
  610. }
  611. return 0;
  612. }
  613. /*
  614. * add all non-inline backrefs for bytenr to the list
  615. */
  616. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  617. struct btrfs_path *path, u64 bytenr,
  618. int info_level, struct list_head *prefs)
  619. {
  620. struct btrfs_root *extent_root = fs_info->extent_root;
  621. int ret;
  622. int slot;
  623. struct extent_buffer *leaf;
  624. struct btrfs_key key;
  625. while (1) {
  626. ret = btrfs_next_item(extent_root, path);
  627. if (ret < 0)
  628. break;
  629. if (ret) {
  630. ret = 0;
  631. break;
  632. }
  633. slot = path->slots[0];
  634. leaf = path->nodes[0];
  635. btrfs_item_key_to_cpu(leaf, &key, slot);
  636. if (key.objectid != bytenr)
  637. break;
  638. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  639. continue;
  640. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  641. break;
  642. switch (key.type) {
  643. case BTRFS_SHARED_BLOCK_REF_KEY:
  644. ret = __add_prelim_ref(prefs, 0, NULL,
  645. info_level + 1, key.offset,
  646. bytenr, 1);
  647. break;
  648. case BTRFS_SHARED_DATA_REF_KEY: {
  649. struct btrfs_shared_data_ref *sdref;
  650. int count;
  651. sdref = btrfs_item_ptr(leaf, slot,
  652. struct btrfs_shared_data_ref);
  653. count = btrfs_shared_data_ref_count(leaf, sdref);
  654. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  655. bytenr, count);
  656. break;
  657. }
  658. case BTRFS_TREE_BLOCK_REF_KEY:
  659. ret = __add_prelim_ref(prefs, key.offset, NULL,
  660. info_level + 1, 0,
  661. bytenr, 1);
  662. break;
  663. case BTRFS_EXTENT_DATA_REF_KEY: {
  664. struct btrfs_extent_data_ref *dref;
  665. int count;
  666. u64 root;
  667. dref = btrfs_item_ptr(leaf, slot,
  668. struct btrfs_extent_data_ref);
  669. count = btrfs_extent_data_ref_count(leaf, dref);
  670. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  671. dref);
  672. key.type = BTRFS_EXTENT_DATA_KEY;
  673. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  674. root = btrfs_extent_data_ref_root(leaf, dref);
  675. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  676. bytenr, count);
  677. break;
  678. }
  679. default:
  680. WARN_ON(1);
  681. }
  682. if (ret)
  683. return ret;
  684. }
  685. return ret;
  686. }
  687. /*
  688. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  689. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  690. * indirect refs to their parent bytenr.
  691. * When roots are found, they're added to the roots list
  692. *
  693. * FIXME some caching might speed things up
  694. */
  695. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  696. struct btrfs_fs_info *fs_info, u64 bytenr,
  697. u64 time_seq, struct ulist *refs,
  698. struct ulist *roots, const u64 *extent_item_pos)
  699. {
  700. struct btrfs_key key;
  701. struct btrfs_path *path;
  702. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  703. struct btrfs_delayed_ref_head *head;
  704. int info_level = 0;
  705. int ret;
  706. int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
  707. struct list_head prefs_delayed;
  708. struct list_head prefs;
  709. struct __prelim_ref *ref;
  710. INIT_LIST_HEAD(&prefs);
  711. INIT_LIST_HEAD(&prefs_delayed);
  712. key.objectid = bytenr;
  713. key.type = BTRFS_EXTENT_ITEM_KEY;
  714. key.offset = (u64)-1;
  715. path = btrfs_alloc_path();
  716. if (!path)
  717. return -ENOMEM;
  718. path->search_commit_root = !!search_commit_root;
  719. /*
  720. * grab both a lock on the path and a lock on the delayed ref head.
  721. * We need both to get a consistent picture of how the refs look
  722. * at a specified point in time
  723. */
  724. again:
  725. head = NULL;
  726. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  727. if (ret < 0)
  728. goto out;
  729. BUG_ON(ret == 0);
  730. if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
  731. /*
  732. * look if there are updates for this ref queued and lock the
  733. * head
  734. */
  735. delayed_refs = &trans->transaction->delayed_refs;
  736. spin_lock(&delayed_refs->lock);
  737. head = btrfs_find_delayed_ref_head(trans, bytenr);
  738. if (head) {
  739. if (!mutex_trylock(&head->mutex)) {
  740. atomic_inc(&head->node.refs);
  741. spin_unlock(&delayed_refs->lock);
  742. btrfs_release_path(path);
  743. /*
  744. * Mutex was contended, block until it's
  745. * released and try again
  746. */
  747. mutex_lock(&head->mutex);
  748. mutex_unlock(&head->mutex);
  749. btrfs_put_delayed_ref(&head->node);
  750. goto again;
  751. }
  752. ret = __add_delayed_refs(head, time_seq,
  753. &prefs_delayed);
  754. mutex_unlock(&head->mutex);
  755. if (ret) {
  756. spin_unlock(&delayed_refs->lock);
  757. goto out;
  758. }
  759. }
  760. spin_unlock(&delayed_refs->lock);
  761. }
  762. if (path->slots[0]) {
  763. struct extent_buffer *leaf;
  764. int slot;
  765. path->slots[0]--;
  766. leaf = path->nodes[0];
  767. slot = path->slots[0];
  768. btrfs_item_key_to_cpu(leaf, &key, slot);
  769. if (key.objectid == bytenr &&
  770. key.type == BTRFS_EXTENT_ITEM_KEY) {
  771. ret = __add_inline_refs(fs_info, path, bytenr,
  772. &info_level, &prefs);
  773. if (ret)
  774. goto out;
  775. ret = __add_keyed_refs(fs_info, path, bytenr,
  776. info_level, &prefs);
  777. if (ret)
  778. goto out;
  779. }
  780. }
  781. btrfs_release_path(path);
  782. list_splice_init(&prefs_delayed, &prefs);
  783. ret = __add_missing_keys(fs_info, &prefs);
  784. if (ret)
  785. goto out;
  786. __merge_refs(&prefs, 1);
  787. ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
  788. &prefs, extent_item_pos);
  789. if (ret)
  790. goto out;
  791. __merge_refs(&prefs, 2);
  792. while (!list_empty(&prefs)) {
  793. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  794. list_del(&ref->list);
  795. WARN_ON(ref->count < 0);
  796. if (ref->count && ref->root_id && ref->parent == 0) {
  797. /* no parent == root of tree */
  798. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  799. if (ret < 0)
  800. goto out;
  801. }
  802. if (ref->count && ref->parent) {
  803. struct extent_inode_elem *eie = NULL;
  804. if (extent_item_pos && !ref->inode_list) {
  805. u32 bsz;
  806. struct extent_buffer *eb;
  807. bsz = btrfs_level_size(fs_info->extent_root,
  808. info_level);
  809. eb = read_tree_block(fs_info->extent_root,
  810. ref->parent, bsz, 0);
  811. BUG_ON(!eb);
  812. ret = find_extent_in_eb(eb, bytenr,
  813. *extent_item_pos, &eie);
  814. ref->inode_list = eie;
  815. free_extent_buffer(eb);
  816. }
  817. ret = ulist_add_merge(refs, ref->parent,
  818. (uintptr_t)ref->inode_list,
  819. (u64 *)&eie, GFP_NOFS);
  820. if (ret < 0)
  821. goto out;
  822. if (!ret && extent_item_pos) {
  823. /*
  824. * we've recorded that parent, so we must extend
  825. * its inode list here
  826. */
  827. BUG_ON(!eie);
  828. while (eie->next)
  829. eie = eie->next;
  830. eie->next = ref->inode_list;
  831. }
  832. }
  833. kfree(ref);
  834. }
  835. out:
  836. btrfs_free_path(path);
  837. while (!list_empty(&prefs)) {
  838. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  839. list_del(&ref->list);
  840. kfree(ref);
  841. }
  842. while (!list_empty(&prefs_delayed)) {
  843. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  844. list);
  845. list_del(&ref->list);
  846. kfree(ref);
  847. }
  848. return ret;
  849. }
  850. static void free_leaf_list(struct ulist *blocks)
  851. {
  852. struct ulist_node *node = NULL;
  853. struct extent_inode_elem *eie;
  854. struct extent_inode_elem *eie_next;
  855. struct ulist_iterator uiter;
  856. ULIST_ITER_INIT(&uiter);
  857. while ((node = ulist_next(blocks, &uiter))) {
  858. if (!node->aux)
  859. continue;
  860. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  861. for (; eie; eie = eie_next) {
  862. eie_next = eie->next;
  863. kfree(eie);
  864. }
  865. node->aux = 0;
  866. }
  867. ulist_free(blocks);
  868. }
  869. /*
  870. * Finds all leafs with a reference to the specified combination of bytenr and
  871. * offset. key_list_head will point to a list of corresponding keys (caller must
  872. * free each list element). The leafs will be stored in the leafs ulist, which
  873. * must be freed with ulist_free.
  874. *
  875. * returns 0 on success, <0 on error
  876. */
  877. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  878. struct btrfs_fs_info *fs_info, u64 bytenr,
  879. u64 time_seq, struct ulist **leafs,
  880. const u64 *extent_item_pos)
  881. {
  882. struct ulist *tmp;
  883. int ret;
  884. tmp = ulist_alloc(GFP_NOFS);
  885. if (!tmp)
  886. return -ENOMEM;
  887. *leafs = ulist_alloc(GFP_NOFS);
  888. if (!*leafs) {
  889. ulist_free(tmp);
  890. return -ENOMEM;
  891. }
  892. ret = find_parent_nodes(trans, fs_info, bytenr,
  893. time_seq, *leafs, tmp, extent_item_pos);
  894. ulist_free(tmp);
  895. if (ret < 0 && ret != -ENOENT) {
  896. free_leaf_list(*leafs);
  897. return ret;
  898. }
  899. return 0;
  900. }
  901. /*
  902. * walk all backrefs for a given extent to find all roots that reference this
  903. * extent. Walking a backref means finding all extents that reference this
  904. * extent and in turn walk the backrefs of those, too. Naturally this is a
  905. * recursive process, but here it is implemented in an iterative fashion: We
  906. * find all referencing extents for the extent in question and put them on a
  907. * list. In turn, we find all referencing extents for those, further appending
  908. * to the list. The way we iterate the list allows adding more elements after
  909. * the current while iterating. The process stops when we reach the end of the
  910. * list. Found roots are added to the roots list.
  911. *
  912. * returns 0 on success, < 0 on error.
  913. */
  914. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  915. struct btrfs_fs_info *fs_info, u64 bytenr,
  916. u64 time_seq, struct ulist **roots)
  917. {
  918. struct ulist *tmp;
  919. struct ulist_node *node = NULL;
  920. struct ulist_iterator uiter;
  921. int ret;
  922. tmp = ulist_alloc(GFP_NOFS);
  923. if (!tmp)
  924. return -ENOMEM;
  925. *roots = ulist_alloc(GFP_NOFS);
  926. if (!*roots) {
  927. ulist_free(tmp);
  928. return -ENOMEM;
  929. }
  930. ULIST_ITER_INIT(&uiter);
  931. while (1) {
  932. ret = find_parent_nodes(trans, fs_info, bytenr,
  933. time_seq, tmp, *roots, NULL);
  934. if (ret < 0 && ret != -ENOENT) {
  935. ulist_free(tmp);
  936. ulist_free(*roots);
  937. return ret;
  938. }
  939. node = ulist_next(tmp, &uiter);
  940. if (!node)
  941. break;
  942. bytenr = node->val;
  943. }
  944. ulist_free(tmp);
  945. return 0;
  946. }
  947. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  948. struct btrfs_root *fs_root, struct btrfs_path *path,
  949. struct btrfs_key *found_key)
  950. {
  951. int ret;
  952. struct btrfs_key key;
  953. struct extent_buffer *eb;
  954. key.type = key_type;
  955. key.objectid = inum;
  956. key.offset = ioff;
  957. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  958. if (ret < 0)
  959. return ret;
  960. eb = path->nodes[0];
  961. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  962. ret = btrfs_next_leaf(fs_root, path);
  963. if (ret)
  964. return ret;
  965. eb = path->nodes[0];
  966. }
  967. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  968. if (found_key->type != key.type || found_key->objectid != key.objectid)
  969. return 1;
  970. return 0;
  971. }
  972. /*
  973. * this makes the path point to (inum INODE_ITEM ioff)
  974. */
  975. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  976. struct btrfs_path *path)
  977. {
  978. struct btrfs_key key;
  979. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  980. &key);
  981. }
  982. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  983. struct btrfs_path *path,
  984. struct btrfs_key *found_key)
  985. {
  986. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  987. found_key);
  988. }
  989. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  990. u64 start_off, struct btrfs_path *path,
  991. struct btrfs_inode_extref **ret_extref,
  992. u64 *found_off)
  993. {
  994. int ret, slot;
  995. struct btrfs_key key;
  996. struct btrfs_key found_key;
  997. struct btrfs_inode_extref *extref;
  998. struct extent_buffer *leaf;
  999. unsigned long ptr;
  1000. key.objectid = inode_objectid;
  1001. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1002. key.offset = start_off;
  1003. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1004. if (ret < 0)
  1005. return ret;
  1006. while (1) {
  1007. leaf = path->nodes[0];
  1008. slot = path->slots[0];
  1009. if (slot >= btrfs_header_nritems(leaf)) {
  1010. /*
  1011. * If the item at offset is not found,
  1012. * btrfs_search_slot will point us to the slot
  1013. * where it should be inserted. In our case
  1014. * that will be the slot directly before the
  1015. * next INODE_REF_KEY_V2 item. In the case
  1016. * that we're pointing to the last slot in a
  1017. * leaf, we must move one leaf over.
  1018. */
  1019. ret = btrfs_next_leaf(root, path);
  1020. if (ret) {
  1021. if (ret >= 1)
  1022. ret = -ENOENT;
  1023. break;
  1024. }
  1025. continue;
  1026. }
  1027. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1028. /*
  1029. * Check that we're still looking at an extended ref key for
  1030. * this particular objectid. If we have different
  1031. * objectid or type then there are no more to be found
  1032. * in the tree and we can exit.
  1033. */
  1034. ret = -ENOENT;
  1035. if (found_key.objectid != inode_objectid)
  1036. break;
  1037. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1038. break;
  1039. ret = 0;
  1040. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1041. extref = (struct btrfs_inode_extref *)ptr;
  1042. *ret_extref = extref;
  1043. if (found_off)
  1044. *found_off = found_key.offset;
  1045. break;
  1046. }
  1047. return ret;
  1048. }
  1049. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1050. u32 name_len, unsigned long name_off,
  1051. struct extent_buffer *eb_in, u64 parent,
  1052. char *dest, u32 size)
  1053. {
  1054. int slot;
  1055. u64 next_inum;
  1056. int ret;
  1057. s64 bytes_left = ((s64)size) - 1;
  1058. struct extent_buffer *eb = eb_in;
  1059. struct btrfs_key found_key;
  1060. int leave_spinning = path->leave_spinning;
  1061. struct btrfs_inode_ref *iref;
  1062. if (bytes_left >= 0)
  1063. dest[bytes_left] = '\0';
  1064. path->leave_spinning = 1;
  1065. while (1) {
  1066. bytes_left -= name_len;
  1067. if (bytes_left >= 0)
  1068. read_extent_buffer(eb, dest + bytes_left,
  1069. name_off, name_len);
  1070. if (eb != eb_in) {
  1071. btrfs_tree_read_unlock_blocking(eb);
  1072. free_extent_buffer(eb);
  1073. }
  1074. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1075. if (ret > 0)
  1076. ret = -ENOENT;
  1077. if (ret)
  1078. break;
  1079. next_inum = found_key.offset;
  1080. /* regular exit ahead */
  1081. if (parent == next_inum)
  1082. break;
  1083. slot = path->slots[0];
  1084. eb = path->nodes[0];
  1085. /* make sure we can use eb after releasing the path */
  1086. if (eb != eb_in) {
  1087. atomic_inc(&eb->refs);
  1088. btrfs_tree_read_lock(eb);
  1089. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1090. }
  1091. btrfs_release_path(path);
  1092. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1093. name_len = btrfs_inode_ref_name_len(eb, iref);
  1094. name_off = (unsigned long)(iref + 1);
  1095. parent = next_inum;
  1096. --bytes_left;
  1097. if (bytes_left >= 0)
  1098. dest[bytes_left] = '/';
  1099. }
  1100. btrfs_release_path(path);
  1101. path->leave_spinning = leave_spinning;
  1102. if (ret)
  1103. return ERR_PTR(ret);
  1104. return dest + bytes_left;
  1105. }
  1106. /*
  1107. * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
  1108. * of the path are separated by '/' and the path is guaranteed to be
  1109. * 0-terminated. the path is only given within the current file system.
  1110. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1111. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1112. * the start point of the resulting string is returned. this pointer is within
  1113. * dest, normally.
  1114. * in case the path buffer would overflow, the pointer is decremented further
  1115. * as if output was written to the buffer, though no more output is actually
  1116. * generated. that way, the caller can determine how much space would be
  1117. * required for the path to fit into the buffer. in that case, the returned
  1118. * value will be smaller than dest. callers must check this!
  1119. */
  1120. char *btrfs_iref_to_path(struct btrfs_root *fs_root,
  1121. struct btrfs_path *path,
  1122. struct btrfs_inode_ref *iref,
  1123. struct extent_buffer *eb_in, u64 parent,
  1124. char *dest, u32 size)
  1125. {
  1126. return btrfs_ref_to_path(fs_root, path,
  1127. btrfs_inode_ref_name_len(eb_in, iref),
  1128. (unsigned long)(iref + 1),
  1129. eb_in, parent, dest, size);
  1130. }
  1131. /*
  1132. * this makes the path point to (logical EXTENT_ITEM *)
  1133. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1134. * tree blocks and <0 on error.
  1135. */
  1136. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1137. struct btrfs_path *path, struct btrfs_key *found_key,
  1138. u64 *flags_ret)
  1139. {
  1140. int ret;
  1141. u64 flags;
  1142. u32 item_size;
  1143. struct extent_buffer *eb;
  1144. struct btrfs_extent_item *ei;
  1145. struct btrfs_key key;
  1146. key.type = BTRFS_EXTENT_ITEM_KEY;
  1147. key.objectid = logical;
  1148. key.offset = (u64)-1;
  1149. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1150. if (ret < 0)
  1151. return ret;
  1152. ret = btrfs_previous_item(fs_info->extent_root, path,
  1153. 0, BTRFS_EXTENT_ITEM_KEY);
  1154. if (ret < 0)
  1155. return ret;
  1156. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1157. if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
  1158. found_key->objectid > logical ||
  1159. found_key->objectid + found_key->offset <= logical) {
  1160. pr_debug("logical %llu is not within any extent\n",
  1161. (unsigned long long)logical);
  1162. return -ENOENT;
  1163. }
  1164. eb = path->nodes[0];
  1165. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1166. BUG_ON(item_size < sizeof(*ei));
  1167. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1168. flags = btrfs_extent_flags(eb, ei);
  1169. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1170. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1171. (unsigned long long)logical,
  1172. (unsigned long long)(logical - found_key->objectid),
  1173. (unsigned long long)found_key->objectid,
  1174. (unsigned long long)found_key->offset,
  1175. (unsigned long long)flags, item_size);
  1176. WARN_ON(!flags_ret);
  1177. if (flags_ret) {
  1178. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1179. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1180. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1181. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1182. else
  1183. BUG_ON(1);
  1184. return 0;
  1185. }
  1186. return -EIO;
  1187. }
  1188. /*
  1189. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1190. * for the first call and may be modified. it is used to track state.
  1191. * if more refs exist, 0 is returned and the next call to
  1192. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1193. * next ref. after the last ref was processed, 1 is returned.
  1194. * returns <0 on error
  1195. */
  1196. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1197. struct btrfs_extent_item *ei, u32 item_size,
  1198. struct btrfs_extent_inline_ref **out_eiref,
  1199. int *out_type)
  1200. {
  1201. unsigned long end;
  1202. u64 flags;
  1203. struct btrfs_tree_block_info *info;
  1204. if (!*ptr) {
  1205. /* first call */
  1206. flags = btrfs_extent_flags(eb, ei);
  1207. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1208. info = (struct btrfs_tree_block_info *)(ei + 1);
  1209. *out_eiref =
  1210. (struct btrfs_extent_inline_ref *)(info + 1);
  1211. } else {
  1212. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1213. }
  1214. *ptr = (unsigned long)*out_eiref;
  1215. if ((void *)*ptr >= (void *)ei + item_size)
  1216. return -ENOENT;
  1217. }
  1218. end = (unsigned long)ei + item_size;
  1219. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1220. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1221. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1222. WARN_ON(*ptr > end);
  1223. if (*ptr == end)
  1224. return 1; /* last */
  1225. return 0;
  1226. }
  1227. /*
  1228. * reads the tree block backref for an extent. tree level and root are returned
  1229. * through out_level and out_root. ptr must point to a 0 value for the first
  1230. * call and may be modified (see __get_extent_inline_ref comment).
  1231. * returns 0 if data was provided, 1 if there was no more data to provide or
  1232. * <0 on error.
  1233. */
  1234. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1235. struct btrfs_extent_item *ei, u32 item_size,
  1236. u64 *out_root, u8 *out_level)
  1237. {
  1238. int ret;
  1239. int type;
  1240. struct btrfs_tree_block_info *info;
  1241. struct btrfs_extent_inline_ref *eiref;
  1242. if (*ptr == (unsigned long)-1)
  1243. return 1;
  1244. while (1) {
  1245. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1246. &eiref, &type);
  1247. if (ret < 0)
  1248. return ret;
  1249. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1250. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1251. break;
  1252. if (ret == 1)
  1253. return 1;
  1254. }
  1255. /* we can treat both ref types equally here */
  1256. info = (struct btrfs_tree_block_info *)(ei + 1);
  1257. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1258. *out_level = btrfs_tree_block_level(eb, info);
  1259. if (ret == 1)
  1260. *ptr = (unsigned long)-1;
  1261. return 0;
  1262. }
  1263. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1264. u64 root, u64 extent_item_objectid,
  1265. iterate_extent_inodes_t *iterate, void *ctx)
  1266. {
  1267. struct extent_inode_elem *eie;
  1268. int ret = 0;
  1269. for (eie = inode_list; eie; eie = eie->next) {
  1270. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1271. "root %llu\n", extent_item_objectid,
  1272. eie->inum, eie->offset, root);
  1273. ret = iterate(eie->inum, eie->offset, root, ctx);
  1274. if (ret) {
  1275. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1276. extent_item_objectid, ret);
  1277. break;
  1278. }
  1279. }
  1280. return ret;
  1281. }
  1282. /*
  1283. * calls iterate() for every inode that references the extent identified by
  1284. * the given parameters.
  1285. * when the iterator function returns a non-zero value, iteration stops.
  1286. */
  1287. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1288. u64 extent_item_objectid, u64 extent_item_pos,
  1289. int search_commit_root,
  1290. iterate_extent_inodes_t *iterate, void *ctx)
  1291. {
  1292. int ret;
  1293. struct btrfs_trans_handle *trans;
  1294. struct ulist *refs = NULL;
  1295. struct ulist *roots = NULL;
  1296. struct ulist_node *ref_node = NULL;
  1297. struct ulist_node *root_node = NULL;
  1298. struct seq_list tree_mod_seq_elem = {};
  1299. struct ulist_iterator ref_uiter;
  1300. struct ulist_iterator root_uiter;
  1301. pr_debug("resolving all inodes for extent %llu\n",
  1302. extent_item_objectid);
  1303. if (search_commit_root) {
  1304. trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
  1305. } else {
  1306. trans = btrfs_join_transaction(fs_info->extent_root);
  1307. if (IS_ERR(trans))
  1308. return PTR_ERR(trans);
  1309. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1310. }
  1311. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1312. tree_mod_seq_elem.seq, &refs,
  1313. &extent_item_pos);
  1314. if (ret)
  1315. goto out;
  1316. ULIST_ITER_INIT(&ref_uiter);
  1317. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1318. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1319. tree_mod_seq_elem.seq, &roots);
  1320. if (ret)
  1321. break;
  1322. ULIST_ITER_INIT(&root_uiter);
  1323. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1324. pr_debug("root %llu references leaf %llu, data list "
  1325. "%#llx\n", root_node->val, ref_node->val,
  1326. (long long)ref_node->aux);
  1327. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1328. (uintptr_t)ref_node->aux,
  1329. root_node->val,
  1330. extent_item_objectid,
  1331. iterate, ctx);
  1332. }
  1333. ulist_free(roots);
  1334. }
  1335. free_leaf_list(refs);
  1336. out:
  1337. if (!search_commit_root) {
  1338. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1339. btrfs_end_transaction(trans, fs_info->extent_root);
  1340. }
  1341. return ret;
  1342. }
  1343. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1344. struct btrfs_path *path,
  1345. iterate_extent_inodes_t *iterate, void *ctx)
  1346. {
  1347. int ret;
  1348. u64 extent_item_pos;
  1349. u64 flags = 0;
  1350. struct btrfs_key found_key;
  1351. int search_commit_root = path->search_commit_root;
  1352. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1353. btrfs_release_path(path);
  1354. if (ret < 0)
  1355. return ret;
  1356. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1357. return -EINVAL;
  1358. extent_item_pos = logical - found_key.objectid;
  1359. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1360. extent_item_pos, search_commit_root,
  1361. iterate, ctx);
  1362. return ret;
  1363. }
  1364. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1365. struct extent_buffer *eb, void *ctx);
  1366. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1367. struct btrfs_path *path,
  1368. iterate_irefs_t *iterate, void *ctx)
  1369. {
  1370. int ret = 0;
  1371. int slot;
  1372. u32 cur;
  1373. u32 len;
  1374. u32 name_len;
  1375. u64 parent = 0;
  1376. int found = 0;
  1377. struct extent_buffer *eb;
  1378. struct btrfs_item *item;
  1379. struct btrfs_inode_ref *iref;
  1380. struct btrfs_key found_key;
  1381. while (!ret) {
  1382. path->leave_spinning = 1;
  1383. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1384. &found_key);
  1385. if (ret < 0)
  1386. break;
  1387. if (ret) {
  1388. ret = found ? 0 : -ENOENT;
  1389. break;
  1390. }
  1391. ++found;
  1392. parent = found_key.offset;
  1393. slot = path->slots[0];
  1394. eb = path->nodes[0];
  1395. /* make sure we can use eb after releasing the path */
  1396. atomic_inc(&eb->refs);
  1397. btrfs_tree_read_lock(eb);
  1398. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1399. btrfs_release_path(path);
  1400. item = btrfs_item_nr(eb, slot);
  1401. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1402. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1403. name_len = btrfs_inode_ref_name_len(eb, iref);
  1404. /* path must be released before calling iterate()! */
  1405. pr_debug("following ref at offset %u for inode %llu in "
  1406. "tree %llu\n", cur,
  1407. (unsigned long long)found_key.objectid,
  1408. (unsigned long long)fs_root->objectid);
  1409. ret = iterate(parent, name_len,
  1410. (unsigned long)(iref + 1), eb, ctx);
  1411. if (ret)
  1412. break;
  1413. len = sizeof(*iref) + name_len;
  1414. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1415. }
  1416. btrfs_tree_read_unlock_blocking(eb);
  1417. free_extent_buffer(eb);
  1418. }
  1419. btrfs_release_path(path);
  1420. return ret;
  1421. }
  1422. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1423. struct btrfs_path *path,
  1424. iterate_irefs_t *iterate, void *ctx)
  1425. {
  1426. int ret;
  1427. int slot;
  1428. u64 offset = 0;
  1429. u64 parent;
  1430. int found = 0;
  1431. struct extent_buffer *eb;
  1432. struct btrfs_inode_extref *extref;
  1433. struct extent_buffer *leaf;
  1434. u32 item_size;
  1435. u32 cur_offset;
  1436. unsigned long ptr;
  1437. while (1) {
  1438. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1439. &offset);
  1440. if (ret < 0)
  1441. break;
  1442. if (ret) {
  1443. ret = found ? 0 : -ENOENT;
  1444. break;
  1445. }
  1446. ++found;
  1447. slot = path->slots[0];
  1448. eb = path->nodes[0];
  1449. /* make sure we can use eb after releasing the path */
  1450. atomic_inc(&eb->refs);
  1451. btrfs_tree_read_lock(eb);
  1452. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1453. btrfs_release_path(path);
  1454. leaf = path->nodes[0];
  1455. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1456. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1457. cur_offset = 0;
  1458. while (cur_offset < item_size) {
  1459. u32 name_len;
  1460. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1461. parent = btrfs_inode_extref_parent(eb, extref);
  1462. name_len = btrfs_inode_extref_name_len(eb, extref);
  1463. ret = iterate(parent, name_len,
  1464. (unsigned long)&extref->name, eb, ctx);
  1465. if (ret)
  1466. break;
  1467. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1468. cur_offset += sizeof(*extref);
  1469. }
  1470. btrfs_tree_read_unlock_blocking(eb);
  1471. free_extent_buffer(eb);
  1472. offset++;
  1473. }
  1474. btrfs_release_path(path);
  1475. return ret;
  1476. }
  1477. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1478. struct btrfs_path *path, iterate_irefs_t *iterate,
  1479. void *ctx)
  1480. {
  1481. int ret;
  1482. int found_refs = 0;
  1483. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1484. if (!ret)
  1485. ++found_refs;
  1486. else if (ret != -ENOENT)
  1487. return ret;
  1488. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1489. if (ret == -ENOENT && found_refs)
  1490. return 0;
  1491. return ret;
  1492. }
  1493. /*
  1494. * returns 0 if the path could be dumped (probably truncated)
  1495. * returns <0 in case of an error
  1496. */
  1497. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1498. struct extent_buffer *eb, void *ctx)
  1499. {
  1500. struct inode_fs_paths *ipath = ctx;
  1501. char *fspath;
  1502. char *fspath_min;
  1503. int i = ipath->fspath->elem_cnt;
  1504. const int s_ptr = sizeof(char *);
  1505. u32 bytes_left;
  1506. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1507. ipath->fspath->bytes_left - s_ptr : 0;
  1508. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1509. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1510. name_off, eb, inum, fspath_min, bytes_left);
  1511. if (IS_ERR(fspath))
  1512. return PTR_ERR(fspath);
  1513. if (fspath > fspath_min) {
  1514. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1515. ++ipath->fspath->elem_cnt;
  1516. ipath->fspath->bytes_left = fspath - fspath_min;
  1517. } else {
  1518. ++ipath->fspath->elem_missed;
  1519. ipath->fspath->bytes_missing += fspath_min - fspath;
  1520. ipath->fspath->bytes_left = 0;
  1521. }
  1522. return 0;
  1523. }
  1524. /*
  1525. * this dumps all file system paths to the inode into the ipath struct, provided
  1526. * is has been created large enough. each path is zero-terminated and accessed
  1527. * from ipath->fspath->val[i].
  1528. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1529. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1530. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1531. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1532. * have been needed to return all paths.
  1533. */
  1534. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1535. {
  1536. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1537. inode_to_path, ipath);
  1538. }
  1539. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1540. {
  1541. struct btrfs_data_container *data;
  1542. size_t alloc_bytes;
  1543. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1544. data = vmalloc(alloc_bytes);
  1545. if (!data)
  1546. return ERR_PTR(-ENOMEM);
  1547. if (total_bytes >= sizeof(*data)) {
  1548. data->bytes_left = total_bytes - sizeof(*data);
  1549. data->bytes_missing = 0;
  1550. } else {
  1551. data->bytes_missing = sizeof(*data) - total_bytes;
  1552. data->bytes_left = 0;
  1553. }
  1554. data->elem_cnt = 0;
  1555. data->elem_missed = 0;
  1556. return data;
  1557. }
  1558. /*
  1559. * allocates space to return multiple file system paths for an inode.
  1560. * total_bytes to allocate are passed, note that space usable for actual path
  1561. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1562. * the returned pointer must be freed with free_ipath() in the end.
  1563. */
  1564. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1565. struct btrfs_path *path)
  1566. {
  1567. struct inode_fs_paths *ifp;
  1568. struct btrfs_data_container *fspath;
  1569. fspath = init_data_container(total_bytes);
  1570. if (IS_ERR(fspath))
  1571. return (void *)fspath;
  1572. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1573. if (!ifp) {
  1574. kfree(fspath);
  1575. return ERR_PTR(-ENOMEM);
  1576. }
  1577. ifp->btrfs_path = path;
  1578. ifp->fspath = fspath;
  1579. ifp->fs_root = fs_root;
  1580. return ifp;
  1581. }
  1582. void free_ipath(struct inode_fs_paths *ipath)
  1583. {
  1584. if (!ipath)
  1585. return;
  1586. vfree(ipath->fspath);
  1587. kfree(ipath);
  1588. }