tsc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/dmi.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <asm/hpet.h>
  13. #include <asm/timer.h>
  14. #include <asm/vgtod.h>
  15. #include <asm/time.h>
  16. #include <asm/delay.h>
  17. unsigned int cpu_khz; /* TSC clocks / usec, not used here */
  18. EXPORT_SYMBOL(cpu_khz);
  19. unsigned int tsc_khz;
  20. EXPORT_SYMBOL(tsc_khz);
  21. /*
  22. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  23. */
  24. static int tsc_unstable;
  25. /* native_sched_clock() is called before tsc_init(), so
  26. we must start with the TSC soft disabled to prevent
  27. erroneous rdtsc usage on !cpu_has_tsc processors */
  28. static int tsc_disabled = -1;
  29. /*
  30. * Scheduler clock - returns current time in nanosec units.
  31. */
  32. u64 native_sched_clock(void)
  33. {
  34. u64 this_offset;
  35. /*
  36. * Fall back to jiffies if there's no TSC available:
  37. * ( But note that we still use it if the TSC is marked
  38. * unstable. We do this because unlike Time Of Day,
  39. * the scheduler clock tolerates small errors and it's
  40. * very important for it to be as fast as the platform
  41. * can achive it. )
  42. */
  43. if (unlikely(tsc_disabled)) {
  44. /* No locking but a rare wrong value is not a big deal: */
  45. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  46. }
  47. /* read the Time Stamp Counter: */
  48. rdtscll(this_offset);
  49. /* return the value in ns */
  50. return cycles_2_ns(this_offset);
  51. }
  52. /* We need to define a real function for sched_clock, to override the
  53. weak default version */
  54. #ifdef CONFIG_PARAVIRT
  55. unsigned long long sched_clock(void)
  56. {
  57. return paravirt_sched_clock();
  58. }
  59. #else
  60. unsigned long long
  61. sched_clock(void) __attribute__((alias("native_sched_clock")));
  62. #endif
  63. int check_tsc_unstable(void)
  64. {
  65. return tsc_unstable;
  66. }
  67. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  68. #ifdef CONFIG_X86_TSC
  69. int __init notsc_setup(char *str)
  70. {
  71. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  72. "cannot disable TSC completely.\n");
  73. tsc_disabled = 1;
  74. return 1;
  75. }
  76. #else
  77. /*
  78. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  79. * in cpu/common.c
  80. */
  81. int __init notsc_setup(char *str)
  82. {
  83. setup_clear_cpu_cap(X86_FEATURE_TSC);
  84. return 1;
  85. }
  86. #endif
  87. __setup("notsc", notsc_setup);
  88. #define MAX_RETRIES 5
  89. #define SMI_TRESHOLD 50000
  90. /*
  91. * Read TSC and the reference counters. Take care of SMI disturbance
  92. */
  93. static u64 tsc_read_refs(u64 *pm, u64 *hpet)
  94. {
  95. u64 t1, t2;
  96. int i;
  97. for (i = 0; i < MAX_RETRIES; i++) {
  98. t1 = get_cycles();
  99. if (hpet)
  100. *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  101. else
  102. *pm = acpi_pm_read_early();
  103. t2 = get_cycles();
  104. if ((t2 - t1) < SMI_TRESHOLD)
  105. return t2;
  106. }
  107. return ULLONG_MAX;
  108. }
  109. #define CAL_MS 50
  110. #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
  111. #define CAL_PIT_LOOPS 5000
  112. /*
  113. * Try to calibrate the TSC against the Programmable
  114. * Interrupt Timer and return the frequency of the TSC
  115. * in kHz.
  116. *
  117. * Return ULONG_MAX on failure to calibrate.
  118. */
  119. static unsigned long pit_calibrate_tsc(void)
  120. {
  121. u64 tsc, t1, t2, delta;
  122. unsigned long tscmin, tscmax;
  123. int pitcnt;
  124. /* Set the Gate high, disable speaker */
  125. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  126. /*
  127. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  128. * count mode), binary count. Set the latch register to 50ms
  129. * (LSB then MSB) to begin countdown.
  130. */
  131. outb(0xb0, 0x43);
  132. outb(CAL_LATCH & 0xff, 0x42);
  133. outb(CAL_LATCH >> 8, 0x42);
  134. tsc = t1 = t2 = get_cycles();
  135. pitcnt = 0;
  136. tscmax = 0;
  137. tscmin = ULONG_MAX;
  138. while ((inb(0x61) & 0x20) == 0) {
  139. t2 = get_cycles();
  140. delta = t2 - tsc;
  141. tsc = t2;
  142. if ((unsigned long) delta < tscmin)
  143. tscmin = (unsigned int) delta;
  144. if ((unsigned long) delta > tscmax)
  145. tscmax = (unsigned int) delta;
  146. pitcnt++;
  147. }
  148. /*
  149. * Sanity checks:
  150. *
  151. * If we were not able to read the PIT more than PIT_MIN_LOOPS
  152. * times, then we have been hit by a massive SMI
  153. *
  154. * If the maximum is 10 times larger than the minimum,
  155. * then we got hit by an SMI as well.
  156. */
  157. if (pitcnt < CAL_PIT_LOOPS || tscmax > 10 * tscmin)
  158. return ULONG_MAX;
  159. /* Calculate the PIT value */
  160. delta = t2 - t1;
  161. do_div(delta, CAL_MS);
  162. return delta;
  163. }
  164. /**
  165. * native_calibrate_tsc - calibrate the tsc on boot
  166. */
  167. unsigned long native_calibrate_tsc(void)
  168. {
  169. u64 tsc1, tsc2, delta, pm1, pm2, hpet1, hpet2;
  170. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  171. unsigned long flags;
  172. int hpet = is_hpet_enabled(), i;
  173. /*
  174. * Run 5 calibration loops to get the lowest frequency value
  175. * (the best estimate). We use two different calibration modes
  176. * here:
  177. *
  178. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  179. * load a timeout of 50ms. We read the time right after we
  180. * started the timer and wait until the PIT count down reaches
  181. * zero. In each wait loop iteration we read the TSC and check
  182. * the delta to the previous read. We keep track of the min
  183. * and max values of that delta. The delta is mostly defined
  184. * by the IO time of the PIT access, so we can detect when a
  185. * SMI/SMM disturbance happend between the two reads. If the
  186. * maximum time is significantly larger than the minimum time,
  187. * then we discard the result and have another try.
  188. *
  189. * 2) Reference counter. If available we use the HPET or the
  190. * PMTIMER as a reference to check the sanity of that value.
  191. * We use separate TSC readouts and check inside of the
  192. * reference read for a SMI/SMM disturbance. We dicard
  193. * disturbed values here as well. We do that around the PIT
  194. * calibration delay loop as we have to wait for a certain
  195. * amount of time anyway.
  196. */
  197. for (i = 0; i < 5; i++) {
  198. unsigned long tsc_pit_khz;
  199. /*
  200. * Read the start value and the reference count of
  201. * hpet/pmtimer when available. Then do the PIT
  202. * calibration, which will take at least 50ms, and
  203. * read the end value.
  204. */
  205. local_irq_save(flags);
  206. tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
  207. tsc_pit_khz = pit_calibrate_tsc();
  208. tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
  209. local_irq_restore(flags);
  210. /* Pick the lowest PIT TSC calibration so far */
  211. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  212. /* hpet or pmtimer available ? */
  213. if (!hpet && !pm1 && !pm2)
  214. continue;
  215. /* Check, whether the sampling was disturbed by an SMI */
  216. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  217. continue;
  218. tsc2 = (tsc2 - tsc1) * 1000000LL;
  219. if (hpet) {
  220. if (hpet2 < hpet1)
  221. hpet2 += 0x100000000ULL;
  222. hpet2 -= hpet1;
  223. tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  224. do_div(tsc1, 1000000);
  225. } else {
  226. if (pm2 < pm1)
  227. pm2 += (u64)ACPI_PM_OVRRUN;
  228. pm2 -= pm1;
  229. tsc1 = pm2 * 1000000000LL;
  230. do_div(tsc1, PMTMR_TICKS_PER_SEC);
  231. }
  232. do_div(tsc2, tsc1);
  233. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  234. }
  235. /*
  236. * Now check the results.
  237. */
  238. if (tsc_pit_min == ULONG_MAX) {
  239. /* PIT gave no useful value */
  240. printk(KERN_WARNING "TSC: PIT calibration failed due to "
  241. "SMI disturbance.\n");
  242. /* We don't have an alternative source, disable TSC */
  243. if (!hpet && !pm1 && !pm2) {
  244. printk("TSC: No reference (HPET/PMTIMER) available\n");
  245. return 0;
  246. }
  247. /* The alternative source failed as well, disable TSC */
  248. if (tsc_ref_min == ULONG_MAX) {
  249. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  250. "failed due to SMI disturbance.\n");
  251. return 0;
  252. }
  253. /* Use the alternative source */
  254. printk(KERN_INFO "TSC: using %s reference calibration\n",
  255. hpet ? "HPET" : "PMTIMER");
  256. return tsc_ref_min;
  257. }
  258. /* We don't have an alternative source, use the PIT calibration value */
  259. if (!hpet && !pm1 && !pm2) {
  260. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  261. return tsc_pit_min;
  262. }
  263. /* The alternative source failed, use the PIT calibration value */
  264. if (tsc_ref_min == ULONG_MAX) {
  265. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed due "
  266. "to SMI disturbance. Using PIT calibration\n");
  267. return tsc_pit_min;
  268. }
  269. /* Check the reference deviation */
  270. delta = ((u64) tsc_pit_min) * 100;
  271. do_div(delta, tsc_ref_min);
  272. /*
  273. * If both calibration results are inside a 5% window, the we
  274. * use the lower frequency of those as it is probably the
  275. * closest estimate.
  276. */
  277. if (delta >= 95 && delta <= 105) {
  278. printk(KERN_INFO "TSC: PIT calibration confirmed by %s.\n",
  279. hpet ? "HPET" : "PMTIMER");
  280. printk(KERN_INFO "TSC: using %s calibration value\n",
  281. tsc_pit_min <= tsc_ref_min ? "PIT" :
  282. hpet ? "HPET" : "PMTIMER");
  283. return tsc_pit_min <= tsc_ref_min ? tsc_pit_min : tsc_ref_min;
  284. }
  285. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  286. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  287. /*
  288. * The calibration values differ too much. In doubt, we use
  289. * the PIT value as we know that there are PMTIMERs around
  290. * running at double speed.
  291. */
  292. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  293. return tsc_pit_min;
  294. }
  295. #ifdef CONFIG_X86_32
  296. /* Only called from the Powernow K7 cpu freq driver */
  297. int recalibrate_cpu_khz(void)
  298. {
  299. #ifndef CONFIG_SMP
  300. unsigned long cpu_khz_old = cpu_khz;
  301. if (cpu_has_tsc) {
  302. tsc_khz = calibrate_tsc();
  303. cpu_khz = tsc_khz;
  304. cpu_data(0).loops_per_jiffy =
  305. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  306. cpu_khz_old, cpu_khz);
  307. return 0;
  308. } else
  309. return -ENODEV;
  310. #else
  311. return -ENODEV;
  312. #endif
  313. }
  314. EXPORT_SYMBOL(recalibrate_cpu_khz);
  315. #endif /* CONFIG_X86_32 */
  316. /* Accelerators for sched_clock()
  317. * convert from cycles(64bits) => nanoseconds (64bits)
  318. * basic equation:
  319. * ns = cycles / (freq / ns_per_sec)
  320. * ns = cycles * (ns_per_sec / freq)
  321. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  322. * ns = cycles * (10^6 / cpu_khz)
  323. *
  324. * Then we use scaling math (suggested by george@mvista.com) to get:
  325. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  326. * ns = cycles * cyc2ns_scale / SC
  327. *
  328. * And since SC is a constant power of two, we can convert the div
  329. * into a shift.
  330. *
  331. * We can use khz divisor instead of mhz to keep a better precision, since
  332. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  333. * (mathieu.desnoyers@polymtl.ca)
  334. *
  335. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  336. */
  337. DEFINE_PER_CPU(unsigned long, cyc2ns);
  338. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  339. {
  340. unsigned long long tsc_now, ns_now;
  341. unsigned long flags, *scale;
  342. local_irq_save(flags);
  343. sched_clock_idle_sleep_event();
  344. scale = &per_cpu(cyc2ns, cpu);
  345. rdtscll(tsc_now);
  346. ns_now = __cycles_2_ns(tsc_now);
  347. if (cpu_khz)
  348. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  349. sched_clock_idle_wakeup_event(0);
  350. local_irq_restore(flags);
  351. }
  352. #ifdef CONFIG_CPU_FREQ
  353. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  354. * changes.
  355. *
  356. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  357. * not that important because current Opteron setups do not support
  358. * scaling on SMP anyroads.
  359. *
  360. * Should fix up last_tsc too. Currently gettimeofday in the
  361. * first tick after the change will be slightly wrong.
  362. */
  363. static unsigned int ref_freq;
  364. static unsigned long loops_per_jiffy_ref;
  365. static unsigned long tsc_khz_ref;
  366. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  367. void *data)
  368. {
  369. struct cpufreq_freqs *freq = data;
  370. unsigned long *lpj, dummy;
  371. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  372. return 0;
  373. lpj = &dummy;
  374. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  375. #ifdef CONFIG_SMP
  376. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  377. #else
  378. lpj = &boot_cpu_data.loops_per_jiffy;
  379. #endif
  380. if (!ref_freq) {
  381. ref_freq = freq->old;
  382. loops_per_jiffy_ref = *lpj;
  383. tsc_khz_ref = tsc_khz;
  384. }
  385. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  386. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  387. (val == CPUFREQ_RESUMECHANGE)) {
  388. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  389. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  390. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  391. mark_tsc_unstable("cpufreq changes");
  392. }
  393. set_cyc2ns_scale(tsc_khz, freq->cpu);
  394. return 0;
  395. }
  396. static struct notifier_block time_cpufreq_notifier_block = {
  397. .notifier_call = time_cpufreq_notifier
  398. };
  399. static int __init cpufreq_tsc(void)
  400. {
  401. if (!cpu_has_tsc)
  402. return 0;
  403. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  404. return 0;
  405. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  406. CPUFREQ_TRANSITION_NOTIFIER);
  407. return 0;
  408. }
  409. core_initcall(cpufreq_tsc);
  410. #endif /* CONFIG_CPU_FREQ */
  411. /* clocksource code */
  412. static struct clocksource clocksource_tsc;
  413. /*
  414. * We compare the TSC to the cycle_last value in the clocksource
  415. * structure to avoid a nasty time-warp. This can be observed in a
  416. * very small window right after one CPU updated cycle_last under
  417. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  418. * is smaller than the cycle_last reference value due to a TSC which
  419. * is slighty behind. This delta is nowhere else observable, but in
  420. * that case it results in a forward time jump in the range of hours
  421. * due to the unsigned delta calculation of the time keeping core
  422. * code, which is necessary to support wrapping clocksources like pm
  423. * timer.
  424. */
  425. static cycle_t read_tsc(void)
  426. {
  427. cycle_t ret = (cycle_t)get_cycles();
  428. return ret >= clocksource_tsc.cycle_last ?
  429. ret : clocksource_tsc.cycle_last;
  430. }
  431. #ifdef CONFIG_X86_64
  432. static cycle_t __vsyscall_fn vread_tsc(void)
  433. {
  434. cycle_t ret = (cycle_t)vget_cycles();
  435. return ret >= __vsyscall_gtod_data.clock.cycle_last ?
  436. ret : __vsyscall_gtod_data.clock.cycle_last;
  437. }
  438. #endif
  439. static struct clocksource clocksource_tsc = {
  440. .name = "tsc",
  441. .rating = 300,
  442. .read = read_tsc,
  443. .mask = CLOCKSOURCE_MASK(64),
  444. .shift = 22,
  445. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  446. CLOCK_SOURCE_MUST_VERIFY,
  447. #ifdef CONFIG_X86_64
  448. .vread = vread_tsc,
  449. #endif
  450. };
  451. void mark_tsc_unstable(char *reason)
  452. {
  453. if (!tsc_unstable) {
  454. tsc_unstable = 1;
  455. printk("Marking TSC unstable due to %s\n", reason);
  456. /* Change only the rating, when not registered */
  457. if (clocksource_tsc.mult)
  458. clocksource_change_rating(&clocksource_tsc, 0);
  459. else
  460. clocksource_tsc.rating = 0;
  461. }
  462. }
  463. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  464. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  465. {
  466. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  467. d->ident);
  468. tsc_unstable = 1;
  469. return 0;
  470. }
  471. /* List of systems that have known TSC problems */
  472. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  473. {
  474. .callback = dmi_mark_tsc_unstable,
  475. .ident = "IBM Thinkpad 380XD",
  476. .matches = {
  477. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  478. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  479. },
  480. },
  481. {}
  482. };
  483. /*
  484. * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
  485. */
  486. #ifdef CONFIG_MGEODE_LX
  487. /* RTSC counts during suspend */
  488. #define RTSC_SUSP 0x100
  489. static void __init check_geode_tsc_reliable(void)
  490. {
  491. unsigned long res_low, res_high;
  492. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  493. if (res_low & RTSC_SUSP)
  494. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  495. }
  496. #else
  497. static inline void check_geode_tsc_reliable(void) { }
  498. #endif
  499. /*
  500. * Make an educated guess if the TSC is trustworthy and synchronized
  501. * over all CPUs.
  502. */
  503. __cpuinit int unsynchronized_tsc(void)
  504. {
  505. if (!cpu_has_tsc || tsc_unstable)
  506. return 1;
  507. #ifdef CONFIG_SMP
  508. if (apic_is_clustered_box())
  509. return 1;
  510. #endif
  511. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  512. return 0;
  513. /*
  514. * Intel systems are normally all synchronized.
  515. * Exceptions must mark TSC as unstable:
  516. */
  517. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  518. /* assume multi socket systems are not synchronized: */
  519. if (num_possible_cpus() > 1)
  520. tsc_unstable = 1;
  521. }
  522. return tsc_unstable;
  523. }
  524. static void __init init_tsc_clocksource(void)
  525. {
  526. clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
  527. clocksource_tsc.shift);
  528. /* lower the rating if we already know its unstable: */
  529. if (check_tsc_unstable()) {
  530. clocksource_tsc.rating = 0;
  531. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  532. }
  533. clocksource_register(&clocksource_tsc);
  534. }
  535. void __init tsc_init(void)
  536. {
  537. u64 lpj;
  538. int cpu;
  539. if (!cpu_has_tsc)
  540. return;
  541. tsc_khz = calibrate_tsc();
  542. cpu_khz = tsc_khz;
  543. if (!tsc_khz) {
  544. mark_tsc_unstable("could not calculate TSC khz");
  545. return;
  546. }
  547. #ifdef CONFIG_X86_64
  548. if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
  549. (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
  550. cpu_khz = calibrate_cpu();
  551. #endif
  552. lpj = ((u64)tsc_khz * 1000);
  553. do_div(lpj, HZ);
  554. lpj_fine = lpj;
  555. printk("Detected %lu.%03lu MHz processor.\n",
  556. (unsigned long)cpu_khz / 1000,
  557. (unsigned long)cpu_khz % 1000);
  558. /*
  559. * Secondary CPUs do not run through tsc_init(), so set up
  560. * all the scale factors for all CPUs, assuming the same
  561. * speed as the bootup CPU. (cpufreq notifiers will fix this
  562. * up if their speed diverges)
  563. */
  564. for_each_possible_cpu(cpu)
  565. set_cyc2ns_scale(cpu_khz, cpu);
  566. if (tsc_disabled > 0)
  567. return;
  568. /* now allow native_sched_clock() to use rdtsc */
  569. tsc_disabled = 0;
  570. use_tsc_delay();
  571. /* Check and install the TSC clocksource */
  572. dmi_check_system(bad_tsc_dmi_table);
  573. if (unsynchronized_tsc())
  574. mark_tsc_unstable("TSCs unsynchronized");
  575. check_geode_tsc_reliable();
  576. init_tsc_clocksource();
  577. }