ctree.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/module.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  23. *root, struct btrfs_path *path, int level);
  24. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_key *ins_key,
  26. struct btrfs_path *path, int data_size);
  27. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct buffer_head *dst, struct buffer_head
  29. *src);
  30. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  31. btrfs_root *root, struct buffer_head *dst_buf,
  32. struct buffer_head *src_buf);
  33. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  34. struct btrfs_path *path, int level, int slot);
  35. inline void btrfs_init_path(struct btrfs_path *p)
  36. {
  37. memset(p, 0, sizeof(*p));
  38. }
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  43. if (path)
  44. btrfs_init_path(path);
  45. return path;
  46. }
  47. void btrfs_free_path(struct btrfs_path *p)
  48. {
  49. btrfs_release_path(NULL, p);
  50. kmem_cache_free(btrfs_path_cachep, p);
  51. }
  52. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  53. {
  54. int i;
  55. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  56. if (!p->nodes[i])
  57. break;
  58. btrfs_block_release(root, p->nodes[i]);
  59. }
  60. memset(p, 0, sizeof(*p));
  61. }
  62. static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  63. *root, struct buffer_head *buf, struct buffer_head
  64. *parent, int parent_slot, struct buffer_head
  65. **cow_ret)
  66. {
  67. struct buffer_head *cow;
  68. struct btrfs_node *cow_node;
  69. int ret;
  70. WARN_ON(!buffer_uptodate(buf));
  71. if (trans->transaction != root->fs_info->running_transaction) {
  72. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  73. root->fs_info->running_transaction->transid);
  74. WARN_ON(1);
  75. }
  76. if (trans->transid != root->fs_info->generation) {
  77. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  78. root->fs_info->generation);
  79. WARN_ON(1);
  80. }
  81. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  82. trans->transid) {
  83. *cow_ret = buf;
  84. return 0;
  85. }
  86. cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
  87. if (IS_ERR(cow))
  88. return PTR_ERR(cow);
  89. cow_node = btrfs_buffer_node(cow);
  90. if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
  91. WARN_ON(1);
  92. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  93. btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
  94. btrfs_set_header_generation(&cow_node->header, trans->transid);
  95. btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
  96. ret = btrfs_inc_ref(trans, root, buf);
  97. if (ret)
  98. return ret;
  99. if (buf == root->node) {
  100. root->node = cow;
  101. get_bh(cow);
  102. if (buf != root->commit_root) {
  103. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  104. }
  105. btrfs_block_release(root, buf);
  106. } else {
  107. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  108. bh_blocknr(cow));
  109. btrfs_mark_buffer_dirty(parent);
  110. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  111. }
  112. btrfs_block_release(root, buf);
  113. btrfs_mark_buffer_dirty(cow);
  114. *cow_ret = cow;
  115. return 0;
  116. }
  117. /*
  118. * The leaf data grows from end-to-front in the node.
  119. * this returns the address of the start of the last item,
  120. * which is the stop of the leaf data stack
  121. */
  122. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  123. struct btrfs_leaf *leaf)
  124. {
  125. u32 nr = btrfs_header_nritems(&leaf->header);
  126. if (nr == 0)
  127. return BTRFS_LEAF_DATA_SIZE(root);
  128. return btrfs_item_offset(leaf->items + nr - 1);
  129. }
  130. /*
  131. * compare two keys in a memcmp fashion
  132. */
  133. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  134. {
  135. struct btrfs_key k1;
  136. btrfs_disk_key_to_cpu(&k1, disk);
  137. if (k1.objectid > k2->objectid)
  138. return 1;
  139. if (k1.objectid < k2->objectid)
  140. return -1;
  141. if (k1.flags > k2->flags)
  142. return 1;
  143. if (k1.flags < k2->flags)
  144. return -1;
  145. if (k1.offset > k2->offset)
  146. return 1;
  147. if (k1.offset < k2->offset)
  148. return -1;
  149. return 0;
  150. }
  151. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  152. int level)
  153. {
  154. struct btrfs_node *parent = NULL;
  155. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  156. int parent_slot;
  157. int slot;
  158. struct btrfs_key cpukey;
  159. u32 nritems = btrfs_header_nritems(&node->header);
  160. if (path->nodes[level + 1])
  161. parent = btrfs_buffer_node(path->nodes[level + 1]);
  162. parent_slot = path->slots[level + 1];
  163. slot = path->slots[level];
  164. BUG_ON(nritems == 0);
  165. if (parent) {
  166. struct btrfs_disk_key *parent_key;
  167. parent_key = &parent->ptrs[parent_slot].key;
  168. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  169. sizeof(struct btrfs_disk_key)));
  170. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  171. btrfs_header_blocknr(&node->header));
  172. }
  173. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  174. if (slot != 0) {
  175. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
  176. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
  177. }
  178. if (slot < nritems - 1) {
  179. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
  180. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
  181. }
  182. return 0;
  183. }
  184. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  185. int level)
  186. {
  187. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  188. struct btrfs_node *parent = NULL;
  189. int parent_slot;
  190. int slot = path->slots[0];
  191. struct btrfs_key cpukey;
  192. u32 nritems = btrfs_header_nritems(&leaf->header);
  193. if (path->nodes[level + 1])
  194. parent = btrfs_buffer_node(path->nodes[level + 1]);
  195. parent_slot = path->slots[level + 1];
  196. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  197. if (nritems == 0)
  198. return 0;
  199. if (parent) {
  200. struct btrfs_disk_key *parent_key;
  201. parent_key = &parent->ptrs[parent_slot].key;
  202. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  203. sizeof(struct btrfs_disk_key)));
  204. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  205. btrfs_header_blocknr(&leaf->header));
  206. }
  207. if (slot != 0) {
  208. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
  209. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
  210. BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
  211. btrfs_item_end(leaf->items + slot));
  212. }
  213. if (slot < nritems - 1) {
  214. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
  215. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
  216. BUG_ON(btrfs_item_offset(leaf->items + slot) !=
  217. btrfs_item_end(leaf->items + slot + 1));
  218. }
  219. BUG_ON(btrfs_item_offset(leaf->items) +
  220. btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
  221. return 0;
  222. }
  223. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  224. int level)
  225. {
  226. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  227. if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
  228. sizeof(node->header.fsid)))
  229. BUG();
  230. if (level == 0)
  231. return check_leaf(root, path, level);
  232. return check_node(root, path, level);
  233. }
  234. /*
  235. * search for key in the array p. items p are item_size apart
  236. * and there are 'max' items in p
  237. * the slot in the array is returned via slot, and it points to
  238. * the place where you would insert key if it is not found in
  239. * the array.
  240. *
  241. * slot may point to max if the key is bigger than all of the keys
  242. */
  243. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  244. int max, int *slot)
  245. {
  246. int low = 0;
  247. int high = max;
  248. int mid;
  249. int ret;
  250. struct btrfs_disk_key *tmp;
  251. while(low < high) {
  252. mid = (low + high) / 2;
  253. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  254. ret = comp_keys(tmp, key);
  255. if (ret < 0)
  256. low = mid + 1;
  257. else if (ret > 0)
  258. high = mid;
  259. else {
  260. *slot = mid;
  261. return 0;
  262. }
  263. }
  264. *slot = low;
  265. return 1;
  266. }
  267. /*
  268. * simple bin_search frontend that does the right thing for
  269. * leaves vs nodes
  270. */
  271. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  272. {
  273. if (btrfs_is_leaf(c)) {
  274. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  275. return generic_bin_search((void *)l->items,
  276. sizeof(struct btrfs_item),
  277. key, btrfs_header_nritems(&c->header),
  278. slot);
  279. } else {
  280. return generic_bin_search((void *)c->ptrs,
  281. sizeof(struct btrfs_key_ptr),
  282. key, btrfs_header_nritems(&c->header),
  283. slot);
  284. }
  285. return -1;
  286. }
  287. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  288. struct buffer_head *parent_buf,
  289. int slot)
  290. {
  291. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  292. if (slot < 0)
  293. return NULL;
  294. if (slot >= btrfs_header_nritems(&node->header))
  295. return NULL;
  296. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  297. }
  298. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  299. *root, struct btrfs_path *path, int level)
  300. {
  301. struct buffer_head *right_buf;
  302. struct buffer_head *mid_buf;
  303. struct buffer_head *left_buf;
  304. struct buffer_head *parent_buf = NULL;
  305. struct btrfs_node *right = NULL;
  306. struct btrfs_node *mid;
  307. struct btrfs_node *left = NULL;
  308. struct btrfs_node *parent = NULL;
  309. int ret = 0;
  310. int wret;
  311. int pslot;
  312. int orig_slot = path->slots[level];
  313. int err_on_enospc = 0;
  314. u64 orig_ptr;
  315. if (level == 0)
  316. return 0;
  317. mid_buf = path->nodes[level];
  318. mid = btrfs_buffer_node(mid_buf);
  319. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  320. if (level < BTRFS_MAX_LEVEL - 1)
  321. parent_buf = path->nodes[level + 1];
  322. pslot = path->slots[level + 1];
  323. /*
  324. * deal with the case where there is only one pointer in the root
  325. * by promoting the node below to a root
  326. */
  327. if (!parent_buf) {
  328. struct buffer_head *child;
  329. u64 blocknr = bh_blocknr(mid_buf);
  330. if (btrfs_header_nritems(&mid->header) != 1)
  331. return 0;
  332. /* promote the child to a root */
  333. child = read_node_slot(root, mid_buf, 0);
  334. BUG_ON(!child);
  335. root->node = child;
  336. path->nodes[level] = NULL;
  337. clean_tree_block(trans, root, mid_buf);
  338. wait_on_buffer(mid_buf);
  339. /* once for the path */
  340. btrfs_block_release(root, mid_buf);
  341. /* once for the root ptr */
  342. btrfs_block_release(root, mid_buf);
  343. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  344. }
  345. parent = btrfs_buffer_node(parent_buf);
  346. if (btrfs_header_nritems(&mid->header) >
  347. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  348. return 0;
  349. if (btrfs_header_nritems(&mid->header) < 2)
  350. err_on_enospc = 1;
  351. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  352. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  353. /* first, try to make some room in the middle buffer */
  354. if (left_buf) {
  355. wret = btrfs_cow_block(trans, root, left_buf,
  356. parent_buf, pslot - 1, &left_buf);
  357. if (wret) {
  358. ret = wret;
  359. goto enospc;
  360. }
  361. left = btrfs_buffer_node(left_buf);
  362. orig_slot += btrfs_header_nritems(&left->header);
  363. wret = push_node_left(trans, root, left_buf, mid_buf);
  364. if (wret < 0)
  365. ret = wret;
  366. if (btrfs_header_nritems(&mid->header) < 2)
  367. err_on_enospc = 1;
  368. }
  369. /*
  370. * then try to empty the right most buffer into the middle
  371. */
  372. if (right_buf) {
  373. wret = btrfs_cow_block(trans, root, right_buf,
  374. parent_buf, pslot + 1, &right_buf);
  375. if (wret) {
  376. ret = wret;
  377. goto enospc;
  378. }
  379. right = btrfs_buffer_node(right_buf);
  380. wret = push_node_left(trans, root, mid_buf, right_buf);
  381. if (wret < 0 && wret != -ENOSPC)
  382. ret = wret;
  383. if (btrfs_header_nritems(&right->header) == 0) {
  384. u64 blocknr = bh_blocknr(right_buf);
  385. clean_tree_block(trans, root, right_buf);
  386. wait_on_buffer(right_buf);
  387. btrfs_block_release(root, right_buf);
  388. right_buf = NULL;
  389. right = NULL;
  390. wret = del_ptr(trans, root, path, level + 1, pslot +
  391. 1);
  392. if (wret)
  393. ret = wret;
  394. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  395. if (wret)
  396. ret = wret;
  397. } else {
  398. btrfs_memcpy(root, parent,
  399. &parent->ptrs[pslot + 1].key,
  400. &right->ptrs[0].key,
  401. sizeof(struct btrfs_disk_key));
  402. btrfs_mark_buffer_dirty(parent_buf);
  403. }
  404. }
  405. if (btrfs_header_nritems(&mid->header) == 1) {
  406. /*
  407. * we're not allowed to leave a node with one item in the
  408. * tree during a delete. A deletion from lower in the tree
  409. * could try to delete the only pointer in this node.
  410. * So, pull some keys from the left.
  411. * There has to be a left pointer at this point because
  412. * otherwise we would have pulled some pointers from the
  413. * right
  414. */
  415. BUG_ON(!left_buf);
  416. wret = balance_node_right(trans, root, mid_buf, left_buf);
  417. if (wret < 0) {
  418. ret = wret;
  419. goto enospc;
  420. }
  421. BUG_ON(wret == 1);
  422. }
  423. if (btrfs_header_nritems(&mid->header) == 0) {
  424. /* we've managed to empty the middle node, drop it */
  425. u64 blocknr = bh_blocknr(mid_buf);
  426. clean_tree_block(trans, root, mid_buf);
  427. wait_on_buffer(mid_buf);
  428. btrfs_block_release(root, mid_buf);
  429. mid_buf = NULL;
  430. mid = NULL;
  431. wret = del_ptr(trans, root, path, level + 1, pslot);
  432. if (wret)
  433. ret = wret;
  434. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  435. if (wret)
  436. ret = wret;
  437. } else {
  438. /* update the parent key to reflect our changes */
  439. btrfs_memcpy(root, parent,
  440. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  441. sizeof(struct btrfs_disk_key));
  442. btrfs_mark_buffer_dirty(parent_buf);
  443. }
  444. /* update the path */
  445. if (left_buf) {
  446. if (btrfs_header_nritems(&left->header) > orig_slot) {
  447. get_bh(left_buf);
  448. path->nodes[level] = left_buf;
  449. path->slots[level + 1] -= 1;
  450. path->slots[level] = orig_slot;
  451. if (mid_buf)
  452. btrfs_block_release(root, mid_buf);
  453. } else {
  454. orig_slot -= btrfs_header_nritems(&left->header);
  455. path->slots[level] = orig_slot;
  456. }
  457. }
  458. /* double check we haven't messed things up */
  459. check_block(root, path, level);
  460. if (orig_ptr !=
  461. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  462. path->slots[level]))
  463. BUG();
  464. enospc:
  465. if (right_buf)
  466. btrfs_block_release(root, right_buf);
  467. if (left_buf)
  468. btrfs_block_release(root, left_buf);
  469. return ret;
  470. }
  471. /* returns zero if the push worked, non-zero otherwise */
  472. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  473. struct btrfs_root *root,
  474. struct btrfs_path *path, int level)
  475. {
  476. struct buffer_head *right_buf;
  477. struct buffer_head *mid_buf;
  478. struct buffer_head *left_buf;
  479. struct buffer_head *parent_buf = NULL;
  480. struct btrfs_node *right = NULL;
  481. struct btrfs_node *mid;
  482. struct btrfs_node *left = NULL;
  483. struct btrfs_node *parent = NULL;
  484. int ret = 0;
  485. int wret;
  486. int pslot;
  487. int orig_slot = path->slots[level];
  488. u64 orig_ptr;
  489. if (level == 0)
  490. return 1;
  491. mid_buf = path->nodes[level];
  492. mid = btrfs_buffer_node(mid_buf);
  493. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  494. if (level < BTRFS_MAX_LEVEL - 1)
  495. parent_buf = path->nodes[level + 1];
  496. pslot = path->slots[level + 1];
  497. if (!parent_buf)
  498. return 1;
  499. parent = btrfs_buffer_node(parent_buf);
  500. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  501. /* first, try to make some room in the middle buffer */
  502. if (left_buf) {
  503. u32 left_nr;
  504. left = btrfs_buffer_node(left_buf);
  505. left_nr = btrfs_header_nritems(&left->header);
  506. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  507. wret = 1;
  508. } else {
  509. ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
  510. pslot - 1, &left_buf);
  511. if (ret)
  512. wret = 1;
  513. else {
  514. left = btrfs_buffer_node(left_buf);
  515. wret = push_node_left(trans, root,
  516. left_buf, mid_buf);
  517. }
  518. }
  519. if (wret < 0)
  520. ret = wret;
  521. if (wret == 0) {
  522. orig_slot += left_nr;
  523. btrfs_memcpy(root, parent,
  524. &parent->ptrs[pslot].key,
  525. &mid->ptrs[0].key,
  526. sizeof(struct btrfs_disk_key));
  527. btrfs_mark_buffer_dirty(parent_buf);
  528. if (btrfs_header_nritems(&left->header) > orig_slot) {
  529. path->nodes[level] = left_buf;
  530. path->slots[level + 1] -= 1;
  531. path->slots[level] = orig_slot;
  532. btrfs_block_release(root, mid_buf);
  533. } else {
  534. orig_slot -=
  535. btrfs_header_nritems(&left->header);
  536. path->slots[level] = orig_slot;
  537. btrfs_block_release(root, left_buf);
  538. }
  539. check_node(root, path, level);
  540. return 0;
  541. }
  542. btrfs_block_release(root, left_buf);
  543. }
  544. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  545. /*
  546. * then try to empty the right most buffer into the middle
  547. */
  548. if (right_buf) {
  549. u32 right_nr;
  550. right = btrfs_buffer_node(right_buf);
  551. right_nr = btrfs_header_nritems(&right->header);
  552. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  553. wret = 1;
  554. } else {
  555. ret = btrfs_cow_block(trans, root, right_buf,
  556. parent_buf, pslot + 1,
  557. &right_buf);
  558. if (ret)
  559. wret = 1;
  560. else {
  561. right = btrfs_buffer_node(right_buf);
  562. wret = balance_node_right(trans, root,
  563. right_buf, mid_buf);
  564. }
  565. }
  566. if (wret < 0)
  567. ret = wret;
  568. if (wret == 0) {
  569. btrfs_memcpy(root, parent,
  570. &parent->ptrs[pslot + 1].key,
  571. &right->ptrs[0].key,
  572. sizeof(struct btrfs_disk_key));
  573. btrfs_mark_buffer_dirty(parent_buf);
  574. if (btrfs_header_nritems(&mid->header) <= orig_slot) {
  575. path->nodes[level] = right_buf;
  576. path->slots[level + 1] += 1;
  577. path->slots[level] = orig_slot -
  578. btrfs_header_nritems(&mid->header);
  579. btrfs_block_release(root, mid_buf);
  580. } else {
  581. btrfs_block_release(root, right_buf);
  582. }
  583. check_node(root, path, level);
  584. return 0;
  585. }
  586. btrfs_block_release(root, right_buf);
  587. }
  588. check_node(root, path, level);
  589. return 1;
  590. }
  591. /*
  592. * look for key in the tree. path is filled in with nodes along the way
  593. * if key is found, we return zero and you can find the item in the leaf
  594. * level of the path (level 0)
  595. *
  596. * If the key isn't found, the path points to the slot where it should
  597. * be inserted, and 1 is returned. If there are other errors during the
  598. * search a negative error number is returned.
  599. *
  600. * if ins_len > 0, nodes and leaves will be split as we walk down the
  601. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  602. * possible)
  603. */
  604. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  605. *root, struct btrfs_key *key, struct btrfs_path *p, int
  606. ins_len, int cow)
  607. {
  608. struct buffer_head *b;
  609. struct buffer_head *cow_buf;
  610. struct btrfs_node *c;
  611. int slot;
  612. int ret;
  613. int level;
  614. WARN_ON(p->nodes[0] != NULL);
  615. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  616. again:
  617. b = root->node;
  618. get_bh(b);
  619. while (b) {
  620. c = btrfs_buffer_node(b);
  621. level = btrfs_header_level(&c->header);
  622. if (cow) {
  623. int wret;
  624. wret = btrfs_cow_block(trans, root, b,
  625. p->nodes[level + 1],
  626. p->slots[level + 1],
  627. &cow_buf);
  628. if (wret) {
  629. btrfs_block_release(root, cow_buf);
  630. return wret;
  631. }
  632. b = cow_buf;
  633. c = btrfs_buffer_node(b);
  634. }
  635. BUG_ON(!cow && ins_len);
  636. if (level != btrfs_header_level(&c->header))
  637. WARN_ON(1);
  638. level = btrfs_header_level(&c->header);
  639. p->nodes[level] = b;
  640. ret = check_block(root, p, level);
  641. if (ret)
  642. return -1;
  643. ret = bin_search(c, key, &slot);
  644. if (!btrfs_is_leaf(c)) {
  645. if (ret && slot > 0)
  646. slot -= 1;
  647. p->slots[level] = slot;
  648. if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
  649. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  650. int sret = split_node(trans, root, p, level);
  651. BUG_ON(sret > 0);
  652. if (sret)
  653. return sret;
  654. b = p->nodes[level];
  655. c = btrfs_buffer_node(b);
  656. slot = p->slots[level];
  657. } else if (ins_len < 0) {
  658. int sret = balance_level(trans, root, p,
  659. level);
  660. if (sret)
  661. return sret;
  662. b = p->nodes[level];
  663. if (!b)
  664. goto again;
  665. c = btrfs_buffer_node(b);
  666. slot = p->slots[level];
  667. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  668. }
  669. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  670. } else {
  671. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  672. p->slots[level] = slot;
  673. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  674. sizeof(struct btrfs_item) + ins_len) {
  675. int sret = split_leaf(trans, root, key,
  676. p, ins_len);
  677. BUG_ON(sret > 0);
  678. if (sret)
  679. return sret;
  680. }
  681. return ret;
  682. }
  683. }
  684. return 1;
  685. }
  686. /*
  687. * adjust the pointers going up the tree, starting at level
  688. * making sure the right key of each node is points to 'key'.
  689. * This is used after shifting pointers to the left, so it stops
  690. * fixing up pointers when a given leaf/node is not in slot 0 of the
  691. * higher levels
  692. *
  693. * If this fails to write a tree block, it returns -1, but continues
  694. * fixing up the blocks in ram so the tree is consistent.
  695. */
  696. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  697. *root, struct btrfs_path *path, struct btrfs_disk_key
  698. *key, int level)
  699. {
  700. int i;
  701. int ret = 0;
  702. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  703. struct btrfs_node *t;
  704. int tslot = path->slots[i];
  705. if (!path->nodes[i])
  706. break;
  707. t = btrfs_buffer_node(path->nodes[i]);
  708. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  709. btrfs_mark_buffer_dirty(path->nodes[i]);
  710. if (tslot != 0)
  711. break;
  712. }
  713. return ret;
  714. }
  715. /*
  716. * try to push data from one node into the next node left in the
  717. * tree.
  718. *
  719. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  720. * error, and > 0 if there was no room in the left hand block.
  721. */
  722. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  723. *root, struct buffer_head *dst_buf, struct
  724. buffer_head *src_buf)
  725. {
  726. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  727. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  728. int push_items = 0;
  729. int src_nritems;
  730. int dst_nritems;
  731. int ret = 0;
  732. src_nritems = btrfs_header_nritems(&src->header);
  733. dst_nritems = btrfs_header_nritems(&dst->header);
  734. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  735. if (push_items <= 0) {
  736. return 1;
  737. }
  738. if (src_nritems < push_items)
  739. push_items = src_nritems;
  740. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  741. push_items * sizeof(struct btrfs_key_ptr));
  742. if (push_items < src_nritems) {
  743. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  744. (src_nritems - push_items) *
  745. sizeof(struct btrfs_key_ptr));
  746. }
  747. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  748. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  749. btrfs_mark_buffer_dirty(src_buf);
  750. btrfs_mark_buffer_dirty(dst_buf);
  751. return ret;
  752. }
  753. /*
  754. * try to push data from one node into the next node right in the
  755. * tree.
  756. *
  757. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  758. * error, and > 0 if there was no room in the right hand block.
  759. *
  760. * this will only push up to 1/2 the contents of the left node over
  761. */
  762. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  763. btrfs_root *root, struct buffer_head *dst_buf,
  764. struct buffer_head *src_buf)
  765. {
  766. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  767. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  768. int push_items = 0;
  769. int max_push;
  770. int src_nritems;
  771. int dst_nritems;
  772. int ret = 0;
  773. src_nritems = btrfs_header_nritems(&src->header);
  774. dst_nritems = btrfs_header_nritems(&dst->header);
  775. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  776. if (push_items <= 0) {
  777. return 1;
  778. }
  779. max_push = src_nritems / 2 + 1;
  780. /* don't try to empty the node */
  781. if (max_push > src_nritems)
  782. return 1;
  783. if (max_push < push_items)
  784. push_items = max_push;
  785. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  786. dst_nritems * sizeof(struct btrfs_key_ptr));
  787. btrfs_memcpy(root, dst, dst->ptrs,
  788. src->ptrs + src_nritems - push_items,
  789. push_items * sizeof(struct btrfs_key_ptr));
  790. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  791. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  792. btrfs_mark_buffer_dirty(src_buf);
  793. btrfs_mark_buffer_dirty(dst_buf);
  794. return ret;
  795. }
  796. /*
  797. * helper function to insert a new root level in the tree.
  798. * A new node is allocated, and a single item is inserted to
  799. * point to the existing root
  800. *
  801. * returns zero on success or < 0 on failure.
  802. */
  803. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  804. *root, struct btrfs_path *path, int level)
  805. {
  806. struct buffer_head *t;
  807. struct btrfs_node *lower;
  808. struct btrfs_node *c;
  809. struct btrfs_disk_key *lower_key;
  810. BUG_ON(path->nodes[level]);
  811. BUG_ON(path->nodes[level-1] != root->node);
  812. t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
  813. if (IS_ERR(t))
  814. return PTR_ERR(t);
  815. c = btrfs_buffer_node(t);
  816. memset(c, 0, root->blocksize);
  817. btrfs_set_header_nritems(&c->header, 1);
  818. btrfs_set_header_level(&c->header, level);
  819. btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
  820. btrfs_set_header_generation(&c->header, trans->transid);
  821. btrfs_set_header_owner(&c->header, root->root_key.objectid);
  822. lower = btrfs_buffer_node(path->nodes[level-1]);
  823. memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
  824. sizeof(c->header.fsid));
  825. if (btrfs_is_leaf(lower))
  826. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  827. else
  828. lower_key = &lower->ptrs[0].key;
  829. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  830. sizeof(struct btrfs_disk_key));
  831. btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
  832. btrfs_mark_buffer_dirty(t);
  833. /* the super has an extra ref to root->node */
  834. btrfs_block_release(root, root->node);
  835. root->node = t;
  836. get_bh(t);
  837. path->nodes[level] = t;
  838. path->slots[level] = 0;
  839. return 0;
  840. }
  841. /*
  842. * worker function to insert a single pointer in a node.
  843. * the node should have enough room for the pointer already
  844. *
  845. * slot and level indicate where you want the key to go, and
  846. * blocknr is the block the key points to.
  847. *
  848. * returns zero on success and < 0 on any error
  849. */
  850. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  851. *root, struct btrfs_path *path, struct btrfs_disk_key
  852. *key, u64 blocknr, int slot, int level)
  853. {
  854. struct btrfs_node *lower;
  855. int nritems;
  856. BUG_ON(!path->nodes[level]);
  857. lower = btrfs_buffer_node(path->nodes[level]);
  858. nritems = btrfs_header_nritems(&lower->header);
  859. if (slot > nritems)
  860. BUG();
  861. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  862. BUG();
  863. if (slot != nritems) {
  864. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  865. lower->ptrs + slot,
  866. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  867. }
  868. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  869. key, sizeof(struct btrfs_disk_key));
  870. btrfs_set_node_blockptr(lower, slot, blocknr);
  871. btrfs_set_header_nritems(&lower->header, nritems + 1);
  872. btrfs_mark_buffer_dirty(path->nodes[level]);
  873. check_node(root, path, level);
  874. return 0;
  875. }
  876. /*
  877. * split the node at the specified level in path in two.
  878. * The path is corrected to point to the appropriate node after the split
  879. *
  880. * Before splitting this tries to make some room in the node by pushing
  881. * left and right, if either one works, it returns right away.
  882. *
  883. * returns 0 on success and < 0 on failure
  884. */
  885. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  886. *root, struct btrfs_path *path, int level)
  887. {
  888. struct buffer_head *t;
  889. struct btrfs_node *c;
  890. struct buffer_head *split_buffer;
  891. struct btrfs_node *split;
  892. int mid;
  893. int ret;
  894. int wret;
  895. u32 c_nritems;
  896. t = path->nodes[level];
  897. c = btrfs_buffer_node(t);
  898. if (t == root->node) {
  899. /* trying to split the root, lets make a new one */
  900. ret = insert_new_root(trans, root, path, level + 1);
  901. if (ret)
  902. return ret;
  903. } else {
  904. ret = push_nodes_for_insert(trans, root, path, level);
  905. t = path->nodes[level];
  906. c = btrfs_buffer_node(t);
  907. if (!ret &&
  908. btrfs_header_nritems(&c->header) <
  909. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  910. return 0;
  911. if (ret < 0)
  912. return ret;
  913. }
  914. c_nritems = btrfs_header_nritems(&c->header);
  915. split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
  916. if (IS_ERR(split_buffer))
  917. return PTR_ERR(split_buffer);
  918. split = btrfs_buffer_node(split_buffer);
  919. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  920. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  921. btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
  922. btrfs_set_header_generation(&split->header, trans->transid);
  923. btrfs_set_header_owner(&split->header, root->root_key.objectid);
  924. memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
  925. sizeof(split->header.fsid));
  926. mid = (c_nritems + 1) / 2;
  927. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  928. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  929. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  930. btrfs_set_header_nritems(&c->header, mid);
  931. ret = 0;
  932. btrfs_mark_buffer_dirty(t);
  933. btrfs_mark_buffer_dirty(split_buffer);
  934. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  935. bh_blocknr(split_buffer), path->slots[level + 1] + 1,
  936. level + 1);
  937. if (wret)
  938. ret = wret;
  939. if (path->slots[level] >= mid) {
  940. path->slots[level] -= mid;
  941. btrfs_block_release(root, t);
  942. path->nodes[level] = split_buffer;
  943. path->slots[level + 1] += 1;
  944. } else {
  945. btrfs_block_release(root, split_buffer);
  946. }
  947. return ret;
  948. }
  949. /*
  950. * how many bytes are required to store the items in a leaf. start
  951. * and nr indicate which items in the leaf to check. This totals up the
  952. * space used both by the item structs and the item data
  953. */
  954. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  955. {
  956. int data_len;
  957. int nritems = btrfs_header_nritems(&l->header);
  958. int end = min(nritems, start + nr) - 1;
  959. if (!nr)
  960. return 0;
  961. data_len = btrfs_item_end(l->items + start);
  962. data_len = data_len - btrfs_item_offset(l->items + end);
  963. data_len += sizeof(struct btrfs_item) * nr;
  964. WARN_ON(data_len < 0);
  965. return data_len;
  966. }
  967. /*
  968. * The space between the end of the leaf items and
  969. * the start of the leaf data. IOW, how much room
  970. * the leaf has left for both items and data
  971. */
  972. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  973. {
  974. int nritems = btrfs_header_nritems(&leaf->header);
  975. return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  976. }
  977. /*
  978. * push some data in the path leaf to the right, trying to free up at
  979. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  980. *
  981. * returns 1 if the push failed because the other node didn't have enough
  982. * room, 0 if everything worked out and < 0 if there were major errors.
  983. */
  984. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  985. *root, struct btrfs_path *path, int data_size)
  986. {
  987. struct buffer_head *left_buf = path->nodes[0];
  988. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  989. struct btrfs_leaf *right;
  990. struct buffer_head *right_buf;
  991. struct buffer_head *upper;
  992. struct btrfs_node *upper_node;
  993. int slot;
  994. int i;
  995. int free_space;
  996. int push_space = 0;
  997. int push_items = 0;
  998. struct btrfs_item *item;
  999. u32 left_nritems;
  1000. u32 right_nritems;
  1001. int ret;
  1002. slot = path->slots[1];
  1003. if (!path->nodes[1]) {
  1004. return 1;
  1005. }
  1006. upper = path->nodes[1];
  1007. upper_node = btrfs_buffer_node(upper);
  1008. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  1009. return 1;
  1010. }
  1011. right_buf = read_tree_block(root,
  1012. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  1013. right = btrfs_buffer_leaf(right_buf);
  1014. free_space = btrfs_leaf_free_space(root, right);
  1015. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1016. btrfs_block_release(root, right_buf);
  1017. return 1;
  1018. }
  1019. /* cow and double check */
  1020. ret = btrfs_cow_block(trans, root, right_buf, upper,
  1021. slot + 1, &right_buf);
  1022. if (ret) {
  1023. btrfs_block_release(root, right_buf);
  1024. return 1;
  1025. }
  1026. right = btrfs_buffer_leaf(right_buf);
  1027. free_space = btrfs_leaf_free_space(root, right);
  1028. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1029. btrfs_block_release(root, right_buf);
  1030. return 1;
  1031. }
  1032. left_nritems = btrfs_header_nritems(&left->header);
  1033. if (left_nritems == 0) {
  1034. btrfs_block_release(root, right_buf);
  1035. return 1;
  1036. }
  1037. for (i = left_nritems - 1; i >= 1; i--) {
  1038. item = left->items + i;
  1039. if (path->slots[0] == i)
  1040. push_space += data_size + sizeof(*item);
  1041. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1042. free_space)
  1043. break;
  1044. push_items++;
  1045. push_space += btrfs_item_size(item) + sizeof(*item);
  1046. }
  1047. if (push_items == 0) {
  1048. btrfs_block_release(root, right_buf);
  1049. return 1;
  1050. }
  1051. if (push_items == left_nritems)
  1052. WARN_ON(1);
  1053. right_nritems = btrfs_header_nritems(&right->header);
  1054. /* push left to right */
  1055. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  1056. push_space -= leaf_data_end(root, left);
  1057. /* make room in the right data area */
  1058. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1059. leaf_data_end(root, right) - push_space,
  1060. btrfs_leaf_data(right) +
  1061. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  1062. leaf_data_end(root, right));
  1063. /* copy from the left data area */
  1064. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  1065. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1066. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1067. push_space);
  1068. btrfs_memmove(root, right, right->items + push_items, right->items,
  1069. right_nritems * sizeof(struct btrfs_item));
  1070. /* copy the items from left to right */
  1071. btrfs_memcpy(root, right, right->items, left->items +
  1072. left_nritems - push_items,
  1073. push_items * sizeof(struct btrfs_item));
  1074. /* update the item pointers */
  1075. right_nritems += push_items;
  1076. btrfs_set_header_nritems(&right->header, right_nritems);
  1077. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1078. for (i = 0; i < right_nritems; i++) {
  1079. btrfs_set_item_offset(right->items + i, push_space -
  1080. btrfs_item_size(right->items + i));
  1081. push_space = btrfs_item_offset(right->items + i);
  1082. }
  1083. left_nritems -= push_items;
  1084. btrfs_set_header_nritems(&left->header, left_nritems);
  1085. btrfs_mark_buffer_dirty(left_buf);
  1086. btrfs_mark_buffer_dirty(right_buf);
  1087. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  1088. &right->items[0].key, sizeof(struct btrfs_disk_key));
  1089. btrfs_mark_buffer_dirty(upper);
  1090. /* then fixup the leaf pointer in the path */
  1091. if (path->slots[0] >= left_nritems) {
  1092. path->slots[0] -= left_nritems;
  1093. btrfs_block_release(root, path->nodes[0]);
  1094. path->nodes[0] = right_buf;
  1095. path->slots[1] += 1;
  1096. } else {
  1097. btrfs_block_release(root, right_buf);
  1098. }
  1099. if (path->nodes[1])
  1100. check_node(root, path, 1);
  1101. return 0;
  1102. }
  1103. /*
  1104. * push some data in the path leaf to the left, trying to free up at
  1105. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1106. */
  1107. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1108. *root, struct btrfs_path *path, int data_size)
  1109. {
  1110. struct buffer_head *right_buf = path->nodes[0];
  1111. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  1112. struct buffer_head *t;
  1113. struct btrfs_leaf *left;
  1114. int slot;
  1115. int i;
  1116. int free_space;
  1117. int push_space = 0;
  1118. int push_items = 0;
  1119. struct btrfs_item *item;
  1120. u32 old_left_nritems;
  1121. int ret = 0;
  1122. int wret;
  1123. slot = path->slots[1];
  1124. if (slot == 0) {
  1125. return 1;
  1126. }
  1127. if (!path->nodes[1]) {
  1128. return 1;
  1129. }
  1130. t = read_tree_block(root,
  1131. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  1132. left = btrfs_buffer_leaf(t);
  1133. free_space = btrfs_leaf_free_space(root, left);
  1134. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1135. btrfs_block_release(root, t);
  1136. return 1;
  1137. }
  1138. /* cow and double check */
  1139. ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  1140. if (ret) {
  1141. /* we hit -ENOSPC, but it isn't fatal here */
  1142. return 1;
  1143. }
  1144. left = btrfs_buffer_leaf(t);
  1145. free_space = btrfs_leaf_free_space(root, left);
  1146. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1147. btrfs_block_release(root, t);
  1148. return 1;
  1149. }
  1150. if (btrfs_header_nritems(&right->header) == 0) {
  1151. btrfs_block_release(root, t);
  1152. return 1;
  1153. }
  1154. for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
  1155. item = right->items + i;
  1156. if (path->slots[0] == i)
  1157. push_space += data_size + sizeof(*item);
  1158. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1159. free_space)
  1160. break;
  1161. push_items++;
  1162. push_space += btrfs_item_size(item) + sizeof(*item);
  1163. }
  1164. if (push_items == 0) {
  1165. btrfs_block_release(root, t);
  1166. return 1;
  1167. }
  1168. if (push_items == btrfs_header_nritems(&right->header))
  1169. WARN_ON(1);
  1170. /* push data from right to left */
  1171. btrfs_memcpy(root, left, left->items +
  1172. btrfs_header_nritems(&left->header),
  1173. right->items, push_items * sizeof(struct btrfs_item));
  1174. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1175. btrfs_item_offset(right->items + push_items -1);
  1176. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  1177. leaf_data_end(root, left) - push_space,
  1178. btrfs_leaf_data(right) +
  1179. btrfs_item_offset(right->items + push_items - 1),
  1180. push_space);
  1181. old_left_nritems = btrfs_header_nritems(&left->header);
  1182. BUG_ON(old_left_nritems < 0);
  1183. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1184. u32 ioff = btrfs_item_offset(left->items + i);
  1185. btrfs_set_item_offset(left->items + i, ioff -
  1186. (BTRFS_LEAF_DATA_SIZE(root) -
  1187. btrfs_item_offset(left->items +
  1188. old_left_nritems - 1)));
  1189. }
  1190. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  1191. /* fixup right node */
  1192. push_space = btrfs_item_offset(right->items + push_items - 1) -
  1193. leaf_data_end(root, right);
  1194. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1195. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1196. btrfs_leaf_data(right) +
  1197. leaf_data_end(root, right), push_space);
  1198. btrfs_memmove(root, right, right->items, right->items + push_items,
  1199. (btrfs_header_nritems(&right->header) - push_items) *
  1200. sizeof(struct btrfs_item));
  1201. btrfs_set_header_nritems(&right->header,
  1202. btrfs_header_nritems(&right->header) -
  1203. push_items);
  1204. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1205. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1206. btrfs_set_item_offset(right->items + i, push_space -
  1207. btrfs_item_size(right->items + i));
  1208. push_space = btrfs_item_offset(right->items + i);
  1209. }
  1210. btrfs_mark_buffer_dirty(t);
  1211. btrfs_mark_buffer_dirty(right_buf);
  1212. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  1213. if (wret)
  1214. ret = wret;
  1215. /* then fixup the leaf pointer in the path */
  1216. if (path->slots[0] < push_items) {
  1217. path->slots[0] += old_left_nritems;
  1218. btrfs_block_release(root, path->nodes[0]);
  1219. path->nodes[0] = t;
  1220. path->slots[1] -= 1;
  1221. } else {
  1222. btrfs_block_release(root, t);
  1223. path->slots[0] -= push_items;
  1224. }
  1225. BUG_ON(path->slots[0] < 0);
  1226. if (path->nodes[1])
  1227. check_node(root, path, 1);
  1228. return ret;
  1229. }
  1230. /*
  1231. * split the path's leaf in two, making sure there is at least data_size
  1232. * available for the resulting leaf level of the path.
  1233. *
  1234. * returns 0 if all went well and < 0 on failure.
  1235. */
  1236. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1237. *root, struct btrfs_key *ins_key,
  1238. struct btrfs_path *path, int data_size)
  1239. {
  1240. struct buffer_head *l_buf;
  1241. struct btrfs_leaf *l;
  1242. u32 nritems;
  1243. int mid;
  1244. int slot;
  1245. struct btrfs_leaf *right;
  1246. struct buffer_head *right_buffer;
  1247. int space_needed = data_size + sizeof(struct btrfs_item);
  1248. int data_copy_size;
  1249. int rt_data_off;
  1250. int i;
  1251. int ret = 0;
  1252. int wret;
  1253. int double_split = 0;
  1254. struct btrfs_disk_key disk_key;
  1255. /* first try to make some room by pushing left and right */
  1256. wret = push_leaf_left(trans, root, path, data_size);
  1257. if (wret < 0)
  1258. return wret;
  1259. if (wret) {
  1260. wret = push_leaf_right(trans, root, path, data_size);
  1261. if (wret < 0)
  1262. return wret;
  1263. }
  1264. l_buf = path->nodes[0];
  1265. l = btrfs_buffer_leaf(l_buf);
  1266. /* did the pushes work? */
  1267. if (btrfs_leaf_free_space(root, l) >=
  1268. sizeof(struct btrfs_item) + data_size)
  1269. return 0;
  1270. if (!path->nodes[1]) {
  1271. ret = insert_new_root(trans, root, path, 1);
  1272. if (ret)
  1273. return ret;
  1274. }
  1275. slot = path->slots[0];
  1276. nritems = btrfs_header_nritems(&l->header);
  1277. mid = (nritems + 1)/ 2;
  1278. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
  1279. if (IS_ERR(right_buffer))
  1280. return PTR_ERR(right_buffer);
  1281. right = btrfs_buffer_leaf(right_buffer);
  1282. memset(&right->header, 0, sizeof(right->header));
  1283. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1284. btrfs_set_header_generation(&right->header, trans->transid);
  1285. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1286. btrfs_set_header_level(&right->header, 0);
  1287. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1288. sizeof(right->header.fsid));
  1289. if (mid <= slot) {
  1290. if (nritems == 1 ||
  1291. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1292. BTRFS_LEAF_DATA_SIZE(root)) {
  1293. if (slot >= nritems) {
  1294. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1295. btrfs_set_header_nritems(&right->header, 0);
  1296. wret = insert_ptr(trans, root, path,
  1297. &disk_key,
  1298. bh_blocknr(right_buffer),
  1299. path->slots[1] + 1, 1);
  1300. if (wret)
  1301. ret = wret;
  1302. btrfs_block_release(root, path->nodes[0]);
  1303. path->nodes[0] = right_buffer;
  1304. path->slots[0] = 0;
  1305. path->slots[1] += 1;
  1306. return ret;
  1307. }
  1308. mid = slot;
  1309. double_split = 1;
  1310. }
  1311. } else {
  1312. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1313. BTRFS_LEAF_DATA_SIZE(root)) {
  1314. if (slot == 0) {
  1315. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1316. btrfs_set_header_nritems(&right->header, 0);
  1317. wret = insert_ptr(trans, root, path,
  1318. &disk_key,
  1319. bh_blocknr(right_buffer),
  1320. path->slots[1], 1);
  1321. if (wret)
  1322. ret = wret;
  1323. btrfs_block_release(root, path->nodes[0]);
  1324. path->nodes[0] = right_buffer;
  1325. path->slots[0] = 0;
  1326. if (path->slots[1] == 0) {
  1327. wret = fixup_low_keys(trans, root,
  1328. path, &disk_key, 1);
  1329. if (wret)
  1330. ret = wret;
  1331. }
  1332. return ret;
  1333. }
  1334. mid = slot;
  1335. double_split = 1;
  1336. }
  1337. }
  1338. btrfs_set_header_nritems(&right->header, nritems - mid);
  1339. data_copy_size = btrfs_item_end(l->items + mid) -
  1340. leaf_data_end(root, l);
  1341. btrfs_memcpy(root, right, right->items, l->items + mid,
  1342. (nritems - mid) * sizeof(struct btrfs_item));
  1343. btrfs_memcpy(root, right,
  1344. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1345. data_copy_size, btrfs_leaf_data(l) +
  1346. leaf_data_end(root, l), data_copy_size);
  1347. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1348. btrfs_item_end(l->items + mid);
  1349. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1350. u32 ioff = btrfs_item_offset(right->items + i);
  1351. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1352. }
  1353. btrfs_set_header_nritems(&l->header, mid);
  1354. ret = 0;
  1355. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1356. bh_blocknr(right_buffer), path->slots[1] + 1, 1);
  1357. if (wret)
  1358. ret = wret;
  1359. btrfs_mark_buffer_dirty(right_buffer);
  1360. btrfs_mark_buffer_dirty(l_buf);
  1361. BUG_ON(path->slots[0] != slot);
  1362. if (mid <= slot) {
  1363. btrfs_block_release(root, path->nodes[0]);
  1364. path->nodes[0] = right_buffer;
  1365. path->slots[0] -= mid;
  1366. path->slots[1] += 1;
  1367. } else
  1368. btrfs_block_release(root, right_buffer);
  1369. BUG_ON(path->slots[0] < 0);
  1370. check_node(root, path, 1);
  1371. if (!double_split)
  1372. return ret;
  1373. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
  1374. if (IS_ERR(right_buffer))
  1375. return PTR_ERR(right_buffer);
  1376. right = btrfs_buffer_leaf(right_buffer);
  1377. memset(&right->header, 0, sizeof(right->header));
  1378. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1379. btrfs_set_header_generation(&right->header, trans->transid);
  1380. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1381. btrfs_set_header_level(&right->header, 0);
  1382. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1383. sizeof(right->header.fsid));
  1384. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1385. btrfs_set_header_nritems(&right->header, 0);
  1386. wret = insert_ptr(trans, root, path,
  1387. &disk_key,
  1388. bh_blocknr(right_buffer),
  1389. path->slots[1], 1);
  1390. if (wret)
  1391. ret = wret;
  1392. if (path->slots[1] == 0) {
  1393. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1394. if (wret)
  1395. ret = wret;
  1396. }
  1397. btrfs_block_release(root, path->nodes[0]);
  1398. path->nodes[0] = right_buffer;
  1399. path->slots[0] = 0;
  1400. check_node(root, path, 1);
  1401. check_leaf(root, path, 0);
  1402. return ret;
  1403. }
  1404. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1405. struct btrfs_root *root,
  1406. struct btrfs_path *path,
  1407. u32 new_size)
  1408. {
  1409. int ret = 0;
  1410. int slot;
  1411. int slot_orig;
  1412. struct btrfs_leaf *leaf;
  1413. struct buffer_head *leaf_buf;
  1414. u32 nritems;
  1415. unsigned int data_end;
  1416. unsigned int old_data_start;
  1417. unsigned int old_size;
  1418. unsigned int size_diff;
  1419. int i;
  1420. slot_orig = path->slots[0];
  1421. leaf_buf = path->nodes[0];
  1422. leaf = btrfs_buffer_leaf(leaf_buf);
  1423. nritems = btrfs_header_nritems(&leaf->header);
  1424. data_end = leaf_data_end(root, leaf);
  1425. slot = path->slots[0];
  1426. old_data_start = btrfs_item_offset(leaf->items + slot);
  1427. old_size = btrfs_item_size(leaf->items + slot);
  1428. BUG_ON(old_size <= new_size);
  1429. size_diff = old_size - new_size;
  1430. BUG_ON(slot < 0);
  1431. BUG_ON(slot >= nritems);
  1432. /*
  1433. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1434. */
  1435. /* first correct the data pointers */
  1436. for (i = slot; i < nritems; i++) {
  1437. u32 ioff = btrfs_item_offset(leaf->items + i);
  1438. btrfs_set_item_offset(leaf->items + i,
  1439. ioff + size_diff);
  1440. }
  1441. /* shift the data */
  1442. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1443. data_end + size_diff, btrfs_leaf_data(leaf) +
  1444. data_end, old_data_start + new_size - data_end);
  1445. btrfs_set_item_size(leaf->items + slot, new_size);
  1446. btrfs_mark_buffer_dirty(leaf_buf);
  1447. ret = 0;
  1448. if (btrfs_leaf_free_space(root, leaf) < 0)
  1449. BUG();
  1450. check_leaf(root, path, 0);
  1451. return ret;
  1452. }
  1453. int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1454. *root, struct btrfs_path *path, u32 data_size)
  1455. {
  1456. int ret = 0;
  1457. int slot;
  1458. int slot_orig;
  1459. struct btrfs_leaf *leaf;
  1460. struct buffer_head *leaf_buf;
  1461. u32 nritems;
  1462. unsigned int data_end;
  1463. unsigned int old_data;
  1464. unsigned int old_size;
  1465. int i;
  1466. slot_orig = path->slots[0];
  1467. leaf_buf = path->nodes[0];
  1468. leaf = btrfs_buffer_leaf(leaf_buf);
  1469. nritems = btrfs_header_nritems(&leaf->header);
  1470. data_end = leaf_data_end(root, leaf);
  1471. if (btrfs_leaf_free_space(root, leaf) < data_size)
  1472. BUG();
  1473. slot = path->slots[0];
  1474. old_data = btrfs_item_end(leaf->items + slot);
  1475. BUG_ON(slot < 0);
  1476. BUG_ON(slot >= nritems);
  1477. /*
  1478. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1479. */
  1480. /* first correct the data pointers */
  1481. for (i = slot; i < nritems; i++) {
  1482. u32 ioff = btrfs_item_offset(leaf->items + i);
  1483. btrfs_set_item_offset(leaf->items + i,
  1484. ioff - data_size);
  1485. }
  1486. /* shift the data */
  1487. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1488. data_end - data_size, btrfs_leaf_data(leaf) +
  1489. data_end, old_data - data_end);
  1490. data_end = old_data;
  1491. old_size = btrfs_item_size(leaf->items + slot);
  1492. btrfs_set_item_size(leaf->items + slot, old_size + data_size);
  1493. btrfs_mark_buffer_dirty(leaf_buf);
  1494. ret = 0;
  1495. if (btrfs_leaf_free_space(root, leaf) < 0)
  1496. BUG();
  1497. check_leaf(root, path, 0);
  1498. return ret;
  1499. }
  1500. /*
  1501. * Given a key and some data, insert an item into the tree.
  1502. * This does all the path init required, making room in the tree if needed.
  1503. */
  1504. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1505. *root, struct btrfs_path *path, struct btrfs_key
  1506. *cpu_key, u32 data_size)
  1507. {
  1508. int ret = 0;
  1509. int slot;
  1510. int slot_orig;
  1511. struct btrfs_leaf *leaf;
  1512. struct buffer_head *leaf_buf;
  1513. u32 nritems;
  1514. unsigned int data_end;
  1515. struct btrfs_disk_key disk_key;
  1516. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1517. /* create a root if there isn't one */
  1518. if (!root->node)
  1519. BUG();
  1520. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1521. if (ret == 0) {
  1522. return -EEXIST;
  1523. }
  1524. if (ret < 0)
  1525. goto out;
  1526. slot_orig = path->slots[0];
  1527. leaf_buf = path->nodes[0];
  1528. leaf = btrfs_buffer_leaf(leaf_buf);
  1529. nritems = btrfs_header_nritems(&leaf->header);
  1530. data_end = leaf_data_end(root, leaf);
  1531. if (btrfs_leaf_free_space(root, leaf) <
  1532. sizeof(struct btrfs_item) + data_size) {
  1533. BUG();
  1534. }
  1535. slot = path->slots[0];
  1536. BUG_ON(slot < 0);
  1537. if (slot != nritems) {
  1538. int i;
  1539. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1540. /*
  1541. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1542. */
  1543. /* first correct the data pointers */
  1544. for (i = slot; i < nritems; i++) {
  1545. u32 ioff = btrfs_item_offset(leaf->items + i);
  1546. btrfs_set_item_offset(leaf->items + i,
  1547. ioff - data_size);
  1548. }
  1549. /* shift the items */
  1550. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1551. leaf->items + slot,
  1552. (nritems - slot) * sizeof(struct btrfs_item));
  1553. /* shift the data */
  1554. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1555. data_end - data_size, btrfs_leaf_data(leaf) +
  1556. data_end, old_data - data_end);
  1557. data_end = old_data;
  1558. }
  1559. /* setup the item for the new data */
  1560. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1561. sizeof(struct btrfs_disk_key));
  1562. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1563. btrfs_set_item_size(leaf->items + slot, data_size);
  1564. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1565. btrfs_mark_buffer_dirty(leaf_buf);
  1566. ret = 0;
  1567. if (slot == 0)
  1568. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1569. if (btrfs_leaf_free_space(root, leaf) < 0)
  1570. BUG();
  1571. check_leaf(root, path, 0);
  1572. out:
  1573. return ret;
  1574. }
  1575. /*
  1576. * Given a key and some data, insert an item into the tree.
  1577. * This does all the path init required, making room in the tree if needed.
  1578. */
  1579. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1580. *root, struct btrfs_key *cpu_key, void *data, u32
  1581. data_size)
  1582. {
  1583. int ret = 0;
  1584. struct btrfs_path *path;
  1585. u8 *ptr;
  1586. path = btrfs_alloc_path();
  1587. BUG_ON(!path);
  1588. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1589. if (!ret) {
  1590. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
  1591. path->slots[0], u8);
  1592. btrfs_memcpy(root, path->nodes[0]->b_data,
  1593. ptr, data, data_size);
  1594. btrfs_mark_buffer_dirty(path->nodes[0]);
  1595. }
  1596. btrfs_free_path(path);
  1597. return ret;
  1598. }
  1599. /*
  1600. * delete the pointer from a given node.
  1601. *
  1602. * If the delete empties a node, the node is removed from the tree,
  1603. * continuing all the way the root if required. The root is converted into
  1604. * a leaf if all the nodes are emptied.
  1605. */
  1606. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1607. struct btrfs_path *path, int level, int slot)
  1608. {
  1609. struct btrfs_node *node;
  1610. struct buffer_head *parent = path->nodes[level];
  1611. u32 nritems;
  1612. int ret = 0;
  1613. int wret;
  1614. node = btrfs_buffer_node(parent);
  1615. nritems = btrfs_header_nritems(&node->header);
  1616. if (slot != nritems -1) {
  1617. btrfs_memmove(root, node, node->ptrs + slot,
  1618. node->ptrs + slot + 1,
  1619. sizeof(struct btrfs_key_ptr) *
  1620. (nritems - slot - 1));
  1621. }
  1622. nritems--;
  1623. btrfs_set_header_nritems(&node->header, nritems);
  1624. if (nritems == 0 && parent == root->node) {
  1625. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1626. BUG_ON(btrfs_header_level(header) != 1);
  1627. /* just turn the root into a leaf and break */
  1628. btrfs_set_header_level(header, 0);
  1629. } else if (slot == 0) {
  1630. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1631. level + 1);
  1632. if (wret)
  1633. ret = wret;
  1634. }
  1635. btrfs_mark_buffer_dirty(parent);
  1636. return ret;
  1637. }
  1638. /*
  1639. * delete the item at the leaf level in path. If that empties
  1640. * the leaf, remove it from the tree
  1641. */
  1642. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1643. struct btrfs_path *path)
  1644. {
  1645. int slot;
  1646. struct btrfs_leaf *leaf;
  1647. struct buffer_head *leaf_buf;
  1648. int doff;
  1649. int dsize;
  1650. int ret = 0;
  1651. int wret;
  1652. u32 nritems;
  1653. leaf_buf = path->nodes[0];
  1654. leaf = btrfs_buffer_leaf(leaf_buf);
  1655. slot = path->slots[0];
  1656. doff = btrfs_item_offset(leaf->items + slot);
  1657. dsize = btrfs_item_size(leaf->items + slot);
  1658. nritems = btrfs_header_nritems(&leaf->header);
  1659. if (slot != nritems - 1) {
  1660. int i;
  1661. int data_end = leaf_data_end(root, leaf);
  1662. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1663. data_end + dsize,
  1664. btrfs_leaf_data(leaf) + data_end,
  1665. doff - data_end);
  1666. for (i = slot + 1; i < nritems; i++) {
  1667. u32 ioff = btrfs_item_offset(leaf->items + i);
  1668. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1669. }
  1670. btrfs_memmove(root, leaf, leaf->items + slot,
  1671. leaf->items + slot + 1,
  1672. sizeof(struct btrfs_item) *
  1673. (nritems - slot - 1));
  1674. }
  1675. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1676. nritems--;
  1677. /* delete the leaf if we've emptied it */
  1678. if (nritems == 0) {
  1679. if (leaf_buf == root->node) {
  1680. btrfs_set_header_level(&leaf->header, 0);
  1681. } else {
  1682. clean_tree_block(trans, root, leaf_buf);
  1683. wait_on_buffer(leaf_buf);
  1684. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1685. if (wret)
  1686. ret = wret;
  1687. wret = btrfs_free_extent(trans, root,
  1688. bh_blocknr(leaf_buf), 1, 1);
  1689. if (wret)
  1690. ret = wret;
  1691. }
  1692. } else {
  1693. int used = leaf_space_used(leaf, 0, nritems);
  1694. if (slot == 0) {
  1695. wret = fixup_low_keys(trans, root, path,
  1696. &leaf->items[0].key, 1);
  1697. if (wret)
  1698. ret = wret;
  1699. }
  1700. /* delete the leaf if it is mostly empty */
  1701. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1702. /* push_leaf_left fixes the path.
  1703. * make sure the path still points to our leaf
  1704. * for possible call to del_ptr below
  1705. */
  1706. slot = path->slots[1];
  1707. get_bh(leaf_buf);
  1708. wret = push_leaf_left(trans, root, path, 1);
  1709. if (wret < 0 && wret != -ENOSPC)
  1710. ret = wret;
  1711. if (path->nodes[0] == leaf_buf &&
  1712. btrfs_header_nritems(&leaf->header)) {
  1713. wret = push_leaf_right(trans, root, path, 1);
  1714. if (wret < 0 && wret != -ENOSPC)
  1715. ret = wret;
  1716. }
  1717. if (btrfs_header_nritems(&leaf->header) == 0) {
  1718. u64 blocknr = bh_blocknr(leaf_buf);
  1719. clean_tree_block(trans, root, leaf_buf);
  1720. wait_on_buffer(leaf_buf);
  1721. wret = del_ptr(trans, root, path, 1, slot);
  1722. if (wret)
  1723. ret = wret;
  1724. btrfs_block_release(root, leaf_buf);
  1725. wret = btrfs_free_extent(trans, root, blocknr,
  1726. 1, 1);
  1727. if (wret)
  1728. ret = wret;
  1729. } else {
  1730. btrfs_mark_buffer_dirty(leaf_buf);
  1731. btrfs_block_release(root, leaf_buf);
  1732. }
  1733. } else {
  1734. btrfs_mark_buffer_dirty(leaf_buf);
  1735. }
  1736. }
  1737. return ret;
  1738. }
  1739. /*
  1740. * walk up the tree as far as required to find the next leaf.
  1741. * returns 0 if it found something or 1 if there are no greater leaves.
  1742. * returns < 0 on io errors.
  1743. */
  1744. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1745. {
  1746. int slot;
  1747. int level = 1;
  1748. u64 blocknr;
  1749. struct buffer_head *c;
  1750. struct btrfs_node *c_node;
  1751. struct buffer_head *next = NULL;
  1752. while(level < BTRFS_MAX_LEVEL) {
  1753. if (!path->nodes[level])
  1754. return 1;
  1755. slot = path->slots[level] + 1;
  1756. c = path->nodes[level];
  1757. c_node = btrfs_buffer_node(c);
  1758. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1759. level++;
  1760. continue;
  1761. }
  1762. blocknr = btrfs_node_blockptr(c_node, slot);
  1763. if (next)
  1764. btrfs_block_release(root, next);
  1765. next = read_tree_block(root, blocknr);
  1766. break;
  1767. }
  1768. path->slots[level] = slot;
  1769. while(1) {
  1770. level--;
  1771. c = path->nodes[level];
  1772. btrfs_block_release(root, c);
  1773. path->nodes[level] = next;
  1774. path->slots[level] = 0;
  1775. if (!level)
  1776. break;
  1777. next = read_tree_block(root,
  1778. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1779. }
  1780. return 0;
  1781. }