time.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <asm/io.h>
  54. #include <asm/processor.h>
  55. #include <asm/nvram.h>
  56. #include <asm/cache.h>
  57. #include <asm/machdep.h>
  58. #include <asm/uaccess.h>
  59. #include <asm/time.h>
  60. #include <asm/prom.h>
  61. #include <asm/irq.h>
  62. #include <asm/div64.h>
  63. #include <asm/smp.h>
  64. #include <asm/vdso_datapage.h>
  65. #ifdef CONFIG_PPC64
  66. #include <asm/firmware.h>
  67. #endif
  68. #ifdef CONFIG_PPC_ISERIES
  69. #include <asm/iseries/it_lp_queue.h>
  70. #include <asm/iseries/hv_call_xm.h>
  71. #endif
  72. #include <asm/smp.h>
  73. /* keep track of when we need to update the rtc */
  74. time_t last_rtc_update;
  75. #ifdef CONFIG_PPC_ISERIES
  76. unsigned long iSeries_recal_titan = 0;
  77. unsigned long iSeries_recal_tb = 0;
  78. static unsigned long first_settimeofday = 1;
  79. #endif
  80. /* The decrementer counts down by 128 every 128ns on a 601. */
  81. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  82. #define XSEC_PER_SEC (1024*1024)
  83. #ifdef CONFIG_PPC64
  84. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  85. #else
  86. /* compute ((xsec << 12) * max) >> 32 */
  87. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  88. #endif
  89. unsigned long tb_ticks_per_jiffy;
  90. unsigned long tb_ticks_per_usec = 100; /* sane default */
  91. EXPORT_SYMBOL(tb_ticks_per_usec);
  92. unsigned long tb_ticks_per_sec;
  93. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  94. u64 tb_to_xs;
  95. unsigned tb_to_us;
  96. #define TICKLEN_SCALE TICK_LENGTH_SHIFT
  97. u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  98. u64 ticklen_to_xs; /* 0.64 fraction */
  99. /* If last_tick_len corresponds to about 1/HZ seconds, then
  100. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  101. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  102. DEFINE_SPINLOCK(rtc_lock);
  103. EXPORT_SYMBOL_GPL(rtc_lock);
  104. u64 tb_to_ns_scale;
  105. unsigned tb_to_ns_shift;
  106. struct gettimeofday_struct do_gtod;
  107. extern struct timezone sys_tz;
  108. static long timezone_offset;
  109. unsigned long ppc_proc_freq;
  110. unsigned long ppc_tb_freq;
  111. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  112. static DEFINE_PER_CPU(u64, last_jiffy);
  113. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  114. /*
  115. * Factors for converting from cputime_t (timebase ticks) to
  116. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  117. * These are all stored as 0.64 fixed-point binary fractions.
  118. */
  119. u64 __cputime_jiffies_factor;
  120. EXPORT_SYMBOL(__cputime_jiffies_factor);
  121. u64 __cputime_msec_factor;
  122. EXPORT_SYMBOL(__cputime_msec_factor);
  123. u64 __cputime_sec_factor;
  124. EXPORT_SYMBOL(__cputime_sec_factor);
  125. u64 __cputime_clockt_factor;
  126. EXPORT_SYMBOL(__cputime_clockt_factor);
  127. static void calc_cputime_factors(void)
  128. {
  129. struct div_result res;
  130. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  131. __cputime_jiffies_factor = res.result_low;
  132. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  133. __cputime_msec_factor = res.result_low;
  134. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  135. __cputime_sec_factor = res.result_low;
  136. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  137. __cputime_clockt_factor = res.result_low;
  138. }
  139. /*
  140. * Read the PURR on systems that have it, otherwise the timebase.
  141. */
  142. static u64 read_purr(void)
  143. {
  144. if (cpu_has_feature(CPU_FTR_PURR))
  145. return mfspr(SPRN_PURR);
  146. return mftb();
  147. }
  148. /*
  149. * Account time for a transition between system, hard irq
  150. * or soft irq state.
  151. */
  152. void account_system_vtime(struct task_struct *tsk)
  153. {
  154. u64 now, delta;
  155. unsigned long flags;
  156. local_irq_save(flags);
  157. now = read_purr();
  158. delta = now - get_paca()->startpurr;
  159. get_paca()->startpurr = now;
  160. if (!in_interrupt()) {
  161. delta += get_paca()->system_time;
  162. get_paca()->system_time = 0;
  163. }
  164. account_system_time(tsk, 0, delta);
  165. local_irq_restore(flags);
  166. }
  167. /*
  168. * Transfer the user and system times accumulated in the paca
  169. * by the exception entry and exit code to the generic process
  170. * user and system time records.
  171. * Must be called with interrupts disabled.
  172. */
  173. void account_process_vtime(struct task_struct *tsk)
  174. {
  175. cputime_t utime;
  176. utime = get_paca()->user_time;
  177. get_paca()->user_time = 0;
  178. account_user_time(tsk, utime);
  179. }
  180. static void account_process_time(struct pt_regs *regs)
  181. {
  182. int cpu = smp_processor_id();
  183. account_process_vtime(current);
  184. run_local_timers();
  185. if (rcu_pending(cpu))
  186. rcu_check_callbacks(cpu, user_mode(regs));
  187. scheduler_tick();
  188. run_posix_cpu_timers(current);
  189. }
  190. #ifdef CONFIG_PPC_SPLPAR
  191. /*
  192. * Stuff for accounting stolen time.
  193. */
  194. struct cpu_purr_data {
  195. int initialized; /* thread is running */
  196. u64 tb0; /* timebase at origin time */
  197. u64 purr0; /* PURR at origin time */
  198. u64 tb; /* last TB value read */
  199. u64 purr; /* last PURR value read */
  200. u64 stolen; /* stolen time so far */
  201. spinlock_t lock;
  202. };
  203. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  204. static void snapshot_tb_and_purr(void *data)
  205. {
  206. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  207. p->tb0 = mftb();
  208. p->purr0 = mfspr(SPRN_PURR);
  209. p->tb = p->tb0;
  210. p->purr = 0;
  211. wmb();
  212. p->initialized = 1;
  213. }
  214. /*
  215. * Called during boot when all cpus have come up.
  216. */
  217. void snapshot_timebases(void)
  218. {
  219. int cpu;
  220. if (!cpu_has_feature(CPU_FTR_PURR))
  221. return;
  222. for_each_possible_cpu(cpu)
  223. spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
  224. on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
  225. }
  226. void calculate_steal_time(void)
  227. {
  228. u64 tb, purr, t0;
  229. s64 stolen;
  230. struct cpu_purr_data *p0, *pme, *phim;
  231. int cpu;
  232. if (!cpu_has_feature(CPU_FTR_PURR))
  233. return;
  234. cpu = smp_processor_id();
  235. pme = &per_cpu(cpu_purr_data, cpu);
  236. if (!pme->initialized)
  237. return; /* this can happen in early boot */
  238. p0 = &per_cpu(cpu_purr_data, cpu & ~1);
  239. phim = &per_cpu(cpu_purr_data, cpu ^ 1);
  240. spin_lock(&p0->lock);
  241. tb = mftb();
  242. purr = mfspr(SPRN_PURR) - pme->purr0;
  243. if (!phim->initialized || !cpu_online(cpu ^ 1)) {
  244. stolen = (tb - pme->tb) - (purr - pme->purr);
  245. } else {
  246. t0 = pme->tb0;
  247. if (phim->tb0 < t0)
  248. t0 = phim->tb0;
  249. stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
  250. }
  251. if (stolen > 0) {
  252. account_steal_time(current, stolen);
  253. p0->stolen += stolen;
  254. }
  255. pme->tb = tb;
  256. pme->purr = purr;
  257. spin_unlock(&p0->lock);
  258. }
  259. /*
  260. * Must be called before the cpu is added to the online map when
  261. * a cpu is being brought up at runtime.
  262. */
  263. static void snapshot_purr(void)
  264. {
  265. int cpu;
  266. u64 purr;
  267. struct cpu_purr_data *p0, *pme, *phim;
  268. unsigned long flags;
  269. if (!cpu_has_feature(CPU_FTR_PURR))
  270. return;
  271. cpu = smp_processor_id();
  272. pme = &per_cpu(cpu_purr_data, cpu);
  273. p0 = &per_cpu(cpu_purr_data, cpu & ~1);
  274. phim = &per_cpu(cpu_purr_data, cpu ^ 1);
  275. spin_lock_irqsave(&p0->lock, flags);
  276. pme->tb = pme->tb0 = mftb();
  277. purr = mfspr(SPRN_PURR);
  278. if (!phim->initialized) {
  279. pme->purr = 0;
  280. pme->purr0 = purr;
  281. } else {
  282. /* set p->purr and p->purr0 for no change in p0->stolen */
  283. pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
  284. pme->purr0 = purr - pme->purr;
  285. }
  286. pme->initialized = 1;
  287. spin_unlock_irqrestore(&p0->lock, flags);
  288. }
  289. #endif /* CONFIG_PPC_SPLPAR */
  290. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  291. #define calc_cputime_factors()
  292. #define account_process_time(regs) update_process_times(user_mode(regs))
  293. #define calculate_steal_time() do { } while (0)
  294. #endif
  295. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  296. #define snapshot_purr() do { } while (0)
  297. #endif
  298. /*
  299. * Called when a cpu comes up after the system has finished booting,
  300. * i.e. as a result of a hotplug cpu action.
  301. */
  302. void snapshot_timebase(void)
  303. {
  304. __get_cpu_var(last_jiffy) = get_tb();
  305. snapshot_purr();
  306. }
  307. void __delay(unsigned long loops)
  308. {
  309. unsigned long start;
  310. int diff;
  311. if (__USE_RTC()) {
  312. start = get_rtcl();
  313. do {
  314. /* the RTCL register wraps at 1000000000 */
  315. diff = get_rtcl() - start;
  316. if (diff < 0)
  317. diff += 1000000000;
  318. } while (diff < loops);
  319. } else {
  320. start = get_tbl();
  321. while (get_tbl() - start < loops)
  322. HMT_low();
  323. HMT_medium();
  324. }
  325. }
  326. EXPORT_SYMBOL(__delay);
  327. void udelay(unsigned long usecs)
  328. {
  329. __delay(tb_ticks_per_usec * usecs);
  330. }
  331. EXPORT_SYMBOL(udelay);
  332. static __inline__ void timer_check_rtc(void)
  333. {
  334. /*
  335. * update the rtc when needed, this should be performed on the
  336. * right fraction of a second. Half or full second ?
  337. * Full second works on mk48t59 clocks, others need testing.
  338. * Note that this update is basically only used through
  339. * the adjtimex system calls. Setting the HW clock in
  340. * any other way is a /dev/rtc and userland business.
  341. * This is still wrong by -0.5/+1.5 jiffies because of the
  342. * timer interrupt resolution and possible delay, but here we
  343. * hit a quantization limit which can only be solved by higher
  344. * resolution timers and decoupling time management from timer
  345. * interrupts. This is also wrong on the clocks
  346. * which require being written at the half second boundary.
  347. * We should have an rtc call that only sets the minutes and
  348. * seconds like on Intel to avoid problems with non UTC clocks.
  349. */
  350. if (ppc_md.set_rtc_time && ntp_synced() &&
  351. xtime.tv_sec - last_rtc_update >= 659 &&
  352. abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
  353. struct rtc_time tm;
  354. to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
  355. tm.tm_year -= 1900;
  356. tm.tm_mon -= 1;
  357. if (ppc_md.set_rtc_time(&tm) == 0)
  358. last_rtc_update = xtime.tv_sec + 1;
  359. else
  360. /* Try again one minute later */
  361. last_rtc_update += 60;
  362. }
  363. }
  364. /*
  365. * This version of gettimeofday has microsecond resolution.
  366. */
  367. static inline void __do_gettimeofday(struct timeval *tv)
  368. {
  369. unsigned long sec, usec;
  370. u64 tb_ticks, xsec;
  371. struct gettimeofday_vars *temp_varp;
  372. u64 temp_tb_to_xs, temp_stamp_xsec;
  373. /*
  374. * These calculations are faster (gets rid of divides)
  375. * if done in units of 1/2^20 rather than microseconds.
  376. * The conversion to microseconds at the end is done
  377. * without a divide (and in fact, without a multiply)
  378. */
  379. temp_varp = do_gtod.varp;
  380. /* Sampling the time base must be done after loading
  381. * do_gtod.varp in order to avoid racing with update_gtod.
  382. */
  383. data_barrier(temp_varp);
  384. tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
  385. temp_tb_to_xs = temp_varp->tb_to_xs;
  386. temp_stamp_xsec = temp_varp->stamp_xsec;
  387. xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
  388. sec = xsec / XSEC_PER_SEC;
  389. usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
  390. usec = SCALE_XSEC(usec, 1000000);
  391. tv->tv_sec = sec;
  392. tv->tv_usec = usec;
  393. }
  394. void do_gettimeofday(struct timeval *tv)
  395. {
  396. if (__USE_RTC()) {
  397. /* do this the old way */
  398. unsigned long flags, seq;
  399. unsigned int sec, nsec, usec;
  400. do {
  401. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  402. sec = xtime.tv_sec;
  403. nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
  404. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  405. usec = nsec / 1000;
  406. while (usec >= 1000000) {
  407. usec -= 1000000;
  408. ++sec;
  409. }
  410. tv->tv_sec = sec;
  411. tv->tv_usec = usec;
  412. return;
  413. }
  414. __do_gettimeofday(tv);
  415. }
  416. EXPORT_SYMBOL(do_gettimeofday);
  417. /*
  418. * There are two copies of tb_to_xs and stamp_xsec so that no
  419. * lock is needed to access and use these values in
  420. * do_gettimeofday. We alternate the copies and as long as a
  421. * reasonable time elapses between changes, there will never
  422. * be inconsistent values. ntpd has a minimum of one minute
  423. * between updates.
  424. */
  425. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  426. u64 new_tb_to_xs)
  427. {
  428. unsigned temp_idx;
  429. struct gettimeofday_vars *temp_varp;
  430. temp_idx = (do_gtod.var_idx == 0);
  431. temp_varp = &do_gtod.vars[temp_idx];
  432. temp_varp->tb_to_xs = new_tb_to_xs;
  433. temp_varp->tb_orig_stamp = new_tb_stamp;
  434. temp_varp->stamp_xsec = new_stamp_xsec;
  435. smp_mb();
  436. do_gtod.varp = temp_varp;
  437. do_gtod.var_idx = temp_idx;
  438. /*
  439. * tb_update_count is used to allow the userspace gettimeofday code
  440. * to assure itself that it sees a consistent view of the tb_to_xs and
  441. * stamp_xsec variables. It reads the tb_update_count, then reads
  442. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  443. * the two values of tb_update_count match and are even then the
  444. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  445. * loops back and reads them again until this criteria is met.
  446. * We expect the caller to have done the first increment of
  447. * vdso_data->tb_update_count already.
  448. */
  449. vdso_data->tb_orig_stamp = new_tb_stamp;
  450. vdso_data->stamp_xsec = new_stamp_xsec;
  451. vdso_data->tb_to_xs = new_tb_to_xs;
  452. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  453. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  454. smp_wmb();
  455. ++(vdso_data->tb_update_count);
  456. }
  457. /*
  458. * When the timebase - tb_orig_stamp gets too big, we do a manipulation
  459. * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
  460. * difference tb - tb_orig_stamp small enough to always fit inside a
  461. * 32 bits number. This is a requirement of our fast 32 bits userland
  462. * implementation in the vdso. If we "miss" a call to this function
  463. * (interrupt latency, CPU locked in a spinlock, ...) and we end up
  464. * with a too big difference, then the vdso will fallback to calling
  465. * the syscall
  466. */
  467. static __inline__ void timer_recalc_offset(u64 cur_tb)
  468. {
  469. unsigned long offset;
  470. u64 new_stamp_xsec;
  471. u64 tlen, t2x;
  472. u64 tb, xsec_old, xsec_new;
  473. struct gettimeofday_vars *varp;
  474. if (__USE_RTC())
  475. return;
  476. tlen = current_tick_length();
  477. offset = cur_tb - do_gtod.varp->tb_orig_stamp;
  478. if (tlen == last_tick_len && offset < 0x80000000u)
  479. return;
  480. if (tlen != last_tick_len) {
  481. t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
  482. last_tick_len = tlen;
  483. } else
  484. t2x = do_gtod.varp->tb_to_xs;
  485. new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  486. do_div(new_stamp_xsec, 1000000000);
  487. new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  488. ++vdso_data->tb_update_count;
  489. smp_mb();
  490. /*
  491. * Make sure time doesn't go backwards for userspace gettimeofday.
  492. */
  493. tb = get_tb();
  494. varp = do_gtod.varp;
  495. xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
  496. + varp->stamp_xsec;
  497. xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
  498. if (xsec_new < xsec_old)
  499. new_stamp_xsec += xsec_old - xsec_new;
  500. update_gtod(cur_tb, new_stamp_xsec, t2x);
  501. }
  502. #ifdef CONFIG_SMP
  503. unsigned long profile_pc(struct pt_regs *regs)
  504. {
  505. unsigned long pc = instruction_pointer(regs);
  506. if (in_lock_functions(pc))
  507. return regs->link;
  508. return pc;
  509. }
  510. EXPORT_SYMBOL(profile_pc);
  511. #endif
  512. #ifdef CONFIG_PPC_ISERIES
  513. /*
  514. * This function recalibrates the timebase based on the 49-bit time-of-day
  515. * value in the Titan chip. The Titan is much more accurate than the value
  516. * returned by the service processor for the timebase frequency.
  517. */
  518. static void iSeries_tb_recal(void)
  519. {
  520. struct div_result divres;
  521. unsigned long titan, tb;
  522. tb = get_tb();
  523. titan = HvCallXm_loadTod();
  524. if ( iSeries_recal_titan ) {
  525. unsigned long tb_ticks = tb - iSeries_recal_tb;
  526. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  527. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  528. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  529. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  530. char sign = '+';
  531. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  532. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  533. if ( tick_diff < 0 ) {
  534. tick_diff = -tick_diff;
  535. sign = '-';
  536. }
  537. if ( tick_diff ) {
  538. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  539. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  540. new_tb_ticks_per_jiffy, sign, tick_diff );
  541. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  542. tb_ticks_per_sec = new_tb_ticks_per_sec;
  543. calc_cputime_factors();
  544. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  545. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  546. tb_to_xs = divres.result_low;
  547. do_gtod.varp->tb_to_xs = tb_to_xs;
  548. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  549. vdso_data->tb_to_xs = tb_to_xs;
  550. }
  551. else {
  552. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  553. " new tb_ticks_per_jiffy = %lu\n"
  554. " old tb_ticks_per_jiffy = %lu\n",
  555. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  556. }
  557. }
  558. }
  559. iSeries_recal_titan = titan;
  560. iSeries_recal_tb = tb;
  561. }
  562. #endif
  563. /*
  564. * For iSeries shared processors, we have to let the hypervisor
  565. * set the hardware decrementer. We set a virtual decrementer
  566. * in the lppaca and call the hypervisor if the virtual
  567. * decrementer is less than the current value in the hardware
  568. * decrementer. (almost always the new decrementer value will
  569. * be greater than the current hardware decementer so the hypervisor
  570. * call will not be needed)
  571. */
  572. /*
  573. * timer_interrupt - gets called when the decrementer overflows,
  574. * with interrupts disabled.
  575. */
  576. void timer_interrupt(struct pt_regs * regs)
  577. {
  578. int next_dec;
  579. int cpu = smp_processor_id();
  580. unsigned long ticks;
  581. u64 tb_next_jiffy;
  582. #ifdef CONFIG_PPC32
  583. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  584. do_IRQ(regs);
  585. #endif
  586. irq_enter();
  587. profile_tick(CPU_PROFILING, regs);
  588. calculate_steal_time();
  589. #ifdef CONFIG_PPC_ISERIES
  590. get_lppaca()->int_dword.fields.decr_int = 0;
  591. #endif
  592. while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
  593. >= tb_ticks_per_jiffy) {
  594. /* Update last_jiffy */
  595. per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
  596. /* Handle RTCL overflow on 601 */
  597. if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
  598. per_cpu(last_jiffy, cpu) -= 1000000000;
  599. /*
  600. * We cannot disable the decrementer, so in the period
  601. * between this cpu's being marked offline in cpu_online_map
  602. * and calling stop-self, it is taking timer interrupts.
  603. * Avoid calling into the scheduler rebalancing code if this
  604. * is the case.
  605. */
  606. if (!cpu_is_offline(cpu))
  607. account_process_time(regs);
  608. /*
  609. * No need to check whether cpu is offline here; boot_cpuid
  610. * should have been fixed up by now.
  611. */
  612. if (cpu != boot_cpuid)
  613. continue;
  614. write_seqlock(&xtime_lock);
  615. tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
  616. if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
  617. tb_last_jiffy = tb_next_jiffy;
  618. do_timer(1);
  619. timer_recalc_offset(tb_last_jiffy);
  620. timer_check_rtc();
  621. }
  622. write_sequnlock(&xtime_lock);
  623. }
  624. next_dec = tb_ticks_per_jiffy - ticks;
  625. set_dec(next_dec);
  626. #ifdef CONFIG_PPC_ISERIES
  627. if (hvlpevent_is_pending())
  628. process_hvlpevents(regs);
  629. #endif
  630. #ifdef CONFIG_PPC64
  631. /* collect purr register values often, for accurate calculations */
  632. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  633. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  634. cu->current_tb = mfspr(SPRN_PURR);
  635. }
  636. #endif
  637. irq_exit();
  638. }
  639. void wakeup_decrementer(void)
  640. {
  641. unsigned long ticks;
  642. /*
  643. * The timebase gets saved on sleep and restored on wakeup,
  644. * so all we need to do is to reset the decrementer.
  645. */
  646. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  647. if (ticks < tb_ticks_per_jiffy)
  648. ticks = tb_ticks_per_jiffy - ticks;
  649. else
  650. ticks = 1;
  651. set_dec(ticks);
  652. }
  653. #ifdef CONFIG_SMP
  654. void __init smp_space_timers(unsigned int max_cpus)
  655. {
  656. int i;
  657. unsigned long half = tb_ticks_per_jiffy / 2;
  658. unsigned long offset = tb_ticks_per_jiffy / max_cpus;
  659. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  660. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  661. previous_tb -= tb_ticks_per_jiffy;
  662. /*
  663. * The stolen time calculation for POWER5 shared-processor LPAR
  664. * systems works better if the two threads' timebase interrupts
  665. * are staggered by half a jiffy with respect to each other.
  666. */
  667. for_each_possible_cpu(i) {
  668. if (i == boot_cpuid)
  669. continue;
  670. if (i == (boot_cpuid ^ 1))
  671. per_cpu(last_jiffy, i) =
  672. per_cpu(last_jiffy, boot_cpuid) - half;
  673. else if (i & 1)
  674. per_cpu(last_jiffy, i) =
  675. per_cpu(last_jiffy, i ^ 1) + half;
  676. else {
  677. previous_tb += offset;
  678. per_cpu(last_jiffy, i) = previous_tb;
  679. }
  680. }
  681. }
  682. #endif
  683. /*
  684. * Scheduler clock - returns current time in nanosec units.
  685. *
  686. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  687. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  688. * are 64-bit unsigned numbers.
  689. */
  690. unsigned long long sched_clock(void)
  691. {
  692. if (__USE_RTC())
  693. return get_rtc();
  694. return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
  695. }
  696. int do_settimeofday(struct timespec *tv)
  697. {
  698. time_t wtm_sec, new_sec = tv->tv_sec;
  699. long wtm_nsec, new_nsec = tv->tv_nsec;
  700. unsigned long flags;
  701. u64 new_xsec;
  702. unsigned long tb_delta;
  703. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  704. return -EINVAL;
  705. write_seqlock_irqsave(&xtime_lock, flags);
  706. /*
  707. * Updating the RTC is not the job of this code. If the time is
  708. * stepped under NTP, the RTC will be updated after STA_UNSYNC
  709. * is cleared. Tools like clock/hwclock either copy the RTC
  710. * to the system time, in which case there is no point in writing
  711. * to the RTC again, or write to the RTC but then they don't call
  712. * settimeofday to perform this operation.
  713. */
  714. #ifdef CONFIG_PPC_ISERIES
  715. if (first_settimeofday) {
  716. iSeries_tb_recal();
  717. first_settimeofday = 0;
  718. }
  719. #endif
  720. /* Make userspace gettimeofday spin until we're done. */
  721. ++vdso_data->tb_update_count;
  722. smp_mb();
  723. /*
  724. * Subtract off the number of nanoseconds since the
  725. * beginning of the last tick.
  726. */
  727. tb_delta = tb_ticks_since(tb_last_jiffy);
  728. tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
  729. new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
  730. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  731. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  732. set_normalized_timespec(&xtime, new_sec, new_nsec);
  733. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  734. /* In case of a large backwards jump in time with NTP, we want the
  735. * clock to be updated as soon as the PLL is again in lock.
  736. */
  737. last_rtc_update = new_sec - 658;
  738. ntp_clear();
  739. new_xsec = xtime.tv_nsec;
  740. if (new_xsec != 0) {
  741. new_xsec *= XSEC_PER_SEC;
  742. do_div(new_xsec, NSEC_PER_SEC);
  743. }
  744. new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
  745. update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
  746. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  747. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  748. write_sequnlock_irqrestore(&xtime_lock, flags);
  749. clock_was_set();
  750. return 0;
  751. }
  752. EXPORT_SYMBOL(do_settimeofday);
  753. static int __init get_freq(char *name, int cells, unsigned long *val)
  754. {
  755. struct device_node *cpu;
  756. const unsigned int *fp;
  757. int found = 0;
  758. /* The cpu node should have timebase and clock frequency properties */
  759. cpu = of_find_node_by_type(NULL, "cpu");
  760. if (cpu) {
  761. fp = get_property(cpu, name, NULL);
  762. if (fp) {
  763. found = 1;
  764. *val = of_read_ulong(fp, cells);
  765. }
  766. of_node_put(cpu);
  767. }
  768. return found;
  769. }
  770. void __init generic_calibrate_decr(void)
  771. {
  772. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  773. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  774. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  775. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  776. "(not found)\n");
  777. }
  778. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  779. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  780. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  781. printk(KERN_ERR "WARNING: Estimating processor frequency "
  782. "(not found)\n");
  783. }
  784. #ifdef CONFIG_BOOKE
  785. /* Set the time base to zero */
  786. mtspr(SPRN_TBWL, 0);
  787. mtspr(SPRN_TBWU, 0);
  788. /* Clear any pending timer interrupts */
  789. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  790. /* Enable decrementer interrupt */
  791. mtspr(SPRN_TCR, TCR_DIE);
  792. #endif
  793. }
  794. unsigned long get_boot_time(void)
  795. {
  796. struct rtc_time tm;
  797. if (ppc_md.get_boot_time)
  798. return ppc_md.get_boot_time();
  799. if (!ppc_md.get_rtc_time)
  800. return 0;
  801. ppc_md.get_rtc_time(&tm);
  802. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  803. tm.tm_hour, tm.tm_min, tm.tm_sec);
  804. }
  805. /* This function is only called on the boot processor */
  806. void __init time_init(void)
  807. {
  808. unsigned long flags;
  809. unsigned long tm = 0;
  810. struct div_result res;
  811. u64 scale, x;
  812. unsigned shift;
  813. if (ppc_md.time_init != NULL)
  814. timezone_offset = ppc_md.time_init();
  815. if (__USE_RTC()) {
  816. /* 601 processor: dec counts down by 128 every 128ns */
  817. ppc_tb_freq = 1000000000;
  818. tb_last_jiffy = get_rtcl();
  819. } else {
  820. /* Normal PowerPC with timebase register */
  821. ppc_md.calibrate_decr();
  822. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  823. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  824. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  825. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  826. tb_last_jiffy = get_tb();
  827. }
  828. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  829. tb_ticks_per_sec = ppc_tb_freq;
  830. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  831. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  832. calc_cputime_factors();
  833. /*
  834. * Calculate the length of each tick in ns. It will not be
  835. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  836. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  837. * rounded up.
  838. */
  839. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  840. do_div(x, ppc_tb_freq);
  841. tick_nsec = x;
  842. last_tick_len = x << TICKLEN_SCALE;
  843. /*
  844. * Compute ticklen_to_xs, which is a factor which gets multiplied
  845. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  846. * It is computed as:
  847. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  848. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  849. * which turns out to be N = 51 - SHIFT_HZ.
  850. * This gives the result as a 0.64 fixed-point fraction.
  851. * That value is reduced by an offset amounting to 1 xsec per
  852. * 2^31 timebase ticks to avoid problems with time going backwards
  853. * by 1 xsec when we do timer_recalc_offset due to losing the
  854. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  855. * since there are 2^20 xsec in a second.
  856. */
  857. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  858. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  859. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  860. ticklen_to_xs = res.result_low;
  861. /* Compute tb_to_xs from tick_nsec */
  862. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  863. /*
  864. * Compute scale factor for sched_clock.
  865. * The calibrate_decr() function has set tb_ticks_per_sec,
  866. * which is the timebase frequency.
  867. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  868. * the 128-bit result as a 64.64 fixed-point number.
  869. * We then shift that number right until it is less than 1.0,
  870. * giving us the scale factor and shift count to use in
  871. * sched_clock().
  872. */
  873. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  874. scale = res.result_low;
  875. for (shift = 0; res.result_high != 0; ++shift) {
  876. scale = (scale >> 1) | (res.result_high << 63);
  877. res.result_high >>= 1;
  878. }
  879. tb_to_ns_scale = scale;
  880. tb_to_ns_shift = shift;
  881. tm = get_boot_time();
  882. write_seqlock_irqsave(&xtime_lock, flags);
  883. /* If platform provided a timezone (pmac), we correct the time */
  884. if (timezone_offset) {
  885. sys_tz.tz_minuteswest = -timezone_offset / 60;
  886. sys_tz.tz_dsttime = 0;
  887. tm -= timezone_offset;
  888. }
  889. xtime.tv_sec = tm;
  890. xtime.tv_nsec = 0;
  891. do_gtod.varp = &do_gtod.vars[0];
  892. do_gtod.var_idx = 0;
  893. do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
  894. __get_cpu_var(last_jiffy) = tb_last_jiffy;
  895. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  896. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  897. do_gtod.varp->tb_to_xs = tb_to_xs;
  898. do_gtod.tb_to_us = tb_to_us;
  899. vdso_data->tb_orig_stamp = tb_last_jiffy;
  900. vdso_data->tb_update_count = 0;
  901. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  902. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  903. vdso_data->tb_to_xs = tb_to_xs;
  904. time_freq = 0;
  905. last_rtc_update = xtime.tv_sec;
  906. set_normalized_timespec(&wall_to_monotonic,
  907. -xtime.tv_sec, -xtime.tv_nsec);
  908. write_sequnlock_irqrestore(&xtime_lock, flags);
  909. /* Not exact, but the timer interrupt takes care of this */
  910. set_dec(tb_ticks_per_jiffy);
  911. }
  912. #ifdef CONFIG_RTC_CLASS
  913. static int set_rtc_class_time(struct rtc_time *tm)
  914. {
  915. int err;
  916. struct class_device *class_dev =
  917. rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
  918. if (class_dev == NULL)
  919. return -ENODEV;
  920. err = rtc_set_time(class_dev, tm);
  921. rtc_class_close(class_dev);
  922. return 0;
  923. }
  924. static void get_rtc_class_time(struct rtc_time *tm)
  925. {
  926. int err;
  927. struct class_device *class_dev =
  928. rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
  929. if (class_dev == NULL)
  930. return;
  931. err = rtc_read_time(class_dev, tm);
  932. rtc_class_close(class_dev);
  933. return;
  934. }
  935. int __init rtc_class_hookup(void)
  936. {
  937. ppc_md.get_rtc_time = get_rtc_class_time;
  938. ppc_md.set_rtc_time = set_rtc_class_time;
  939. return 0;
  940. }
  941. #endif /* CONFIG_RTC_CLASS */
  942. #define FEBRUARY 2
  943. #define STARTOFTIME 1970
  944. #define SECDAY 86400L
  945. #define SECYR (SECDAY * 365)
  946. #define leapyear(year) ((year) % 4 == 0 && \
  947. ((year) % 100 != 0 || (year) % 400 == 0))
  948. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  949. #define days_in_month(a) (month_days[(a) - 1])
  950. static int month_days[12] = {
  951. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  952. };
  953. /*
  954. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  955. */
  956. void GregorianDay(struct rtc_time * tm)
  957. {
  958. int leapsToDate;
  959. int lastYear;
  960. int day;
  961. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  962. lastYear = tm->tm_year - 1;
  963. /*
  964. * Number of leap corrections to apply up to end of last year
  965. */
  966. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  967. /*
  968. * This year is a leap year if it is divisible by 4 except when it is
  969. * divisible by 100 unless it is divisible by 400
  970. *
  971. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  972. */
  973. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  974. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  975. tm->tm_mday;
  976. tm->tm_wday = day % 7;
  977. }
  978. void to_tm(int tim, struct rtc_time * tm)
  979. {
  980. register int i;
  981. register long hms, day;
  982. day = tim / SECDAY;
  983. hms = tim % SECDAY;
  984. /* Hours, minutes, seconds are easy */
  985. tm->tm_hour = hms / 3600;
  986. tm->tm_min = (hms % 3600) / 60;
  987. tm->tm_sec = (hms % 3600) % 60;
  988. /* Number of years in days */
  989. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  990. day -= days_in_year(i);
  991. tm->tm_year = i;
  992. /* Number of months in days left */
  993. if (leapyear(tm->tm_year))
  994. days_in_month(FEBRUARY) = 29;
  995. for (i = 1; day >= days_in_month(i); i++)
  996. day -= days_in_month(i);
  997. days_in_month(FEBRUARY) = 28;
  998. tm->tm_mon = i;
  999. /* Days are what is left over (+1) from all that. */
  1000. tm->tm_mday = day + 1;
  1001. /*
  1002. * Determine the day of week
  1003. */
  1004. GregorianDay(tm);
  1005. }
  1006. /* Auxiliary function to compute scaling factors */
  1007. /* Actually the choice of a timebase running at 1/4 the of the bus
  1008. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  1009. * It makes this computation very precise (27-28 bits typically) which
  1010. * is optimistic considering the stability of most processor clock
  1011. * oscillators and the precision with which the timebase frequency
  1012. * is measured but does not harm.
  1013. */
  1014. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  1015. {
  1016. unsigned mlt=0, tmp, err;
  1017. /* No concern for performance, it's done once: use a stupid
  1018. * but safe and compact method to find the multiplier.
  1019. */
  1020. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  1021. if (mulhwu(inscale, mlt|tmp) < outscale)
  1022. mlt |= tmp;
  1023. }
  1024. /* We might still be off by 1 for the best approximation.
  1025. * A side effect of this is that if outscale is too large
  1026. * the returned value will be zero.
  1027. * Many corner cases have been checked and seem to work,
  1028. * some might have been forgotten in the test however.
  1029. */
  1030. err = inscale * (mlt+1);
  1031. if (err <= inscale/2)
  1032. mlt++;
  1033. return mlt;
  1034. }
  1035. /*
  1036. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  1037. * result.
  1038. */
  1039. void div128_by_32(u64 dividend_high, u64 dividend_low,
  1040. unsigned divisor, struct div_result *dr)
  1041. {
  1042. unsigned long a, b, c, d;
  1043. unsigned long w, x, y, z;
  1044. u64 ra, rb, rc;
  1045. a = dividend_high >> 32;
  1046. b = dividend_high & 0xffffffff;
  1047. c = dividend_low >> 32;
  1048. d = dividend_low & 0xffffffff;
  1049. w = a / divisor;
  1050. ra = ((u64)(a - (w * divisor)) << 32) + b;
  1051. rb = ((u64) do_div(ra, divisor) << 32) + c;
  1052. x = ra;
  1053. rc = ((u64) do_div(rb, divisor) << 32) + d;
  1054. y = rb;
  1055. do_div(rc, divisor);
  1056. z = rc;
  1057. dr->result_high = ((u64)w << 32) + x;
  1058. dr->result_low = ((u64)y << 32) + z;
  1059. }