skbuff.h 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <asm/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. /* Don't change this without changing skb_csum_unnecessary! */
  30. #define CHECKSUM_NONE 0
  31. #define CHECKSUM_UNNECESSARY 1
  32. #define CHECKSUM_COMPLETE 2
  33. #define CHECKSUM_PARTIAL 3
  34. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  35. ~(SMP_CACHE_BYTES - 1))
  36. #define SKB_WITH_OVERHEAD(X) \
  37. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  38. #define SKB_MAX_ORDER(X, ORDER) \
  39. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  40. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  41. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  42. /* A. Checksumming of received packets by device.
  43. *
  44. * NONE: device failed to checksum this packet.
  45. * skb->csum is undefined.
  46. *
  47. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  48. * skb->csum is undefined.
  49. * It is bad option, but, unfortunately, many of vendors do this.
  50. * Apparently with secret goal to sell you new device, when you
  51. * will add new protocol to your host. F.e. IPv6. 8)
  52. *
  53. * COMPLETE: the most generic way. Device supplied checksum of _all_
  54. * the packet as seen by netif_rx in skb->csum.
  55. * NOTE: Even if device supports only some protocols, but
  56. * is able to produce some skb->csum, it MUST use COMPLETE,
  57. * not UNNECESSARY.
  58. *
  59. * PARTIAL: identical to the case for output below. This may occur
  60. * on a packet received directly from another Linux OS, e.g.,
  61. * a virtualised Linux kernel on the same host. The packet can
  62. * be treated in the same way as UNNECESSARY except that on
  63. * output (i.e., forwarding) the checksum must be filled in
  64. * by the OS or the hardware.
  65. *
  66. * B. Checksumming on output.
  67. *
  68. * NONE: skb is checksummed by protocol or csum is not required.
  69. *
  70. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  71. * from skb->csum_start to the end and to record the checksum
  72. * at skb->csum_start + skb->csum_offset.
  73. *
  74. * Device must show its capabilities in dev->features, set
  75. * at device setup time.
  76. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  77. * everything.
  78. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  79. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  80. * TCP/UDP over IPv4. Sigh. Vendors like this
  81. * way by an unknown reason. Though, see comment above
  82. * about CHECKSUM_UNNECESSARY. 8)
  83. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  84. *
  85. * Any questions? No questions, good. --ANK
  86. */
  87. struct net_device;
  88. struct scatterlist;
  89. struct pipe_inode_info;
  90. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  91. struct nf_conntrack {
  92. atomic_t use;
  93. };
  94. #endif
  95. #ifdef CONFIG_BRIDGE_NETFILTER
  96. struct nf_bridge_info {
  97. atomic_t use;
  98. struct net_device *physindev;
  99. struct net_device *physoutdev;
  100. unsigned int mask;
  101. unsigned long data[32 / sizeof(unsigned long)];
  102. };
  103. #endif
  104. struct sk_buff_head {
  105. /* These two members must be first. */
  106. struct sk_buff *next;
  107. struct sk_buff *prev;
  108. __u32 qlen;
  109. spinlock_t lock;
  110. };
  111. struct sk_buff;
  112. /* To allow 64K frame to be packed as single skb without frag_list */
  113. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  114. typedef struct skb_frag_struct skb_frag_t;
  115. struct skb_frag_struct {
  116. struct page *page;
  117. __u32 page_offset;
  118. __u32 size;
  119. };
  120. #define HAVE_HW_TIME_STAMP
  121. /**
  122. * struct skb_shared_hwtstamps - hardware time stamps
  123. * @hwtstamp: hardware time stamp transformed into duration
  124. * since arbitrary point in time
  125. * @syststamp: hwtstamp transformed to system time base
  126. *
  127. * Software time stamps generated by ktime_get_real() are stored in
  128. * skb->tstamp. The relation between the different kinds of time
  129. * stamps is as follows:
  130. *
  131. * syststamp and tstamp can be compared against each other in
  132. * arbitrary combinations. The accuracy of a
  133. * syststamp/tstamp/"syststamp from other device" comparison is
  134. * limited by the accuracy of the transformation into system time
  135. * base. This depends on the device driver and its underlying
  136. * hardware.
  137. *
  138. * hwtstamps can only be compared against other hwtstamps from
  139. * the same device.
  140. *
  141. * This structure is attached to packets as part of the
  142. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  143. */
  144. struct skb_shared_hwtstamps {
  145. ktime_t hwtstamp;
  146. ktime_t syststamp;
  147. };
  148. /**
  149. * struct skb_shared_tx - instructions for time stamping of outgoing packets
  150. * @hardware: generate hardware time stamp
  151. * @software: generate software time stamp
  152. * @in_progress: device driver is going to provide
  153. * hardware time stamp
  154. * @flags: all shared_tx flags
  155. *
  156. * These flags are attached to packets as part of the
  157. * &skb_shared_info. Use skb_tx() to get a pointer.
  158. */
  159. union skb_shared_tx {
  160. struct {
  161. __u8 hardware:1,
  162. software:1,
  163. in_progress:1;
  164. };
  165. __u8 flags;
  166. };
  167. /* This data is invariant across clones and lives at
  168. * the end of the header data, ie. at skb->end.
  169. */
  170. struct skb_shared_info {
  171. atomic_t dataref;
  172. unsigned short nr_frags;
  173. unsigned short gso_size;
  174. /* Warning: this field is not always filled in (UFO)! */
  175. unsigned short gso_segs;
  176. unsigned short gso_type;
  177. __be32 ip6_frag_id;
  178. union skb_shared_tx tx_flags;
  179. struct sk_buff *frag_list;
  180. struct skb_shared_hwtstamps hwtstamps;
  181. skb_frag_t frags[MAX_SKB_FRAGS];
  182. /* Intermediate layers must ensure that destructor_arg
  183. * remains valid until skb destructor */
  184. void * destructor_arg;
  185. };
  186. /* We divide dataref into two halves. The higher 16 bits hold references
  187. * to the payload part of skb->data. The lower 16 bits hold references to
  188. * the entire skb->data. A clone of a headerless skb holds the length of
  189. * the header in skb->hdr_len.
  190. *
  191. * All users must obey the rule that the skb->data reference count must be
  192. * greater than or equal to the payload reference count.
  193. *
  194. * Holding a reference to the payload part means that the user does not
  195. * care about modifications to the header part of skb->data.
  196. */
  197. #define SKB_DATAREF_SHIFT 16
  198. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  199. enum {
  200. SKB_FCLONE_UNAVAILABLE,
  201. SKB_FCLONE_ORIG,
  202. SKB_FCLONE_CLONE,
  203. };
  204. enum {
  205. SKB_GSO_TCPV4 = 1 << 0,
  206. SKB_GSO_UDP = 1 << 1,
  207. /* This indicates the skb is from an untrusted source. */
  208. SKB_GSO_DODGY = 1 << 2,
  209. /* This indicates the tcp segment has CWR set. */
  210. SKB_GSO_TCP_ECN = 1 << 3,
  211. SKB_GSO_TCPV6 = 1 << 4,
  212. SKB_GSO_FCOE = 1 << 5,
  213. };
  214. #if BITS_PER_LONG > 32
  215. #define NET_SKBUFF_DATA_USES_OFFSET 1
  216. #endif
  217. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  218. typedef unsigned int sk_buff_data_t;
  219. #else
  220. typedef unsigned char *sk_buff_data_t;
  221. #endif
  222. /**
  223. * struct sk_buff - socket buffer
  224. * @next: Next buffer in list
  225. * @prev: Previous buffer in list
  226. * @sk: Socket we are owned by
  227. * @tstamp: Time we arrived
  228. * @dev: Device we arrived on/are leaving by
  229. * @transport_header: Transport layer header
  230. * @network_header: Network layer header
  231. * @mac_header: Link layer header
  232. * @_skb_dst: destination entry
  233. * @sp: the security path, used for xfrm
  234. * @cb: Control buffer. Free for use by every layer. Put private vars here
  235. * @len: Length of actual data
  236. * @data_len: Data length
  237. * @mac_len: Length of link layer header
  238. * @hdr_len: writable header length of cloned skb
  239. * @csum: Checksum (must include start/offset pair)
  240. * @csum_start: Offset from skb->head where checksumming should start
  241. * @csum_offset: Offset from csum_start where checksum should be stored
  242. * @local_df: allow local fragmentation
  243. * @cloned: Head may be cloned (check refcnt to be sure)
  244. * @nohdr: Payload reference only, must not modify header
  245. * @pkt_type: Packet class
  246. * @fclone: skbuff clone status
  247. * @ip_summed: Driver fed us an IP checksum
  248. * @priority: Packet queueing priority
  249. * @users: User count - see {datagram,tcp}.c
  250. * @protocol: Packet protocol from driver
  251. * @truesize: Buffer size
  252. * @head: Head of buffer
  253. * @data: Data head pointer
  254. * @tail: Tail pointer
  255. * @end: End pointer
  256. * @destructor: Destruct function
  257. * @mark: Generic packet mark
  258. * @nfct: Associated connection, if any
  259. * @ipvs_property: skbuff is owned by ipvs
  260. * @peeked: this packet has been seen already, so stats have been
  261. * done for it, don't do them again
  262. * @nf_trace: netfilter packet trace flag
  263. * @nfctinfo: Relationship of this skb to the connection
  264. * @nfct_reasm: netfilter conntrack re-assembly pointer
  265. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  266. * @skb_iif: ifindex of device we arrived on
  267. * @rxhash: the packet hash computed on receive
  268. * @queue_mapping: Queue mapping for multiqueue devices
  269. * @tc_index: Traffic control index
  270. * @tc_verd: traffic control verdict
  271. * @ndisc_nodetype: router type (from link layer)
  272. * @dma_cookie: a cookie to one of several possible DMA operations
  273. * done by skb DMA functions
  274. * @secmark: security marking
  275. * @vlan_tci: vlan tag control information
  276. */
  277. struct sk_buff {
  278. /* These two members must be first. */
  279. struct sk_buff *next;
  280. struct sk_buff *prev;
  281. ktime_t tstamp;
  282. struct sock *sk;
  283. struct net_device *dev;
  284. /*
  285. * This is the control buffer. It is free to use for every
  286. * layer. Please put your private variables there. If you
  287. * want to keep them across layers you have to do a skb_clone()
  288. * first. This is owned by whoever has the skb queued ATM.
  289. */
  290. char cb[48] __aligned(8);
  291. unsigned long _skb_dst;
  292. #ifdef CONFIG_XFRM
  293. struct sec_path *sp;
  294. #endif
  295. unsigned int len,
  296. data_len;
  297. __u16 mac_len,
  298. hdr_len;
  299. union {
  300. __wsum csum;
  301. struct {
  302. __u16 csum_start;
  303. __u16 csum_offset;
  304. };
  305. };
  306. __u32 priority;
  307. kmemcheck_bitfield_begin(flags1);
  308. __u8 local_df:1,
  309. cloned:1,
  310. ip_summed:2,
  311. nohdr:1,
  312. nfctinfo:3;
  313. __u8 pkt_type:3,
  314. fclone:2,
  315. ipvs_property:1,
  316. peeked:1,
  317. nf_trace:1;
  318. kmemcheck_bitfield_end(flags1);
  319. __be16 protocol;
  320. void (*destructor)(struct sk_buff *skb);
  321. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  322. struct nf_conntrack *nfct;
  323. struct sk_buff *nfct_reasm;
  324. #endif
  325. #ifdef CONFIG_BRIDGE_NETFILTER
  326. struct nf_bridge_info *nf_bridge;
  327. #endif
  328. int skb_iif;
  329. #ifdef CONFIG_NET_SCHED
  330. __u16 tc_index; /* traffic control index */
  331. #ifdef CONFIG_NET_CLS_ACT
  332. __u16 tc_verd; /* traffic control verdict */
  333. #endif
  334. #endif
  335. __u32 rxhash;
  336. kmemcheck_bitfield_begin(flags2);
  337. __u16 queue_mapping:16;
  338. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  339. __u8 ndisc_nodetype:2;
  340. #endif
  341. kmemcheck_bitfield_end(flags2);
  342. /* 0/14 bit hole */
  343. #ifdef CONFIG_NET_DMA
  344. dma_cookie_t dma_cookie;
  345. #endif
  346. #ifdef CONFIG_NETWORK_SECMARK
  347. __u32 secmark;
  348. #endif
  349. union {
  350. __u32 mark;
  351. __u32 dropcount;
  352. };
  353. __u16 vlan_tci;
  354. sk_buff_data_t transport_header;
  355. sk_buff_data_t network_header;
  356. sk_buff_data_t mac_header;
  357. /* These elements must be at the end, see alloc_skb() for details. */
  358. sk_buff_data_t tail;
  359. sk_buff_data_t end;
  360. unsigned char *head,
  361. *data;
  362. unsigned int truesize;
  363. atomic_t users;
  364. };
  365. #ifdef __KERNEL__
  366. /*
  367. * Handling routines are only of interest to the kernel
  368. */
  369. #include <linux/slab.h>
  370. #include <asm/system.h>
  371. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  372. {
  373. return (struct dst_entry *)skb->_skb_dst;
  374. }
  375. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  376. {
  377. skb->_skb_dst = (unsigned long)dst;
  378. }
  379. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  380. {
  381. return (struct rtable *)skb_dst(skb);
  382. }
  383. extern void kfree_skb(struct sk_buff *skb);
  384. extern void consume_skb(struct sk_buff *skb);
  385. extern void __kfree_skb(struct sk_buff *skb);
  386. extern struct sk_buff *__alloc_skb(unsigned int size,
  387. gfp_t priority, int fclone, int node);
  388. static inline struct sk_buff *alloc_skb(unsigned int size,
  389. gfp_t priority)
  390. {
  391. return __alloc_skb(size, priority, 0, -1);
  392. }
  393. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  394. gfp_t priority)
  395. {
  396. return __alloc_skb(size, priority, 1, -1);
  397. }
  398. extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
  399. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  400. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  401. gfp_t priority);
  402. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  403. gfp_t priority);
  404. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  405. gfp_t gfp_mask);
  406. extern int pskb_expand_head(struct sk_buff *skb,
  407. int nhead, int ntail,
  408. gfp_t gfp_mask);
  409. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  410. unsigned int headroom);
  411. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  412. int newheadroom, int newtailroom,
  413. gfp_t priority);
  414. extern int skb_to_sgvec(struct sk_buff *skb,
  415. struct scatterlist *sg, int offset,
  416. int len);
  417. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  418. struct sk_buff **trailer);
  419. extern int skb_pad(struct sk_buff *skb, int pad);
  420. #define dev_kfree_skb(a) consume_skb(a)
  421. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  422. int getfrag(void *from, char *to, int offset,
  423. int len,int odd, struct sk_buff *skb),
  424. void *from, int length);
  425. struct skb_seq_state {
  426. __u32 lower_offset;
  427. __u32 upper_offset;
  428. __u32 frag_idx;
  429. __u32 stepped_offset;
  430. struct sk_buff *root_skb;
  431. struct sk_buff *cur_skb;
  432. __u8 *frag_data;
  433. };
  434. extern void skb_prepare_seq_read(struct sk_buff *skb,
  435. unsigned int from, unsigned int to,
  436. struct skb_seq_state *st);
  437. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  438. struct skb_seq_state *st);
  439. extern void skb_abort_seq_read(struct skb_seq_state *st);
  440. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  441. unsigned int to, struct ts_config *config,
  442. struct ts_state *state);
  443. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  444. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  445. {
  446. return skb->head + skb->end;
  447. }
  448. #else
  449. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  450. {
  451. return skb->end;
  452. }
  453. #endif
  454. /* Internal */
  455. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  456. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  457. {
  458. return &skb_shinfo(skb)->hwtstamps;
  459. }
  460. static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
  461. {
  462. return &skb_shinfo(skb)->tx_flags;
  463. }
  464. /**
  465. * skb_queue_empty - check if a queue is empty
  466. * @list: queue head
  467. *
  468. * Returns true if the queue is empty, false otherwise.
  469. */
  470. static inline int skb_queue_empty(const struct sk_buff_head *list)
  471. {
  472. return list->next == (struct sk_buff *)list;
  473. }
  474. /**
  475. * skb_queue_is_last - check if skb is the last entry in the queue
  476. * @list: queue head
  477. * @skb: buffer
  478. *
  479. * Returns true if @skb is the last buffer on the list.
  480. */
  481. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  482. const struct sk_buff *skb)
  483. {
  484. return (skb->next == (struct sk_buff *) list);
  485. }
  486. /**
  487. * skb_queue_is_first - check if skb is the first entry in the queue
  488. * @list: queue head
  489. * @skb: buffer
  490. *
  491. * Returns true if @skb is the first buffer on the list.
  492. */
  493. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  494. const struct sk_buff *skb)
  495. {
  496. return (skb->prev == (struct sk_buff *) list);
  497. }
  498. /**
  499. * skb_queue_next - return the next packet in the queue
  500. * @list: queue head
  501. * @skb: current buffer
  502. *
  503. * Return the next packet in @list after @skb. It is only valid to
  504. * call this if skb_queue_is_last() evaluates to false.
  505. */
  506. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  507. const struct sk_buff *skb)
  508. {
  509. /* This BUG_ON may seem severe, but if we just return then we
  510. * are going to dereference garbage.
  511. */
  512. BUG_ON(skb_queue_is_last(list, skb));
  513. return skb->next;
  514. }
  515. /**
  516. * skb_queue_prev - return the prev packet in the queue
  517. * @list: queue head
  518. * @skb: current buffer
  519. *
  520. * Return the prev packet in @list before @skb. It is only valid to
  521. * call this if skb_queue_is_first() evaluates to false.
  522. */
  523. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  524. const struct sk_buff *skb)
  525. {
  526. /* This BUG_ON may seem severe, but if we just return then we
  527. * are going to dereference garbage.
  528. */
  529. BUG_ON(skb_queue_is_first(list, skb));
  530. return skb->prev;
  531. }
  532. /**
  533. * skb_get - reference buffer
  534. * @skb: buffer to reference
  535. *
  536. * Makes another reference to a socket buffer and returns a pointer
  537. * to the buffer.
  538. */
  539. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  540. {
  541. atomic_inc(&skb->users);
  542. return skb;
  543. }
  544. /*
  545. * If users == 1, we are the only owner and are can avoid redundant
  546. * atomic change.
  547. */
  548. /**
  549. * skb_cloned - is the buffer a clone
  550. * @skb: buffer to check
  551. *
  552. * Returns true if the buffer was generated with skb_clone() and is
  553. * one of multiple shared copies of the buffer. Cloned buffers are
  554. * shared data so must not be written to under normal circumstances.
  555. */
  556. static inline int skb_cloned(const struct sk_buff *skb)
  557. {
  558. return skb->cloned &&
  559. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  560. }
  561. /**
  562. * skb_header_cloned - is the header a clone
  563. * @skb: buffer to check
  564. *
  565. * Returns true if modifying the header part of the buffer requires
  566. * the data to be copied.
  567. */
  568. static inline int skb_header_cloned(const struct sk_buff *skb)
  569. {
  570. int dataref;
  571. if (!skb->cloned)
  572. return 0;
  573. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  574. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  575. return dataref != 1;
  576. }
  577. /**
  578. * skb_header_release - release reference to header
  579. * @skb: buffer to operate on
  580. *
  581. * Drop a reference to the header part of the buffer. This is done
  582. * by acquiring a payload reference. You must not read from the header
  583. * part of skb->data after this.
  584. */
  585. static inline void skb_header_release(struct sk_buff *skb)
  586. {
  587. BUG_ON(skb->nohdr);
  588. skb->nohdr = 1;
  589. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  590. }
  591. /**
  592. * skb_shared - is the buffer shared
  593. * @skb: buffer to check
  594. *
  595. * Returns true if more than one person has a reference to this
  596. * buffer.
  597. */
  598. static inline int skb_shared(const struct sk_buff *skb)
  599. {
  600. return atomic_read(&skb->users) != 1;
  601. }
  602. /**
  603. * skb_share_check - check if buffer is shared and if so clone it
  604. * @skb: buffer to check
  605. * @pri: priority for memory allocation
  606. *
  607. * If the buffer is shared the buffer is cloned and the old copy
  608. * drops a reference. A new clone with a single reference is returned.
  609. * If the buffer is not shared the original buffer is returned. When
  610. * being called from interrupt status or with spinlocks held pri must
  611. * be GFP_ATOMIC.
  612. *
  613. * NULL is returned on a memory allocation failure.
  614. */
  615. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  616. gfp_t pri)
  617. {
  618. might_sleep_if(pri & __GFP_WAIT);
  619. if (skb_shared(skb)) {
  620. struct sk_buff *nskb = skb_clone(skb, pri);
  621. kfree_skb(skb);
  622. skb = nskb;
  623. }
  624. return skb;
  625. }
  626. /*
  627. * Copy shared buffers into a new sk_buff. We effectively do COW on
  628. * packets to handle cases where we have a local reader and forward
  629. * and a couple of other messy ones. The normal one is tcpdumping
  630. * a packet thats being forwarded.
  631. */
  632. /**
  633. * skb_unshare - make a copy of a shared buffer
  634. * @skb: buffer to check
  635. * @pri: priority for memory allocation
  636. *
  637. * If the socket buffer is a clone then this function creates a new
  638. * copy of the data, drops a reference count on the old copy and returns
  639. * the new copy with the reference count at 1. If the buffer is not a clone
  640. * the original buffer is returned. When called with a spinlock held or
  641. * from interrupt state @pri must be %GFP_ATOMIC
  642. *
  643. * %NULL is returned on a memory allocation failure.
  644. */
  645. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  646. gfp_t pri)
  647. {
  648. might_sleep_if(pri & __GFP_WAIT);
  649. if (skb_cloned(skb)) {
  650. struct sk_buff *nskb = skb_copy(skb, pri);
  651. kfree_skb(skb); /* Free our shared copy */
  652. skb = nskb;
  653. }
  654. return skb;
  655. }
  656. /**
  657. * skb_peek - peek at the head of an &sk_buff_head
  658. * @list_: list to peek at
  659. *
  660. * Peek an &sk_buff. Unlike most other operations you _MUST_
  661. * be careful with this one. A peek leaves the buffer on the
  662. * list and someone else may run off with it. You must hold
  663. * the appropriate locks or have a private queue to do this.
  664. *
  665. * Returns %NULL for an empty list or a pointer to the head element.
  666. * The reference count is not incremented and the reference is therefore
  667. * volatile. Use with caution.
  668. */
  669. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  670. {
  671. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  672. if (list == (struct sk_buff *)list_)
  673. list = NULL;
  674. return list;
  675. }
  676. /**
  677. * skb_peek_tail - peek at the tail of an &sk_buff_head
  678. * @list_: list to peek at
  679. *
  680. * Peek an &sk_buff. Unlike most other operations you _MUST_
  681. * be careful with this one. A peek leaves the buffer on the
  682. * list and someone else may run off with it. You must hold
  683. * the appropriate locks or have a private queue to do this.
  684. *
  685. * Returns %NULL for an empty list or a pointer to the tail element.
  686. * The reference count is not incremented and the reference is therefore
  687. * volatile. Use with caution.
  688. */
  689. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  690. {
  691. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  692. if (list == (struct sk_buff *)list_)
  693. list = NULL;
  694. return list;
  695. }
  696. /**
  697. * skb_queue_len - get queue length
  698. * @list_: list to measure
  699. *
  700. * Return the length of an &sk_buff queue.
  701. */
  702. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  703. {
  704. return list_->qlen;
  705. }
  706. /**
  707. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  708. * @list: queue to initialize
  709. *
  710. * This initializes only the list and queue length aspects of
  711. * an sk_buff_head object. This allows to initialize the list
  712. * aspects of an sk_buff_head without reinitializing things like
  713. * the spinlock. It can also be used for on-stack sk_buff_head
  714. * objects where the spinlock is known to not be used.
  715. */
  716. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  717. {
  718. list->prev = list->next = (struct sk_buff *)list;
  719. list->qlen = 0;
  720. }
  721. /*
  722. * This function creates a split out lock class for each invocation;
  723. * this is needed for now since a whole lot of users of the skb-queue
  724. * infrastructure in drivers have different locking usage (in hardirq)
  725. * than the networking core (in softirq only). In the long run either the
  726. * network layer or drivers should need annotation to consolidate the
  727. * main types of usage into 3 classes.
  728. */
  729. static inline void skb_queue_head_init(struct sk_buff_head *list)
  730. {
  731. spin_lock_init(&list->lock);
  732. __skb_queue_head_init(list);
  733. }
  734. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  735. struct lock_class_key *class)
  736. {
  737. skb_queue_head_init(list);
  738. lockdep_set_class(&list->lock, class);
  739. }
  740. /*
  741. * Insert an sk_buff on a list.
  742. *
  743. * The "__skb_xxxx()" functions are the non-atomic ones that
  744. * can only be called with interrupts disabled.
  745. */
  746. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  747. static inline void __skb_insert(struct sk_buff *newsk,
  748. struct sk_buff *prev, struct sk_buff *next,
  749. struct sk_buff_head *list)
  750. {
  751. newsk->next = next;
  752. newsk->prev = prev;
  753. next->prev = prev->next = newsk;
  754. list->qlen++;
  755. }
  756. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  757. struct sk_buff *prev,
  758. struct sk_buff *next)
  759. {
  760. struct sk_buff *first = list->next;
  761. struct sk_buff *last = list->prev;
  762. first->prev = prev;
  763. prev->next = first;
  764. last->next = next;
  765. next->prev = last;
  766. }
  767. /**
  768. * skb_queue_splice - join two skb lists, this is designed for stacks
  769. * @list: the new list to add
  770. * @head: the place to add it in the first list
  771. */
  772. static inline void skb_queue_splice(const struct sk_buff_head *list,
  773. struct sk_buff_head *head)
  774. {
  775. if (!skb_queue_empty(list)) {
  776. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  777. head->qlen += list->qlen;
  778. }
  779. }
  780. /**
  781. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  782. * @list: the new list to add
  783. * @head: the place to add it in the first list
  784. *
  785. * The list at @list is reinitialised
  786. */
  787. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  788. struct sk_buff_head *head)
  789. {
  790. if (!skb_queue_empty(list)) {
  791. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  792. head->qlen += list->qlen;
  793. __skb_queue_head_init(list);
  794. }
  795. }
  796. /**
  797. * skb_queue_splice_tail - join two skb lists, each list being a queue
  798. * @list: the new list to add
  799. * @head: the place to add it in the first list
  800. */
  801. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  802. struct sk_buff_head *head)
  803. {
  804. if (!skb_queue_empty(list)) {
  805. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  806. head->qlen += list->qlen;
  807. }
  808. }
  809. /**
  810. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  811. * @list: the new list to add
  812. * @head: the place to add it in the first list
  813. *
  814. * Each of the lists is a queue.
  815. * The list at @list is reinitialised
  816. */
  817. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  818. struct sk_buff_head *head)
  819. {
  820. if (!skb_queue_empty(list)) {
  821. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  822. head->qlen += list->qlen;
  823. __skb_queue_head_init(list);
  824. }
  825. }
  826. /**
  827. * __skb_queue_after - queue a buffer at the list head
  828. * @list: list to use
  829. * @prev: place after this buffer
  830. * @newsk: buffer to queue
  831. *
  832. * Queue a buffer int the middle of a list. This function takes no locks
  833. * and you must therefore hold required locks before calling it.
  834. *
  835. * A buffer cannot be placed on two lists at the same time.
  836. */
  837. static inline void __skb_queue_after(struct sk_buff_head *list,
  838. struct sk_buff *prev,
  839. struct sk_buff *newsk)
  840. {
  841. __skb_insert(newsk, prev, prev->next, list);
  842. }
  843. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  844. struct sk_buff_head *list);
  845. static inline void __skb_queue_before(struct sk_buff_head *list,
  846. struct sk_buff *next,
  847. struct sk_buff *newsk)
  848. {
  849. __skb_insert(newsk, next->prev, next, list);
  850. }
  851. /**
  852. * __skb_queue_head - queue a buffer at the list head
  853. * @list: list to use
  854. * @newsk: buffer to queue
  855. *
  856. * Queue a buffer at the start of a list. This function takes no locks
  857. * and you must therefore hold required locks before calling it.
  858. *
  859. * A buffer cannot be placed on two lists at the same time.
  860. */
  861. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  862. static inline void __skb_queue_head(struct sk_buff_head *list,
  863. struct sk_buff *newsk)
  864. {
  865. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  866. }
  867. /**
  868. * __skb_queue_tail - queue a buffer at the list tail
  869. * @list: list to use
  870. * @newsk: buffer to queue
  871. *
  872. * Queue a buffer at the end of a list. This function takes no locks
  873. * and you must therefore hold required locks before calling it.
  874. *
  875. * A buffer cannot be placed on two lists at the same time.
  876. */
  877. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  878. static inline void __skb_queue_tail(struct sk_buff_head *list,
  879. struct sk_buff *newsk)
  880. {
  881. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  882. }
  883. /*
  884. * remove sk_buff from list. _Must_ be called atomically, and with
  885. * the list known..
  886. */
  887. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  888. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  889. {
  890. struct sk_buff *next, *prev;
  891. list->qlen--;
  892. next = skb->next;
  893. prev = skb->prev;
  894. skb->next = skb->prev = NULL;
  895. next->prev = prev;
  896. prev->next = next;
  897. }
  898. /**
  899. * __skb_dequeue - remove from the head of the queue
  900. * @list: list to dequeue from
  901. *
  902. * Remove the head of the list. This function does not take any locks
  903. * so must be used with appropriate locks held only. The head item is
  904. * returned or %NULL if the list is empty.
  905. */
  906. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  907. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  908. {
  909. struct sk_buff *skb = skb_peek(list);
  910. if (skb)
  911. __skb_unlink(skb, list);
  912. return skb;
  913. }
  914. /**
  915. * __skb_dequeue_tail - remove from the tail of the queue
  916. * @list: list to dequeue from
  917. *
  918. * Remove the tail of the list. This function does not take any locks
  919. * so must be used with appropriate locks held only. The tail item is
  920. * returned or %NULL if the list is empty.
  921. */
  922. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  923. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  924. {
  925. struct sk_buff *skb = skb_peek_tail(list);
  926. if (skb)
  927. __skb_unlink(skb, list);
  928. return skb;
  929. }
  930. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  931. {
  932. return skb->data_len;
  933. }
  934. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  935. {
  936. return skb->len - skb->data_len;
  937. }
  938. static inline int skb_pagelen(const struct sk_buff *skb)
  939. {
  940. int i, len = 0;
  941. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  942. len += skb_shinfo(skb)->frags[i].size;
  943. return len + skb_headlen(skb);
  944. }
  945. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  946. struct page *page, int off, int size)
  947. {
  948. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  949. frag->page = page;
  950. frag->page_offset = off;
  951. frag->size = size;
  952. skb_shinfo(skb)->nr_frags = i + 1;
  953. }
  954. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  955. int off, int size);
  956. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  957. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
  958. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  959. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  960. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  961. {
  962. return skb->head + skb->tail;
  963. }
  964. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  965. {
  966. skb->tail = skb->data - skb->head;
  967. }
  968. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  969. {
  970. skb_reset_tail_pointer(skb);
  971. skb->tail += offset;
  972. }
  973. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  974. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  975. {
  976. return skb->tail;
  977. }
  978. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  979. {
  980. skb->tail = skb->data;
  981. }
  982. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  983. {
  984. skb->tail = skb->data + offset;
  985. }
  986. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  987. /*
  988. * Add data to an sk_buff
  989. */
  990. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  991. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  992. {
  993. unsigned char *tmp = skb_tail_pointer(skb);
  994. SKB_LINEAR_ASSERT(skb);
  995. skb->tail += len;
  996. skb->len += len;
  997. return tmp;
  998. }
  999. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1000. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1001. {
  1002. skb->data -= len;
  1003. skb->len += len;
  1004. return skb->data;
  1005. }
  1006. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1007. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1008. {
  1009. skb->len -= len;
  1010. BUG_ON(skb->len < skb->data_len);
  1011. return skb->data += len;
  1012. }
  1013. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1014. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1015. {
  1016. if (len > skb_headlen(skb) &&
  1017. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1018. return NULL;
  1019. skb->len -= len;
  1020. return skb->data += len;
  1021. }
  1022. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1023. {
  1024. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1025. }
  1026. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1027. {
  1028. if (likely(len <= skb_headlen(skb)))
  1029. return 1;
  1030. if (unlikely(len > skb->len))
  1031. return 0;
  1032. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1033. }
  1034. /**
  1035. * skb_headroom - bytes at buffer head
  1036. * @skb: buffer to check
  1037. *
  1038. * Return the number of bytes of free space at the head of an &sk_buff.
  1039. */
  1040. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1041. {
  1042. return skb->data - skb->head;
  1043. }
  1044. /**
  1045. * skb_tailroom - bytes at buffer end
  1046. * @skb: buffer to check
  1047. *
  1048. * Return the number of bytes of free space at the tail of an sk_buff
  1049. */
  1050. static inline int skb_tailroom(const struct sk_buff *skb)
  1051. {
  1052. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1053. }
  1054. /**
  1055. * skb_reserve - adjust headroom
  1056. * @skb: buffer to alter
  1057. * @len: bytes to move
  1058. *
  1059. * Increase the headroom of an empty &sk_buff by reducing the tail
  1060. * room. This is only allowed for an empty buffer.
  1061. */
  1062. static inline void skb_reserve(struct sk_buff *skb, int len)
  1063. {
  1064. skb->data += len;
  1065. skb->tail += len;
  1066. }
  1067. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1068. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1069. {
  1070. return skb->head + skb->transport_header;
  1071. }
  1072. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1073. {
  1074. skb->transport_header = skb->data - skb->head;
  1075. }
  1076. static inline void skb_set_transport_header(struct sk_buff *skb,
  1077. const int offset)
  1078. {
  1079. skb_reset_transport_header(skb);
  1080. skb->transport_header += offset;
  1081. }
  1082. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1083. {
  1084. return skb->head + skb->network_header;
  1085. }
  1086. static inline void skb_reset_network_header(struct sk_buff *skb)
  1087. {
  1088. skb->network_header = skb->data - skb->head;
  1089. }
  1090. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1091. {
  1092. skb_reset_network_header(skb);
  1093. skb->network_header += offset;
  1094. }
  1095. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1096. {
  1097. return skb->head + skb->mac_header;
  1098. }
  1099. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1100. {
  1101. return skb->mac_header != ~0U;
  1102. }
  1103. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1104. {
  1105. skb->mac_header = skb->data - skb->head;
  1106. }
  1107. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1108. {
  1109. skb_reset_mac_header(skb);
  1110. skb->mac_header += offset;
  1111. }
  1112. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1113. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1114. {
  1115. return skb->transport_header;
  1116. }
  1117. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1118. {
  1119. skb->transport_header = skb->data;
  1120. }
  1121. static inline void skb_set_transport_header(struct sk_buff *skb,
  1122. const int offset)
  1123. {
  1124. skb->transport_header = skb->data + offset;
  1125. }
  1126. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1127. {
  1128. return skb->network_header;
  1129. }
  1130. static inline void skb_reset_network_header(struct sk_buff *skb)
  1131. {
  1132. skb->network_header = skb->data;
  1133. }
  1134. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1135. {
  1136. skb->network_header = skb->data + offset;
  1137. }
  1138. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1139. {
  1140. return skb->mac_header;
  1141. }
  1142. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1143. {
  1144. return skb->mac_header != NULL;
  1145. }
  1146. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1147. {
  1148. skb->mac_header = skb->data;
  1149. }
  1150. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1151. {
  1152. skb->mac_header = skb->data + offset;
  1153. }
  1154. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1155. static inline int skb_transport_offset(const struct sk_buff *skb)
  1156. {
  1157. return skb_transport_header(skb) - skb->data;
  1158. }
  1159. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1160. {
  1161. return skb->transport_header - skb->network_header;
  1162. }
  1163. static inline int skb_network_offset(const struct sk_buff *skb)
  1164. {
  1165. return skb_network_header(skb) - skb->data;
  1166. }
  1167. /*
  1168. * CPUs often take a performance hit when accessing unaligned memory
  1169. * locations. The actual performance hit varies, it can be small if the
  1170. * hardware handles it or large if we have to take an exception and fix it
  1171. * in software.
  1172. *
  1173. * Since an ethernet header is 14 bytes network drivers often end up with
  1174. * the IP header at an unaligned offset. The IP header can be aligned by
  1175. * shifting the start of the packet by 2 bytes. Drivers should do this
  1176. * with:
  1177. *
  1178. * skb_reserve(skb, NET_IP_ALIGN);
  1179. *
  1180. * The downside to this alignment of the IP header is that the DMA is now
  1181. * unaligned. On some architectures the cost of an unaligned DMA is high
  1182. * and this cost outweighs the gains made by aligning the IP header.
  1183. *
  1184. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1185. * to be overridden.
  1186. */
  1187. #ifndef NET_IP_ALIGN
  1188. #define NET_IP_ALIGN 2
  1189. #endif
  1190. /*
  1191. * The networking layer reserves some headroom in skb data (via
  1192. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1193. * the header has to grow. In the default case, if the header has to grow
  1194. * 32 bytes or less we avoid the reallocation.
  1195. *
  1196. * Unfortunately this headroom changes the DMA alignment of the resulting
  1197. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1198. * on some architectures. An architecture can override this value,
  1199. * perhaps setting it to a cacheline in size (since that will maintain
  1200. * cacheline alignment of the DMA). It must be a power of 2.
  1201. *
  1202. * Various parts of the networking layer expect at least 32 bytes of
  1203. * headroom, you should not reduce this.
  1204. */
  1205. #ifndef NET_SKB_PAD
  1206. #define NET_SKB_PAD 32
  1207. #endif
  1208. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1209. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1210. {
  1211. if (unlikely(skb->data_len)) {
  1212. WARN_ON(1);
  1213. return;
  1214. }
  1215. skb->len = len;
  1216. skb_set_tail_pointer(skb, len);
  1217. }
  1218. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1219. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1220. {
  1221. if (skb->data_len)
  1222. return ___pskb_trim(skb, len);
  1223. __skb_trim(skb, len);
  1224. return 0;
  1225. }
  1226. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1227. {
  1228. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1229. }
  1230. /**
  1231. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1232. * @skb: buffer to alter
  1233. * @len: new length
  1234. *
  1235. * This is identical to pskb_trim except that the caller knows that
  1236. * the skb is not cloned so we should never get an error due to out-
  1237. * of-memory.
  1238. */
  1239. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1240. {
  1241. int err = pskb_trim(skb, len);
  1242. BUG_ON(err);
  1243. }
  1244. /**
  1245. * skb_orphan - orphan a buffer
  1246. * @skb: buffer to orphan
  1247. *
  1248. * If a buffer currently has an owner then we call the owner's
  1249. * destructor function and make the @skb unowned. The buffer continues
  1250. * to exist but is no longer charged to its former owner.
  1251. */
  1252. static inline void skb_orphan(struct sk_buff *skb)
  1253. {
  1254. if (skb->destructor)
  1255. skb->destructor(skb);
  1256. skb->destructor = NULL;
  1257. skb->sk = NULL;
  1258. }
  1259. /**
  1260. * __skb_queue_purge - empty a list
  1261. * @list: list to empty
  1262. *
  1263. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1264. * the list and one reference dropped. This function does not take the
  1265. * list lock and the caller must hold the relevant locks to use it.
  1266. */
  1267. extern void skb_queue_purge(struct sk_buff_head *list);
  1268. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1269. {
  1270. struct sk_buff *skb;
  1271. while ((skb = __skb_dequeue(list)) != NULL)
  1272. kfree_skb(skb);
  1273. }
  1274. /**
  1275. * __dev_alloc_skb - allocate an skbuff for receiving
  1276. * @length: length to allocate
  1277. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1278. *
  1279. * Allocate a new &sk_buff and assign it a usage count of one. The
  1280. * buffer has unspecified headroom built in. Users should allocate
  1281. * the headroom they think they need without accounting for the
  1282. * built in space. The built in space is used for optimisations.
  1283. *
  1284. * %NULL is returned if there is no free memory.
  1285. */
  1286. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1287. gfp_t gfp_mask)
  1288. {
  1289. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1290. if (likely(skb))
  1291. skb_reserve(skb, NET_SKB_PAD);
  1292. return skb;
  1293. }
  1294. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1295. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1296. unsigned int length, gfp_t gfp_mask);
  1297. /**
  1298. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1299. * @dev: network device to receive on
  1300. * @length: length to allocate
  1301. *
  1302. * Allocate a new &sk_buff and assign it a usage count of one. The
  1303. * buffer has unspecified headroom built in. Users should allocate
  1304. * the headroom they think they need without accounting for the
  1305. * built in space. The built in space is used for optimisations.
  1306. *
  1307. * %NULL is returned if there is no free memory. Although this function
  1308. * allocates memory it can be called from an interrupt.
  1309. */
  1310. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1311. unsigned int length)
  1312. {
  1313. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1314. }
  1315. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1316. unsigned int length)
  1317. {
  1318. struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
  1319. if (NET_IP_ALIGN && skb)
  1320. skb_reserve(skb, NET_IP_ALIGN);
  1321. return skb;
  1322. }
  1323. extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
  1324. /**
  1325. * netdev_alloc_page - allocate a page for ps-rx on a specific device
  1326. * @dev: network device to receive on
  1327. *
  1328. * Allocate a new page node local to the specified device.
  1329. *
  1330. * %NULL is returned if there is no free memory.
  1331. */
  1332. static inline struct page *netdev_alloc_page(struct net_device *dev)
  1333. {
  1334. return __netdev_alloc_page(dev, GFP_ATOMIC);
  1335. }
  1336. static inline void netdev_free_page(struct net_device *dev, struct page *page)
  1337. {
  1338. __free_page(page);
  1339. }
  1340. /**
  1341. * skb_clone_writable - is the header of a clone writable
  1342. * @skb: buffer to check
  1343. * @len: length up to which to write
  1344. *
  1345. * Returns true if modifying the header part of the cloned buffer
  1346. * does not requires the data to be copied.
  1347. */
  1348. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1349. {
  1350. return !skb_header_cloned(skb) &&
  1351. skb_headroom(skb) + len <= skb->hdr_len;
  1352. }
  1353. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1354. int cloned)
  1355. {
  1356. int delta = 0;
  1357. if (headroom < NET_SKB_PAD)
  1358. headroom = NET_SKB_PAD;
  1359. if (headroom > skb_headroom(skb))
  1360. delta = headroom - skb_headroom(skb);
  1361. if (delta || cloned)
  1362. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1363. GFP_ATOMIC);
  1364. return 0;
  1365. }
  1366. /**
  1367. * skb_cow - copy header of skb when it is required
  1368. * @skb: buffer to cow
  1369. * @headroom: needed headroom
  1370. *
  1371. * If the skb passed lacks sufficient headroom or its data part
  1372. * is shared, data is reallocated. If reallocation fails, an error
  1373. * is returned and original skb is not changed.
  1374. *
  1375. * The result is skb with writable area skb->head...skb->tail
  1376. * and at least @headroom of space at head.
  1377. */
  1378. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1379. {
  1380. return __skb_cow(skb, headroom, skb_cloned(skb));
  1381. }
  1382. /**
  1383. * skb_cow_head - skb_cow but only making the head writable
  1384. * @skb: buffer to cow
  1385. * @headroom: needed headroom
  1386. *
  1387. * This function is identical to skb_cow except that we replace the
  1388. * skb_cloned check by skb_header_cloned. It should be used when
  1389. * you only need to push on some header and do not need to modify
  1390. * the data.
  1391. */
  1392. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1393. {
  1394. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1395. }
  1396. /**
  1397. * skb_padto - pad an skbuff up to a minimal size
  1398. * @skb: buffer to pad
  1399. * @len: minimal length
  1400. *
  1401. * Pads up a buffer to ensure the trailing bytes exist and are
  1402. * blanked. If the buffer already contains sufficient data it
  1403. * is untouched. Otherwise it is extended. Returns zero on
  1404. * success. The skb is freed on error.
  1405. */
  1406. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1407. {
  1408. unsigned int size = skb->len;
  1409. if (likely(size >= len))
  1410. return 0;
  1411. return skb_pad(skb, len - size);
  1412. }
  1413. static inline int skb_add_data(struct sk_buff *skb,
  1414. char __user *from, int copy)
  1415. {
  1416. const int off = skb->len;
  1417. if (skb->ip_summed == CHECKSUM_NONE) {
  1418. int err = 0;
  1419. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1420. copy, 0, &err);
  1421. if (!err) {
  1422. skb->csum = csum_block_add(skb->csum, csum, off);
  1423. return 0;
  1424. }
  1425. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1426. return 0;
  1427. __skb_trim(skb, off);
  1428. return -EFAULT;
  1429. }
  1430. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1431. struct page *page, int off)
  1432. {
  1433. if (i) {
  1434. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1435. return page == frag->page &&
  1436. off == frag->page_offset + frag->size;
  1437. }
  1438. return 0;
  1439. }
  1440. static inline int __skb_linearize(struct sk_buff *skb)
  1441. {
  1442. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1443. }
  1444. /**
  1445. * skb_linearize - convert paged skb to linear one
  1446. * @skb: buffer to linarize
  1447. *
  1448. * If there is no free memory -ENOMEM is returned, otherwise zero
  1449. * is returned and the old skb data released.
  1450. */
  1451. static inline int skb_linearize(struct sk_buff *skb)
  1452. {
  1453. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1454. }
  1455. /**
  1456. * skb_linearize_cow - make sure skb is linear and writable
  1457. * @skb: buffer to process
  1458. *
  1459. * If there is no free memory -ENOMEM is returned, otherwise zero
  1460. * is returned and the old skb data released.
  1461. */
  1462. static inline int skb_linearize_cow(struct sk_buff *skb)
  1463. {
  1464. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1465. __skb_linearize(skb) : 0;
  1466. }
  1467. /**
  1468. * skb_postpull_rcsum - update checksum for received skb after pull
  1469. * @skb: buffer to update
  1470. * @start: start of data before pull
  1471. * @len: length of data pulled
  1472. *
  1473. * After doing a pull on a received packet, you need to call this to
  1474. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1475. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1476. */
  1477. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1478. const void *start, unsigned int len)
  1479. {
  1480. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1481. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1482. }
  1483. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1484. /**
  1485. * pskb_trim_rcsum - trim received skb and update checksum
  1486. * @skb: buffer to trim
  1487. * @len: new length
  1488. *
  1489. * This is exactly the same as pskb_trim except that it ensures the
  1490. * checksum of received packets are still valid after the operation.
  1491. */
  1492. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1493. {
  1494. if (likely(len >= skb->len))
  1495. return 0;
  1496. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1497. skb->ip_summed = CHECKSUM_NONE;
  1498. return __pskb_trim(skb, len);
  1499. }
  1500. #define skb_queue_walk(queue, skb) \
  1501. for (skb = (queue)->next; \
  1502. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1503. skb = skb->next)
  1504. #define skb_queue_walk_safe(queue, skb, tmp) \
  1505. for (skb = (queue)->next, tmp = skb->next; \
  1506. skb != (struct sk_buff *)(queue); \
  1507. skb = tmp, tmp = skb->next)
  1508. #define skb_queue_walk_from(queue, skb) \
  1509. for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1510. skb = skb->next)
  1511. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1512. for (tmp = skb->next; \
  1513. skb != (struct sk_buff *)(queue); \
  1514. skb = tmp, tmp = skb->next)
  1515. #define skb_queue_reverse_walk(queue, skb) \
  1516. for (skb = (queue)->prev; \
  1517. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1518. skb = skb->prev)
  1519. static inline bool skb_has_frags(const struct sk_buff *skb)
  1520. {
  1521. return skb_shinfo(skb)->frag_list != NULL;
  1522. }
  1523. static inline void skb_frag_list_init(struct sk_buff *skb)
  1524. {
  1525. skb_shinfo(skb)->frag_list = NULL;
  1526. }
  1527. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1528. {
  1529. frag->next = skb_shinfo(skb)->frag_list;
  1530. skb_shinfo(skb)->frag_list = frag;
  1531. }
  1532. #define skb_walk_frags(skb, iter) \
  1533. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1534. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1535. int *peeked, int *err);
  1536. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1537. int noblock, int *err);
  1538. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1539. struct poll_table_struct *wait);
  1540. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1541. int offset, struct iovec *to,
  1542. int size);
  1543. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1544. int hlen,
  1545. struct iovec *iov);
  1546. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1547. int offset,
  1548. const struct iovec *from,
  1549. int from_offset,
  1550. int len);
  1551. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1552. int offset,
  1553. const struct iovec *to,
  1554. int to_offset,
  1555. int size);
  1556. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1557. extern void skb_free_datagram_locked(struct sock *sk,
  1558. struct sk_buff *skb);
  1559. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1560. unsigned int flags);
  1561. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1562. int len, __wsum csum);
  1563. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1564. void *to, int len);
  1565. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1566. const void *from, int len);
  1567. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1568. int offset, u8 *to, int len,
  1569. __wsum csum);
  1570. extern int skb_splice_bits(struct sk_buff *skb,
  1571. unsigned int offset,
  1572. struct pipe_inode_info *pipe,
  1573. unsigned int len,
  1574. unsigned int flags);
  1575. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1576. extern void skb_split(struct sk_buff *skb,
  1577. struct sk_buff *skb1, const u32 len);
  1578. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1579. int shiftlen);
  1580. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1581. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1582. int len, void *buffer)
  1583. {
  1584. int hlen = skb_headlen(skb);
  1585. if (hlen - offset >= len)
  1586. return skb->data + offset;
  1587. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1588. return NULL;
  1589. return buffer;
  1590. }
  1591. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1592. void *to,
  1593. const unsigned int len)
  1594. {
  1595. memcpy(to, skb->data, len);
  1596. }
  1597. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1598. const int offset, void *to,
  1599. const unsigned int len)
  1600. {
  1601. memcpy(to, skb->data + offset, len);
  1602. }
  1603. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1604. const void *from,
  1605. const unsigned int len)
  1606. {
  1607. memcpy(skb->data, from, len);
  1608. }
  1609. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1610. const int offset,
  1611. const void *from,
  1612. const unsigned int len)
  1613. {
  1614. memcpy(skb->data + offset, from, len);
  1615. }
  1616. extern void skb_init(void);
  1617. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1618. {
  1619. return skb->tstamp;
  1620. }
  1621. /**
  1622. * skb_get_timestamp - get timestamp from a skb
  1623. * @skb: skb to get stamp from
  1624. * @stamp: pointer to struct timeval to store stamp in
  1625. *
  1626. * Timestamps are stored in the skb as offsets to a base timestamp.
  1627. * This function converts the offset back to a struct timeval and stores
  1628. * it in stamp.
  1629. */
  1630. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1631. struct timeval *stamp)
  1632. {
  1633. *stamp = ktime_to_timeval(skb->tstamp);
  1634. }
  1635. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1636. struct timespec *stamp)
  1637. {
  1638. *stamp = ktime_to_timespec(skb->tstamp);
  1639. }
  1640. static inline void __net_timestamp(struct sk_buff *skb)
  1641. {
  1642. skb->tstamp = ktime_get_real();
  1643. }
  1644. static inline ktime_t net_timedelta(ktime_t t)
  1645. {
  1646. return ktime_sub(ktime_get_real(), t);
  1647. }
  1648. static inline ktime_t net_invalid_timestamp(void)
  1649. {
  1650. return ktime_set(0, 0);
  1651. }
  1652. /**
  1653. * skb_tstamp_tx - queue clone of skb with send time stamps
  1654. * @orig_skb: the original outgoing packet
  1655. * @hwtstamps: hardware time stamps, may be NULL if not available
  1656. *
  1657. * If the skb has a socket associated, then this function clones the
  1658. * skb (thus sharing the actual data and optional structures), stores
  1659. * the optional hardware time stamping information (if non NULL) or
  1660. * generates a software time stamp (otherwise), then queues the clone
  1661. * to the error queue of the socket. Errors are silently ignored.
  1662. */
  1663. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1664. struct skb_shared_hwtstamps *hwtstamps);
  1665. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1666. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1667. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1668. {
  1669. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1670. }
  1671. /**
  1672. * skb_checksum_complete - Calculate checksum of an entire packet
  1673. * @skb: packet to process
  1674. *
  1675. * This function calculates the checksum over the entire packet plus
  1676. * the value of skb->csum. The latter can be used to supply the
  1677. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1678. * checksum.
  1679. *
  1680. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1681. * this function can be used to verify that checksum on received
  1682. * packets. In that case the function should return zero if the
  1683. * checksum is correct. In particular, this function will return zero
  1684. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1685. * hardware has already verified the correctness of the checksum.
  1686. */
  1687. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1688. {
  1689. return skb_csum_unnecessary(skb) ?
  1690. 0 : __skb_checksum_complete(skb);
  1691. }
  1692. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1693. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1694. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1695. {
  1696. if (nfct && atomic_dec_and_test(&nfct->use))
  1697. nf_conntrack_destroy(nfct);
  1698. }
  1699. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1700. {
  1701. if (nfct)
  1702. atomic_inc(&nfct->use);
  1703. }
  1704. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1705. {
  1706. if (skb)
  1707. atomic_inc(&skb->users);
  1708. }
  1709. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1710. {
  1711. if (skb)
  1712. kfree_skb(skb);
  1713. }
  1714. #endif
  1715. #ifdef CONFIG_BRIDGE_NETFILTER
  1716. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1717. {
  1718. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1719. kfree(nf_bridge);
  1720. }
  1721. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1722. {
  1723. if (nf_bridge)
  1724. atomic_inc(&nf_bridge->use);
  1725. }
  1726. #endif /* CONFIG_BRIDGE_NETFILTER */
  1727. static inline void nf_reset(struct sk_buff *skb)
  1728. {
  1729. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1730. nf_conntrack_put(skb->nfct);
  1731. skb->nfct = NULL;
  1732. nf_conntrack_put_reasm(skb->nfct_reasm);
  1733. skb->nfct_reasm = NULL;
  1734. #endif
  1735. #ifdef CONFIG_BRIDGE_NETFILTER
  1736. nf_bridge_put(skb->nf_bridge);
  1737. skb->nf_bridge = NULL;
  1738. #endif
  1739. }
  1740. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1741. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1742. {
  1743. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1744. dst->nfct = src->nfct;
  1745. nf_conntrack_get(src->nfct);
  1746. dst->nfctinfo = src->nfctinfo;
  1747. dst->nfct_reasm = src->nfct_reasm;
  1748. nf_conntrack_get_reasm(src->nfct_reasm);
  1749. #endif
  1750. #ifdef CONFIG_BRIDGE_NETFILTER
  1751. dst->nf_bridge = src->nf_bridge;
  1752. nf_bridge_get(src->nf_bridge);
  1753. #endif
  1754. }
  1755. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1756. {
  1757. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1758. nf_conntrack_put(dst->nfct);
  1759. nf_conntrack_put_reasm(dst->nfct_reasm);
  1760. #endif
  1761. #ifdef CONFIG_BRIDGE_NETFILTER
  1762. nf_bridge_put(dst->nf_bridge);
  1763. #endif
  1764. __nf_copy(dst, src);
  1765. }
  1766. #ifdef CONFIG_NETWORK_SECMARK
  1767. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1768. {
  1769. to->secmark = from->secmark;
  1770. }
  1771. static inline void skb_init_secmark(struct sk_buff *skb)
  1772. {
  1773. skb->secmark = 0;
  1774. }
  1775. #else
  1776. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1777. { }
  1778. static inline void skb_init_secmark(struct sk_buff *skb)
  1779. { }
  1780. #endif
  1781. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1782. {
  1783. skb->queue_mapping = queue_mapping;
  1784. }
  1785. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  1786. {
  1787. return skb->queue_mapping;
  1788. }
  1789. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1790. {
  1791. to->queue_mapping = from->queue_mapping;
  1792. }
  1793. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  1794. {
  1795. skb->queue_mapping = rx_queue + 1;
  1796. }
  1797. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  1798. {
  1799. return skb->queue_mapping - 1;
  1800. }
  1801. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  1802. {
  1803. return (skb->queue_mapping != 0);
  1804. }
  1805. extern u16 skb_tx_hash(const struct net_device *dev,
  1806. const struct sk_buff *skb);
  1807. #ifdef CONFIG_XFRM
  1808. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1809. {
  1810. return skb->sp;
  1811. }
  1812. #else
  1813. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1814. {
  1815. return NULL;
  1816. }
  1817. #endif
  1818. static inline int skb_is_gso(const struct sk_buff *skb)
  1819. {
  1820. return skb_shinfo(skb)->gso_size;
  1821. }
  1822. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1823. {
  1824. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1825. }
  1826. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  1827. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  1828. {
  1829. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  1830. * wanted then gso_type will be set. */
  1831. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1832. if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
  1833. __skb_warn_lro_forwarding(skb);
  1834. return true;
  1835. }
  1836. return false;
  1837. }
  1838. static inline void skb_forward_csum(struct sk_buff *skb)
  1839. {
  1840. /* Unfortunately we don't support this one. Any brave souls? */
  1841. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1842. skb->ip_summed = CHECKSUM_NONE;
  1843. }
  1844. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1845. #endif /* __KERNEL__ */
  1846. #endif /* _LINUX_SKBUFF_H */