backref.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 offset = 0;
  37. struct extent_inode_elem *e;
  38. if (!btrfs_file_extent_compression(eb, fi) &&
  39. !btrfs_file_extent_encryption(eb, fi) &&
  40. !btrfs_file_extent_other_encoding(eb, fi)) {
  41. u64 data_offset;
  42. u64 data_len;
  43. data_offset = btrfs_file_extent_offset(eb, fi);
  44. data_len = btrfs_file_extent_num_bytes(eb, fi);
  45. if (extent_item_pos < data_offset ||
  46. extent_item_pos >= data_offset + data_len)
  47. return 1;
  48. offset = extent_item_pos - data_offset;
  49. }
  50. e = kmalloc(sizeof(*e), GFP_NOFS);
  51. if (!e)
  52. return -ENOMEM;
  53. e->next = *eie;
  54. e->inum = key->objectid;
  55. e->offset = key->offset + offset;
  56. *eie = e;
  57. return 0;
  58. }
  59. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  60. u64 extent_item_pos,
  61. struct extent_inode_elem **eie)
  62. {
  63. u64 disk_byte;
  64. struct btrfs_key key;
  65. struct btrfs_file_extent_item *fi;
  66. int slot;
  67. int nritems;
  68. int extent_type;
  69. int ret;
  70. /*
  71. * from the shared data ref, we only have the leaf but we need
  72. * the key. thus, we must look into all items and see that we
  73. * find one (some) with a reference to our extent item.
  74. */
  75. nritems = btrfs_header_nritems(eb);
  76. for (slot = 0; slot < nritems; ++slot) {
  77. btrfs_item_key_to_cpu(eb, &key, slot);
  78. if (key.type != BTRFS_EXTENT_DATA_KEY)
  79. continue;
  80. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  81. extent_type = btrfs_file_extent_type(eb, fi);
  82. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  83. continue;
  84. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  85. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  86. if (disk_byte != wanted_disk_byte)
  87. continue;
  88. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  89. if (ret < 0)
  90. return ret;
  91. }
  92. return 0;
  93. }
  94. /*
  95. * this structure records all encountered refs on the way up to the root
  96. */
  97. struct __prelim_ref {
  98. struct list_head list;
  99. u64 root_id;
  100. struct btrfs_key key_for_search;
  101. int level;
  102. int count;
  103. struct extent_inode_elem *inode_list;
  104. u64 parent;
  105. u64 wanted_disk_byte;
  106. };
  107. /*
  108. * the rules for all callers of this function are:
  109. * - obtaining the parent is the goal
  110. * - if you add a key, you must know that it is a correct key
  111. * - if you cannot add the parent or a correct key, then we will look into the
  112. * block later to set a correct key
  113. *
  114. * delayed refs
  115. * ============
  116. * backref type | shared | indirect | shared | indirect
  117. * information | tree | tree | data | data
  118. * --------------------+--------+----------+--------+----------
  119. * parent logical | y | - | - | -
  120. * key to resolve | - | y | y | y
  121. * tree block logical | - | - | - | -
  122. * root for resolving | y | y | y | y
  123. *
  124. * - column 1: we've the parent -> done
  125. * - column 2, 3, 4: we use the key to find the parent
  126. *
  127. * on disk refs (inline or keyed)
  128. * ==============================
  129. * backref type | shared | indirect | shared | indirect
  130. * information | tree | tree | data | data
  131. * --------------------+--------+----------+--------+----------
  132. * parent logical | y | - | y | -
  133. * key to resolve | - | - | - | y
  134. * tree block logical | y | y | y | y
  135. * root for resolving | - | y | y | y
  136. *
  137. * - column 1, 3: we've the parent -> done
  138. * - column 2: we take the first key from the block to find the parent
  139. * (see __add_missing_keys)
  140. * - column 4: we use the key to find the parent
  141. *
  142. * additional information that's available but not required to find the parent
  143. * block might help in merging entries to gain some speed.
  144. */
  145. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  146. struct btrfs_key *key, int level,
  147. u64 parent, u64 wanted_disk_byte, int count)
  148. {
  149. struct __prelim_ref *ref;
  150. /* in case we're adding delayed refs, we're holding the refs spinlock */
  151. ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
  152. if (!ref)
  153. return -ENOMEM;
  154. ref->root_id = root_id;
  155. if (key)
  156. ref->key_for_search = *key;
  157. else
  158. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  159. ref->inode_list = NULL;
  160. ref->level = level;
  161. ref->count = count;
  162. ref->parent = parent;
  163. ref->wanted_disk_byte = wanted_disk_byte;
  164. list_add_tail(&ref->list, head);
  165. return 0;
  166. }
  167. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  168. struct ulist *parents, int level,
  169. struct btrfs_key *key_for_search, u64 time_seq,
  170. u64 wanted_disk_byte,
  171. const u64 *extent_item_pos)
  172. {
  173. int ret = 0;
  174. int slot;
  175. struct extent_buffer *eb;
  176. struct btrfs_key key;
  177. struct btrfs_file_extent_item *fi;
  178. struct extent_inode_elem *eie = NULL, *old = NULL;
  179. u64 disk_byte;
  180. if (level != 0) {
  181. eb = path->nodes[level];
  182. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  183. if (ret < 0)
  184. return ret;
  185. return 0;
  186. }
  187. /*
  188. * We normally enter this function with the path already pointing to
  189. * the first item to check. But sometimes, we may enter it with
  190. * slot==nritems. In that case, go to the next leaf before we continue.
  191. */
  192. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  193. ret = btrfs_next_old_leaf(root, path, time_seq);
  194. while (!ret) {
  195. eb = path->nodes[0];
  196. slot = path->slots[0];
  197. btrfs_item_key_to_cpu(eb, &key, slot);
  198. if (key.objectid != key_for_search->objectid ||
  199. key.type != BTRFS_EXTENT_DATA_KEY)
  200. break;
  201. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  202. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  203. if (disk_byte == wanted_disk_byte) {
  204. eie = NULL;
  205. old = NULL;
  206. if (extent_item_pos) {
  207. ret = check_extent_in_eb(&key, eb, fi,
  208. *extent_item_pos,
  209. &eie);
  210. if (ret < 0)
  211. break;
  212. }
  213. if (ret > 0)
  214. goto next;
  215. ret = ulist_add_merge(parents, eb->start,
  216. (uintptr_t)eie,
  217. (u64 *)&old, GFP_NOFS);
  218. if (ret < 0)
  219. break;
  220. if (!ret && extent_item_pos) {
  221. while (old->next)
  222. old = old->next;
  223. old->next = eie;
  224. }
  225. }
  226. next:
  227. ret = btrfs_next_old_item(root, path, time_seq);
  228. }
  229. if (ret > 0)
  230. ret = 0;
  231. return ret;
  232. }
  233. /*
  234. * resolve an indirect backref in the form (root_id, key, level)
  235. * to a logical address
  236. */
  237. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  238. struct btrfs_path *path, u64 time_seq,
  239. struct __prelim_ref *ref,
  240. struct ulist *parents,
  241. const u64 *extent_item_pos)
  242. {
  243. struct btrfs_root *root;
  244. struct btrfs_key root_key;
  245. struct extent_buffer *eb;
  246. int ret = 0;
  247. int root_level;
  248. int level = ref->level;
  249. root_key.objectid = ref->root_id;
  250. root_key.type = BTRFS_ROOT_ITEM_KEY;
  251. root_key.offset = (u64)-1;
  252. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  253. if (IS_ERR(root)) {
  254. ret = PTR_ERR(root);
  255. goto out;
  256. }
  257. root_level = btrfs_old_root_level(root, time_seq);
  258. if (root_level + 1 == level)
  259. goto out;
  260. path->lowest_level = level;
  261. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  262. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  263. "%d for key (%llu %u %llu)\n",
  264. (unsigned long long)ref->root_id, level, ref->count, ret,
  265. (unsigned long long)ref->key_for_search.objectid,
  266. ref->key_for_search.type,
  267. (unsigned long long)ref->key_for_search.offset);
  268. if (ret < 0)
  269. goto out;
  270. eb = path->nodes[level];
  271. while (!eb) {
  272. if (!level) {
  273. WARN_ON(1);
  274. ret = 1;
  275. goto out;
  276. }
  277. level--;
  278. eb = path->nodes[level];
  279. }
  280. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  281. time_seq, ref->wanted_disk_byte,
  282. extent_item_pos);
  283. out:
  284. path->lowest_level = 0;
  285. btrfs_release_path(path);
  286. return ret;
  287. }
  288. /*
  289. * resolve all indirect backrefs from the list
  290. */
  291. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  292. struct btrfs_path *path, u64 time_seq,
  293. struct list_head *head,
  294. const u64 *extent_item_pos)
  295. {
  296. int err;
  297. int ret = 0;
  298. struct __prelim_ref *ref;
  299. struct __prelim_ref *ref_safe;
  300. struct __prelim_ref *new_ref;
  301. struct ulist *parents;
  302. struct ulist_node *node;
  303. struct ulist_iterator uiter;
  304. parents = ulist_alloc(GFP_NOFS);
  305. if (!parents)
  306. return -ENOMEM;
  307. /*
  308. * _safe allows us to insert directly after the current item without
  309. * iterating over the newly inserted items.
  310. * we're also allowed to re-assign ref during iteration.
  311. */
  312. list_for_each_entry_safe(ref, ref_safe, head, list) {
  313. if (ref->parent) /* already direct */
  314. continue;
  315. if (ref->count == 0)
  316. continue;
  317. err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
  318. parents, extent_item_pos);
  319. if (err == -ENOMEM)
  320. goto out;
  321. if (err)
  322. continue;
  323. /* we put the first parent into the ref at hand */
  324. ULIST_ITER_INIT(&uiter);
  325. node = ulist_next(parents, &uiter);
  326. ref->parent = node ? node->val : 0;
  327. ref->inode_list = node ?
  328. (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
  329. /* additional parents require new refs being added here */
  330. while ((node = ulist_next(parents, &uiter))) {
  331. new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
  332. if (!new_ref) {
  333. ret = -ENOMEM;
  334. goto out;
  335. }
  336. memcpy(new_ref, ref, sizeof(*ref));
  337. new_ref->parent = node->val;
  338. new_ref->inode_list = (struct extent_inode_elem *)
  339. (uintptr_t)node->aux;
  340. list_add(&new_ref->list, &ref->list);
  341. }
  342. ulist_reinit(parents);
  343. }
  344. out:
  345. ulist_free(parents);
  346. return ret;
  347. }
  348. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  349. struct __prelim_ref *ref2)
  350. {
  351. if (ref1->level != ref2->level)
  352. return 0;
  353. if (ref1->root_id != ref2->root_id)
  354. return 0;
  355. if (ref1->key_for_search.type != ref2->key_for_search.type)
  356. return 0;
  357. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  358. return 0;
  359. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  360. return 0;
  361. if (ref1->parent != ref2->parent)
  362. return 0;
  363. return 1;
  364. }
  365. /*
  366. * read tree blocks and add keys where required.
  367. */
  368. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  369. struct list_head *head)
  370. {
  371. struct list_head *pos;
  372. struct extent_buffer *eb;
  373. list_for_each(pos, head) {
  374. struct __prelim_ref *ref;
  375. ref = list_entry(pos, struct __prelim_ref, list);
  376. if (ref->parent)
  377. continue;
  378. if (ref->key_for_search.type)
  379. continue;
  380. BUG_ON(!ref->wanted_disk_byte);
  381. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  382. fs_info->tree_root->leafsize, 0);
  383. if (!eb || !extent_buffer_uptodate(eb)) {
  384. free_extent_buffer(eb);
  385. return -EIO;
  386. }
  387. btrfs_tree_read_lock(eb);
  388. if (btrfs_header_level(eb) == 0)
  389. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  390. else
  391. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  392. btrfs_tree_read_unlock(eb);
  393. free_extent_buffer(eb);
  394. }
  395. return 0;
  396. }
  397. /*
  398. * merge two lists of backrefs and adjust counts accordingly
  399. *
  400. * mode = 1: merge identical keys, if key is set
  401. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  402. * additionally, we could even add a key range for the blocks we
  403. * looked into to merge even more (-> replace unresolved refs by those
  404. * having a parent).
  405. * mode = 2: merge identical parents
  406. */
  407. static void __merge_refs(struct list_head *head, int mode)
  408. {
  409. struct list_head *pos1;
  410. list_for_each(pos1, head) {
  411. struct list_head *n2;
  412. struct list_head *pos2;
  413. struct __prelim_ref *ref1;
  414. ref1 = list_entry(pos1, struct __prelim_ref, list);
  415. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  416. pos2 = n2, n2 = pos2->next) {
  417. struct __prelim_ref *ref2;
  418. struct __prelim_ref *xchg;
  419. struct extent_inode_elem *eie;
  420. ref2 = list_entry(pos2, struct __prelim_ref, list);
  421. if (mode == 1) {
  422. if (!ref_for_same_block(ref1, ref2))
  423. continue;
  424. if (!ref1->parent && ref2->parent) {
  425. xchg = ref1;
  426. ref1 = ref2;
  427. ref2 = xchg;
  428. }
  429. } else {
  430. if (ref1->parent != ref2->parent)
  431. continue;
  432. }
  433. eie = ref1->inode_list;
  434. while (eie && eie->next)
  435. eie = eie->next;
  436. if (eie)
  437. eie->next = ref2->inode_list;
  438. else
  439. ref1->inode_list = ref2->inode_list;
  440. ref1->count += ref2->count;
  441. list_del(&ref2->list);
  442. kfree(ref2);
  443. }
  444. }
  445. }
  446. /*
  447. * add all currently queued delayed refs from this head whose seq nr is
  448. * smaller or equal that seq to the list
  449. */
  450. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  451. struct list_head *prefs)
  452. {
  453. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  454. struct rb_node *n = &head->node.rb_node;
  455. struct btrfs_key key;
  456. struct btrfs_key op_key = {0};
  457. int sgn;
  458. int ret = 0;
  459. if (extent_op && extent_op->update_key)
  460. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  461. while ((n = rb_prev(n))) {
  462. struct btrfs_delayed_ref_node *node;
  463. node = rb_entry(n, struct btrfs_delayed_ref_node,
  464. rb_node);
  465. if (node->bytenr != head->node.bytenr)
  466. break;
  467. WARN_ON(node->is_head);
  468. if (node->seq > seq)
  469. continue;
  470. switch (node->action) {
  471. case BTRFS_ADD_DELAYED_EXTENT:
  472. case BTRFS_UPDATE_DELAYED_HEAD:
  473. WARN_ON(1);
  474. continue;
  475. case BTRFS_ADD_DELAYED_REF:
  476. sgn = 1;
  477. break;
  478. case BTRFS_DROP_DELAYED_REF:
  479. sgn = -1;
  480. break;
  481. default:
  482. BUG_ON(1);
  483. }
  484. switch (node->type) {
  485. case BTRFS_TREE_BLOCK_REF_KEY: {
  486. struct btrfs_delayed_tree_ref *ref;
  487. ref = btrfs_delayed_node_to_tree_ref(node);
  488. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  489. ref->level + 1, 0, node->bytenr,
  490. node->ref_mod * sgn);
  491. break;
  492. }
  493. case BTRFS_SHARED_BLOCK_REF_KEY: {
  494. struct btrfs_delayed_tree_ref *ref;
  495. ref = btrfs_delayed_node_to_tree_ref(node);
  496. ret = __add_prelim_ref(prefs, ref->root, NULL,
  497. ref->level + 1, ref->parent,
  498. node->bytenr,
  499. node->ref_mod * sgn);
  500. break;
  501. }
  502. case BTRFS_EXTENT_DATA_REF_KEY: {
  503. struct btrfs_delayed_data_ref *ref;
  504. ref = btrfs_delayed_node_to_data_ref(node);
  505. key.objectid = ref->objectid;
  506. key.type = BTRFS_EXTENT_DATA_KEY;
  507. key.offset = ref->offset;
  508. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  509. node->bytenr,
  510. node->ref_mod * sgn);
  511. break;
  512. }
  513. case BTRFS_SHARED_DATA_REF_KEY: {
  514. struct btrfs_delayed_data_ref *ref;
  515. ref = btrfs_delayed_node_to_data_ref(node);
  516. key.objectid = ref->objectid;
  517. key.type = BTRFS_EXTENT_DATA_KEY;
  518. key.offset = ref->offset;
  519. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  520. ref->parent, node->bytenr,
  521. node->ref_mod * sgn);
  522. break;
  523. }
  524. default:
  525. WARN_ON(1);
  526. }
  527. if (ret)
  528. return ret;
  529. }
  530. return 0;
  531. }
  532. /*
  533. * add all inline backrefs for bytenr to the list
  534. */
  535. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  536. struct btrfs_path *path, u64 bytenr,
  537. int *info_level, struct list_head *prefs)
  538. {
  539. int ret = 0;
  540. int slot;
  541. struct extent_buffer *leaf;
  542. struct btrfs_key key;
  543. struct btrfs_key found_key;
  544. unsigned long ptr;
  545. unsigned long end;
  546. struct btrfs_extent_item *ei;
  547. u64 flags;
  548. u64 item_size;
  549. /*
  550. * enumerate all inline refs
  551. */
  552. leaf = path->nodes[0];
  553. slot = path->slots[0];
  554. item_size = btrfs_item_size_nr(leaf, slot);
  555. BUG_ON(item_size < sizeof(*ei));
  556. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  557. flags = btrfs_extent_flags(leaf, ei);
  558. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  559. ptr = (unsigned long)(ei + 1);
  560. end = (unsigned long)ei + item_size;
  561. if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
  562. flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  563. struct btrfs_tree_block_info *info;
  564. info = (struct btrfs_tree_block_info *)ptr;
  565. *info_level = btrfs_tree_block_level(leaf, info);
  566. ptr += sizeof(struct btrfs_tree_block_info);
  567. BUG_ON(ptr > end);
  568. } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
  569. *info_level = found_key.offset;
  570. } else {
  571. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  572. }
  573. while (ptr < end) {
  574. struct btrfs_extent_inline_ref *iref;
  575. u64 offset;
  576. int type;
  577. iref = (struct btrfs_extent_inline_ref *)ptr;
  578. type = btrfs_extent_inline_ref_type(leaf, iref);
  579. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  580. switch (type) {
  581. case BTRFS_SHARED_BLOCK_REF_KEY:
  582. ret = __add_prelim_ref(prefs, 0, NULL,
  583. *info_level + 1, offset,
  584. bytenr, 1);
  585. break;
  586. case BTRFS_SHARED_DATA_REF_KEY: {
  587. struct btrfs_shared_data_ref *sdref;
  588. int count;
  589. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  590. count = btrfs_shared_data_ref_count(leaf, sdref);
  591. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  592. bytenr, count);
  593. break;
  594. }
  595. case BTRFS_TREE_BLOCK_REF_KEY:
  596. ret = __add_prelim_ref(prefs, offset, NULL,
  597. *info_level + 1, 0,
  598. bytenr, 1);
  599. break;
  600. case BTRFS_EXTENT_DATA_REF_KEY: {
  601. struct btrfs_extent_data_ref *dref;
  602. int count;
  603. u64 root;
  604. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  605. count = btrfs_extent_data_ref_count(leaf, dref);
  606. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  607. dref);
  608. key.type = BTRFS_EXTENT_DATA_KEY;
  609. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  610. root = btrfs_extent_data_ref_root(leaf, dref);
  611. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  612. bytenr, count);
  613. break;
  614. }
  615. default:
  616. WARN_ON(1);
  617. }
  618. if (ret)
  619. return ret;
  620. ptr += btrfs_extent_inline_ref_size(type);
  621. }
  622. return 0;
  623. }
  624. /*
  625. * add all non-inline backrefs for bytenr to the list
  626. */
  627. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  628. struct btrfs_path *path, u64 bytenr,
  629. int info_level, struct list_head *prefs)
  630. {
  631. struct btrfs_root *extent_root = fs_info->extent_root;
  632. int ret;
  633. int slot;
  634. struct extent_buffer *leaf;
  635. struct btrfs_key key;
  636. while (1) {
  637. ret = btrfs_next_item(extent_root, path);
  638. if (ret < 0)
  639. break;
  640. if (ret) {
  641. ret = 0;
  642. break;
  643. }
  644. slot = path->slots[0];
  645. leaf = path->nodes[0];
  646. btrfs_item_key_to_cpu(leaf, &key, slot);
  647. if (key.objectid != bytenr)
  648. break;
  649. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  650. continue;
  651. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  652. break;
  653. switch (key.type) {
  654. case BTRFS_SHARED_BLOCK_REF_KEY:
  655. ret = __add_prelim_ref(prefs, 0, NULL,
  656. info_level + 1, key.offset,
  657. bytenr, 1);
  658. break;
  659. case BTRFS_SHARED_DATA_REF_KEY: {
  660. struct btrfs_shared_data_ref *sdref;
  661. int count;
  662. sdref = btrfs_item_ptr(leaf, slot,
  663. struct btrfs_shared_data_ref);
  664. count = btrfs_shared_data_ref_count(leaf, sdref);
  665. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  666. bytenr, count);
  667. break;
  668. }
  669. case BTRFS_TREE_BLOCK_REF_KEY:
  670. ret = __add_prelim_ref(prefs, key.offset, NULL,
  671. info_level + 1, 0,
  672. bytenr, 1);
  673. break;
  674. case BTRFS_EXTENT_DATA_REF_KEY: {
  675. struct btrfs_extent_data_ref *dref;
  676. int count;
  677. u64 root;
  678. dref = btrfs_item_ptr(leaf, slot,
  679. struct btrfs_extent_data_ref);
  680. count = btrfs_extent_data_ref_count(leaf, dref);
  681. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  682. dref);
  683. key.type = BTRFS_EXTENT_DATA_KEY;
  684. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  685. root = btrfs_extent_data_ref_root(leaf, dref);
  686. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  687. bytenr, count);
  688. break;
  689. }
  690. default:
  691. WARN_ON(1);
  692. }
  693. if (ret)
  694. return ret;
  695. }
  696. return ret;
  697. }
  698. /*
  699. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  700. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  701. * indirect refs to their parent bytenr.
  702. * When roots are found, they're added to the roots list
  703. *
  704. * FIXME some caching might speed things up
  705. */
  706. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  707. struct btrfs_fs_info *fs_info, u64 bytenr,
  708. u64 time_seq, struct ulist *refs,
  709. struct ulist *roots, const u64 *extent_item_pos)
  710. {
  711. struct btrfs_key key;
  712. struct btrfs_path *path;
  713. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  714. struct btrfs_delayed_ref_head *head;
  715. int info_level = 0;
  716. int ret;
  717. struct list_head prefs_delayed;
  718. struct list_head prefs;
  719. struct __prelim_ref *ref;
  720. INIT_LIST_HEAD(&prefs);
  721. INIT_LIST_HEAD(&prefs_delayed);
  722. key.objectid = bytenr;
  723. key.offset = (u64)-1;
  724. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  725. key.type = BTRFS_METADATA_ITEM_KEY;
  726. else
  727. key.type = BTRFS_EXTENT_ITEM_KEY;
  728. path = btrfs_alloc_path();
  729. if (!path)
  730. return -ENOMEM;
  731. if (!trans)
  732. path->search_commit_root = 1;
  733. /*
  734. * grab both a lock on the path and a lock on the delayed ref head.
  735. * We need both to get a consistent picture of how the refs look
  736. * at a specified point in time
  737. */
  738. again:
  739. head = NULL;
  740. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  741. if (ret < 0)
  742. goto out;
  743. BUG_ON(ret == 0);
  744. if (trans) {
  745. /*
  746. * look if there are updates for this ref queued and lock the
  747. * head
  748. */
  749. delayed_refs = &trans->transaction->delayed_refs;
  750. spin_lock(&delayed_refs->lock);
  751. head = btrfs_find_delayed_ref_head(trans, bytenr);
  752. if (head) {
  753. if (!mutex_trylock(&head->mutex)) {
  754. atomic_inc(&head->node.refs);
  755. spin_unlock(&delayed_refs->lock);
  756. btrfs_release_path(path);
  757. /*
  758. * Mutex was contended, block until it's
  759. * released and try again
  760. */
  761. mutex_lock(&head->mutex);
  762. mutex_unlock(&head->mutex);
  763. btrfs_put_delayed_ref(&head->node);
  764. goto again;
  765. }
  766. ret = __add_delayed_refs(head, time_seq,
  767. &prefs_delayed);
  768. mutex_unlock(&head->mutex);
  769. if (ret) {
  770. spin_unlock(&delayed_refs->lock);
  771. goto out;
  772. }
  773. }
  774. spin_unlock(&delayed_refs->lock);
  775. }
  776. if (path->slots[0]) {
  777. struct extent_buffer *leaf;
  778. int slot;
  779. path->slots[0]--;
  780. leaf = path->nodes[0];
  781. slot = path->slots[0];
  782. btrfs_item_key_to_cpu(leaf, &key, slot);
  783. if (key.objectid == bytenr &&
  784. (key.type == BTRFS_EXTENT_ITEM_KEY ||
  785. key.type == BTRFS_METADATA_ITEM_KEY)) {
  786. ret = __add_inline_refs(fs_info, path, bytenr,
  787. &info_level, &prefs);
  788. if (ret)
  789. goto out;
  790. ret = __add_keyed_refs(fs_info, path, bytenr,
  791. info_level, &prefs);
  792. if (ret)
  793. goto out;
  794. }
  795. }
  796. btrfs_release_path(path);
  797. list_splice_init(&prefs_delayed, &prefs);
  798. ret = __add_missing_keys(fs_info, &prefs);
  799. if (ret)
  800. goto out;
  801. __merge_refs(&prefs, 1);
  802. ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
  803. extent_item_pos);
  804. if (ret)
  805. goto out;
  806. __merge_refs(&prefs, 2);
  807. while (!list_empty(&prefs)) {
  808. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  809. list_del(&ref->list);
  810. WARN_ON(ref->count < 0);
  811. if (ref->count && ref->root_id && ref->parent == 0) {
  812. /* no parent == root of tree */
  813. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  814. if (ret < 0)
  815. goto out;
  816. }
  817. if (ref->count && ref->parent) {
  818. struct extent_inode_elem *eie = NULL;
  819. if (extent_item_pos && !ref->inode_list) {
  820. u32 bsz;
  821. struct extent_buffer *eb;
  822. bsz = btrfs_level_size(fs_info->extent_root,
  823. info_level);
  824. eb = read_tree_block(fs_info->extent_root,
  825. ref->parent, bsz, 0);
  826. if (!eb || !extent_buffer_uptodate(eb)) {
  827. free_extent_buffer(eb);
  828. ret = -EIO;
  829. goto out;
  830. }
  831. ret = find_extent_in_eb(eb, bytenr,
  832. *extent_item_pos, &eie);
  833. ref->inode_list = eie;
  834. free_extent_buffer(eb);
  835. }
  836. ret = ulist_add_merge(refs, ref->parent,
  837. (uintptr_t)ref->inode_list,
  838. (u64 *)&eie, GFP_NOFS);
  839. if (ret < 0)
  840. goto out;
  841. if (!ret && extent_item_pos) {
  842. /*
  843. * we've recorded that parent, so we must extend
  844. * its inode list here
  845. */
  846. BUG_ON(!eie);
  847. while (eie->next)
  848. eie = eie->next;
  849. eie->next = ref->inode_list;
  850. }
  851. }
  852. kfree(ref);
  853. }
  854. out:
  855. btrfs_free_path(path);
  856. while (!list_empty(&prefs)) {
  857. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  858. list_del(&ref->list);
  859. kfree(ref);
  860. }
  861. while (!list_empty(&prefs_delayed)) {
  862. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  863. list);
  864. list_del(&ref->list);
  865. kfree(ref);
  866. }
  867. return ret;
  868. }
  869. static void free_leaf_list(struct ulist *blocks)
  870. {
  871. struct ulist_node *node = NULL;
  872. struct extent_inode_elem *eie;
  873. struct extent_inode_elem *eie_next;
  874. struct ulist_iterator uiter;
  875. ULIST_ITER_INIT(&uiter);
  876. while ((node = ulist_next(blocks, &uiter))) {
  877. if (!node->aux)
  878. continue;
  879. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  880. for (; eie; eie = eie_next) {
  881. eie_next = eie->next;
  882. kfree(eie);
  883. }
  884. node->aux = 0;
  885. }
  886. ulist_free(blocks);
  887. }
  888. /*
  889. * Finds all leafs with a reference to the specified combination of bytenr and
  890. * offset. key_list_head will point to a list of corresponding keys (caller must
  891. * free each list element). The leafs will be stored in the leafs ulist, which
  892. * must be freed with ulist_free.
  893. *
  894. * returns 0 on success, <0 on error
  895. */
  896. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  897. struct btrfs_fs_info *fs_info, u64 bytenr,
  898. u64 time_seq, struct ulist **leafs,
  899. const u64 *extent_item_pos)
  900. {
  901. struct ulist *tmp;
  902. int ret;
  903. tmp = ulist_alloc(GFP_NOFS);
  904. if (!tmp)
  905. return -ENOMEM;
  906. *leafs = ulist_alloc(GFP_NOFS);
  907. if (!*leafs) {
  908. ulist_free(tmp);
  909. return -ENOMEM;
  910. }
  911. ret = find_parent_nodes(trans, fs_info, bytenr,
  912. time_seq, *leafs, tmp, extent_item_pos);
  913. ulist_free(tmp);
  914. if (ret < 0 && ret != -ENOENT) {
  915. free_leaf_list(*leafs);
  916. return ret;
  917. }
  918. return 0;
  919. }
  920. /*
  921. * walk all backrefs for a given extent to find all roots that reference this
  922. * extent. Walking a backref means finding all extents that reference this
  923. * extent and in turn walk the backrefs of those, too. Naturally this is a
  924. * recursive process, but here it is implemented in an iterative fashion: We
  925. * find all referencing extents for the extent in question and put them on a
  926. * list. In turn, we find all referencing extents for those, further appending
  927. * to the list. The way we iterate the list allows adding more elements after
  928. * the current while iterating. The process stops when we reach the end of the
  929. * list. Found roots are added to the roots list.
  930. *
  931. * returns 0 on success, < 0 on error.
  932. */
  933. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  934. struct btrfs_fs_info *fs_info, u64 bytenr,
  935. u64 time_seq, struct ulist **roots)
  936. {
  937. struct ulist *tmp;
  938. struct ulist_node *node = NULL;
  939. struct ulist_iterator uiter;
  940. int ret;
  941. tmp = ulist_alloc(GFP_NOFS);
  942. if (!tmp)
  943. return -ENOMEM;
  944. *roots = ulist_alloc(GFP_NOFS);
  945. if (!*roots) {
  946. ulist_free(tmp);
  947. return -ENOMEM;
  948. }
  949. ULIST_ITER_INIT(&uiter);
  950. while (1) {
  951. ret = find_parent_nodes(trans, fs_info, bytenr,
  952. time_seq, tmp, *roots, NULL);
  953. if (ret < 0 && ret != -ENOENT) {
  954. ulist_free(tmp);
  955. ulist_free(*roots);
  956. return ret;
  957. }
  958. node = ulist_next(tmp, &uiter);
  959. if (!node)
  960. break;
  961. bytenr = node->val;
  962. }
  963. ulist_free(tmp);
  964. return 0;
  965. }
  966. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  967. struct btrfs_root *fs_root, struct btrfs_path *path,
  968. struct btrfs_key *found_key)
  969. {
  970. int ret;
  971. struct btrfs_key key;
  972. struct extent_buffer *eb;
  973. key.type = key_type;
  974. key.objectid = inum;
  975. key.offset = ioff;
  976. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  977. if (ret < 0)
  978. return ret;
  979. eb = path->nodes[0];
  980. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  981. ret = btrfs_next_leaf(fs_root, path);
  982. if (ret)
  983. return ret;
  984. eb = path->nodes[0];
  985. }
  986. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  987. if (found_key->type != key.type || found_key->objectid != key.objectid)
  988. return 1;
  989. return 0;
  990. }
  991. /*
  992. * this makes the path point to (inum INODE_ITEM ioff)
  993. */
  994. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  995. struct btrfs_path *path)
  996. {
  997. struct btrfs_key key;
  998. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  999. &key);
  1000. }
  1001. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  1002. struct btrfs_path *path,
  1003. struct btrfs_key *found_key)
  1004. {
  1005. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  1006. found_key);
  1007. }
  1008. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  1009. u64 start_off, struct btrfs_path *path,
  1010. struct btrfs_inode_extref **ret_extref,
  1011. u64 *found_off)
  1012. {
  1013. int ret, slot;
  1014. struct btrfs_key key;
  1015. struct btrfs_key found_key;
  1016. struct btrfs_inode_extref *extref;
  1017. struct extent_buffer *leaf;
  1018. unsigned long ptr;
  1019. key.objectid = inode_objectid;
  1020. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1021. key.offset = start_off;
  1022. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1023. if (ret < 0)
  1024. return ret;
  1025. while (1) {
  1026. leaf = path->nodes[0];
  1027. slot = path->slots[0];
  1028. if (slot >= btrfs_header_nritems(leaf)) {
  1029. /*
  1030. * If the item at offset is not found,
  1031. * btrfs_search_slot will point us to the slot
  1032. * where it should be inserted. In our case
  1033. * that will be the slot directly before the
  1034. * next INODE_REF_KEY_V2 item. In the case
  1035. * that we're pointing to the last slot in a
  1036. * leaf, we must move one leaf over.
  1037. */
  1038. ret = btrfs_next_leaf(root, path);
  1039. if (ret) {
  1040. if (ret >= 1)
  1041. ret = -ENOENT;
  1042. break;
  1043. }
  1044. continue;
  1045. }
  1046. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1047. /*
  1048. * Check that we're still looking at an extended ref key for
  1049. * this particular objectid. If we have different
  1050. * objectid or type then there are no more to be found
  1051. * in the tree and we can exit.
  1052. */
  1053. ret = -ENOENT;
  1054. if (found_key.objectid != inode_objectid)
  1055. break;
  1056. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1057. break;
  1058. ret = 0;
  1059. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1060. extref = (struct btrfs_inode_extref *)ptr;
  1061. *ret_extref = extref;
  1062. if (found_off)
  1063. *found_off = found_key.offset;
  1064. break;
  1065. }
  1066. return ret;
  1067. }
  1068. /*
  1069. * this iterates to turn a name (from iref/extref) into a full filesystem path.
  1070. * Elements of the path are separated by '/' and the path is guaranteed to be
  1071. * 0-terminated. the path is only given within the current file system.
  1072. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1073. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1074. * the start point of the resulting string is returned. this pointer is within
  1075. * dest, normally.
  1076. * in case the path buffer would overflow, the pointer is decremented further
  1077. * as if output was written to the buffer, though no more output is actually
  1078. * generated. that way, the caller can determine how much space would be
  1079. * required for the path to fit into the buffer. in that case, the returned
  1080. * value will be smaller than dest. callers must check this!
  1081. */
  1082. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1083. u32 name_len, unsigned long name_off,
  1084. struct extent_buffer *eb_in, u64 parent,
  1085. char *dest, u32 size)
  1086. {
  1087. int slot;
  1088. u64 next_inum;
  1089. int ret;
  1090. s64 bytes_left = ((s64)size) - 1;
  1091. struct extent_buffer *eb = eb_in;
  1092. struct btrfs_key found_key;
  1093. int leave_spinning = path->leave_spinning;
  1094. struct btrfs_inode_ref *iref;
  1095. if (bytes_left >= 0)
  1096. dest[bytes_left] = '\0';
  1097. path->leave_spinning = 1;
  1098. while (1) {
  1099. bytes_left -= name_len;
  1100. if (bytes_left >= 0)
  1101. read_extent_buffer(eb, dest + bytes_left,
  1102. name_off, name_len);
  1103. if (eb != eb_in) {
  1104. btrfs_tree_read_unlock_blocking(eb);
  1105. free_extent_buffer(eb);
  1106. }
  1107. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1108. if (ret > 0)
  1109. ret = -ENOENT;
  1110. if (ret)
  1111. break;
  1112. next_inum = found_key.offset;
  1113. /* regular exit ahead */
  1114. if (parent == next_inum)
  1115. break;
  1116. slot = path->slots[0];
  1117. eb = path->nodes[0];
  1118. /* make sure we can use eb after releasing the path */
  1119. if (eb != eb_in) {
  1120. atomic_inc(&eb->refs);
  1121. btrfs_tree_read_lock(eb);
  1122. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1123. }
  1124. btrfs_release_path(path);
  1125. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1126. name_len = btrfs_inode_ref_name_len(eb, iref);
  1127. name_off = (unsigned long)(iref + 1);
  1128. parent = next_inum;
  1129. --bytes_left;
  1130. if (bytes_left >= 0)
  1131. dest[bytes_left] = '/';
  1132. }
  1133. btrfs_release_path(path);
  1134. path->leave_spinning = leave_spinning;
  1135. if (ret)
  1136. return ERR_PTR(ret);
  1137. return dest + bytes_left;
  1138. }
  1139. /*
  1140. * this makes the path point to (logical EXTENT_ITEM *)
  1141. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1142. * tree blocks and <0 on error.
  1143. */
  1144. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1145. struct btrfs_path *path, struct btrfs_key *found_key,
  1146. u64 *flags_ret)
  1147. {
  1148. int ret;
  1149. u64 flags;
  1150. u64 size = 0;
  1151. u32 item_size;
  1152. struct extent_buffer *eb;
  1153. struct btrfs_extent_item *ei;
  1154. struct btrfs_key key;
  1155. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  1156. key.type = BTRFS_METADATA_ITEM_KEY;
  1157. else
  1158. key.type = BTRFS_EXTENT_ITEM_KEY;
  1159. key.objectid = logical;
  1160. key.offset = (u64)-1;
  1161. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1162. if (ret < 0)
  1163. return ret;
  1164. ret = btrfs_previous_item(fs_info->extent_root, path,
  1165. 0, BTRFS_EXTENT_ITEM_KEY);
  1166. if (ret < 0)
  1167. return ret;
  1168. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1169. if (found_key->type == BTRFS_METADATA_ITEM_KEY)
  1170. size = fs_info->extent_root->leafsize;
  1171. else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
  1172. size = found_key->offset;
  1173. if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
  1174. found_key->type != BTRFS_METADATA_ITEM_KEY) ||
  1175. found_key->objectid > logical ||
  1176. found_key->objectid + size <= logical) {
  1177. pr_debug("logical %llu is not within any extent\n",
  1178. (unsigned long long)logical);
  1179. return -ENOENT;
  1180. }
  1181. eb = path->nodes[0];
  1182. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1183. BUG_ON(item_size < sizeof(*ei));
  1184. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1185. flags = btrfs_extent_flags(eb, ei);
  1186. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1187. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1188. (unsigned long long)logical,
  1189. (unsigned long long)(logical - found_key->objectid),
  1190. (unsigned long long)found_key->objectid,
  1191. (unsigned long long)found_key->offset,
  1192. (unsigned long long)flags, item_size);
  1193. WARN_ON(!flags_ret);
  1194. if (flags_ret) {
  1195. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1196. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1197. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1198. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1199. else
  1200. BUG_ON(1);
  1201. return 0;
  1202. }
  1203. return -EIO;
  1204. }
  1205. /*
  1206. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1207. * for the first call and may be modified. it is used to track state.
  1208. * if more refs exist, 0 is returned and the next call to
  1209. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1210. * next ref. after the last ref was processed, 1 is returned.
  1211. * returns <0 on error
  1212. */
  1213. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1214. struct btrfs_extent_item *ei, u32 item_size,
  1215. struct btrfs_extent_inline_ref **out_eiref,
  1216. int *out_type)
  1217. {
  1218. unsigned long end;
  1219. u64 flags;
  1220. struct btrfs_tree_block_info *info;
  1221. if (!*ptr) {
  1222. /* first call */
  1223. flags = btrfs_extent_flags(eb, ei);
  1224. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1225. info = (struct btrfs_tree_block_info *)(ei + 1);
  1226. *out_eiref =
  1227. (struct btrfs_extent_inline_ref *)(info + 1);
  1228. } else {
  1229. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1230. }
  1231. *ptr = (unsigned long)*out_eiref;
  1232. if ((void *)*ptr >= (void *)ei + item_size)
  1233. return -ENOENT;
  1234. }
  1235. end = (unsigned long)ei + item_size;
  1236. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1237. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1238. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1239. WARN_ON(*ptr > end);
  1240. if (*ptr == end)
  1241. return 1; /* last */
  1242. return 0;
  1243. }
  1244. /*
  1245. * reads the tree block backref for an extent. tree level and root are returned
  1246. * through out_level and out_root. ptr must point to a 0 value for the first
  1247. * call and may be modified (see __get_extent_inline_ref comment).
  1248. * returns 0 if data was provided, 1 if there was no more data to provide or
  1249. * <0 on error.
  1250. */
  1251. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1252. struct btrfs_extent_item *ei, u32 item_size,
  1253. u64 *out_root, u8 *out_level)
  1254. {
  1255. int ret;
  1256. int type;
  1257. struct btrfs_tree_block_info *info;
  1258. struct btrfs_extent_inline_ref *eiref;
  1259. if (*ptr == (unsigned long)-1)
  1260. return 1;
  1261. while (1) {
  1262. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1263. &eiref, &type);
  1264. if (ret < 0)
  1265. return ret;
  1266. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1267. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1268. break;
  1269. if (ret == 1)
  1270. return 1;
  1271. }
  1272. /* we can treat both ref types equally here */
  1273. info = (struct btrfs_tree_block_info *)(ei + 1);
  1274. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1275. *out_level = btrfs_tree_block_level(eb, info);
  1276. if (ret == 1)
  1277. *ptr = (unsigned long)-1;
  1278. return 0;
  1279. }
  1280. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1281. u64 root, u64 extent_item_objectid,
  1282. iterate_extent_inodes_t *iterate, void *ctx)
  1283. {
  1284. struct extent_inode_elem *eie;
  1285. int ret = 0;
  1286. for (eie = inode_list; eie; eie = eie->next) {
  1287. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1288. "root %llu\n", extent_item_objectid,
  1289. eie->inum, eie->offset, root);
  1290. ret = iterate(eie->inum, eie->offset, root, ctx);
  1291. if (ret) {
  1292. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1293. extent_item_objectid, ret);
  1294. break;
  1295. }
  1296. }
  1297. return ret;
  1298. }
  1299. /*
  1300. * calls iterate() for every inode that references the extent identified by
  1301. * the given parameters.
  1302. * when the iterator function returns a non-zero value, iteration stops.
  1303. */
  1304. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1305. u64 extent_item_objectid, u64 extent_item_pos,
  1306. int search_commit_root,
  1307. iterate_extent_inodes_t *iterate, void *ctx)
  1308. {
  1309. int ret;
  1310. struct btrfs_trans_handle *trans = NULL;
  1311. struct ulist *refs = NULL;
  1312. struct ulist *roots = NULL;
  1313. struct ulist_node *ref_node = NULL;
  1314. struct ulist_node *root_node = NULL;
  1315. struct seq_list tree_mod_seq_elem = {};
  1316. struct ulist_iterator ref_uiter;
  1317. struct ulist_iterator root_uiter;
  1318. pr_debug("resolving all inodes for extent %llu\n",
  1319. extent_item_objectid);
  1320. if (!search_commit_root) {
  1321. trans = btrfs_join_transaction(fs_info->extent_root);
  1322. if (IS_ERR(trans))
  1323. return PTR_ERR(trans);
  1324. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1325. }
  1326. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1327. tree_mod_seq_elem.seq, &refs,
  1328. &extent_item_pos);
  1329. if (ret)
  1330. goto out;
  1331. ULIST_ITER_INIT(&ref_uiter);
  1332. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1333. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1334. tree_mod_seq_elem.seq, &roots);
  1335. if (ret)
  1336. break;
  1337. ULIST_ITER_INIT(&root_uiter);
  1338. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1339. pr_debug("root %llu references leaf %llu, data list "
  1340. "%#llx\n", root_node->val, ref_node->val,
  1341. (long long)ref_node->aux);
  1342. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1343. (uintptr_t)ref_node->aux,
  1344. root_node->val,
  1345. extent_item_objectid,
  1346. iterate, ctx);
  1347. }
  1348. ulist_free(roots);
  1349. }
  1350. free_leaf_list(refs);
  1351. out:
  1352. if (!search_commit_root) {
  1353. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1354. btrfs_end_transaction(trans, fs_info->extent_root);
  1355. }
  1356. return ret;
  1357. }
  1358. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1359. struct btrfs_path *path,
  1360. iterate_extent_inodes_t *iterate, void *ctx)
  1361. {
  1362. int ret;
  1363. u64 extent_item_pos;
  1364. u64 flags = 0;
  1365. struct btrfs_key found_key;
  1366. int search_commit_root = path->search_commit_root;
  1367. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1368. btrfs_release_path(path);
  1369. if (ret < 0)
  1370. return ret;
  1371. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1372. return -EINVAL;
  1373. extent_item_pos = logical - found_key.objectid;
  1374. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1375. extent_item_pos, search_commit_root,
  1376. iterate, ctx);
  1377. return ret;
  1378. }
  1379. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1380. struct extent_buffer *eb, void *ctx);
  1381. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1382. struct btrfs_path *path,
  1383. iterate_irefs_t *iterate, void *ctx)
  1384. {
  1385. int ret = 0;
  1386. int slot;
  1387. u32 cur;
  1388. u32 len;
  1389. u32 name_len;
  1390. u64 parent = 0;
  1391. int found = 0;
  1392. struct extent_buffer *eb;
  1393. struct btrfs_item *item;
  1394. struct btrfs_inode_ref *iref;
  1395. struct btrfs_key found_key;
  1396. while (!ret) {
  1397. path->leave_spinning = 1;
  1398. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1399. &found_key);
  1400. if (ret < 0)
  1401. break;
  1402. if (ret) {
  1403. ret = found ? 0 : -ENOENT;
  1404. break;
  1405. }
  1406. ++found;
  1407. parent = found_key.offset;
  1408. slot = path->slots[0];
  1409. eb = path->nodes[0];
  1410. /* make sure we can use eb after releasing the path */
  1411. atomic_inc(&eb->refs);
  1412. btrfs_tree_read_lock(eb);
  1413. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1414. btrfs_release_path(path);
  1415. item = btrfs_item_nr(eb, slot);
  1416. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1417. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1418. name_len = btrfs_inode_ref_name_len(eb, iref);
  1419. /* path must be released before calling iterate()! */
  1420. pr_debug("following ref at offset %u for inode %llu in "
  1421. "tree %llu\n", cur,
  1422. (unsigned long long)found_key.objectid,
  1423. (unsigned long long)fs_root->objectid);
  1424. ret = iterate(parent, name_len,
  1425. (unsigned long)(iref + 1), eb, ctx);
  1426. if (ret)
  1427. break;
  1428. len = sizeof(*iref) + name_len;
  1429. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1430. }
  1431. btrfs_tree_read_unlock_blocking(eb);
  1432. free_extent_buffer(eb);
  1433. }
  1434. btrfs_release_path(path);
  1435. return ret;
  1436. }
  1437. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1438. struct btrfs_path *path,
  1439. iterate_irefs_t *iterate, void *ctx)
  1440. {
  1441. int ret;
  1442. int slot;
  1443. u64 offset = 0;
  1444. u64 parent;
  1445. int found = 0;
  1446. struct extent_buffer *eb;
  1447. struct btrfs_inode_extref *extref;
  1448. struct extent_buffer *leaf;
  1449. u32 item_size;
  1450. u32 cur_offset;
  1451. unsigned long ptr;
  1452. while (1) {
  1453. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1454. &offset);
  1455. if (ret < 0)
  1456. break;
  1457. if (ret) {
  1458. ret = found ? 0 : -ENOENT;
  1459. break;
  1460. }
  1461. ++found;
  1462. slot = path->slots[0];
  1463. eb = path->nodes[0];
  1464. /* make sure we can use eb after releasing the path */
  1465. atomic_inc(&eb->refs);
  1466. btrfs_tree_read_lock(eb);
  1467. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1468. btrfs_release_path(path);
  1469. leaf = path->nodes[0];
  1470. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1471. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1472. cur_offset = 0;
  1473. while (cur_offset < item_size) {
  1474. u32 name_len;
  1475. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1476. parent = btrfs_inode_extref_parent(eb, extref);
  1477. name_len = btrfs_inode_extref_name_len(eb, extref);
  1478. ret = iterate(parent, name_len,
  1479. (unsigned long)&extref->name, eb, ctx);
  1480. if (ret)
  1481. break;
  1482. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1483. cur_offset += sizeof(*extref);
  1484. }
  1485. btrfs_tree_read_unlock_blocking(eb);
  1486. free_extent_buffer(eb);
  1487. offset++;
  1488. }
  1489. btrfs_release_path(path);
  1490. return ret;
  1491. }
  1492. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1493. struct btrfs_path *path, iterate_irefs_t *iterate,
  1494. void *ctx)
  1495. {
  1496. int ret;
  1497. int found_refs = 0;
  1498. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1499. if (!ret)
  1500. ++found_refs;
  1501. else if (ret != -ENOENT)
  1502. return ret;
  1503. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1504. if (ret == -ENOENT && found_refs)
  1505. return 0;
  1506. return ret;
  1507. }
  1508. /*
  1509. * returns 0 if the path could be dumped (probably truncated)
  1510. * returns <0 in case of an error
  1511. */
  1512. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1513. struct extent_buffer *eb, void *ctx)
  1514. {
  1515. struct inode_fs_paths *ipath = ctx;
  1516. char *fspath;
  1517. char *fspath_min;
  1518. int i = ipath->fspath->elem_cnt;
  1519. const int s_ptr = sizeof(char *);
  1520. u32 bytes_left;
  1521. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1522. ipath->fspath->bytes_left - s_ptr : 0;
  1523. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1524. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1525. name_off, eb, inum, fspath_min, bytes_left);
  1526. if (IS_ERR(fspath))
  1527. return PTR_ERR(fspath);
  1528. if (fspath > fspath_min) {
  1529. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1530. ++ipath->fspath->elem_cnt;
  1531. ipath->fspath->bytes_left = fspath - fspath_min;
  1532. } else {
  1533. ++ipath->fspath->elem_missed;
  1534. ipath->fspath->bytes_missing += fspath_min - fspath;
  1535. ipath->fspath->bytes_left = 0;
  1536. }
  1537. return 0;
  1538. }
  1539. /*
  1540. * this dumps all file system paths to the inode into the ipath struct, provided
  1541. * is has been created large enough. each path is zero-terminated and accessed
  1542. * from ipath->fspath->val[i].
  1543. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1544. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1545. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1546. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1547. * have been needed to return all paths.
  1548. */
  1549. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1550. {
  1551. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1552. inode_to_path, ipath);
  1553. }
  1554. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1555. {
  1556. struct btrfs_data_container *data;
  1557. size_t alloc_bytes;
  1558. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1559. data = vmalloc(alloc_bytes);
  1560. if (!data)
  1561. return ERR_PTR(-ENOMEM);
  1562. if (total_bytes >= sizeof(*data)) {
  1563. data->bytes_left = total_bytes - sizeof(*data);
  1564. data->bytes_missing = 0;
  1565. } else {
  1566. data->bytes_missing = sizeof(*data) - total_bytes;
  1567. data->bytes_left = 0;
  1568. }
  1569. data->elem_cnt = 0;
  1570. data->elem_missed = 0;
  1571. return data;
  1572. }
  1573. /*
  1574. * allocates space to return multiple file system paths for an inode.
  1575. * total_bytes to allocate are passed, note that space usable for actual path
  1576. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1577. * the returned pointer must be freed with free_ipath() in the end.
  1578. */
  1579. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1580. struct btrfs_path *path)
  1581. {
  1582. struct inode_fs_paths *ifp;
  1583. struct btrfs_data_container *fspath;
  1584. fspath = init_data_container(total_bytes);
  1585. if (IS_ERR(fspath))
  1586. return (void *)fspath;
  1587. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1588. if (!ifp) {
  1589. kfree(fspath);
  1590. return ERR_PTR(-ENOMEM);
  1591. }
  1592. ifp->btrfs_path = path;
  1593. ifp->fspath = fspath;
  1594. ifp->fs_root = fs_root;
  1595. return ifp;
  1596. }
  1597. void free_ipath(struct inode_fs_paths *ipath)
  1598. {
  1599. if (!ipath)
  1600. return;
  1601. vfree(ipath->fspath);
  1602. kfree(ipath);
  1603. }