tc35815.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495
  1. /*
  2. * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
  3. *
  4. * Based on skelton.c by Donald Becker.
  5. *
  6. * This driver is a replacement of older and less maintained version.
  7. * This is a header of the older version:
  8. * -----<snip>-----
  9. * Copyright 2001 MontaVista Software Inc.
  10. * Author: MontaVista Software, Inc.
  11. * ahennessy@mvista.com
  12. * Copyright (C) 2000-2001 Toshiba Corporation
  13. * static const char *version =
  14. * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15. * -----<snip>-----
  16. *
  17. * This file is subject to the terms and conditions of the GNU General Public
  18. * License. See the file "COPYING" in the main directory of this archive
  19. * for more details.
  20. *
  21. * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22. * All Rights Reserved.
  23. */
  24. #ifdef TC35815_NAPI
  25. #define DRV_VERSION "1.37-NAPI"
  26. #else
  27. #define DRV_VERSION "1.37"
  28. #endif
  29. static const char *version = "tc35815.c:v" DRV_VERSION "\n";
  30. #define MODNAME "tc35815"
  31. #include <linux/module.h>
  32. #include <linux/kernel.h>
  33. #include <linux/types.h>
  34. #include <linux/fcntl.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/ioport.h>
  37. #include <linux/in.h>
  38. #include <linux/slab.h>
  39. #include <linux/string.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/errno.h>
  42. #include <linux/init.h>
  43. #include <linux/netdevice.h>
  44. #include <linux/etherdevice.h>
  45. #include <linux/skbuff.h>
  46. #include <linux/delay.h>
  47. #include <linux/pci.h>
  48. #include <linux/phy.h>
  49. #include <linux/workqueue.h>
  50. #include <linux/platform_device.h>
  51. #include <asm/io.h>
  52. #include <asm/byteorder.h>
  53. /* First, a few definitions that the brave might change. */
  54. #define GATHER_TXINT /* On-Demand Tx Interrupt */
  55. #define WORKAROUND_LOSTCAR
  56. #define WORKAROUND_100HALF_PROMISC
  57. /* #define TC35815_USE_PACKEDBUFFER */
  58. enum tc35815_chiptype {
  59. TC35815CF = 0,
  60. TC35815_NWU,
  61. TC35815_TX4939,
  62. };
  63. /* indexed by tc35815_chiptype, above */
  64. static const struct {
  65. const char *name;
  66. } chip_info[] __devinitdata = {
  67. { "TOSHIBA TC35815CF 10/100BaseTX" },
  68. { "TOSHIBA TC35815 with Wake on LAN" },
  69. { "TOSHIBA TC35815/TX4939" },
  70. };
  71. static const struct pci_device_id tc35815_pci_tbl[] = {
  72. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  73. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  74. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  75. {0,}
  76. };
  77. MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  78. /* see MODULE_PARM_DESC */
  79. static struct tc35815_options {
  80. int speed;
  81. int duplex;
  82. } options;
  83. /*
  84. * Registers
  85. */
  86. struct tc35815_regs {
  87. __u32 DMA_Ctl; /* 0x00 */
  88. __u32 TxFrmPtr;
  89. __u32 TxThrsh;
  90. __u32 TxPollCtr;
  91. __u32 BLFrmPtr;
  92. __u32 RxFragSize;
  93. __u32 Int_En;
  94. __u32 FDA_Bas;
  95. __u32 FDA_Lim; /* 0x20 */
  96. __u32 Int_Src;
  97. __u32 unused0[2];
  98. __u32 PauseCnt;
  99. __u32 RemPauCnt;
  100. __u32 TxCtlFrmStat;
  101. __u32 unused1;
  102. __u32 MAC_Ctl; /* 0x40 */
  103. __u32 CAM_Ctl;
  104. __u32 Tx_Ctl;
  105. __u32 Tx_Stat;
  106. __u32 Rx_Ctl;
  107. __u32 Rx_Stat;
  108. __u32 MD_Data;
  109. __u32 MD_CA;
  110. __u32 CAM_Adr; /* 0x60 */
  111. __u32 CAM_Data;
  112. __u32 CAM_Ena;
  113. __u32 PROM_Ctl;
  114. __u32 PROM_Data;
  115. __u32 Algn_Cnt;
  116. __u32 CRC_Cnt;
  117. __u32 Miss_Cnt;
  118. };
  119. /*
  120. * Bit assignments
  121. */
  122. /* DMA_Ctl bit asign ------------------------------------------------------- */
  123. #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
  124. #define DMA_RxAlign_1 0x00400000
  125. #define DMA_RxAlign_2 0x00800000
  126. #define DMA_RxAlign_3 0x00c00000
  127. #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
  128. #define DMA_IntMask 0x00040000 /* 1:Interupt mask */
  129. #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
  130. #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
  131. #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
  132. #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
  133. #define DMA_TestMode 0x00002000 /* 1:Test Mode */
  134. #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
  135. #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
  136. /* RxFragSize bit asign ---------------------------------------------------- */
  137. #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
  138. #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
  139. /* MAC_Ctl bit asign ------------------------------------------------------- */
  140. #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
  141. #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
  142. #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
  143. #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
  144. #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
  145. #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
  146. #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
  147. #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
  148. #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
  149. #define MAC_Reset 0x00000004 /* 1:Software Reset */
  150. #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
  151. #define MAC_HaltReq 0x00000001 /* 1:Halt request */
  152. /* PROM_Ctl bit asign ------------------------------------------------------ */
  153. #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
  154. #define PROM_Read 0x00004000 /*10:Read operation */
  155. #define PROM_Write 0x00002000 /*01:Write operation */
  156. #define PROM_Erase 0x00006000 /*11:Erase operation */
  157. /*00:Enable or Disable Writting, */
  158. /* as specified in PROM_Addr. */
  159. #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
  160. /*00xxxx: disable */
  161. /* CAM_Ctl bit asign ------------------------------------------------------- */
  162. #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
  163. #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
  164. /* accept other */
  165. #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
  166. #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
  167. #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
  168. /* CAM_Ena bit asign ------------------------------------------------------- */
  169. #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
  170. #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
  171. #define CAM_Ena_Bit(index) (1 << (index))
  172. #define CAM_ENTRY_DESTINATION 0
  173. #define CAM_ENTRY_SOURCE 1
  174. #define CAM_ENTRY_MACCTL 20
  175. /* Tx_Ctl bit asign -------------------------------------------------------- */
  176. #define Tx_En 0x00000001 /* 1:Transmit enable */
  177. #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
  178. #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
  179. #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
  180. #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
  181. #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
  182. #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
  183. #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
  184. #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
  185. #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
  186. #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
  187. #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
  188. /* Tx_Stat bit asign ------------------------------------------------------- */
  189. #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
  190. #define Tx_ExColl 0x00000010 /* Excessive Collision */
  191. #define Tx_TXDefer 0x00000020 /* Transmit Defered */
  192. #define Tx_Paused 0x00000040 /* Transmit Paused */
  193. #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
  194. #define Tx_Under 0x00000100 /* Underrun */
  195. #define Tx_Defer 0x00000200 /* Deferral */
  196. #define Tx_NCarr 0x00000400 /* No Carrier */
  197. #define Tx_10Stat 0x00000800 /* 10Mbps Status */
  198. #define Tx_LateColl 0x00001000 /* Late Collision */
  199. #define Tx_TxPar 0x00002000 /* Tx Parity Error */
  200. #define Tx_Comp 0x00004000 /* Completion */
  201. #define Tx_Halted 0x00008000 /* Tx Halted */
  202. #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
  203. /* Rx_Ctl bit asign -------------------------------------------------------- */
  204. #define Rx_EnGood 0x00004000 /* 1:Enable Good */
  205. #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
  206. #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
  207. #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
  208. #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
  209. #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
  210. #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
  211. #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
  212. #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
  213. #define Rx_LongEn 0x00000004 /* 1:Long Enable */
  214. #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
  215. #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
  216. /* Rx_Stat bit asign ------------------------------------------------------- */
  217. #define Rx_Halted 0x00008000 /* Rx Halted */
  218. #define Rx_Good 0x00004000 /* Rx Good */
  219. #define Rx_RxPar 0x00002000 /* Rx Parity Error */
  220. /* 0x00001000 not use */
  221. #define Rx_LongErr 0x00000800 /* Rx Long Error */
  222. #define Rx_Over 0x00000400 /* Rx Overflow */
  223. #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
  224. #define Rx_Align 0x00000100 /* Rx Alignment Error */
  225. #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
  226. #define Rx_IntRx 0x00000040 /* Rx Interrupt */
  227. #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
  228. #define Rx_Stat_Mask 0x0000EFC0 /* Rx All Status Mask */
  229. /* Int_En bit asign -------------------------------------------------------- */
  230. #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
  231. #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
  232. #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
  233. #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
  234. #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
  235. #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
  236. #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
  237. #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
  238. #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
  239. #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
  240. #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
  241. #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
  242. /* Exhausted Enable */
  243. /* Int_Src bit asign ------------------------------------------------------- */
  244. #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
  245. #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
  246. #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
  247. #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
  248. #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
  249. #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
  250. #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
  251. #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
  252. #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
  253. #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
  254. #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
  255. #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
  256. #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
  257. #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
  258. #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
  259. /* MD_CA bit asign --------------------------------------------------------- */
  260. #define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */
  261. #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
  262. #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
  263. /*
  264. * Descriptors
  265. */
  266. /* Frame descripter */
  267. struct FDesc {
  268. volatile __u32 FDNext;
  269. volatile __u32 FDSystem;
  270. volatile __u32 FDStat;
  271. volatile __u32 FDCtl;
  272. };
  273. /* Buffer descripter */
  274. struct BDesc {
  275. volatile __u32 BuffData;
  276. volatile __u32 BDCtl;
  277. };
  278. #define FD_ALIGN 16
  279. /* Frame Descripter bit asign ---------------------------------------------- */
  280. #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
  281. #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
  282. #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
  283. #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
  284. #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
  285. #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
  286. #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
  287. #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
  288. #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
  289. #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
  290. #define FD_BDCnt_SHIFT 16
  291. /* Buffer Descripter bit asign --------------------------------------------- */
  292. #define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */
  293. #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
  294. #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
  295. #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
  296. #define BD_RxBDID_SHIFT 16
  297. #define BD_RxBDSeqN_SHIFT 24
  298. /* Some useful constants. */
  299. #undef NO_CHECK_CARRIER /* Does not check No-Carrier with TP */
  300. #ifdef NO_CHECK_CARRIER
  301. #define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
  302. Tx_EnExColl | Tx_EnExDefer | Tx_EnUnder | \
  303. Tx_En) /* maybe 0x7b01 */
  304. #else
  305. #define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
  306. Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
  307. Tx_En) /* maybe 0x7b01 */
  308. #endif
  309. #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
  310. | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
  311. #define INT_EN_CMD (Int_NRAbtEn | \
  312. Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
  313. Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
  314. Int_STargAbtEn | \
  315. Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
  316. #define DMA_CTL_CMD DMA_BURST_SIZE
  317. #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
  318. /* Tuning parameters */
  319. #define DMA_BURST_SIZE 32
  320. #define TX_THRESHOLD 1024
  321. /* used threshold with packet max byte for low pci transfer ability.*/
  322. #define TX_THRESHOLD_MAX 1536
  323. /* setting threshold max value when overrun error occured this count. */
  324. #define TX_THRESHOLD_KEEP_LIMIT 10
  325. /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
  326. #ifdef TC35815_USE_PACKEDBUFFER
  327. #define FD_PAGE_NUM 2
  328. #define RX_BUF_NUM 8 /* >= 2 */
  329. #define RX_FD_NUM 250 /* >= 32 */
  330. #define TX_FD_NUM 128
  331. #define RX_BUF_SIZE PAGE_SIZE
  332. #else /* TC35815_USE_PACKEDBUFFER */
  333. #define FD_PAGE_NUM 4
  334. #define RX_BUF_NUM 128 /* < 256 */
  335. #define RX_FD_NUM 256 /* >= 32 */
  336. #define TX_FD_NUM 128
  337. #if RX_CTL_CMD & Rx_LongEn
  338. #define RX_BUF_SIZE PAGE_SIZE
  339. #elif RX_CTL_CMD & Rx_StripCRC
  340. #define RX_BUF_SIZE ALIGN(ETH_FRAME_LEN + 4 + 2, 32) /* +2: reserve */
  341. #else
  342. #define RX_BUF_SIZE ALIGN(ETH_FRAME_LEN + 2, 32) /* +2: reserve */
  343. #endif
  344. #endif /* TC35815_USE_PACKEDBUFFER */
  345. #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
  346. #define NAPI_WEIGHT 16
  347. struct TxFD {
  348. struct FDesc fd;
  349. struct BDesc bd;
  350. struct BDesc unused;
  351. };
  352. struct RxFD {
  353. struct FDesc fd;
  354. struct BDesc bd[0]; /* variable length */
  355. };
  356. struct FrFD {
  357. struct FDesc fd;
  358. struct BDesc bd[RX_BUF_NUM];
  359. };
  360. #define tc_readl(addr) ioread32(addr)
  361. #define tc_writel(d, addr) iowrite32(d, addr)
  362. #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
  363. /* Information that need to be kept for each controller. */
  364. struct tc35815_local {
  365. struct pci_dev *pci_dev;
  366. struct net_device *dev;
  367. struct napi_struct napi;
  368. /* statistics */
  369. struct {
  370. int max_tx_qlen;
  371. int tx_ints;
  372. int rx_ints;
  373. int tx_underrun;
  374. } lstats;
  375. /* Tx control lock. This protects the transmit buffer ring
  376. * state along with the "tx full" state of the driver. This
  377. * means all netif_queue flow control actions are protected
  378. * by this lock as well.
  379. */
  380. spinlock_t lock;
  381. struct mii_bus mii_bus;
  382. struct phy_device *phy_dev;
  383. int duplex;
  384. int speed;
  385. int link;
  386. struct work_struct restart_work;
  387. /*
  388. * Transmitting: Batch Mode.
  389. * 1 BD in 1 TxFD.
  390. * Receiving: Packing Mode. (TC35815_USE_PACKEDBUFFER)
  391. * 1 circular FD for Free Buffer List.
  392. * RX_BUF_NUM BD in Free Buffer FD.
  393. * One Free Buffer BD has PAGE_SIZE data buffer.
  394. * Or Non-Packing Mode.
  395. * 1 circular FD for Free Buffer List.
  396. * RX_BUF_NUM BD in Free Buffer FD.
  397. * One Free Buffer BD has ETH_FRAME_LEN data buffer.
  398. */
  399. void *fd_buf; /* for TxFD, RxFD, FrFD */
  400. dma_addr_t fd_buf_dma;
  401. struct TxFD *tfd_base;
  402. unsigned int tfd_start;
  403. unsigned int tfd_end;
  404. struct RxFD *rfd_base;
  405. struct RxFD *rfd_limit;
  406. struct RxFD *rfd_cur;
  407. struct FrFD *fbl_ptr;
  408. #ifdef TC35815_USE_PACKEDBUFFER
  409. unsigned char fbl_curid;
  410. void *data_buf[RX_BUF_NUM]; /* packing */
  411. dma_addr_t data_buf_dma[RX_BUF_NUM];
  412. struct {
  413. struct sk_buff *skb;
  414. dma_addr_t skb_dma;
  415. } tx_skbs[TX_FD_NUM];
  416. #else
  417. unsigned int fbl_count;
  418. struct {
  419. struct sk_buff *skb;
  420. dma_addr_t skb_dma;
  421. } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
  422. #endif
  423. u32 msg_enable;
  424. enum tc35815_chiptype chiptype;
  425. };
  426. static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
  427. {
  428. return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
  429. }
  430. #ifdef DEBUG
  431. static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
  432. {
  433. return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
  434. }
  435. #endif
  436. #ifdef TC35815_USE_PACKEDBUFFER
  437. static inline void *rxbuf_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
  438. {
  439. int i;
  440. for (i = 0; i < RX_BUF_NUM; i++) {
  441. if (bus >= lp->data_buf_dma[i] &&
  442. bus < lp->data_buf_dma[i] + PAGE_SIZE)
  443. return (void *)((u8 *)lp->data_buf[i] +
  444. (bus - lp->data_buf_dma[i]));
  445. }
  446. return NULL;
  447. }
  448. #define TC35815_DMA_SYNC_ONDEMAND
  449. static void *alloc_rxbuf_page(struct pci_dev *hwdev, dma_addr_t *dma_handle)
  450. {
  451. #ifdef TC35815_DMA_SYNC_ONDEMAND
  452. void *buf;
  453. /* pci_map + pci_dma_sync will be more effective than
  454. * pci_alloc_consistent on some archs. */
  455. buf = (void *)__get_free_page(GFP_ATOMIC);
  456. if (!buf)
  457. return NULL;
  458. *dma_handle = pci_map_single(hwdev, buf, PAGE_SIZE,
  459. PCI_DMA_FROMDEVICE);
  460. if (pci_dma_mapping_error(*dma_handle)) {
  461. free_page((unsigned long)buf);
  462. return NULL;
  463. }
  464. return buf;
  465. #else
  466. return pci_alloc_consistent(hwdev, PAGE_SIZE, dma_handle);
  467. #endif
  468. }
  469. static void free_rxbuf_page(struct pci_dev *hwdev, void *buf, dma_addr_t dma_handle)
  470. {
  471. #ifdef TC35815_DMA_SYNC_ONDEMAND
  472. pci_unmap_single(hwdev, dma_handle, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  473. free_page((unsigned long)buf);
  474. #else
  475. pci_free_consistent(hwdev, PAGE_SIZE, buf, dma_handle);
  476. #endif
  477. }
  478. #else /* TC35815_USE_PACKEDBUFFER */
  479. static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
  480. struct pci_dev *hwdev,
  481. dma_addr_t *dma_handle)
  482. {
  483. struct sk_buff *skb;
  484. skb = dev_alloc_skb(RX_BUF_SIZE);
  485. if (!skb)
  486. return NULL;
  487. *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
  488. PCI_DMA_FROMDEVICE);
  489. if (pci_dma_mapping_error(*dma_handle)) {
  490. dev_kfree_skb_any(skb);
  491. return NULL;
  492. }
  493. skb_reserve(skb, 2); /* make IP header 4byte aligned */
  494. return skb;
  495. }
  496. static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
  497. {
  498. pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
  499. PCI_DMA_FROMDEVICE);
  500. dev_kfree_skb_any(skb);
  501. }
  502. #endif /* TC35815_USE_PACKEDBUFFER */
  503. /* Index to functions, as function prototypes. */
  504. static int tc35815_open(struct net_device *dev);
  505. static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
  506. static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
  507. #ifdef TC35815_NAPI
  508. static int tc35815_rx(struct net_device *dev, int limit);
  509. static int tc35815_poll(struct napi_struct *napi, int budget);
  510. #else
  511. static void tc35815_rx(struct net_device *dev);
  512. #endif
  513. static void tc35815_txdone(struct net_device *dev);
  514. static int tc35815_close(struct net_device *dev);
  515. static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
  516. static void tc35815_set_multicast_list(struct net_device *dev);
  517. static void tc35815_tx_timeout(struct net_device *dev);
  518. static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
  519. #ifdef CONFIG_NET_POLL_CONTROLLER
  520. static void tc35815_poll_controller(struct net_device *dev);
  521. #endif
  522. static const struct ethtool_ops tc35815_ethtool_ops;
  523. /* Example routines you must write ;->. */
  524. static void tc35815_chip_reset(struct net_device *dev);
  525. static void tc35815_chip_init(struct net_device *dev);
  526. #ifdef DEBUG
  527. static void panic_queues(struct net_device *dev);
  528. #endif
  529. static void tc35815_restart_work(struct work_struct *work);
  530. static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  531. {
  532. struct net_device *dev = bus->priv;
  533. struct tc35815_regs __iomem *tr =
  534. (struct tc35815_regs __iomem *)dev->base_addr;
  535. unsigned long timeout = jiffies + 10;
  536. tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
  537. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  538. if (time_after(jiffies, timeout))
  539. return -EIO;
  540. cpu_relax();
  541. }
  542. return tc_readl(&tr->MD_Data) & 0xffff;
  543. }
  544. static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
  545. {
  546. struct net_device *dev = bus->priv;
  547. struct tc35815_regs __iomem *tr =
  548. (struct tc35815_regs __iomem *)dev->base_addr;
  549. unsigned long timeout = jiffies + 10;
  550. tc_writel(val, &tr->MD_Data);
  551. tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
  552. &tr->MD_CA);
  553. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  554. if (time_after(jiffies, timeout))
  555. return -EIO;
  556. cpu_relax();
  557. }
  558. return 0;
  559. }
  560. static void tc_handle_link_change(struct net_device *dev)
  561. {
  562. struct tc35815_local *lp = netdev_priv(dev);
  563. struct phy_device *phydev = lp->phy_dev;
  564. unsigned long flags;
  565. int status_change = 0;
  566. spin_lock_irqsave(&lp->lock, flags);
  567. if (phydev->link &&
  568. (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
  569. struct tc35815_regs __iomem *tr =
  570. (struct tc35815_regs __iomem *)dev->base_addr;
  571. u32 reg;
  572. reg = tc_readl(&tr->MAC_Ctl);
  573. reg |= MAC_HaltReq;
  574. tc_writel(reg, &tr->MAC_Ctl);
  575. if (phydev->duplex == DUPLEX_FULL)
  576. reg |= MAC_FullDup;
  577. else
  578. reg &= ~MAC_FullDup;
  579. tc_writel(reg, &tr->MAC_Ctl);
  580. reg &= ~MAC_HaltReq;
  581. tc_writel(reg, &tr->MAC_Ctl);
  582. /*
  583. * TX4939 PCFG.SPEEDn bit will be changed on
  584. * NETDEV_CHANGE event.
  585. */
  586. #if !defined(NO_CHECK_CARRIER) && defined(WORKAROUND_LOSTCAR)
  587. /*
  588. * WORKAROUND: enable LostCrS only if half duplex
  589. * operation.
  590. * (TX4939 does not have EnLCarr)
  591. */
  592. if (phydev->duplex == DUPLEX_HALF &&
  593. lp->chiptype != TC35815_TX4939)
  594. tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
  595. &tr->Tx_Ctl);
  596. #endif
  597. lp->speed = phydev->speed;
  598. lp->duplex = phydev->duplex;
  599. status_change = 1;
  600. }
  601. if (phydev->link != lp->link) {
  602. if (phydev->link) {
  603. #ifdef WORKAROUND_100HALF_PROMISC
  604. /* delayed promiscuous enabling */
  605. if (dev->flags & IFF_PROMISC)
  606. tc35815_set_multicast_list(dev);
  607. #endif
  608. netif_schedule(dev);
  609. } else {
  610. lp->speed = 0;
  611. lp->duplex = -1;
  612. }
  613. lp->link = phydev->link;
  614. status_change = 1;
  615. }
  616. spin_unlock_irqrestore(&lp->lock, flags);
  617. if (status_change && netif_msg_link(lp)) {
  618. phy_print_status(phydev);
  619. #ifdef DEBUG
  620. printk(KERN_DEBUG
  621. "%s: MII BMCR %04x BMSR %04x LPA %04x\n",
  622. dev->name,
  623. phy_read(phydev, MII_BMCR),
  624. phy_read(phydev, MII_BMSR),
  625. phy_read(phydev, MII_LPA));
  626. #endif
  627. }
  628. }
  629. static int tc_mii_probe(struct net_device *dev)
  630. {
  631. struct tc35815_local *lp = netdev_priv(dev);
  632. struct phy_device *phydev = NULL;
  633. int phy_addr;
  634. u32 dropmask;
  635. /* find the first phy */
  636. for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
  637. if (lp->mii_bus.phy_map[phy_addr]) {
  638. if (phydev) {
  639. printk(KERN_ERR "%s: multiple PHYs found\n",
  640. dev->name);
  641. return -EINVAL;
  642. }
  643. phydev = lp->mii_bus.phy_map[phy_addr];
  644. break;
  645. }
  646. }
  647. if (!phydev) {
  648. printk(KERN_ERR "%s: no PHY found\n", dev->name);
  649. return -ENODEV;
  650. }
  651. /* attach the mac to the phy */
  652. phydev = phy_connect(dev, phydev->dev.bus_id,
  653. &tc_handle_link_change, 0,
  654. lp->chiptype == TC35815_TX4939 ?
  655. PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
  656. if (IS_ERR(phydev)) {
  657. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  658. return PTR_ERR(phydev);
  659. }
  660. printk(KERN_INFO "%s: attached PHY driver [%s] "
  661. "(mii_bus:phy_addr=%s, id=%x)\n",
  662. dev->name, phydev->drv->name, phydev->dev.bus_id,
  663. phydev->phy_id);
  664. /* mask with MAC supported features */
  665. phydev->supported &= PHY_BASIC_FEATURES;
  666. dropmask = 0;
  667. if (options.speed == 10)
  668. dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
  669. else if (options.speed == 100)
  670. dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
  671. if (options.duplex == 1)
  672. dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
  673. else if (options.duplex == 2)
  674. dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
  675. phydev->supported &= ~dropmask;
  676. phydev->advertising = phydev->supported;
  677. lp->link = 0;
  678. lp->speed = 0;
  679. lp->duplex = -1;
  680. lp->phy_dev = phydev;
  681. return 0;
  682. }
  683. static int tc_mii_init(struct net_device *dev)
  684. {
  685. struct tc35815_local *lp = netdev_priv(dev);
  686. int err;
  687. int i;
  688. lp->mii_bus.name = "tc35815_mii_bus";
  689. lp->mii_bus.read = tc_mdio_read;
  690. lp->mii_bus.write = tc_mdio_write;
  691. snprintf(lp->mii_bus.id, MII_BUS_ID_SIZE, "%x",
  692. (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
  693. lp->mii_bus.priv = dev;
  694. lp->mii_bus.dev = &lp->pci_dev->dev;
  695. lp->mii_bus.irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
  696. if (!lp->mii_bus.irq) {
  697. err = -ENOMEM;
  698. goto err_out;
  699. }
  700. for (i = 0; i < PHY_MAX_ADDR; i++)
  701. lp->mii_bus.irq[i] = PHY_POLL;
  702. err = mdiobus_register(&lp->mii_bus);
  703. if (err)
  704. goto err_out_free_mdio_irq;
  705. err = tc_mii_probe(dev);
  706. if (err)
  707. goto err_out_unregister_bus;
  708. return 0;
  709. err_out_unregister_bus:
  710. mdiobus_unregister(&lp->mii_bus);
  711. err_out_free_mdio_irq:
  712. kfree(lp->mii_bus.irq);
  713. err_out:
  714. return err;
  715. }
  716. #ifdef CONFIG_CPU_TX49XX
  717. /*
  718. * Find a platform_device providing a MAC address. The platform code
  719. * should provide a "tc35815-mac" device with a MAC address in its
  720. * platform_data.
  721. */
  722. static int __devinit tc35815_mac_match(struct device *dev, void *data)
  723. {
  724. struct platform_device *plat_dev = to_platform_device(dev);
  725. struct pci_dev *pci_dev = data;
  726. unsigned int id = pci_dev->irq;
  727. return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
  728. }
  729. static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
  730. {
  731. struct tc35815_local *lp = netdev_priv(dev);
  732. struct device *pd = bus_find_device(&platform_bus_type, NULL,
  733. lp->pci_dev, tc35815_mac_match);
  734. if (pd) {
  735. if (pd->platform_data)
  736. memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
  737. put_device(pd);
  738. return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
  739. }
  740. return -ENODEV;
  741. }
  742. #else
  743. static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
  744. {
  745. return -ENODEV;
  746. }
  747. #endif
  748. static int __devinit tc35815_init_dev_addr(struct net_device *dev)
  749. {
  750. struct tc35815_regs __iomem *tr =
  751. (struct tc35815_regs __iomem *)dev->base_addr;
  752. int i;
  753. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  754. ;
  755. for (i = 0; i < 6; i += 2) {
  756. unsigned short data;
  757. tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
  758. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  759. ;
  760. data = tc_readl(&tr->PROM_Data);
  761. dev->dev_addr[i] = data & 0xff;
  762. dev->dev_addr[i+1] = data >> 8;
  763. }
  764. if (!is_valid_ether_addr(dev->dev_addr))
  765. return tc35815_read_plat_dev_addr(dev);
  766. return 0;
  767. }
  768. static int __devinit tc35815_init_one(struct pci_dev *pdev,
  769. const struct pci_device_id *ent)
  770. {
  771. void __iomem *ioaddr = NULL;
  772. struct net_device *dev;
  773. struct tc35815_local *lp;
  774. int rc;
  775. DECLARE_MAC_BUF(mac);
  776. static int printed_version;
  777. if (!printed_version++) {
  778. printk(version);
  779. dev_printk(KERN_DEBUG, &pdev->dev,
  780. "speed:%d duplex:%d\n",
  781. options.speed, options.duplex);
  782. }
  783. if (!pdev->irq) {
  784. dev_warn(&pdev->dev, "no IRQ assigned.\n");
  785. return -ENODEV;
  786. }
  787. /* dev zeroed in alloc_etherdev */
  788. dev = alloc_etherdev(sizeof(*lp));
  789. if (dev == NULL) {
  790. dev_err(&pdev->dev, "unable to alloc new ethernet\n");
  791. return -ENOMEM;
  792. }
  793. SET_NETDEV_DEV(dev, &pdev->dev);
  794. lp = netdev_priv(dev);
  795. lp->dev = dev;
  796. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  797. rc = pcim_enable_device(pdev);
  798. if (rc)
  799. goto err_out;
  800. rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
  801. if (rc)
  802. goto err_out;
  803. pci_set_master(pdev);
  804. ioaddr = pcim_iomap_table(pdev)[1];
  805. /* Initialize the device structure. */
  806. dev->open = tc35815_open;
  807. dev->hard_start_xmit = tc35815_send_packet;
  808. dev->stop = tc35815_close;
  809. dev->get_stats = tc35815_get_stats;
  810. dev->set_multicast_list = tc35815_set_multicast_list;
  811. dev->do_ioctl = tc35815_ioctl;
  812. dev->ethtool_ops = &tc35815_ethtool_ops;
  813. dev->tx_timeout = tc35815_tx_timeout;
  814. dev->watchdog_timeo = TC35815_TX_TIMEOUT;
  815. #ifdef TC35815_NAPI
  816. netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
  817. #endif
  818. #ifdef CONFIG_NET_POLL_CONTROLLER
  819. dev->poll_controller = tc35815_poll_controller;
  820. #endif
  821. dev->irq = pdev->irq;
  822. dev->base_addr = (unsigned long)ioaddr;
  823. INIT_WORK(&lp->restart_work, tc35815_restart_work);
  824. spin_lock_init(&lp->lock);
  825. lp->pci_dev = pdev;
  826. lp->chiptype = ent->driver_data;
  827. lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
  828. pci_set_drvdata(pdev, dev);
  829. /* Soft reset the chip. */
  830. tc35815_chip_reset(dev);
  831. /* Retrieve the ethernet address. */
  832. if (tc35815_init_dev_addr(dev)) {
  833. dev_warn(&pdev->dev, "not valid ether addr\n");
  834. random_ether_addr(dev->dev_addr);
  835. }
  836. rc = register_netdev(dev);
  837. if (rc)
  838. goto err_out;
  839. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  840. printk(KERN_INFO "%s: %s at 0x%lx, %s, IRQ %d\n",
  841. dev->name,
  842. chip_info[ent->driver_data].name,
  843. dev->base_addr,
  844. print_mac(mac, dev->dev_addr),
  845. dev->irq);
  846. rc = tc_mii_init(dev);
  847. if (rc)
  848. goto err_out_unregister;
  849. return 0;
  850. err_out_unregister:
  851. unregister_netdev(dev);
  852. err_out:
  853. free_netdev(dev);
  854. return rc;
  855. }
  856. static void __devexit tc35815_remove_one(struct pci_dev *pdev)
  857. {
  858. struct net_device *dev = pci_get_drvdata(pdev);
  859. struct tc35815_local *lp = netdev_priv(dev);
  860. phy_disconnect(lp->phy_dev);
  861. mdiobus_unregister(&lp->mii_bus);
  862. kfree(lp->mii_bus.irq);
  863. unregister_netdev(dev);
  864. free_netdev(dev);
  865. pci_set_drvdata(pdev, NULL);
  866. }
  867. static int
  868. tc35815_init_queues(struct net_device *dev)
  869. {
  870. struct tc35815_local *lp = netdev_priv(dev);
  871. int i;
  872. unsigned long fd_addr;
  873. if (!lp->fd_buf) {
  874. BUG_ON(sizeof(struct FDesc) +
  875. sizeof(struct BDesc) * RX_BUF_NUM +
  876. sizeof(struct FDesc) * RX_FD_NUM +
  877. sizeof(struct TxFD) * TX_FD_NUM >
  878. PAGE_SIZE * FD_PAGE_NUM);
  879. lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
  880. PAGE_SIZE * FD_PAGE_NUM,
  881. &lp->fd_buf_dma);
  882. if (!lp->fd_buf)
  883. return -ENOMEM;
  884. for (i = 0; i < RX_BUF_NUM; i++) {
  885. #ifdef TC35815_USE_PACKEDBUFFER
  886. lp->data_buf[i] =
  887. alloc_rxbuf_page(lp->pci_dev,
  888. &lp->data_buf_dma[i]);
  889. if (!lp->data_buf[i]) {
  890. while (--i >= 0) {
  891. free_rxbuf_page(lp->pci_dev,
  892. lp->data_buf[i],
  893. lp->data_buf_dma[i]);
  894. lp->data_buf[i] = NULL;
  895. }
  896. pci_free_consistent(lp->pci_dev,
  897. PAGE_SIZE * FD_PAGE_NUM,
  898. lp->fd_buf,
  899. lp->fd_buf_dma);
  900. lp->fd_buf = NULL;
  901. return -ENOMEM;
  902. }
  903. #else
  904. lp->rx_skbs[i].skb =
  905. alloc_rxbuf_skb(dev, lp->pci_dev,
  906. &lp->rx_skbs[i].skb_dma);
  907. if (!lp->rx_skbs[i].skb) {
  908. while (--i >= 0) {
  909. free_rxbuf_skb(lp->pci_dev,
  910. lp->rx_skbs[i].skb,
  911. lp->rx_skbs[i].skb_dma);
  912. lp->rx_skbs[i].skb = NULL;
  913. }
  914. pci_free_consistent(lp->pci_dev,
  915. PAGE_SIZE * FD_PAGE_NUM,
  916. lp->fd_buf,
  917. lp->fd_buf_dma);
  918. lp->fd_buf = NULL;
  919. return -ENOMEM;
  920. }
  921. #endif
  922. }
  923. printk(KERN_DEBUG "%s: FD buf %p DataBuf",
  924. dev->name, lp->fd_buf);
  925. #ifdef TC35815_USE_PACKEDBUFFER
  926. printk(" DataBuf");
  927. for (i = 0; i < RX_BUF_NUM; i++)
  928. printk(" %p", lp->data_buf[i]);
  929. #endif
  930. printk("\n");
  931. } else {
  932. for (i = 0; i < FD_PAGE_NUM; i++)
  933. clear_page((void *)((unsigned long)lp->fd_buf +
  934. i * PAGE_SIZE));
  935. }
  936. fd_addr = (unsigned long)lp->fd_buf;
  937. /* Free Descriptors (for Receive) */
  938. lp->rfd_base = (struct RxFD *)fd_addr;
  939. fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
  940. for (i = 0; i < RX_FD_NUM; i++)
  941. lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
  942. lp->rfd_cur = lp->rfd_base;
  943. lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
  944. /* Transmit Descriptors */
  945. lp->tfd_base = (struct TxFD *)fd_addr;
  946. fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
  947. for (i = 0; i < TX_FD_NUM; i++) {
  948. lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
  949. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  950. lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
  951. }
  952. lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
  953. lp->tfd_start = 0;
  954. lp->tfd_end = 0;
  955. /* Buffer List (for Receive) */
  956. lp->fbl_ptr = (struct FrFD *)fd_addr;
  957. lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
  958. lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
  959. #ifndef TC35815_USE_PACKEDBUFFER
  960. /*
  961. * move all allocated skbs to head of rx_skbs[] array.
  962. * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
  963. * tc35815_rx() had failed.
  964. */
  965. lp->fbl_count = 0;
  966. for (i = 0; i < RX_BUF_NUM; i++) {
  967. if (lp->rx_skbs[i].skb) {
  968. if (i != lp->fbl_count) {
  969. lp->rx_skbs[lp->fbl_count].skb =
  970. lp->rx_skbs[i].skb;
  971. lp->rx_skbs[lp->fbl_count].skb_dma =
  972. lp->rx_skbs[i].skb_dma;
  973. }
  974. lp->fbl_count++;
  975. }
  976. }
  977. #endif
  978. for (i = 0; i < RX_BUF_NUM; i++) {
  979. #ifdef TC35815_USE_PACKEDBUFFER
  980. lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(lp->data_buf_dma[i]);
  981. #else
  982. if (i >= lp->fbl_count) {
  983. lp->fbl_ptr->bd[i].BuffData = 0;
  984. lp->fbl_ptr->bd[i].BDCtl = 0;
  985. continue;
  986. }
  987. lp->fbl_ptr->bd[i].BuffData =
  988. cpu_to_le32(lp->rx_skbs[i].skb_dma);
  989. #endif
  990. /* BDID is index of FrFD.bd[] */
  991. lp->fbl_ptr->bd[i].BDCtl =
  992. cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
  993. RX_BUF_SIZE);
  994. }
  995. #ifdef TC35815_USE_PACKEDBUFFER
  996. lp->fbl_curid = 0;
  997. #endif
  998. printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
  999. dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
  1000. return 0;
  1001. }
  1002. static void
  1003. tc35815_clear_queues(struct net_device *dev)
  1004. {
  1005. struct tc35815_local *lp = netdev_priv(dev);
  1006. int i;
  1007. for (i = 0; i < TX_FD_NUM; i++) {
  1008. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  1009. struct sk_buff *skb =
  1010. fdsystem != 0xffffffff ?
  1011. lp->tx_skbs[fdsystem].skb : NULL;
  1012. #ifdef DEBUG
  1013. if (lp->tx_skbs[i].skb != skb) {
  1014. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  1015. panic_queues(dev);
  1016. }
  1017. #else
  1018. BUG_ON(lp->tx_skbs[i].skb != skb);
  1019. #endif
  1020. if (skb) {
  1021. pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
  1022. lp->tx_skbs[i].skb = NULL;
  1023. lp->tx_skbs[i].skb_dma = 0;
  1024. dev_kfree_skb_any(skb);
  1025. }
  1026. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  1027. }
  1028. tc35815_init_queues(dev);
  1029. }
  1030. static void
  1031. tc35815_free_queues(struct net_device *dev)
  1032. {
  1033. struct tc35815_local *lp = netdev_priv(dev);
  1034. int i;
  1035. if (lp->tfd_base) {
  1036. for (i = 0; i < TX_FD_NUM; i++) {
  1037. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  1038. struct sk_buff *skb =
  1039. fdsystem != 0xffffffff ?
  1040. lp->tx_skbs[fdsystem].skb : NULL;
  1041. #ifdef DEBUG
  1042. if (lp->tx_skbs[i].skb != skb) {
  1043. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  1044. panic_queues(dev);
  1045. }
  1046. #else
  1047. BUG_ON(lp->tx_skbs[i].skb != skb);
  1048. #endif
  1049. if (skb) {
  1050. dev_kfree_skb(skb);
  1051. pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
  1052. lp->tx_skbs[i].skb = NULL;
  1053. lp->tx_skbs[i].skb_dma = 0;
  1054. }
  1055. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  1056. }
  1057. }
  1058. lp->rfd_base = NULL;
  1059. lp->rfd_limit = NULL;
  1060. lp->rfd_cur = NULL;
  1061. lp->fbl_ptr = NULL;
  1062. for (i = 0; i < RX_BUF_NUM; i++) {
  1063. #ifdef TC35815_USE_PACKEDBUFFER
  1064. if (lp->data_buf[i]) {
  1065. free_rxbuf_page(lp->pci_dev,
  1066. lp->data_buf[i], lp->data_buf_dma[i]);
  1067. lp->data_buf[i] = NULL;
  1068. }
  1069. #else
  1070. if (lp->rx_skbs[i].skb) {
  1071. free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
  1072. lp->rx_skbs[i].skb_dma);
  1073. lp->rx_skbs[i].skb = NULL;
  1074. }
  1075. #endif
  1076. }
  1077. if (lp->fd_buf) {
  1078. pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
  1079. lp->fd_buf, lp->fd_buf_dma);
  1080. lp->fd_buf = NULL;
  1081. }
  1082. }
  1083. static void
  1084. dump_txfd(struct TxFD *fd)
  1085. {
  1086. printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
  1087. le32_to_cpu(fd->fd.FDNext),
  1088. le32_to_cpu(fd->fd.FDSystem),
  1089. le32_to_cpu(fd->fd.FDStat),
  1090. le32_to_cpu(fd->fd.FDCtl));
  1091. printk("BD: ");
  1092. printk(" %08x %08x",
  1093. le32_to_cpu(fd->bd.BuffData),
  1094. le32_to_cpu(fd->bd.BDCtl));
  1095. printk("\n");
  1096. }
  1097. static int
  1098. dump_rxfd(struct RxFD *fd)
  1099. {
  1100. int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  1101. if (bd_count > 8)
  1102. bd_count = 8;
  1103. printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
  1104. le32_to_cpu(fd->fd.FDNext),
  1105. le32_to_cpu(fd->fd.FDSystem),
  1106. le32_to_cpu(fd->fd.FDStat),
  1107. le32_to_cpu(fd->fd.FDCtl));
  1108. if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
  1109. return 0;
  1110. printk("BD: ");
  1111. for (i = 0; i < bd_count; i++)
  1112. printk(" %08x %08x",
  1113. le32_to_cpu(fd->bd[i].BuffData),
  1114. le32_to_cpu(fd->bd[i].BDCtl));
  1115. printk("\n");
  1116. return bd_count;
  1117. }
  1118. #if defined(DEBUG) || defined(TC35815_USE_PACKEDBUFFER)
  1119. static void
  1120. dump_frfd(struct FrFD *fd)
  1121. {
  1122. int i;
  1123. printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
  1124. le32_to_cpu(fd->fd.FDNext),
  1125. le32_to_cpu(fd->fd.FDSystem),
  1126. le32_to_cpu(fd->fd.FDStat),
  1127. le32_to_cpu(fd->fd.FDCtl));
  1128. printk("BD: ");
  1129. for (i = 0; i < RX_BUF_NUM; i++)
  1130. printk(" %08x %08x",
  1131. le32_to_cpu(fd->bd[i].BuffData),
  1132. le32_to_cpu(fd->bd[i].BDCtl));
  1133. printk("\n");
  1134. }
  1135. #endif
  1136. #ifdef DEBUG
  1137. static void
  1138. panic_queues(struct net_device *dev)
  1139. {
  1140. struct tc35815_local *lp = netdev_priv(dev);
  1141. int i;
  1142. printk("TxFD base %p, start %u, end %u\n",
  1143. lp->tfd_base, lp->tfd_start, lp->tfd_end);
  1144. printk("RxFD base %p limit %p cur %p\n",
  1145. lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
  1146. printk("FrFD %p\n", lp->fbl_ptr);
  1147. for (i = 0; i < TX_FD_NUM; i++)
  1148. dump_txfd(&lp->tfd_base[i]);
  1149. for (i = 0; i < RX_FD_NUM; i++) {
  1150. int bd_count = dump_rxfd(&lp->rfd_base[i]);
  1151. i += (bd_count + 1) / 2; /* skip BDs */
  1152. }
  1153. dump_frfd(lp->fbl_ptr);
  1154. panic("%s: Illegal queue state.", dev->name);
  1155. }
  1156. #endif
  1157. static void print_eth(const u8 *add)
  1158. {
  1159. DECLARE_MAC_BUF(mac);
  1160. printk(KERN_DEBUG "print_eth(%p)\n", add);
  1161. printk(KERN_DEBUG " %s =>", print_mac(mac, add + 6));
  1162. printk(KERN_CONT " %s : %02x%02x\n",
  1163. print_mac(mac, add), add[12], add[13]);
  1164. }
  1165. static int tc35815_tx_full(struct net_device *dev)
  1166. {
  1167. struct tc35815_local *lp = netdev_priv(dev);
  1168. return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end);
  1169. }
  1170. static void tc35815_restart(struct net_device *dev)
  1171. {
  1172. struct tc35815_local *lp = netdev_priv(dev);
  1173. if (lp->phy_dev) {
  1174. int timeout;
  1175. phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
  1176. timeout = 100;
  1177. while (--timeout) {
  1178. if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
  1179. break;
  1180. udelay(1);
  1181. }
  1182. if (!timeout)
  1183. printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
  1184. }
  1185. spin_lock_irq(&lp->lock);
  1186. tc35815_chip_reset(dev);
  1187. tc35815_clear_queues(dev);
  1188. tc35815_chip_init(dev);
  1189. /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
  1190. tc35815_set_multicast_list(dev);
  1191. spin_unlock_irq(&lp->lock);
  1192. netif_wake_queue(dev);
  1193. }
  1194. static void tc35815_restart_work(struct work_struct *work)
  1195. {
  1196. struct tc35815_local *lp =
  1197. container_of(work, struct tc35815_local, restart_work);
  1198. struct net_device *dev = lp->dev;
  1199. tc35815_restart(dev);
  1200. }
  1201. static void tc35815_schedule_restart(struct net_device *dev)
  1202. {
  1203. struct tc35815_local *lp = netdev_priv(dev);
  1204. struct tc35815_regs __iomem *tr =
  1205. (struct tc35815_regs __iomem *)dev->base_addr;
  1206. /* disable interrupts */
  1207. tc_writel(0, &tr->Int_En);
  1208. tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
  1209. schedule_work(&lp->restart_work);
  1210. }
  1211. static void tc35815_tx_timeout(struct net_device *dev)
  1212. {
  1213. struct tc35815_regs __iomem *tr =
  1214. (struct tc35815_regs __iomem *)dev->base_addr;
  1215. printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
  1216. dev->name, tc_readl(&tr->Tx_Stat));
  1217. /* Try to restart the adaptor. */
  1218. tc35815_schedule_restart(dev);
  1219. dev->stats.tx_errors++;
  1220. }
  1221. /*
  1222. * Open/initialize the controller. This is called (in the current kernel)
  1223. * sometime after booting when the 'ifconfig' program is run.
  1224. *
  1225. * This routine should set everything up anew at each open, even
  1226. * registers that "should" only need to be set once at boot, so that
  1227. * there is non-reboot way to recover if something goes wrong.
  1228. */
  1229. static int
  1230. tc35815_open(struct net_device *dev)
  1231. {
  1232. struct tc35815_local *lp = netdev_priv(dev);
  1233. /*
  1234. * This is used if the interrupt line can turned off (shared).
  1235. * See 3c503.c for an example of selecting the IRQ at config-time.
  1236. */
  1237. if (request_irq(dev->irq, &tc35815_interrupt, IRQF_SHARED,
  1238. dev->name, dev))
  1239. return -EAGAIN;
  1240. tc35815_chip_reset(dev);
  1241. if (tc35815_init_queues(dev) != 0) {
  1242. free_irq(dev->irq, dev);
  1243. return -EAGAIN;
  1244. }
  1245. #ifdef TC35815_NAPI
  1246. napi_enable(&lp->napi);
  1247. #endif
  1248. /* Reset the hardware here. Don't forget to set the station address. */
  1249. spin_lock_irq(&lp->lock);
  1250. tc35815_chip_init(dev);
  1251. spin_unlock_irq(&lp->lock);
  1252. netif_carrier_off(dev);
  1253. /* schedule a link state check */
  1254. phy_start(lp->phy_dev);
  1255. /* We are now ready to accept transmit requeusts from
  1256. * the queueing layer of the networking.
  1257. */
  1258. netif_start_queue(dev);
  1259. return 0;
  1260. }
  1261. /* This will only be invoked if your driver is _not_ in XOFF state.
  1262. * What this means is that you need not check it, and that this
  1263. * invariant will hold if you make sure that the netif_*_queue()
  1264. * calls are done at the proper times.
  1265. */
  1266. static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
  1267. {
  1268. struct tc35815_local *lp = netdev_priv(dev);
  1269. struct TxFD *txfd;
  1270. unsigned long flags;
  1271. /* If some error occurs while trying to transmit this
  1272. * packet, you should return '1' from this function.
  1273. * In such a case you _may not_ do anything to the
  1274. * SKB, it is still owned by the network queueing
  1275. * layer when an error is returned. This means you
  1276. * may not modify any SKB fields, you may not free
  1277. * the SKB, etc.
  1278. */
  1279. /* This is the most common case for modern hardware.
  1280. * The spinlock protects this code from the TX complete
  1281. * hardware interrupt handler. Queue flow control is
  1282. * thus managed under this lock as well.
  1283. */
  1284. spin_lock_irqsave(&lp->lock, flags);
  1285. /* failsafe... (handle txdone now if half of FDs are used) */
  1286. if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
  1287. TX_FD_NUM / 2)
  1288. tc35815_txdone(dev);
  1289. if (netif_msg_pktdata(lp))
  1290. print_eth(skb->data);
  1291. #ifdef DEBUG
  1292. if (lp->tx_skbs[lp->tfd_start].skb) {
  1293. printk("%s: tx_skbs conflict.\n", dev->name);
  1294. panic_queues(dev);
  1295. }
  1296. #else
  1297. BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
  1298. #endif
  1299. lp->tx_skbs[lp->tfd_start].skb = skb;
  1300. lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
  1301. /*add to ring */
  1302. txfd = &lp->tfd_base[lp->tfd_start];
  1303. txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
  1304. txfd->bd.BDCtl = cpu_to_le32(skb->len);
  1305. txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
  1306. txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
  1307. if (lp->tfd_start == lp->tfd_end) {
  1308. struct tc35815_regs __iomem *tr =
  1309. (struct tc35815_regs __iomem *)dev->base_addr;
  1310. /* Start DMA Transmitter. */
  1311. txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1312. #ifdef GATHER_TXINT
  1313. txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1314. #endif
  1315. if (netif_msg_tx_queued(lp)) {
  1316. printk("%s: starting TxFD.\n", dev->name);
  1317. dump_txfd(txfd);
  1318. }
  1319. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1320. } else {
  1321. txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
  1322. if (netif_msg_tx_queued(lp)) {
  1323. printk("%s: queueing TxFD.\n", dev->name);
  1324. dump_txfd(txfd);
  1325. }
  1326. }
  1327. lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
  1328. dev->trans_start = jiffies;
  1329. /* If we just used up the very last entry in the
  1330. * TX ring on this device, tell the queueing
  1331. * layer to send no more.
  1332. */
  1333. if (tc35815_tx_full(dev)) {
  1334. if (netif_msg_tx_queued(lp))
  1335. printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
  1336. netif_stop_queue(dev);
  1337. }
  1338. /* When the TX completion hw interrupt arrives, this
  1339. * is when the transmit statistics are updated.
  1340. */
  1341. spin_unlock_irqrestore(&lp->lock, flags);
  1342. return 0;
  1343. }
  1344. #define FATAL_ERROR_INT \
  1345. (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
  1346. static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
  1347. {
  1348. static int count;
  1349. printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
  1350. dev->name, status);
  1351. if (status & Int_IntPCI)
  1352. printk(" IntPCI");
  1353. if (status & Int_DmParErr)
  1354. printk(" DmParErr");
  1355. if (status & Int_IntNRAbt)
  1356. printk(" IntNRAbt");
  1357. printk("\n");
  1358. if (count++ > 100)
  1359. panic("%s: Too many fatal errors.", dev->name);
  1360. printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
  1361. /* Try to restart the adaptor. */
  1362. tc35815_schedule_restart(dev);
  1363. }
  1364. #ifdef TC35815_NAPI
  1365. static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
  1366. #else
  1367. static int tc35815_do_interrupt(struct net_device *dev, u32 status)
  1368. #endif
  1369. {
  1370. struct tc35815_local *lp = netdev_priv(dev);
  1371. struct tc35815_regs __iomem *tr =
  1372. (struct tc35815_regs __iomem *)dev->base_addr;
  1373. int ret = -1;
  1374. /* Fatal errors... */
  1375. if (status & FATAL_ERROR_INT) {
  1376. tc35815_fatal_error_interrupt(dev, status);
  1377. return 0;
  1378. }
  1379. /* recoverable errors */
  1380. if (status & Int_IntFDAEx) {
  1381. /* disable FDAEx int. (until we make rooms...) */
  1382. tc_writel(tc_readl(&tr->Int_En) & ~Int_FDAExEn, &tr->Int_En);
  1383. printk(KERN_WARNING
  1384. "%s: Free Descriptor Area Exhausted (%#x).\n",
  1385. dev->name, status);
  1386. dev->stats.rx_dropped++;
  1387. ret = 0;
  1388. }
  1389. if (status & Int_IntBLEx) {
  1390. /* disable BLEx int. (until we make rooms...) */
  1391. tc_writel(tc_readl(&tr->Int_En) & ~Int_BLExEn, &tr->Int_En);
  1392. printk(KERN_WARNING
  1393. "%s: Buffer List Exhausted (%#x).\n",
  1394. dev->name, status);
  1395. dev->stats.rx_dropped++;
  1396. ret = 0;
  1397. }
  1398. if (status & Int_IntExBD) {
  1399. printk(KERN_WARNING
  1400. "%s: Excessive Buffer Descriptiors (%#x).\n",
  1401. dev->name, status);
  1402. dev->stats.rx_length_errors++;
  1403. ret = 0;
  1404. }
  1405. /* normal notification */
  1406. if (status & Int_IntMacRx) {
  1407. /* Got a packet(s). */
  1408. #ifdef TC35815_NAPI
  1409. ret = tc35815_rx(dev, limit);
  1410. #else
  1411. tc35815_rx(dev);
  1412. ret = 0;
  1413. #endif
  1414. lp->lstats.rx_ints++;
  1415. }
  1416. if (status & Int_IntMacTx) {
  1417. /* Transmit complete. */
  1418. lp->lstats.tx_ints++;
  1419. tc35815_txdone(dev);
  1420. netif_wake_queue(dev);
  1421. ret = 0;
  1422. }
  1423. return ret;
  1424. }
  1425. /*
  1426. * The typical workload of the driver:
  1427. * Handle the network interface interrupts.
  1428. */
  1429. static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
  1430. {
  1431. struct net_device *dev = dev_id;
  1432. struct tc35815_local *lp = netdev_priv(dev);
  1433. struct tc35815_regs __iomem *tr =
  1434. (struct tc35815_regs __iomem *)dev->base_addr;
  1435. #ifdef TC35815_NAPI
  1436. u32 dmactl = tc_readl(&tr->DMA_Ctl);
  1437. if (!(dmactl & DMA_IntMask)) {
  1438. /* disable interrupts */
  1439. tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
  1440. if (netif_rx_schedule_prep(dev, &lp->napi))
  1441. __netif_rx_schedule(dev, &lp->napi);
  1442. else {
  1443. printk(KERN_ERR "%s: interrupt taken in poll\n",
  1444. dev->name);
  1445. BUG();
  1446. }
  1447. (void)tc_readl(&tr->Int_Src); /* flush */
  1448. return IRQ_HANDLED;
  1449. }
  1450. return IRQ_NONE;
  1451. #else
  1452. int handled;
  1453. u32 status;
  1454. spin_lock(&lp->lock);
  1455. status = tc_readl(&tr->Int_Src);
  1456. tc_writel(status, &tr->Int_Src); /* write to clear */
  1457. handled = tc35815_do_interrupt(dev, status);
  1458. (void)tc_readl(&tr->Int_Src); /* flush */
  1459. spin_unlock(&lp->lock);
  1460. return IRQ_RETVAL(handled >= 0);
  1461. #endif /* TC35815_NAPI */
  1462. }
  1463. #ifdef CONFIG_NET_POLL_CONTROLLER
  1464. static void tc35815_poll_controller(struct net_device *dev)
  1465. {
  1466. disable_irq(dev->irq);
  1467. tc35815_interrupt(dev->irq, dev);
  1468. enable_irq(dev->irq);
  1469. }
  1470. #endif
  1471. /* We have a good packet(s), get it/them out of the buffers. */
  1472. #ifdef TC35815_NAPI
  1473. static int
  1474. tc35815_rx(struct net_device *dev, int limit)
  1475. #else
  1476. static void
  1477. tc35815_rx(struct net_device *dev)
  1478. #endif
  1479. {
  1480. struct tc35815_local *lp = netdev_priv(dev);
  1481. unsigned int fdctl;
  1482. int i;
  1483. int buf_free_count = 0;
  1484. int fd_free_count = 0;
  1485. #ifdef TC35815_NAPI
  1486. int received = 0;
  1487. #endif
  1488. while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
  1489. int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
  1490. int pkt_len = fdctl & FD_FDLength_MASK;
  1491. int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  1492. #ifdef DEBUG
  1493. struct RxFD *next_rfd;
  1494. #endif
  1495. #if (RX_CTL_CMD & Rx_StripCRC) == 0
  1496. pkt_len -= 4;
  1497. #endif
  1498. if (netif_msg_rx_status(lp))
  1499. dump_rxfd(lp->rfd_cur);
  1500. if (status & Rx_Good) {
  1501. struct sk_buff *skb;
  1502. unsigned char *data;
  1503. int cur_bd;
  1504. #ifdef TC35815_USE_PACKEDBUFFER
  1505. int offset;
  1506. #endif
  1507. #ifdef TC35815_NAPI
  1508. if (--limit < 0)
  1509. break;
  1510. #endif
  1511. #ifdef TC35815_USE_PACKEDBUFFER
  1512. BUG_ON(bd_count > 2);
  1513. skb = dev_alloc_skb(pkt_len + 2); /* +2: for reserve */
  1514. if (skb == NULL) {
  1515. printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
  1516. dev->name);
  1517. dev->stats.rx_dropped++;
  1518. break;
  1519. }
  1520. skb_reserve(skb, 2); /* 16 bit alignment */
  1521. data = skb_put(skb, pkt_len);
  1522. /* copy from receive buffer */
  1523. cur_bd = 0;
  1524. offset = 0;
  1525. while (offset < pkt_len && cur_bd < bd_count) {
  1526. int len = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BDCtl) &
  1527. BD_BuffLength_MASK;
  1528. dma_addr_t dma = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BuffData);
  1529. void *rxbuf = rxbuf_bus_to_virt(lp, dma);
  1530. if (offset + len > pkt_len)
  1531. len = pkt_len - offset;
  1532. #ifdef TC35815_DMA_SYNC_ONDEMAND
  1533. pci_dma_sync_single_for_cpu(lp->pci_dev,
  1534. dma, len,
  1535. PCI_DMA_FROMDEVICE);
  1536. #endif
  1537. memcpy(data + offset, rxbuf, len);
  1538. #ifdef TC35815_DMA_SYNC_ONDEMAND
  1539. pci_dma_sync_single_for_device(lp->pci_dev,
  1540. dma, len,
  1541. PCI_DMA_FROMDEVICE);
  1542. #endif
  1543. offset += len;
  1544. cur_bd++;
  1545. }
  1546. #else /* TC35815_USE_PACKEDBUFFER */
  1547. BUG_ON(bd_count > 1);
  1548. cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
  1549. & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1550. #ifdef DEBUG
  1551. if (cur_bd >= RX_BUF_NUM) {
  1552. printk("%s: invalid BDID.\n", dev->name);
  1553. panic_queues(dev);
  1554. }
  1555. BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
  1556. (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
  1557. if (!lp->rx_skbs[cur_bd].skb) {
  1558. printk("%s: NULL skb.\n", dev->name);
  1559. panic_queues(dev);
  1560. }
  1561. #else
  1562. BUG_ON(cur_bd >= RX_BUF_NUM);
  1563. #endif
  1564. skb = lp->rx_skbs[cur_bd].skb;
  1565. prefetch(skb->data);
  1566. lp->rx_skbs[cur_bd].skb = NULL;
  1567. pci_unmap_single(lp->pci_dev,
  1568. lp->rx_skbs[cur_bd].skb_dma,
  1569. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  1570. if (!HAVE_DMA_RXALIGN(lp))
  1571. memmove(skb->data, skb->data - 2, pkt_len);
  1572. data = skb_put(skb, pkt_len);
  1573. #endif /* TC35815_USE_PACKEDBUFFER */
  1574. if (netif_msg_pktdata(lp))
  1575. print_eth(data);
  1576. skb->protocol = eth_type_trans(skb, dev);
  1577. #ifdef TC35815_NAPI
  1578. netif_receive_skb(skb);
  1579. received++;
  1580. #else
  1581. netif_rx(skb);
  1582. #endif
  1583. dev->last_rx = jiffies;
  1584. dev->stats.rx_packets++;
  1585. dev->stats.rx_bytes += pkt_len;
  1586. } else {
  1587. dev->stats.rx_errors++;
  1588. printk(KERN_DEBUG "%s: Rx error (status %x)\n",
  1589. dev->name, status & Rx_Stat_Mask);
  1590. /* WORKAROUND: LongErr and CRCErr means Overflow. */
  1591. if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
  1592. status &= ~(Rx_LongErr|Rx_CRCErr);
  1593. status |= Rx_Over;
  1594. }
  1595. if (status & Rx_LongErr)
  1596. dev->stats.rx_length_errors++;
  1597. if (status & Rx_Over)
  1598. dev->stats.rx_fifo_errors++;
  1599. if (status & Rx_CRCErr)
  1600. dev->stats.rx_crc_errors++;
  1601. if (status & Rx_Align)
  1602. dev->stats.rx_frame_errors++;
  1603. }
  1604. if (bd_count > 0) {
  1605. /* put Free Buffer back to controller */
  1606. int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
  1607. unsigned char id =
  1608. (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1609. #ifdef DEBUG
  1610. if (id >= RX_BUF_NUM) {
  1611. printk("%s: invalid BDID.\n", dev->name);
  1612. panic_queues(dev);
  1613. }
  1614. #else
  1615. BUG_ON(id >= RX_BUF_NUM);
  1616. #endif
  1617. /* free old buffers */
  1618. #ifdef TC35815_USE_PACKEDBUFFER
  1619. while (lp->fbl_curid != id)
  1620. #else
  1621. lp->fbl_count--;
  1622. while (lp->fbl_count < RX_BUF_NUM)
  1623. #endif
  1624. {
  1625. #ifdef TC35815_USE_PACKEDBUFFER
  1626. unsigned char curid = lp->fbl_curid;
  1627. #else
  1628. unsigned char curid =
  1629. (id + 1 + lp->fbl_count) % RX_BUF_NUM;
  1630. #endif
  1631. struct BDesc *bd = &lp->fbl_ptr->bd[curid];
  1632. #ifdef DEBUG
  1633. bdctl = le32_to_cpu(bd->BDCtl);
  1634. if (bdctl & BD_CownsBD) {
  1635. printk("%s: Freeing invalid BD.\n",
  1636. dev->name);
  1637. panic_queues(dev);
  1638. }
  1639. #endif
  1640. /* pass BD to controller */
  1641. #ifndef TC35815_USE_PACKEDBUFFER
  1642. if (!lp->rx_skbs[curid].skb) {
  1643. lp->rx_skbs[curid].skb =
  1644. alloc_rxbuf_skb(dev,
  1645. lp->pci_dev,
  1646. &lp->rx_skbs[curid].skb_dma);
  1647. if (!lp->rx_skbs[curid].skb)
  1648. break; /* try on next reception */
  1649. bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
  1650. }
  1651. #endif /* TC35815_USE_PACKEDBUFFER */
  1652. /* Note: BDLength was modified by chip. */
  1653. bd->BDCtl = cpu_to_le32(BD_CownsBD |
  1654. (curid << BD_RxBDID_SHIFT) |
  1655. RX_BUF_SIZE);
  1656. #ifdef TC35815_USE_PACKEDBUFFER
  1657. lp->fbl_curid = (curid + 1) % RX_BUF_NUM;
  1658. if (netif_msg_rx_status(lp)) {
  1659. printk("%s: Entering new FBD %d\n",
  1660. dev->name, lp->fbl_curid);
  1661. dump_frfd(lp->fbl_ptr);
  1662. }
  1663. #else
  1664. lp->fbl_count++;
  1665. #endif
  1666. buf_free_count++;
  1667. }
  1668. }
  1669. /* put RxFD back to controller */
  1670. #ifdef DEBUG
  1671. next_rfd = fd_bus_to_virt(lp,
  1672. le32_to_cpu(lp->rfd_cur->fd.FDNext));
  1673. if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
  1674. printk("%s: RxFD FDNext invalid.\n", dev->name);
  1675. panic_queues(dev);
  1676. }
  1677. #endif
  1678. for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
  1679. /* pass FD to controller */
  1680. #ifdef DEBUG
  1681. lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
  1682. #else
  1683. lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
  1684. #endif
  1685. lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
  1686. lp->rfd_cur++;
  1687. fd_free_count++;
  1688. }
  1689. if (lp->rfd_cur > lp->rfd_limit)
  1690. lp->rfd_cur = lp->rfd_base;
  1691. #ifdef DEBUG
  1692. if (lp->rfd_cur != next_rfd)
  1693. printk("rfd_cur = %p, next_rfd %p\n",
  1694. lp->rfd_cur, next_rfd);
  1695. #endif
  1696. }
  1697. /* re-enable BL/FDA Exhaust interrupts. */
  1698. if (fd_free_count) {
  1699. struct tc35815_regs __iomem *tr =
  1700. (struct tc35815_regs __iomem *)dev->base_addr;
  1701. u32 en, en_old = tc_readl(&tr->Int_En);
  1702. en = en_old | Int_FDAExEn;
  1703. if (buf_free_count)
  1704. en |= Int_BLExEn;
  1705. if (en != en_old)
  1706. tc_writel(en, &tr->Int_En);
  1707. }
  1708. #ifdef TC35815_NAPI
  1709. return received;
  1710. #endif
  1711. }
  1712. #ifdef TC35815_NAPI
  1713. static int tc35815_poll(struct napi_struct *napi, int budget)
  1714. {
  1715. struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
  1716. struct net_device *dev = lp->dev;
  1717. struct tc35815_regs __iomem *tr =
  1718. (struct tc35815_regs __iomem *)dev->base_addr;
  1719. int received = 0, handled;
  1720. u32 status;
  1721. spin_lock(&lp->lock);
  1722. status = tc_readl(&tr->Int_Src);
  1723. do {
  1724. tc_writel(status, &tr->Int_Src); /* write to clear */
  1725. handled = tc35815_do_interrupt(dev, status, limit);
  1726. if (handled >= 0) {
  1727. received += handled;
  1728. if (received >= budget)
  1729. break;
  1730. }
  1731. status = tc_readl(&tr->Int_Src);
  1732. } while (status);
  1733. spin_unlock(&lp->lock);
  1734. if (received < budget) {
  1735. netif_rx_complete(dev, napi);
  1736. /* enable interrupts */
  1737. tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
  1738. }
  1739. return received;
  1740. }
  1741. #endif
  1742. #ifdef NO_CHECK_CARRIER
  1743. #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_LateColl|Tx_TxPar|Tx_SQErr)
  1744. #else
  1745. #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
  1746. #endif
  1747. static void
  1748. tc35815_check_tx_stat(struct net_device *dev, int status)
  1749. {
  1750. struct tc35815_local *lp = netdev_priv(dev);
  1751. const char *msg = NULL;
  1752. /* count collisions */
  1753. if (status & Tx_ExColl)
  1754. dev->stats.collisions += 16;
  1755. if (status & Tx_TxColl_MASK)
  1756. dev->stats.collisions += status & Tx_TxColl_MASK;
  1757. #ifndef NO_CHECK_CARRIER
  1758. /* TX4939 does not have NCarr */
  1759. if (lp->chiptype == TC35815_TX4939)
  1760. status &= ~Tx_NCarr;
  1761. #ifdef WORKAROUND_LOSTCAR
  1762. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1763. if (!lp->link || lp->duplex == DUPLEX_FULL)
  1764. status &= ~Tx_NCarr;
  1765. #endif
  1766. #endif
  1767. if (!(status & TX_STA_ERR)) {
  1768. /* no error. */
  1769. dev->stats.tx_packets++;
  1770. return;
  1771. }
  1772. dev->stats.tx_errors++;
  1773. if (status & Tx_ExColl) {
  1774. dev->stats.tx_aborted_errors++;
  1775. msg = "Excessive Collision.";
  1776. }
  1777. if (status & Tx_Under) {
  1778. dev->stats.tx_fifo_errors++;
  1779. msg = "Tx FIFO Underrun.";
  1780. if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
  1781. lp->lstats.tx_underrun++;
  1782. if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
  1783. struct tc35815_regs __iomem *tr =
  1784. (struct tc35815_regs __iomem *)dev->base_addr;
  1785. tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
  1786. msg = "Tx FIFO Underrun.Change Tx threshold to max.";
  1787. }
  1788. }
  1789. }
  1790. if (status & Tx_Defer) {
  1791. dev->stats.tx_fifo_errors++;
  1792. msg = "Excessive Deferral.";
  1793. }
  1794. #ifndef NO_CHECK_CARRIER
  1795. if (status & Tx_NCarr) {
  1796. dev->stats.tx_carrier_errors++;
  1797. msg = "Lost Carrier Sense.";
  1798. }
  1799. #endif
  1800. if (status & Tx_LateColl) {
  1801. dev->stats.tx_aborted_errors++;
  1802. msg = "Late Collision.";
  1803. }
  1804. if (status & Tx_TxPar) {
  1805. dev->stats.tx_fifo_errors++;
  1806. msg = "Transmit Parity Error.";
  1807. }
  1808. if (status & Tx_SQErr) {
  1809. dev->stats.tx_heartbeat_errors++;
  1810. msg = "Signal Quality Error.";
  1811. }
  1812. if (msg && netif_msg_tx_err(lp))
  1813. printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
  1814. }
  1815. /* This handles TX complete events posted by the device
  1816. * via interrupts.
  1817. */
  1818. static void
  1819. tc35815_txdone(struct net_device *dev)
  1820. {
  1821. struct tc35815_local *lp = netdev_priv(dev);
  1822. struct TxFD *txfd;
  1823. unsigned int fdctl;
  1824. txfd = &lp->tfd_base[lp->tfd_end];
  1825. while (lp->tfd_start != lp->tfd_end &&
  1826. !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
  1827. int status = le32_to_cpu(txfd->fd.FDStat);
  1828. struct sk_buff *skb;
  1829. unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
  1830. u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
  1831. if (netif_msg_tx_done(lp)) {
  1832. printk("%s: complete TxFD.\n", dev->name);
  1833. dump_txfd(txfd);
  1834. }
  1835. tc35815_check_tx_stat(dev, status);
  1836. skb = fdsystem != 0xffffffff ?
  1837. lp->tx_skbs[fdsystem].skb : NULL;
  1838. #ifdef DEBUG
  1839. if (lp->tx_skbs[lp->tfd_end].skb != skb) {
  1840. printk("%s: tx_skbs mismatch.\n", dev->name);
  1841. panic_queues(dev);
  1842. }
  1843. #else
  1844. BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
  1845. #endif
  1846. if (skb) {
  1847. dev->stats.tx_bytes += skb->len;
  1848. pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
  1849. lp->tx_skbs[lp->tfd_end].skb = NULL;
  1850. lp->tx_skbs[lp->tfd_end].skb_dma = 0;
  1851. #ifdef TC35815_NAPI
  1852. dev_kfree_skb_any(skb);
  1853. #else
  1854. dev_kfree_skb_irq(skb);
  1855. #endif
  1856. }
  1857. txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
  1858. lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
  1859. txfd = &lp->tfd_base[lp->tfd_end];
  1860. #ifdef DEBUG
  1861. if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
  1862. printk("%s: TxFD FDNext invalid.\n", dev->name);
  1863. panic_queues(dev);
  1864. }
  1865. #endif
  1866. if (fdnext & FD_Next_EOL) {
  1867. /* DMA Transmitter has been stopping... */
  1868. if (lp->tfd_end != lp->tfd_start) {
  1869. struct tc35815_regs __iomem *tr =
  1870. (struct tc35815_regs __iomem *)dev->base_addr;
  1871. int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
  1872. struct TxFD *txhead = &lp->tfd_base[head];
  1873. int qlen = (lp->tfd_start + TX_FD_NUM
  1874. - lp->tfd_end) % TX_FD_NUM;
  1875. #ifdef DEBUG
  1876. if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
  1877. printk("%s: TxFD FDCtl invalid.\n", dev->name);
  1878. panic_queues(dev);
  1879. }
  1880. #endif
  1881. /* log max queue length */
  1882. if (lp->lstats.max_tx_qlen < qlen)
  1883. lp->lstats.max_tx_qlen = qlen;
  1884. /* start DMA Transmitter again */
  1885. txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1886. #ifdef GATHER_TXINT
  1887. txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1888. #endif
  1889. if (netif_msg_tx_queued(lp)) {
  1890. printk("%s: start TxFD on queue.\n",
  1891. dev->name);
  1892. dump_txfd(txfd);
  1893. }
  1894. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1895. }
  1896. break;
  1897. }
  1898. }
  1899. /* If we had stopped the queue due to a "tx full"
  1900. * condition, and space has now been made available,
  1901. * wake up the queue.
  1902. */
  1903. if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
  1904. netif_wake_queue(dev);
  1905. }
  1906. /* The inverse routine to tc35815_open(). */
  1907. static int
  1908. tc35815_close(struct net_device *dev)
  1909. {
  1910. struct tc35815_local *lp = netdev_priv(dev);
  1911. netif_stop_queue(dev);
  1912. #ifdef TC35815_NAPI
  1913. napi_disable(&lp->napi);
  1914. #endif
  1915. if (lp->phy_dev)
  1916. phy_stop(lp->phy_dev);
  1917. cancel_work_sync(&lp->restart_work);
  1918. /* Flush the Tx and disable Rx here. */
  1919. tc35815_chip_reset(dev);
  1920. free_irq(dev->irq, dev);
  1921. tc35815_free_queues(dev);
  1922. return 0;
  1923. }
  1924. /*
  1925. * Get the current statistics.
  1926. * This may be called with the card open or closed.
  1927. */
  1928. static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
  1929. {
  1930. struct tc35815_regs __iomem *tr =
  1931. (struct tc35815_regs __iomem *)dev->base_addr;
  1932. if (netif_running(dev))
  1933. /* Update the statistics from the device registers. */
  1934. dev->stats.rx_missed_errors = tc_readl(&tr->Miss_Cnt);
  1935. return &dev->stats;
  1936. }
  1937. static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
  1938. {
  1939. struct tc35815_local *lp = netdev_priv(dev);
  1940. struct tc35815_regs __iomem *tr =
  1941. (struct tc35815_regs __iomem *)dev->base_addr;
  1942. int cam_index = index * 6;
  1943. u32 cam_data;
  1944. u32 saved_addr;
  1945. DECLARE_MAC_BUF(mac);
  1946. saved_addr = tc_readl(&tr->CAM_Adr);
  1947. if (netif_msg_hw(lp))
  1948. printk(KERN_DEBUG "%s: CAM %d: %s\n",
  1949. dev->name, index, print_mac(mac, addr));
  1950. if (index & 1) {
  1951. /* read modify write */
  1952. tc_writel(cam_index - 2, &tr->CAM_Adr);
  1953. cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
  1954. cam_data |= addr[0] << 8 | addr[1];
  1955. tc_writel(cam_data, &tr->CAM_Data);
  1956. /* write whole word */
  1957. tc_writel(cam_index + 2, &tr->CAM_Adr);
  1958. cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
  1959. tc_writel(cam_data, &tr->CAM_Data);
  1960. } else {
  1961. /* write whole word */
  1962. tc_writel(cam_index, &tr->CAM_Adr);
  1963. cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
  1964. tc_writel(cam_data, &tr->CAM_Data);
  1965. /* read modify write */
  1966. tc_writel(cam_index + 4, &tr->CAM_Adr);
  1967. cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
  1968. cam_data |= addr[4] << 24 | (addr[5] << 16);
  1969. tc_writel(cam_data, &tr->CAM_Data);
  1970. }
  1971. tc_writel(saved_addr, &tr->CAM_Adr);
  1972. }
  1973. /*
  1974. * Set or clear the multicast filter for this adaptor.
  1975. * num_addrs == -1 Promiscuous mode, receive all packets
  1976. * num_addrs == 0 Normal mode, clear multicast list
  1977. * num_addrs > 0 Multicast mode, receive normal and MC packets,
  1978. * and do best-effort filtering.
  1979. */
  1980. static void
  1981. tc35815_set_multicast_list(struct net_device *dev)
  1982. {
  1983. struct tc35815_regs __iomem *tr =
  1984. (struct tc35815_regs __iomem *)dev->base_addr;
  1985. if (dev->flags & IFF_PROMISC) {
  1986. #ifdef WORKAROUND_100HALF_PROMISC
  1987. /* With some (all?) 100MHalf HUB, controller will hang
  1988. * if we enabled promiscuous mode before linkup... */
  1989. struct tc35815_local *lp = netdev_priv(dev);
  1990. if (!lp->link)
  1991. return;
  1992. #endif
  1993. /* Enable promiscuous mode */
  1994. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
  1995. } else if ((dev->flags & IFF_ALLMULTI) ||
  1996. dev->mc_count > CAM_ENTRY_MAX - 3) {
  1997. /* CAM 0, 1, 20 are reserved. */
  1998. /* Disable promiscuous mode, use normal mode. */
  1999. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
  2000. } else if (dev->mc_count) {
  2001. struct dev_mc_list *cur_addr = dev->mc_list;
  2002. int i;
  2003. int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
  2004. tc_writel(0, &tr->CAM_Ctl);
  2005. /* Walk the address list, and load the filter */
  2006. for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
  2007. if (!cur_addr)
  2008. break;
  2009. /* entry 0,1 is reserved. */
  2010. tc35815_set_cam_entry(dev, i + 2, cur_addr->dmi_addr);
  2011. ena_bits |= CAM_Ena_Bit(i + 2);
  2012. }
  2013. tc_writel(ena_bits, &tr->CAM_Ena);
  2014. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  2015. } else {
  2016. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  2017. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  2018. }
  2019. }
  2020. static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2021. {
  2022. struct tc35815_local *lp = netdev_priv(dev);
  2023. strcpy(info->driver, MODNAME);
  2024. strcpy(info->version, DRV_VERSION);
  2025. strcpy(info->bus_info, pci_name(lp->pci_dev));
  2026. }
  2027. static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2028. {
  2029. struct tc35815_local *lp = netdev_priv(dev);
  2030. if (!lp->phy_dev)
  2031. return -ENODEV;
  2032. return phy_ethtool_gset(lp->phy_dev, cmd);
  2033. }
  2034. static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2035. {
  2036. struct tc35815_local *lp = netdev_priv(dev);
  2037. if (!lp->phy_dev)
  2038. return -ENODEV;
  2039. return phy_ethtool_sset(lp->phy_dev, cmd);
  2040. }
  2041. static u32 tc35815_get_msglevel(struct net_device *dev)
  2042. {
  2043. struct tc35815_local *lp = netdev_priv(dev);
  2044. return lp->msg_enable;
  2045. }
  2046. static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
  2047. {
  2048. struct tc35815_local *lp = netdev_priv(dev);
  2049. lp->msg_enable = datum;
  2050. }
  2051. static int tc35815_get_sset_count(struct net_device *dev, int sset)
  2052. {
  2053. struct tc35815_local *lp = netdev_priv(dev);
  2054. switch (sset) {
  2055. case ETH_SS_STATS:
  2056. return sizeof(lp->lstats) / sizeof(int);
  2057. default:
  2058. return -EOPNOTSUPP;
  2059. }
  2060. }
  2061. static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
  2062. {
  2063. struct tc35815_local *lp = netdev_priv(dev);
  2064. data[0] = lp->lstats.max_tx_qlen;
  2065. data[1] = lp->lstats.tx_ints;
  2066. data[2] = lp->lstats.rx_ints;
  2067. data[3] = lp->lstats.tx_underrun;
  2068. }
  2069. static struct {
  2070. const char str[ETH_GSTRING_LEN];
  2071. } ethtool_stats_keys[] = {
  2072. { "max_tx_qlen" },
  2073. { "tx_ints" },
  2074. { "rx_ints" },
  2075. { "tx_underrun" },
  2076. };
  2077. static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  2078. {
  2079. memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
  2080. }
  2081. static const struct ethtool_ops tc35815_ethtool_ops = {
  2082. .get_drvinfo = tc35815_get_drvinfo,
  2083. .get_settings = tc35815_get_settings,
  2084. .set_settings = tc35815_set_settings,
  2085. .get_link = ethtool_op_get_link,
  2086. .get_msglevel = tc35815_get_msglevel,
  2087. .set_msglevel = tc35815_set_msglevel,
  2088. .get_strings = tc35815_get_strings,
  2089. .get_sset_count = tc35815_get_sset_count,
  2090. .get_ethtool_stats = tc35815_get_ethtool_stats,
  2091. };
  2092. static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  2093. {
  2094. struct tc35815_local *lp = netdev_priv(dev);
  2095. if (!netif_running(dev))
  2096. return -EINVAL;
  2097. if (!lp->phy_dev)
  2098. return -ENODEV;
  2099. return phy_mii_ioctl(lp->phy_dev, if_mii(rq), cmd);
  2100. }
  2101. static void tc35815_chip_reset(struct net_device *dev)
  2102. {
  2103. struct tc35815_regs __iomem *tr =
  2104. (struct tc35815_regs __iomem *)dev->base_addr;
  2105. int i;
  2106. /* reset the controller */
  2107. tc_writel(MAC_Reset, &tr->MAC_Ctl);
  2108. udelay(4); /* 3200ns */
  2109. i = 0;
  2110. while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
  2111. if (i++ > 100) {
  2112. printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
  2113. break;
  2114. }
  2115. mdelay(1);
  2116. }
  2117. tc_writel(0, &tr->MAC_Ctl);
  2118. /* initialize registers to default value */
  2119. tc_writel(0, &tr->DMA_Ctl);
  2120. tc_writel(0, &tr->TxThrsh);
  2121. tc_writel(0, &tr->TxPollCtr);
  2122. tc_writel(0, &tr->RxFragSize);
  2123. tc_writel(0, &tr->Int_En);
  2124. tc_writel(0, &tr->FDA_Bas);
  2125. tc_writel(0, &tr->FDA_Lim);
  2126. tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
  2127. tc_writel(0, &tr->CAM_Ctl);
  2128. tc_writel(0, &tr->Tx_Ctl);
  2129. tc_writel(0, &tr->Rx_Ctl);
  2130. tc_writel(0, &tr->CAM_Ena);
  2131. (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
  2132. /* initialize internal SRAM */
  2133. tc_writel(DMA_TestMode, &tr->DMA_Ctl);
  2134. for (i = 0; i < 0x1000; i += 4) {
  2135. tc_writel(i, &tr->CAM_Adr);
  2136. tc_writel(0, &tr->CAM_Data);
  2137. }
  2138. tc_writel(0, &tr->DMA_Ctl);
  2139. }
  2140. static void tc35815_chip_init(struct net_device *dev)
  2141. {
  2142. struct tc35815_local *lp = netdev_priv(dev);
  2143. struct tc35815_regs __iomem *tr =
  2144. (struct tc35815_regs __iomem *)dev->base_addr;
  2145. unsigned long txctl = TX_CTL_CMD;
  2146. /* load station address to CAM */
  2147. tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
  2148. /* Enable CAM (broadcast and unicast) */
  2149. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  2150. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  2151. /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
  2152. if (HAVE_DMA_RXALIGN(lp))
  2153. tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
  2154. else
  2155. tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
  2156. #ifdef TC35815_USE_PACKEDBUFFER
  2157. tc_writel(RxFrag_EnPack | ETH_ZLEN, &tr->RxFragSize); /* Packing */
  2158. #else
  2159. tc_writel(ETH_ZLEN, &tr->RxFragSize);
  2160. #endif
  2161. tc_writel(0, &tr->TxPollCtr); /* Batch mode */
  2162. tc_writel(TX_THRESHOLD, &tr->TxThrsh);
  2163. tc_writel(INT_EN_CMD, &tr->Int_En);
  2164. /* set queues */
  2165. tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
  2166. tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
  2167. &tr->FDA_Lim);
  2168. /*
  2169. * Activation method:
  2170. * First, enable the MAC Transmitter and the DMA Receive circuits.
  2171. * Then enable the DMA Transmitter and the MAC Receive circuits.
  2172. */
  2173. tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
  2174. tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
  2175. /* start MAC transmitter */
  2176. #ifndef NO_CHECK_CARRIER
  2177. /* TX4939 does not have EnLCarr */
  2178. if (lp->chiptype == TC35815_TX4939)
  2179. txctl &= ~Tx_EnLCarr;
  2180. #ifdef WORKAROUND_LOSTCAR
  2181. /* WORKAROUND: ignore LostCrS in full duplex operation */
  2182. if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
  2183. txctl &= ~Tx_EnLCarr;
  2184. #endif
  2185. #endif /* !NO_CHECK_CARRIER */
  2186. #ifdef GATHER_TXINT
  2187. txctl &= ~Tx_EnComp; /* disable global tx completion int. */
  2188. #endif
  2189. tc_writel(txctl, &tr->Tx_Ctl);
  2190. }
  2191. #ifdef CONFIG_PM
  2192. static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
  2193. {
  2194. struct net_device *dev = pci_get_drvdata(pdev);
  2195. struct tc35815_local *lp = netdev_priv(dev);
  2196. unsigned long flags;
  2197. pci_save_state(pdev);
  2198. if (!netif_running(dev))
  2199. return 0;
  2200. netif_device_detach(dev);
  2201. if (lp->phy_dev)
  2202. phy_stop(lp->phy_dev);
  2203. spin_lock_irqsave(&lp->lock, flags);
  2204. tc35815_chip_reset(dev);
  2205. spin_unlock_irqrestore(&lp->lock, flags);
  2206. pci_set_power_state(pdev, PCI_D3hot);
  2207. return 0;
  2208. }
  2209. static int tc35815_resume(struct pci_dev *pdev)
  2210. {
  2211. struct net_device *dev = pci_get_drvdata(pdev);
  2212. struct tc35815_local *lp = netdev_priv(dev);
  2213. pci_restore_state(pdev);
  2214. if (!netif_running(dev))
  2215. return 0;
  2216. pci_set_power_state(pdev, PCI_D0);
  2217. tc35815_restart(dev);
  2218. netif_carrier_off(dev);
  2219. if (lp->phy_dev)
  2220. phy_start(lp->phy_dev);
  2221. netif_device_attach(dev);
  2222. return 0;
  2223. }
  2224. #endif /* CONFIG_PM */
  2225. static struct pci_driver tc35815_pci_driver = {
  2226. .name = MODNAME,
  2227. .id_table = tc35815_pci_tbl,
  2228. .probe = tc35815_init_one,
  2229. .remove = __devexit_p(tc35815_remove_one),
  2230. #ifdef CONFIG_PM
  2231. .suspend = tc35815_suspend,
  2232. .resume = tc35815_resume,
  2233. #endif
  2234. };
  2235. module_param_named(speed, options.speed, int, 0);
  2236. MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
  2237. module_param_named(duplex, options.duplex, int, 0);
  2238. MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
  2239. static int __init tc35815_init_module(void)
  2240. {
  2241. return pci_register_driver(&tc35815_pci_driver);
  2242. }
  2243. static void __exit tc35815_cleanup_module(void)
  2244. {
  2245. pci_unregister_driver(&tc35815_pci_driver);
  2246. }
  2247. module_init(tc35815_init_module);
  2248. module_exit(tc35815_cleanup_module);
  2249. MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
  2250. MODULE_LICENSE("GPL");