fsi.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. #define DO_FMT 0x0000
  21. #define DOFF_CTL 0x0004
  22. #define DOFF_ST 0x0008
  23. #define DI_FMT 0x000C
  24. #define DIFF_CTL 0x0010
  25. #define DIFF_ST 0x0014
  26. #define CKG1 0x0018
  27. #define CKG2 0x001C
  28. #define DIDT 0x0020
  29. #define DODT 0x0024
  30. #define MUTE_ST 0x0028
  31. #define OUT_SEL 0x0030
  32. #define REG_END OUT_SEL
  33. #define A_MST_CTLR 0x0180
  34. #define B_MST_CTLR 0x01A0
  35. #define CPU_INT_ST 0x01F4
  36. #define CPU_IEMSK 0x01F8
  37. #define CPU_IMSK 0x01FC
  38. #define INT_ST 0x0200
  39. #define IEMSK 0x0204
  40. #define IMSK 0x0208
  41. #define MUTE 0x020C
  42. #define CLK_RST 0x0210
  43. #define SOFT_RST 0x0214
  44. #define FIFO_SZ 0x0218
  45. #define MREG_START A_MST_CTLR
  46. #define MREG_END FIFO_SZ
  47. /* DO_FMT */
  48. /* DI_FMT */
  49. #define CR_MONO (0x0 << 4)
  50. #define CR_MONO_D (0x1 << 4)
  51. #define CR_PCM (0x2 << 4)
  52. #define CR_I2S (0x3 << 4)
  53. #define CR_TDM (0x4 << 4)
  54. #define CR_TDM_D (0x5 << 4)
  55. #define CR_SPDIF 0x00100120
  56. /* DOFF_CTL */
  57. /* DIFF_CTL */
  58. #define IRQ_HALF 0x00100000
  59. #define FIFO_CLR 0x00000001
  60. /* DOFF_ST */
  61. #define ERR_OVER 0x00000010
  62. #define ERR_UNDER 0x00000001
  63. #define ST_ERR (ERR_OVER | ERR_UNDER)
  64. /* CKG1 */
  65. #define ACKMD_MASK 0x00007000
  66. #define BPFMD_MASK 0x00000700
  67. /* A/B MST_CTLR */
  68. #define BP (1 << 4) /* Fix the signal of Biphase output */
  69. #define SE (1 << 0) /* Fix the master clock */
  70. /* CLK_RST */
  71. #define B_CLK 0x00000010
  72. #define A_CLK 0x00000001
  73. /* INT_ST */
  74. #define INT_B_IN (1 << 12)
  75. #define INT_B_OUT (1 << 8)
  76. #define INT_A_IN (1 << 4)
  77. #define INT_A_OUT (1 << 0)
  78. /* SOFT_RST */
  79. #define PBSR (1 << 12) /* Port B Software Reset */
  80. #define PASR (1 << 8) /* Port A Software Reset */
  81. #define IR (1 << 4) /* Interrupt Reset */
  82. #define FSISR (1 << 0) /* Software Reset */
  83. /* FIFO_SZ */
  84. #define OUT_SZ_MASK 0x7
  85. #define BO_SZ_SHIFT 8
  86. #define AO_SZ_SHIFT 0
  87. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  88. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  89. /*
  90. * FSI driver use below type name for variable
  91. *
  92. * xxx_len : data length
  93. * xxx_width : data width
  94. * xxx_offset : data offset
  95. * xxx_num : number of data
  96. */
  97. /*
  98. * struct
  99. */
  100. struct fsi_priv {
  101. void __iomem *base;
  102. struct snd_pcm_substream *substream;
  103. struct fsi_master *master;
  104. int fifo_max_num;
  105. int chan_num;
  106. int buff_offset;
  107. int buff_len;
  108. int period_len;
  109. int period_num;
  110. u32 mst_ctrl;
  111. };
  112. struct fsi_core {
  113. int ver;
  114. u32 int_st;
  115. u32 iemsk;
  116. u32 imsk;
  117. };
  118. struct fsi_master {
  119. void __iomem *base;
  120. int irq;
  121. struct fsi_priv fsia;
  122. struct fsi_priv fsib;
  123. struct fsi_core *core;
  124. struct sh_fsi_platform_info *info;
  125. spinlock_t lock;
  126. };
  127. /*
  128. * basic read write function
  129. */
  130. static void __fsi_reg_write(u32 reg, u32 data)
  131. {
  132. /* valid data area is 24bit */
  133. data &= 0x00ffffff;
  134. __raw_writel(data, reg);
  135. }
  136. static u32 __fsi_reg_read(u32 reg)
  137. {
  138. return __raw_readl(reg);
  139. }
  140. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  141. {
  142. u32 val = __fsi_reg_read(reg);
  143. val &= ~mask;
  144. val |= data & mask;
  145. __fsi_reg_write(reg, val);
  146. }
  147. static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
  148. {
  149. if (reg > REG_END) {
  150. pr_err("fsi: register access err (%s)\n", __func__);
  151. return;
  152. }
  153. __fsi_reg_write((u32)(fsi->base + reg), data);
  154. }
  155. static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
  156. {
  157. if (reg > REG_END) {
  158. pr_err("fsi: register access err (%s)\n", __func__);
  159. return 0;
  160. }
  161. return __fsi_reg_read((u32)(fsi->base + reg));
  162. }
  163. static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
  164. {
  165. if (reg > REG_END) {
  166. pr_err("fsi: register access err (%s)\n", __func__);
  167. return;
  168. }
  169. __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
  170. }
  171. static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
  172. {
  173. unsigned long flags;
  174. if ((reg < MREG_START) ||
  175. (reg > MREG_END)) {
  176. pr_err("fsi: register access err (%s)\n", __func__);
  177. return;
  178. }
  179. spin_lock_irqsave(&master->lock, flags);
  180. __fsi_reg_write((u32)(master->base + reg), data);
  181. spin_unlock_irqrestore(&master->lock, flags);
  182. }
  183. static u32 fsi_master_read(struct fsi_master *master, u32 reg)
  184. {
  185. u32 ret;
  186. unsigned long flags;
  187. if ((reg < MREG_START) ||
  188. (reg > MREG_END)) {
  189. pr_err("fsi: register access err (%s)\n", __func__);
  190. return 0;
  191. }
  192. spin_lock_irqsave(&master->lock, flags);
  193. ret = __fsi_reg_read((u32)(master->base + reg));
  194. spin_unlock_irqrestore(&master->lock, flags);
  195. return ret;
  196. }
  197. static void fsi_master_mask_set(struct fsi_master *master,
  198. u32 reg, u32 mask, u32 data)
  199. {
  200. unsigned long flags;
  201. if ((reg < MREG_START) ||
  202. (reg > MREG_END)) {
  203. pr_err("fsi: register access err (%s)\n", __func__);
  204. return;
  205. }
  206. spin_lock_irqsave(&master->lock, flags);
  207. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  208. spin_unlock_irqrestore(&master->lock, flags);
  209. }
  210. /*
  211. * basic function
  212. */
  213. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  214. {
  215. return fsi->master;
  216. }
  217. static int fsi_is_port_a(struct fsi_priv *fsi)
  218. {
  219. return fsi->master->base == fsi->base;
  220. }
  221. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  222. {
  223. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  224. return rtd->cpu_dai;
  225. }
  226. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  227. {
  228. struct snd_soc_dai *dai = fsi_get_dai(substream);
  229. struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
  230. if (dai->id == 0)
  231. return &master->fsia;
  232. else
  233. return &master->fsib;
  234. }
  235. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  236. {
  237. int is_porta = fsi_is_port_a(fsi);
  238. struct fsi_master *master = fsi_get_master(fsi);
  239. return is_porta ? master->info->porta_flags :
  240. master->info->portb_flags;
  241. }
  242. static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
  243. {
  244. u32 mode;
  245. u32 flags = fsi_get_info_flags(fsi);
  246. mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;
  247. /* return
  248. * 1 : master mode
  249. * 0 : slave mode
  250. */
  251. return (mode & flags) != mode;
  252. }
  253. static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
  254. {
  255. int is_porta = fsi_is_port_a(fsi);
  256. u32 data;
  257. if (is_porta)
  258. data = is_play ? (1 << 0) : (1 << 4);
  259. else
  260. data = is_play ? (1 << 8) : (1 << 12);
  261. return data;
  262. }
  263. static void fsi_stream_push(struct fsi_priv *fsi,
  264. struct snd_pcm_substream *substream,
  265. u32 buffer_len,
  266. u32 period_len)
  267. {
  268. fsi->substream = substream;
  269. fsi->buff_len = buffer_len;
  270. fsi->buff_offset = 0;
  271. fsi->period_len = period_len;
  272. fsi->period_num = 0;
  273. }
  274. static void fsi_stream_pop(struct fsi_priv *fsi)
  275. {
  276. fsi->substream = NULL;
  277. fsi->buff_len = 0;
  278. fsi->buff_offset = 0;
  279. fsi->period_len = 0;
  280. fsi->period_num = 0;
  281. }
  282. static int fsi_get_fifo_data_num(struct fsi_priv *fsi, int is_play)
  283. {
  284. u32 status;
  285. u32 reg = is_play ? DOFF_ST : DIFF_ST;
  286. int data_num;
  287. status = fsi_reg_read(fsi, reg);
  288. data_num = 0x1ff & (status >> 8);
  289. data_num *= fsi->chan_num;
  290. return data_num;
  291. }
  292. static int fsi_len2num(int len, int width)
  293. {
  294. return len / width;
  295. }
  296. #define fsi_num2offset(a, b) fsi_num2len(a, b)
  297. static int fsi_num2len(int num, int width)
  298. {
  299. return num * width;
  300. }
  301. static int fsi_get_frame_width(struct fsi_priv *fsi)
  302. {
  303. struct snd_pcm_substream *substream = fsi->substream;
  304. struct snd_pcm_runtime *runtime = substream->runtime;
  305. return frames_to_bytes(runtime, 1) / fsi->chan_num;
  306. }
  307. /*
  308. * dma function
  309. */
  310. static u8 *fsi_dma_get_area(struct fsi_priv *fsi)
  311. {
  312. return fsi->substream->runtime->dma_area + fsi->buff_offset;
  313. }
  314. static void fsi_dma_soft_push16(struct fsi_priv *fsi, int num)
  315. {
  316. u16 *start;
  317. int i;
  318. start = (u16 *)fsi_dma_get_area(fsi);
  319. for (i = 0; i < num; i++)
  320. fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8));
  321. }
  322. static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int num)
  323. {
  324. u16 *start;
  325. int i;
  326. start = (u16 *)fsi_dma_get_area(fsi);
  327. for (i = 0; i < num; i++)
  328. *(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  329. }
  330. static void fsi_dma_soft_push32(struct fsi_priv *fsi, int num)
  331. {
  332. u32 *start;
  333. int i;
  334. start = (u32 *)fsi_dma_get_area(fsi);
  335. for (i = 0; i < num; i++)
  336. fsi_reg_write(fsi, DODT, *(start + i));
  337. }
  338. static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int num)
  339. {
  340. u32 *start;
  341. int i;
  342. start = (u32 *)fsi_dma_get_area(fsi);
  343. for (i = 0; i < num; i++)
  344. *(start + i) = fsi_reg_read(fsi, DIDT);
  345. }
  346. /*
  347. * irq function
  348. */
  349. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  350. {
  351. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  352. struct fsi_master *master = fsi_get_master(fsi);
  353. fsi_master_mask_set(master, master->core->imsk, data, data);
  354. fsi_master_mask_set(master, master->core->iemsk, data, data);
  355. }
  356. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  357. {
  358. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  359. struct fsi_master *master = fsi_get_master(fsi);
  360. fsi_master_mask_set(master, master->core->imsk, data, 0);
  361. fsi_master_mask_set(master, master->core->iemsk, data, 0);
  362. }
  363. static u32 fsi_irq_get_status(struct fsi_master *master)
  364. {
  365. return fsi_master_read(master, master->core->int_st);
  366. }
  367. static void fsi_irq_clear_all_status(struct fsi_master *master)
  368. {
  369. fsi_master_write(master, master->core->int_st, 0);
  370. }
  371. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  372. {
  373. u32 data = 0;
  374. struct fsi_master *master = fsi_get_master(fsi);
  375. data |= fsi_port_ab_io_bit(fsi, 0);
  376. data |= fsi_port_ab_io_bit(fsi, 1);
  377. /* clear interrupt factor */
  378. fsi_master_mask_set(master, master->core->int_st, data, 0);
  379. }
  380. /*
  381. * SPDIF master clock function
  382. *
  383. * These functions are used later FSI2
  384. */
  385. static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
  386. {
  387. struct fsi_master *master = fsi_get_master(fsi);
  388. u32 val = BP | SE;
  389. if (master->core->ver < 2) {
  390. pr_err("fsi: register access err (%s)\n", __func__);
  391. return;
  392. }
  393. if (enable)
  394. fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
  395. else
  396. fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
  397. }
  398. /*
  399. * ctrl function
  400. */
  401. static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
  402. {
  403. u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
  404. struct fsi_master *master = fsi_get_master(fsi);
  405. if (enable)
  406. fsi_master_mask_set(master, CLK_RST, val, val);
  407. else
  408. fsi_master_mask_set(master, CLK_RST, val, 0);
  409. }
  410. static void fsi_fifo_init(struct fsi_priv *fsi,
  411. int is_play,
  412. struct snd_soc_dai *dai)
  413. {
  414. struct fsi_master *master = fsi_get_master(fsi);
  415. u32 ctrl, shift, i;
  416. /* get on-chip RAM capacity */
  417. shift = fsi_master_read(master, FIFO_SZ);
  418. shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
  419. shift &= OUT_SZ_MASK;
  420. fsi->fifo_max_num = 256 << shift;
  421. dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max_num);
  422. /*
  423. * The maximum number of sample data varies depending
  424. * on the number of channels selected for the format.
  425. *
  426. * FIFOs are used in 4-channel units in 3-channel mode
  427. * and in 8-channel units in 5- to 7-channel mode
  428. * meaning that more FIFOs than the required size of DPRAM
  429. * are used.
  430. *
  431. * ex) if 256 words of DP-RAM is connected
  432. * 1 channel: 256 (256 x 1 = 256)
  433. * 2 channels: 128 (128 x 2 = 256)
  434. * 3 channels: 64 ( 64 x 3 = 192)
  435. * 4 channels: 64 ( 64 x 4 = 256)
  436. * 5 channels: 32 ( 32 x 5 = 160)
  437. * 6 channels: 32 ( 32 x 6 = 192)
  438. * 7 channels: 32 ( 32 x 7 = 224)
  439. * 8 channels: 32 ( 32 x 8 = 256)
  440. */
  441. for (i = 1; i < fsi->chan_num; i <<= 1)
  442. fsi->fifo_max_num >>= 1;
  443. dev_dbg(dai->dev, "%d channel %d store\n",
  444. fsi->chan_num, fsi->fifo_max_num);
  445. ctrl = is_play ? DOFF_CTL : DIFF_CTL;
  446. /* set interrupt generation factor */
  447. fsi_reg_write(fsi, ctrl, IRQ_HALF);
  448. /* clear FIFO */
  449. fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
  450. }
  451. static void fsi_soft_all_reset(struct fsi_master *master)
  452. {
  453. /* port AB reset */
  454. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  455. mdelay(10);
  456. /* soft reset */
  457. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  458. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  459. mdelay(10);
  460. }
  461. static int fsi_fifo_data_ctrl(struct fsi_priv *fsi, int startup, int is_play)
  462. {
  463. struct snd_pcm_runtime *runtime;
  464. struct snd_pcm_substream *substream = NULL;
  465. u32 status;
  466. u32 status_reg = is_play ? DOFF_ST : DIFF_ST;
  467. int data_residue_num;
  468. int data_num;
  469. int data_num_max;
  470. int ch_width;
  471. int over_period;
  472. void (*fn)(struct fsi_priv *fsi, int size);
  473. if (!fsi ||
  474. !fsi->substream ||
  475. !fsi->substream->runtime)
  476. return -EINVAL;
  477. over_period = 0;
  478. substream = fsi->substream;
  479. runtime = substream->runtime;
  480. /* FSI FIFO has limit.
  481. * So, this driver can not send periods data at a time
  482. */
  483. if (fsi->buff_offset >=
  484. fsi_num2offset(fsi->period_num + 1, fsi->period_len)) {
  485. over_period = 1;
  486. fsi->period_num = (fsi->period_num + 1) % runtime->periods;
  487. if (0 == fsi->period_num)
  488. fsi->buff_offset = 0;
  489. }
  490. /* get 1 channel data width */
  491. ch_width = fsi_get_frame_width(fsi);
  492. /* get residue data number of alsa */
  493. data_residue_num = fsi_len2num(fsi->buff_len - fsi->buff_offset,
  494. ch_width);
  495. if (is_play) {
  496. /*
  497. * for play-back
  498. *
  499. * data_num_max : number of FSI fifo free space
  500. * data_num : number of ALSA residue data
  501. */
  502. data_num_max = fsi->fifo_max_num * fsi->chan_num;
  503. data_num_max -= fsi_get_fifo_data_num(fsi, is_play);
  504. data_num = data_residue_num;
  505. switch (ch_width) {
  506. case 2:
  507. fn = fsi_dma_soft_push16;
  508. break;
  509. case 4:
  510. fn = fsi_dma_soft_push32;
  511. break;
  512. default:
  513. return -EINVAL;
  514. }
  515. } else {
  516. /*
  517. * for capture
  518. *
  519. * data_num_max : number of ALSA free space
  520. * data_num : number of data in FSI fifo
  521. */
  522. data_num_max = data_residue_num;
  523. data_num = fsi_get_fifo_data_num(fsi, is_play);
  524. switch (ch_width) {
  525. case 2:
  526. fn = fsi_dma_soft_pop16;
  527. break;
  528. case 4:
  529. fn = fsi_dma_soft_pop32;
  530. break;
  531. default:
  532. return -EINVAL;
  533. }
  534. }
  535. data_num = min(data_num, data_num_max);
  536. fn(fsi, data_num);
  537. /* update buff_offset */
  538. fsi->buff_offset += fsi_num2offset(data_num, ch_width);
  539. /* check fifo status */
  540. status = fsi_reg_read(fsi, status_reg);
  541. if (!startup) {
  542. struct snd_soc_dai *dai = fsi_get_dai(substream);
  543. if (status & ERR_OVER)
  544. dev_err(dai->dev, "over run\n");
  545. if (status & ERR_UNDER)
  546. dev_err(dai->dev, "under run\n");
  547. }
  548. fsi_reg_write(fsi, status_reg, 0);
  549. /* re-enable irq */
  550. fsi_irq_enable(fsi, is_play);
  551. if (over_period)
  552. snd_pcm_period_elapsed(substream);
  553. return 0;
  554. }
  555. static int fsi_data_pop(struct fsi_priv *fsi, int startup)
  556. {
  557. return fsi_fifo_data_ctrl(fsi, startup, 0);
  558. }
  559. static int fsi_data_push(struct fsi_priv *fsi, int startup)
  560. {
  561. return fsi_fifo_data_ctrl(fsi, startup, 1);
  562. }
  563. static irqreturn_t fsi_interrupt(int irq, void *data)
  564. {
  565. struct fsi_master *master = data;
  566. u32 int_st = fsi_irq_get_status(master);
  567. /* clear irq status */
  568. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  569. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  570. if (int_st & INT_A_OUT)
  571. fsi_data_push(&master->fsia, 0);
  572. if (int_st & INT_B_OUT)
  573. fsi_data_push(&master->fsib, 0);
  574. if (int_st & INT_A_IN)
  575. fsi_data_pop(&master->fsia, 0);
  576. if (int_st & INT_B_IN)
  577. fsi_data_pop(&master->fsib, 0);
  578. fsi_irq_clear_all_status(master);
  579. return IRQ_HANDLED;
  580. }
  581. /*
  582. * dai ops
  583. */
  584. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  585. struct snd_soc_dai *dai)
  586. {
  587. struct fsi_priv *fsi = fsi_get_priv(substream);
  588. u32 flags = fsi_get_info_flags(fsi);
  589. struct fsi_master *master = fsi_get_master(fsi);
  590. u32 fmt;
  591. u32 reg;
  592. u32 data;
  593. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  594. int is_master;
  595. int ret = 0;
  596. pm_runtime_get_sync(dai->dev);
  597. /* CKG1 */
  598. data = is_play ? (1 << 0) : (1 << 4);
  599. is_master = fsi_is_master_mode(fsi, is_play);
  600. if (is_master)
  601. fsi_reg_mask_set(fsi, CKG1, data, data);
  602. else
  603. fsi_reg_mask_set(fsi, CKG1, data, 0);
  604. /* clock inversion (CKG2) */
  605. data = 0;
  606. if (SH_FSI_LRM_INV & flags)
  607. data |= 1 << 12;
  608. if (SH_FSI_BRM_INV & flags)
  609. data |= 1 << 8;
  610. if (SH_FSI_LRS_INV & flags)
  611. data |= 1 << 4;
  612. if (SH_FSI_BRS_INV & flags)
  613. data |= 1 << 0;
  614. fsi_reg_write(fsi, CKG2, data);
  615. /* do fmt, di fmt */
  616. data = 0;
  617. reg = is_play ? DO_FMT : DI_FMT;
  618. fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
  619. switch (fmt) {
  620. case SH_FSI_FMT_MONO:
  621. data = CR_MONO;
  622. fsi->chan_num = 1;
  623. break;
  624. case SH_FSI_FMT_MONO_DELAY:
  625. data = CR_MONO_D;
  626. fsi->chan_num = 1;
  627. break;
  628. case SH_FSI_FMT_PCM:
  629. data = CR_PCM;
  630. fsi->chan_num = 2;
  631. break;
  632. case SH_FSI_FMT_I2S:
  633. data = CR_I2S;
  634. fsi->chan_num = 2;
  635. break;
  636. case SH_FSI_FMT_TDM:
  637. fsi->chan_num = is_play ?
  638. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  639. data = CR_TDM | (fsi->chan_num - 1);
  640. break;
  641. case SH_FSI_FMT_TDM_DELAY:
  642. fsi->chan_num = is_play ?
  643. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  644. data = CR_TDM_D | (fsi->chan_num - 1);
  645. break;
  646. case SH_FSI_FMT_SPDIF:
  647. if (master->core->ver < 2) {
  648. dev_err(dai->dev, "This FSI can not use SPDIF\n");
  649. return -EINVAL;
  650. }
  651. data = CR_SPDIF;
  652. fsi->chan_num = 2;
  653. fsi_spdif_clk_ctrl(fsi, 1);
  654. fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
  655. break;
  656. default:
  657. dev_err(dai->dev, "unknown format.\n");
  658. return -EINVAL;
  659. }
  660. fsi_reg_write(fsi, reg, data);
  661. /* irq clear */
  662. fsi_irq_disable(fsi, is_play);
  663. fsi_irq_clear_status(fsi);
  664. /* fifo init */
  665. fsi_fifo_init(fsi, is_play, dai);
  666. return ret;
  667. }
  668. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  669. struct snd_soc_dai *dai)
  670. {
  671. struct fsi_priv *fsi = fsi_get_priv(substream);
  672. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  673. fsi_irq_disable(fsi, is_play);
  674. fsi_clk_ctrl(fsi, 0);
  675. pm_runtime_put_sync(dai->dev);
  676. }
  677. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  678. struct snd_soc_dai *dai)
  679. {
  680. struct fsi_priv *fsi = fsi_get_priv(substream);
  681. struct snd_pcm_runtime *runtime = substream->runtime;
  682. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  683. int ret = 0;
  684. switch (cmd) {
  685. case SNDRV_PCM_TRIGGER_START:
  686. fsi_stream_push(fsi, substream,
  687. frames_to_bytes(runtime, runtime->buffer_size),
  688. frames_to_bytes(runtime, runtime->period_size));
  689. ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
  690. break;
  691. case SNDRV_PCM_TRIGGER_STOP:
  692. fsi_irq_disable(fsi, is_play);
  693. fsi_stream_pop(fsi);
  694. break;
  695. }
  696. return ret;
  697. }
  698. static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
  699. struct snd_pcm_hw_params *params,
  700. struct snd_soc_dai *dai)
  701. {
  702. struct fsi_priv *fsi = fsi_get_priv(substream);
  703. struct fsi_master *master = fsi_get_master(fsi);
  704. int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
  705. int fsi_ver = master->core->ver;
  706. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  707. int ret;
  708. /* if slave mode, set_rate is not needed */
  709. if (!fsi_is_master_mode(fsi, is_play))
  710. return 0;
  711. /* it is error if no set_rate */
  712. if (!set_rate)
  713. return -EIO;
  714. ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
  715. if (ret > 0) {
  716. u32 data = 0;
  717. switch (ret & SH_FSI_ACKMD_MASK) {
  718. default:
  719. /* FALL THROUGH */
  720. case SH_FSI_ACKMD_512:
  721. data |= (0x0 << 12);
  722. break;
  723. case SH_FSI_ACKMD_256:
  724. data |= (0x1 << 12);
  725. break;
  726. case SH_FSI_ACKMD_128:
  727. data |= (0x2 << 12);
  728. break;
  729. case SH_FSI_ACKMD_64:
  730. data |= (0x3 << 12);
  731. break;
  732. case SH_FSI_ACKMD_32:
  733. if (fsi_ver < 2)
  734. dev_err(dai->dev, "unsupported ACKMD\n");
  735. else
  736. data |= (0x4 << 12);
  737. break;
  738. }
  739. switch (ret & SH_FSI_BPFMD_MASK) {
  740. default:
  741. /* FALL THROUGH */
  742. case SH_FSI_BPFMD_32:
  743. data |= (0x0 << 8);
  744. break;
  745. case SH_FSI_BPFMD_64:
  746. data |= (0x1 << 8);
  747. break;
  748. case SH_FSI_BPFMD_128:
  749. data |= (0x2 << 8);
  750. break;
  751. case SH_FSI_BPFMD_256:
  752. data |= (0x3 << 8);
  753. break;
  754. case SH_FSI_BPFMD_512:
  755. data |= (0x4 << 8);
  756. break;
  757. case SH_FSI_BPFMD_16:
  758. if (fsi_ver < 2)
  759. dev_err(dai->dev, "unsupported ACKMD\n");
  760. else
  761. data |= (0x7 << 8);
  762. break;
  763. }
  764. fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
  765. udelay(10);
  766. fsi_clk_ctrl(fsi, 1);
  767. ret = 0;
  768. }
  769. return ret;
  770. }
  771. static struct snd_soc_dai_ops fsi_dai_ops = {
  772. .startup = fsi_dai_startup,
  773. .shutdown = fsi_dai_shutdown,
  774. .trigger = fsi_dai_trigger,
  775. .hw_params = fsi_dai_hw_params,
  776. };
  777. /*
  778. * pcm ops
  779. */
  780. static struct snd_pcm_hardware fsi_pcm_hardware = {
  781. .info = SNDRV_PCM_INFO_INTERLEAVED |
  782. SNDRV_PCM_INFO_MMAP |
  783. SNDRV_PCM_INFO_MMAP_VALID |
  784. SNDRV_PCM_INFO_PAUSE,
  785. .formats = FSI_FMTS,
  786. .rates = FSI_RATES,
  787. .rate_min = 8000,
  788. .rate_max = 192000,
  789. .channels_min = 1,
  790. .channels_max = 2,
  791. .buffer_bytes_max = 64 * 1024,
  792. .period_bytes_min = 32,
  793. .period_bytes_max = 8192,
  794. .periods_min = 1,
  795. .periods_max = 32,
  796. .fifo_size = 256,
  797. };
  798. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  799. {
  800. struct snd_pcm_runtime *runtime = substream->runtime;
  801. int ret = 0;
  802. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  803. ret = snd_pcm_hw_constraint_integer(runtime,
  804. SNDRV_PCM_HW_PARAM_PERIODS);
  805. return ret;
  806. }
  807. static int fsi_hw_params(struct snd_pcm_substream *substream,
  808. struct snd_pcm_hw_params *hw_params)
  809. {
  810. return snd_pcm_lib_malloc_pages(substream,
  811. params_buffer_bytes(hw_params));
  812. }
  813. static int fsi_hw_free(struct snd_pcm_substream *substream)
  814. {
  815. return snd_pcm_lib_free_pages(substream);
  816. }
  817. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  818. {
  819. struct snd_pcm_runtime *runtime = substream->runtime;
  820. struct fsi_priv *fsi = fsi_get_priv(substream);
  821. long location;
  822. location = (fsi->buff_offset - 1);
  823. if (location < 0)
  824. location = 0;
  825. return bytes_to_frames(runtime, location);
  826. }
  827. static struct snd_pcm_ops fsi_pcm_ops = {
  828. .open = fsi_pcm_open,
  829. .ioctl = snd_pcm_lib_ioctl,
  830. .hw_params = fsi_hw_params,
  831. .hw_free = fsi_hw_free,
  832. .pointer = fsi_pointer,
  833. };
  834. /*
  835. * snd_soc_platform
  836. */
  837. #define PREALLOC_BUFFER (32 * 1024)
  838. #define PREALLOC_BUFFER_MAX (32 * 1024)
  839. static void fsi_pcm_free(struct snd_pcm *pcm)
  840. {
  841. snd_pcm_lib_preallocate_free_for_all(pcm);
  842. }
  843. static int fsi_pcm_new(struct snd_card *card,
  844. struct snd_soc_dai *dai,
  845. struct snd_pcm *pcm)
  846. {
  847. /*
  848. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  849. * in MMAP mode (i.e. aplay -M)
  850. */
  851. return snd_pcm_lib_preallocate_pages_for_all(
  852. pcm,
  853. SNDRV_DMA_TYPE_CONTINUOUS,
  854. snd_dma_continuous_data(GFP_KERNEL),
  855. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  856. }
  857. /*
  858. * alsa struct
  859. */
  860. static struct snd_soc_dai_driver fsi_soc_dai[] = {
  861. {
  862. .name = "fsia-dai",
  863. .playback = {
  864. .rates = FSI_RATES,
  865. .formats = FSI_FMTS,
  866. .channels_min = 1,
  867. .channels_max = 8,
  868. },
  869. .capture = {
  870. .rates = FSI_RATES,
  871. .formats = FSI_FMTS,
  872. .channels_min = 1,
  873. .channels_max = 8,
  874. },
  875. .ops = &fsi_dai_ops,
  876. },
  877. {
  878. .name = "fsib-dai",
  879. .playback = {
  880. .rates = FSI_RATES,
  881. .formats = FSI_FMTS,
  882. .channels_min = 1,
  883. .channels_max = 8,
  884. },
  885. .capture = {
  886. .rates = FSI_RATES,
  887. .formats = FSI_FMTS,
  888. .channels_min = 1,
  889. .channels_max = 8,
  890. },
  891. .ops = &fsi_dai_ops,
  892. },
  893. };
  894. static struct snd_soc_platform_driver fsi_soc_platform = {
  895. .ops = &fsi_pcm_ops,
  896. .pcm_new = fsi_pcm_new,
  897. .pcm_free = fsi_pcm_free,
  898. };
  899. /*
  900. * platform function
  901. */
  902. static int fsi_probe(struct platform_device *pdev)
  903. {
  904. struct fsi_master *master;
  905. const struct platform_device_id *id_entry;
  906. struct resource *res;
  907. unsigned int irq;
  908. int ret;
  909. id_entry = pdev->id_entry;
  910. if (!id_entry) {
  911. dev_err(&pdev->dev, "unknown fsi device\n");
  912. return -ENODEV;
  913. }
  914. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  915. irq = platform_get_irq(pdev, 0);
  916. if (!res || (int)irq <= 0) {
  917. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  918. ret = -ENODEV;
  919. goto exit;
  920. }
  921. master = kzalloc(sizeof(*master), GFP_KERNEL);
  922. if (!master) {
  923. dev_err(&pdev->dev, "Could not allocate master\n");
  924. ret = -ENOMEM;
  925. goto exit;
  926. }
  927. master->base = ioremap_nocache(res->start, resource_size(res));
  928. if (!master->base) {
  929. ret = -ENXIO;
  930. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  931. goto exit_kfree;
  932. }
  933. /* master setting */
  934. master->irq = irq;
  935. master->info = pdev->dev.platform_data;
  936. master->core = (struct fsi_core *)id_entry->driver_data;
  937. spin_lock_init(&master->lock);
  938. /* FSI A setting */
  939. master->fsia.base = master->base;
  940. master->fsia.master = master;
  941. master->fsia.mst_ctrl = A_MST_CTLR;
  942. /* FSI B setting */
  943. master->fsib.base = master->base + 0x40;
  944. master->fsib.master = master;
  945. master->fsib.mst_ctrl = B_MST_CTLR;
  946. pm_runtime_enable(&pdev->dev);
  947. pm_runtime_resume(&pdev->dev);
  948. dev_set_drvdata(&pdev->dev, master);
  949. fsi_soft_all_reset(master);
  950. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  951. id_entry->name, master);
  952. if (ret) {
  953. dev_err(&pdev->dev, "irq request err\n");
  954. goto exit_iounmap;
  955. }
  956. ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
  957. if (ret < 0) {
  958. dev_err(&pdev->dev, "cannot snd soc register\n");
  959. goto exit_free_irq;
  960. }
  961. return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  962. exit_free_irq:
  963. free_irq(irq, master);
  964. exit_iounmap:
  965. iounmap(master->base);
  966. pm_runtime_disable(&pdev->dev);
  967. exit_kfree:
  968. kfree(master);
  969. master = NULL;
  970. exit:
  971. return ret;
  972. }
  973. static int fsi_remove(struct platform_device *pdev)
  974. {
  975. struct fsi_master *master;
  976. master = dev_get_drvdata(&pdev->dev);
  977. snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
  978. snd_soc_unregister_platform(&pdev->dev);
  979. pm_runtime_disable(&pdev->dev);
  980. free_irq(master->irq, master);
  981. iounmap(master->base);
  982. kfree(master);
  983. return 0;
  984. }
  985. static int fsi_runtime_nop(struct device *dev)
  986. {
  987. /* Runtime PM callback shared between ->runtime_suspend()
  988. * and ->runtime_resume(). Simply returns success.
  989. *
  990. * This driver re-initializes all registers after
  991. * pm_runtime_get_sync() anyway so there is no need
  992. * to save and restore registers here.
  993. */
  994. return 0;
  995. }
  996. static struct dev_pm_ops fsi_pm_ops = {
  997. .runtime_suspend = fsi_runtime_nop,
  998. .runtime_resume = fsi_runtime_nop,
  999. };
  1000. static struct fsi_core fsi1_core = {
  1001. .ver = 1,
  1002. /* Interrupt */
  1003. .int_st = INT_ST,
  1004. .iemsk = IEMSK,
  1005. .imsk = IMSK,
  1006. };
  1007. static struct fsi_core fsi2_core = {
  1008. .ver = 2,
  1009. /* Interrupt */
  1010. .int_st = CPU_INT_ST,
  1011. .iemsk = CPU_IEMSK,
  1012. .imsk = CPU_IMSK,
  1013. };
  1014. static struct platform_device_id fsi_id_table[] = {
  1015. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  1016. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  1017. {},
  1018. };
  1019. MODULE_DEVICE_TABLE(platform, fsi_id_table);
  1020. static struct platform_driver fsi_driver = {
  1021. .driver = {
  1022. .name = "fsi-pcm-audio",
  1023. .pm = &fsi_pm_ops,
  1024. },
  1025. .probe = fsi_probe,
  1026. .remove = fsi_remove,
  1027. .id_table = fsi_id_table,
  1028. };
  1029. static int __init fsi_mobile_init(void)
  1030. {
  1031. return platform_driver_register(&fsi_driver);
  1032. }
  1033. static void __exit fsi_mobile_exit(void)
  1034. {
  1035. platform_driver_unregister(&fsi_driver);
  1036. }
  1037. module_init(fsi_mobile_init);
  1038. module_exit(fsi_mobile_exit);
  1039. MODULE_LICENSE("GPL");
  1040. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  1041. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");