sched.c 264 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS_PINNED, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. unsigned long rt_nr_total;
  416. int overloaded;
  417. struct plist_head pushable_tasks;
  418. #endif
  419. int rt_throttled;
  420. u64 rt_time;
  421. u64 rt_runtime;
  422. /* Nests inside the rq lock: */
  423. spinlock_t rt_runtime_lock;
  424. #ifdef CONFIG_RT_GROUP_SCHED
  425. unsigned long rt_nr_boosted;
  426. struct rq *rq;
  427. struct list_head leaf_rt_rq_list;
  428. struct task_group *tg;
  429. struct sched_rt_entity *rt_se;
  430. #endif
  431. };
  432. #ifdef CONFIG_SMP
  433. /*
  434. * We add the notion of a root-domain which will be used to define per-domain
  435. * variables. Each exclusive cpuset essentially defines an island domain by
  436. * fully partitioning the member cpus from any other cpuset. Whenever a new
  437. * exclusive cpuset is created, we also create and attach a new root-domain
  438. * object.
  439. *
  440. */
  441. struct root_domain {
  442. atomic_t refcount;
  443. cpumask_var_t span;
  444. cpumask_var_t online;
  445. /*
  446. * The "RT overload" flag: it gets set if a CPU has more than
  447. * one runnable RT task.
  448. */
  449. cpumask_var_t rto_mask;
  450. atomic_t rto_count;
  451. #ifdef CONFIG_SMP
  452. struct cpupri cpupri;
  453. #endif
  454. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  455. /*
  456. * Preferred wake up cpu nominated by sched_mc balance that will be
  457. * used when most cpus are idle in the system indicating overall very
  458. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  459. */
  460. unsigned int sched_mc_preferred_wakeup_cpu;
  461. #endif
  462. };
  463. /*
  464. * By default the system creates a single root-domain with all cpus as
  465. * members (mimicking the global state we have today).
  466. */
  467. static struct root_domain def_root_domain;
  468. #endif
  469. /*
  470. * This is the main, per-CPU runqueue data structure.
  471. *
  472. * Locking rule: those places that want to lock multiple runqueues
  473. * (such as the load balancing or the thread migration code), lock
  474. * acquire operations must be ordered by ascending &runqueue.
  475. */
  476. struct rq {
  477. /* runqueue lock: */
  478. spinlock_t lock;
  479. /*
  480. * nr_running and cpu_load should be in the same cacheline because
  481. * remote CPUs use both these fields when doing load calculation.
  482. */
  483. unsigned long nr_running;
  484. #define CPU_LOAD_IDX_MAX 5
  485. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  486. #ifdef CONFIG_NO_HZ
  487. unsigned long last_tick_seen;
  488. unsigned char in_nohz_recently;
  489. #endif
  490. /* capture load from *all* tasks on this cpu: */
  491. struct load_weight load;
  492. unsigned long nr_load_updates;
  493. u64 nr_switches;
  494. u64 nr_migrations_in;
  495. struct cfs_rq cfs;
  496. struct rt_rq rt;
  497. #ifdef CONFIG_FAIR_GROUP_SCHED
  498. /* list of leaf cfs_rq on this cpu: */
  499. struct list_head leaf_cfs_rq_list;
  500. #endif
  501. #ifdef CONFIG_RT_GROUP_SCHED
  502. struct list_head leaf_rt_rq_list;
  503. #endif
  504. /*
  505. * This is part of a global counter where only the total sum
  506. * over all CPUs matters. A task can increase this counter on
  507. * one CPU and if it got migrated afterwards it may decrease
  508. * it on another CPU. Always updated under the runqueue lock:
  509. */
  510. unsigned long nr_uninterruptible;
  511. struct task_struct *curr, *idle;
  512. unsigned long next_balance;
  513. struct mm_struct *prev_mm;
  514. u64 clock;
  515. atomic_t nr_iowait;
  516. #ifdef CONFIG_SMP
  517. struct root_domain *rd;
  518. struct sched_domain *sd;
  519. unsigned char idle_at_tick;
  520. /* For active balancing */
  521. int post_schedule;
  522. int active_balance;
  523. int push_cpu;
  524. /* cpu of this runqueue: */
  525. int cpu;
  526. int online;
  527. unsigned long avg_load_per_task;
  528. struct task_struct *migration_thread;
  529. struct list_head migration_queue;
  530. #endif
  531. /* calc_load related fields */
  532. unsigned long calc_load_update;
  533. long calc_load_active;
  534. #ifdef CONFIG_SCHED_HRTICK
  535. #ifdef CONFIG_SMP
  536. int hrtick_csd_pending;
  537. struct call_single_data hrtick_csd;
  538. #endif
  539. struct hrtimer hrtick_timer;
  540. #endif
  541. #ifdef CONFIG_SCHEDSTATS
  542. /* latency stats */
  543. struct sched_info rq_sched_info;
  544. unsigned long long rq_cpu_time;
  545. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  546. /* sys_sched_yield() stats */
  547. unsigned int yld_count;
  548. /* schedule() stats */
  549. unsigned int sched_switch;
  550. unsigned int sched_count;
  551. unsigned int sched_goidle;
  552. /* try_to_wake_up() stats */
  553. unsigned int ttwu_count;
  554. unsigned int ttwu_local;
  555. /* BKL stats */
  556. unsigned int bkl_count;
  557. #endif
  558. };
  559. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  560. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  561. {
  562. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  563. }
  564. static inline int cpu_of(struct rq *rq)
  565. {
  566. #ifdef CONFIG_SMP
  567. return rq->cpu;
  568. #else
  569. return 0;
  570. #endif
  571. }
  572. /*
  573. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  574. * See detach_destroy_domains: synchronize_sched for details.
  575. *
  576. * The domain tree of any CPU may only be accessed from within
  577. * preempt-disabled sections.
  578. */
  579. #define for_each_domain(cpu, __sd) \
  580. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  581. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  582. #define this_rq() (&__get_cpu_var(runqueues))
  583. #define task_rq(p) cpu_rq(task_cpu(p))
  584. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  585. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  586. inline void update_rq_clock(struct rq *rq)
  587. {
  588. rq->clock = sched_clock_cpu(cpu_of(rq));
  589. }
  590. /*
  591. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  592. */
  593. #ifdef CONFIG_SCHED_DEBUG
  594. # define const_debug __read_mostly
  595. #else
  596. # define const_debug static const
  597. #endif
  598. /**
  599. * runqueue_is_locked
  600. *
  601. * Returns true if the current cpu runqueue is locked.
  602. * This interface allows printk to be called with the runqueue lock
  603. * held and know whether or not it is OK to wake up the klogd.
  604. */
  605. int runqueue_is_locked(void)
  606. {
  607. int cpu = get_cpu();
  608. struct rq *rq = cpu_rq(cpu);
  609. int ret;
  610. ret = spin_is_locked(&rq->lock);
  611. put_cpu();
  612. return ret;
  613. }
  614. /*
  615. * Debugging: various feature bits
  616. */
  617. #define SCHED_FEAT(name, enabled) \
  618. __SCHED_FEAT_##name ,
  619. enum {
  620. #include "sched_features.h"
  621. };
  622. #undef SCHED_FEAT
  623. #define SCHED_FEAT(name, enabled) \
  624. (1UL << __SCHED_FEAT_##name) * enabled |
  625. const_debug unsigned int sysctl_sched_features =
  626. #include "sched_features.h"
  627. 0;
  628. #undef SCHED_FEAT
  629. #ifdef CONFIG_SCHED_DEBUG
  630. #define SCHED_FEAT(name, enabled) \
  631. #name ,
  632. static __read_mostly char *sched_feat_names[] = {
  633. #include "sched_features.h"
  634. NULL
  635. };
  636. #undef SCHED_FEAT
  637. static int sched_feat_show(struct seq_file *m, void *v)
  638. {
  639. int i;
  640. for (i = 0; sched_feat_names[i]; i++) {
  641. if (!(sysctl_sched_features & (1UL << i)))
  642. seq_puts(m, "NO_");
  643. seq_printf(m, "%s ", sched_feat_names[i]);
  644. }
  645. seq_puts(m, "\n");
  646. return 0;
  647. }
  648. static ssize_t
  649. sched_feat_write(struct file *filp, const char __user *ubuf,
  650. size_t cnt, loff_t *ppos)
  651. {
  652. char buf[64];
  653. char *cmp = buf;
  654. int neg = 0;
  655. int i;
  656. if (cnt > 63)
  657. cnt = 63;
  658. if (copy_from_user(&buf, ubuf, cnt))
  659. return -EFAULT;
  660. buf[cnt] = 0;
  661. if (strncmp(buf, "NO_", 3) == 0) {
  662. neg = 1;
  663. cmp += 3;
  664. }
  665. for (i = 0; sched_feat_names[i]; i++) {
  666. int len = strlen(sched_feat_names[i]);
  667. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  668. if (neg)
  669. sysctl_sched_features &= ~(1UL << i);
  670. else
  671. sysctl_sched_features |= (1UL << i);
  672. break;
  673. }
  674. }
  675. if (!sched_feat_names[i])
  676. return -EINVAL;
  677. filp->f_pos += cnt;
  678. return cnt;
  679. }
  680. static int sched_feat_open(struct inode *inode, struct file *filp)
  681. {
  682. return single_open(filp, sched_feat_show, NULL);
  683. }
  684. static struct file_operations sched_feat_fops = {
  685. .open = sched_feat_open,
  686. .write = sched_feat_write,
  687. .read = seq_read,
  688. .llseek = seq_lseek,
  689. .release = single_release,
  690. };
  691. static __init int sched_init_debug(void)
  692. {
  693. debugfs_create_file("sched_features", 0644, NULL, NULL,
  694. &sched_feat_fops);
  695. return 0;
  696. }
  697. late_initcall(sched_init_debug);
  698. #endif
  699. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  700. /*
  701. * Number of tasks to iterate in a single balance run.
  702. * Limited because this is done with IRQs disabled.
  703. */
  704. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  705. /*
  706. * ratelimit for updating the group shares.
  707. * default: 0.25ms
  708. */
  709. unsigned int sysctl_sched_shares_ratelimit = 250000;
  710. /*
  711. * Inject some fuzzyness into changing the per-cpu group shares
  712. * this avoids remote rq-locks at the expense of fairness.
  713. * default: 4
  714. */
  715. unsigned int sysctl_sched_shares_thresh = 4;
  716. /*
  717. * period over which we measure -rt task cpu usage in us.
  718. * default: 1s
  719. */
  720. unsigned int sysctl_sched_rt_period = 1000000;
  721. static __read_mostly int scheduler_running;
  722. /*
  723. * part of the period that we allow rt tasks to run in us.
  724. * default: 0.95s
  725. */
  726. int sysctl_sched_rt_runtime = 950000;
  727. static inline u64 global_rt_period(void)
  728. {
  729. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  730. }
  731. static inline u64 global_rt_runtime(void)
  732. {
  733. if (sysctl_sched_rt_runtime < 0)
  734. return RUNTIME_INF;
  735. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  736. }
  737. #ifndef prepare_arch_switch
  738. # define prepare_arch_switch(next) do { } while (0)
  739. #endif
  740. #ifndef finish_arch_switch
  741. # define finish_arch_switch(prev) do { } while (0)
  742. #endif
  743. static inline int task_current(struct rq *rq, struct task_struct *p)
  744. {
  745. return rq->curr == p;
  746. }
  747. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  748. static inline int task_running(struct rq *rq, struct task_struct *p)
  749. {
  750. return task_current(rq, p);
  751. }
  752. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  753. {
  754. }
  755. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  756. {
  757. #ifdef CONFIG_DEBUG_SPINLOCK
  758. /* this is a valid case when another task releases the spinlock */
  759. rq->lock.owner = current;
  760. #endif
  761. /*
  762. * If we are tracking spinlock dependencies then we have to
  763. * fix up the runqueue lock - which gets 'carried over' from
  764. * prev into current:
  765. */
  766. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  767. spin_unlock_irq(&rq->lock);
  768. }
  769. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  770. static inline int task_running(struct rq *rq, struct task_struct *p)
  771. {
  772. #ifdef CONFIG_SMP
  773. return p->oncpu;
  774. #else
  775. return task_current(rq, p);
  776. #endif
  777. }
  778. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  779. {
  780. #ifdef CONFIG_SMP
  781. /*
  782. * We can optimise this out completely for !SMP, because the
  783. * SMP rebalancing from interrupt is the only thing that cares
  784. * here.
  785. */
  786. next->oncpu = 1;
  787. #endif
  788. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  789. spin_unlock_irq(&rq->lock);
  790. #else
  791. spin_unlock(&rq->lock);
  792. #endif
  793. }
  794. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  795. {
  796. #ifdef CONFIG_SMP
  797. /*
  798. * After ->oncpu is cleared, the task can be moved to a different CPU.
  799. * We must ensure this doesn't happen until the switch is completely
  800. * finished.
  801. */
  802. smp_wmb();
  803. prev->oncpu = 0;
  804. #endif
  805. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  806. local_irq_enable();
  807. #endif
  808. }
  809. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  810. /*
  811. * __task_rq_lock - lock the runqueue a given task resides on.
  812. * Must be called interrupts disabled.
  813. */
  814. static inline struct rq *__task_rq_lock(struct task_struct *p)
  815. __acquires(rq->lock)
  816. {
  817. for (;;) {
  818. struct rq *rq = task_rq(p);
  819. spin_lock(&rq->lock);
  820. if (likely(rq == task_rq(p)))
  821. return rq;
  822. spin_unlock(&rq->lock);
  823. }
  824. }
  825. /*
  826. * task_rq_lock - lock the runqueue a given task resides on and disable
  827. * interrupts. Note the ordering: we can safely lookup the task_rq without
  828. * explicitly disabling preemption.
  829. */
  830. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  831. __acquires(rq->lock)
  832. {
  833. struct rq *rq;
  834. for (;;) {
  835. local_irq_save(*flags);
  836. rq = task_rq(p);
  837. spin_lock(&rq->lock);
  838. if (likely(rq == task_rq(p)))
  839. return rq;
  840. spin_unlock_irqrestore(&rq->lock, *flags);
  841. }
  842. }
  843. void task_rq_unlock_wait(struct task_struct *p)
  844. {
  845. struct rq *rq = task_rq(p);
  846. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  847. spin_unlock_wait(&rq->lock);
  848. }
  849. static void __task_rq_unlock(struct rq *rq)
  850. __releases(rq->lock)
  851. {
  852. spin_unlock(&rq->lock);
  853. }
  854. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  855. __releases(rq->lock)
  856. {
  857. spin_unlock_irqrestore(&rq->lock, *flags);
  858. }
  859. /*
  860. * this_rq_lock - lock this runqueue and disable interrupts.
  861. */
  862. static struct rq *this_rq_lock(void)
  863. __acquires(rq->lock)
  864. {
  865. struct rq *rq;
  866. local_irq_disable();
  867. rq = this_rq();
  868. spin_lock(&rq->lock);
  869. return rq;
  870. }
  871. #ifdef CONFIG_SCHED_HRTICK
  872. /*
  873. * Use HR-timers to deliver accurate preemption points.
  874. *
  875. * Its all a bit involved since we cannot program an hrt while holding the
  876. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  877. * reschedule event.
  878. *
  879. * When we get rescheduled we reprogram the hrtick_timer outside of the
  880. * rq->lock.
  881. */
  882. /*
  883. * Use hrtick when:
  884. * - enabled by features
  885. * - hrtimer is actually high res
  886. */
  887. static inline int hrtick_enabled(struct rq *rq)
  888. {
  889. if (!sched_feat(HRTICK))
  890. return 0;
  891. if (!cpu_active(cpu_of(rq)))
  892. return 0;
  893. return hrtimer_is_hres_active(&rq->hrtick_timer);
  894. }
  895. static void hrtick_clear(struct rq *rq)
  896. {
  897. if (hrtimer_active(&rq->hrtick_timer))
  898. hrtimer_cancel(&rq->hrtick_timer);
  899. }
  900. /*
  901. * High-resolution timer tick.
  902. * Runs from hardirq context with interrupts disabled.
  903. */
  904. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  905. {
  906. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  907. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  908. spin_lock(&rq->lock);
  909. update_rq_clock(rq);
  910. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  911. spin_unlock(&rq->lock);
  912. return HRTIMER_NORESTART;
  913. }
  914. #ifdef CONFIG_SMP
  915. /*
  916. * called from hardirq (IPI) context
  917. */
  918. static void __hrtick_start(void *arg)
  919. {
  920. struct rq *rq = arg;
  921. spin_lock(&rq->lock);
  922. hrtimer_restart(&rq->hrtick_timer);
  923. rq->hrtick_csd_pending = 0;
  924. spin_unlock(&rq->lock);
  925. }
  926. /*
  927. * Called to set the hrtick timer state.
  928. *
  929. * called with rq->lock held and irqs disabled
  930. */
  931. static void hrtick_start(struct rq *rq, u64 delay)
  932. {
  933. struct hrtimer *timer = &rq->hrtick_timer;
  934. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  935. hrtimer_set_expires(timer, time);
  936. if (rq == this_rq()) {
  937. hrtimer_restart(timer);
  938. } else if (!rq->hrtick_csd_pending) {
  939. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  940. rq->hrtick_csd_pending = 1;
  941. }
  942. }
  943. static int
  944. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  945. {
  946. int cpu = (int)(long)hcpu;
  947. switch (action) {
  948. case CPU_UP_CANCELED:
  949. case CPU_UP_CANCELED_FROZEN:
  950. case CPU_DOWN_PREPARE:
  951. case CPU_DOWN_PREPARE_FROZEN:
  952. case CPU_DEAD:
  953. case CPU_DEAD_FROZEN:
  954. hrtick_clear(cpu_rq(cpu));
  955. return NOTIFY_OK;
  956. }
  957. return NOTIFY_DONE;
  958. }
  959. static __init void init_hrtick(void)
  960. {
  961. hotcpu_notifier(hotplug_hrtick, 0);
  962. }
  963. #else
  964. /*
  965. * Called to set the hrtick timer state.
  966. *
  967. * called with rq->lock held and irqs disabled
  968. */
  969. static void hrtick_start(struct rq *rq, u64 delay)
  970. {
  971. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  972. HRTIMER_MODE_REL_PINNED, 0);
  973. }
  974. static inline void init_hrtick(void)
  975. {
  976. }
  977. #endif /* CONFIG_SMP */
  978. static void init_rq_hrtick(struct rq *rq)
  979. {
  980. #ifdef CONFIG_SMP
  981. rq->hrtick_csd_pending = 0;
  982. rq->hrtick_csd.flags = 0;
  983. rq->hrtick_csd.func = __hrtick_start;
  984. rq->hrtick_csd.info = rq;
  985. #endif
  986. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  987. rq->hrtick_timer.function = hrtick;
  988. }
  989. #else /* CONFIG_SCHED_HRTICK */
  990. static inline void hrtick_clear(struct rq *rq)
  991. {
  992. }
  993. static inline void init_rq_hrtick(struct rq *rq)
  994. {
  995. }
  996. static inline void init_hrtick(void)
  997. {
  998. }
  999. #endif /* CONFIG_SCHED_HRTICK */
  1000. /*
  1001. * resched_task - mark a task 'to be rescheduled now'.
  1002. *
  1003. * On UP this means the setting of the need_resched flag, on SMP it
  1004. * might also involve a cross-CPU call to trigger the scheduler on
  1005. * the target CPU.
  1006. */
  1007. #ifdef CONFIG_SMP
  1008. #ifndef tsk_is_polling
  1009. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1010. #endif
  1011. static void resched_task(struct task_struct *p)
  1012. {
  1013. int cpu;
  1014. assert_spin_locked(&task_rq(p)->lock);
  1015. if (test_tsk_need_resched(p))
  1016. return;
  1017. set_tsk_need_resched(p);
  1018. cpu = task_cpu(p);
  1019. if (cpu == smp_processor_id())
  1020. return;
  1021. /* NEED_RESCHED must be visible before we test polling */
  1022. smp_mb();
  1023. if (!tsk_is_polling(p))
  1024. smp_send_reschedule(cpu);
  1025. }
  1026. static void resched_cpu(int cpu)
  1027. {
  1028. struct rq *rq = cpu_rq(cpu);
  1029. unsigned long flags;
  1030. if (!spin_trylock_irqsave(&rq->lock, flags))
  1031. return;
  1032. resched_task(cpu_curr(cpu));
  1033. spin_unlock_irqrestore(&rq->lock, flags);
  1034. }
  1035. #ifdef CONFIG_NO_HZ
  1036. /*
  1037. * When add_timer_on() enqueues a timer into the timer wheel of an
  1038. * idle CPU then this timer might expire before the next timer event
  1039. * which is scheduled to wake up that CPU. In case of a completely
  1040. * idle system the next event might even be infinite time into the
  1041. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1042. * leaves the inner idle loop so the newly added timer is taken into
  1043. * account when the CPU goes back to idle and evaluates the timer
  1044. * wheel for the next timer event.
  1045. */
  1046. void wake_up_idle_cpu(int cpu)
  1047. {
  1048. struct rq *rq = cpu_rq(cpu);
  1049. if (cpu == smp_processor_id())
  1050. return;
  1051. /*
  1052. * This is safe, as this function is called with the timer
  1053. * wheel base lock of (cpu) held. When the CPU is on the way
  1054. * to idle and has not yet set rq->curr to idle then it will
  1055. * be serialized on the timer wheel base lock and take the new
  1056. * timer into account automatically.
  1057. */
  1058. if (rq->curr != rq->idle)
  1059. return;
  1060. /*
  1061. * We can set TIF_RESCHED on the idle task of the other CPU
  1062. * lockless. The worst case is that the other CPU runs the
  1063. * idle task through an additional NOOP schedule()
  1064. */
  1065. set_tsk_need_resched(rq->idle);
  1066. /* NEED_RESCHED must be visible before we test polling */
  1067. smp_mb();
  1068. if (!tsk_is_polling(rq->idle))
  1069. smp_send_reschedule(cpu);
  1070. }
  1071. #endif /* CONFIG_NO_HZ */
  1072. #else /* !CONFIG_SMP */
  1073. static void resched_task(struct task_struct *p)
  1074. {
  1075. assert_spin_locked(&task_rq(p)->lock);
  1076. set_tsk_need_resched(p);
  1077. }
  1078. #endif /* CONFIG_SMP */
  1079. #if BITS_PER_LONG == 32
  1080. # define WMULT_CONST (~0UL)
  1081. #else
  1082. # define WMULT_CONST (1UL << 32)
  1083. #endif
  1084. #define WMULT_SHIFT 32
  1085. /*
  1086. * Shift right and round:
  1087. */
  1088. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1089. /*
  1090. * delta *= weight / lw
  1091. */
  1092. static unsigned long
  1093. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1094. struct load_weight *lw)
  1095. {
  1096. u64 tmp;
  1097. if (!lw->inv_weight) {
  1098. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1099. lw->inv_weight = 1;
  1100. else
  1101. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1102. / (lw->weight+1);
  1103. }
  1104. tmp = (u64)delta_exec * weight;
  1105. /*
  1106. * Check whether we'd overflow the 64-bit multiplication:
  1107. */
  1108. if (unlikely(tmp > WMULT_CONST))
  1109. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1110. WMULT_SHIFT/2);
  1111. else
  1112. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1113. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1114. }
  1115. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1116. {
  1117. lw->weight += inc;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1121. {
  1122. lw->weight -= dec;
  1123. lw->inv_weight = 0;
  1124. }
  1125. /*
  1126. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1127. * of tasks with abnormal "nice" values across CPUs the contribution that
  1128. * each task makes to its run queue's load is weighted according to its
  1129. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1130. * scaled version of the new time slice allocation that they receive on time
  1131. * slice expiry etc.
  1132. */
  1133. #define WEIGHT_IDLEPRIO 3
  1134. #define WMULT_IDLEPRIO 1431655765
  1135. /*
  1136. * Nice levels are multiplicative, with a gentle 10% change for every
  1137. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1138. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1139. * that remained on nice 0.
  1140. *
  1141. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1142. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1143. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1144. * If a task goes up by ~10% and another task goes down by ~10% then
  1145. * the relative distance between them is ~25%.)
  1146. */
  1147. static const int prio_to_weight[40] = {
  1148. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1149. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1150. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1151. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1152. /* 0 */ 1024, 820, 655, 526, 423,
  1153. /* 5 */ 335, 272, 215, 172, 137,
  1154. /* 10 */ 110, 87, 70, 56, 45,
  1155. /* 15 */ 36, 29, 23, 18, 15,
  1156. };
  1157. /*
  1158. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1159. *
  1160. * In cases where the weight does not change often, we can use the
  1161. * precalculated inverse to speed up arithmetics by turning divisions
  1162. * into multiplications:
  1163. */
  1164. static const u32 prio_to_wmult[40] = {
  1165. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1166. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1167. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1168. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1169. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1170. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1171. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1172. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1173. };
  1174. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1175. /*
  1176. * runqueue iterator, to support SMP load-balancing between different
  1177. * scheduling classes, without having to expose their internal data
  1178. * structures to the load-balancing proper:
  1179. */
  1180. struct rq_iterator {
  1181. void *arg;
  1182. struct task_struct *(*start)(void *);
  1183. struct task_struct *(*next)(void *);
  1184. };
  1185. #ifdef CONFIG_SMP
  1186. static unsigned long
  1187. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1188. unsigned long max_load_move, struct sched_domain *sd,
  1189. enum cpu_idle_type idle, int *all_pinned,
  1190. int *this_best_prio, struct rq_iterator *iterator);
  1191. static int
  1192. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1193. struct sched_domain *sd, enum cpu_idle_type idle,
  1194. struct rq_iterator *iterator);
  1195. #endif
  1196. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1197. enum cpuacct_stat_index {
  1198. CPUACCT_STAT_USER, /* ... user mode */
  1199. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1200. CPUACCT_STAT_NSTATS,
  1201. };
  1202. #ifdef CONFIG_CGROUP_CPUACCT
  1203. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1204. static void cpuacct_update_stats(struct task_struct *tsk,
  1205. enum cpuacct_stat_index idx, cputime_t val);
  1206. #else
  1207. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1208. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1209. enum cpuacct_stat_index idx, cputime_t val) {}
  1210. #endif
  1211. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1212. {
  1213. update_load_add(&rq->load, load);
  1214. }
  1215. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1216. {
  1217. update_load_sub(&rq->load, load);
  1218. }
  1219. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1220. typedef int (*tg_visitor)(struct task_group *, void *);
  1221. /*
  1222. * Iterate the full tree, calling @down when first entering a node and @up when
  1223. * leaving it for the final time.
  1224. */
  1225. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1226. {
  1227. struct task_group *parent, *child;
  1228. int ret;
  1229. rcu_read_lock();
  1230. parent = &root_task_group;
  1231. down:
  1232. ret = (*down)(parent, data);
  1233. if (ret)
  1234. goto out_unlock;
  1235. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1236. parent = child;
  1237. goto down;
  1238. up:
  1239. continue;
  1240. }
  1241. ret = (*up)(parent, data);
  1242. if (ret)
  1243. goto out_unlock;
  1244. child = parent;
  1245. parent = parent->parent;
  1246. if (parent)
  1247. goto up;
  1248. out_unlock:
  1249. rcu_read_unlock();
  1250. return ret;
  1251. }
  1252. static int tg_nop(struct task_group *tg, void *data)
  1253. {
  1254. return 0;
  1255. }
  1256. #endif
  1257. #ifdef CONFIG_SMP
  1258. static unsigned long source_load(int cpu, int type);
  1259. static unsigned long target_load(int cpu, int type);
  1260. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1261. static unsigned long cpu_avg_load_per_task(int cpu)
  1262. {
  1263. struct rq *rq = cpu_rq(cpu);
  1264. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1265. if (nr_running)
  1266. rq->avg_load_per_task = rq->load.weight / nr_running;
  1267. else
  1268. rq->avg_load_per_task = 0;
  1269. return rq->avg_load_per_task;
  1270. }
  1271. #ifdef CONFIG_FAIR_GROUP_SCHED
  1272. struct update_shares_data {
  1273. unsigned long rq_weight[NR_CPUS];
  1274. };
  1275. static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
  1276. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1277. /*
  1278. * Calculate and set the cpu's group shares.
  1279. */
  1280. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1281. unsigned long sd_shares,
  1282. unsigned long sd_rq_weight,
  1283. struct update_shares_data *usd)
  1284. {
  1285. unsigned long shares, rq_weight;
  1286. int boost = 0;
  1287. rq_weight = usd->rq_weight[cpu];
  1288. if (!rq_weight) {
  1289. boost = 1;
  1290. rq_weight = NICE_0_LOAD;
  1291. }
  1292. /*
  1293. * \Sum_j shares_j * rq_weight_i
  1294. * shares_i = -----------------------------
  1295. * \Sum_j rq_weight_j
  1296. */
  1297. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1298. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1299. if (abs(shares - tg->se[cpu]->load.weight) >
  1300. sysctl_sched_shares_thresh) {
  1301. struct rq *rq = cpu_rq(cpu);
  1302. unsigned long flags;
  1303. spin_lock_irqsave(&rq->lock, flags);
  1304. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1305. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1306. __set_se_shares(tg->se[cpu], shares);
  1307. spin_unlock_irqrestore(&rq->lock, flags);
  1308. }
  1309. }
  1310. /*
  1311. * Re-compute the task group their per cpu shares over the given domain.
  1312. * This needs to be done in a bottom-up fashion because the rq weight of a
  1313. * parent group depends on the shares of its child groups.
  1314. */
  1315. static int tg_shares_up(struct task_group *tg, void *data)
  1316. {
  1317. unsigned long weight, rq_weight = 0, shares = 0;
  1318. struct update_shares_data *usd;
  1319. struct sched_domain *sd = data;
  1320. unsigned long flags;
  1321. int i;
  1322. if (!tg->se[0])
  1323. return 0;
  1324. local_irq_save(flags);
  1325. usd = &__get_cpu_var(update_shares_data);
  1326. for_each_cpu(i, sched_domain_span(sd)) {
  1327. weight = tg->cfs_rq[i]->load.weight;
  1328. usd->rq_weight[i] = weight;
  1329. /*
  1330. * If there are currently no tasks on the cpu pretend there
  1331. * is one of average load so that when a new task gets to
  1332. * run here it will not get delayed by group starvation.
  1333. */
  1334. if (!weight)
  1335. weight = NICE_0_LOAD;
  1336. rq_weight += weight;
  1337. shares += tg->cfs_rq[i]->shares;
  1338. }
  1339. if ((!shares && rq_weight) || shares > tg->shares)
  1340. shares = tg->shares;
  1341. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1342. shares = tg->shares;
  1343. for_each_cpu(i, sched_domain_span(sd))
  1344. update_group_shares_cpu(tg, i, shares, rq_weight, usd);
  1345. local_irq_restore(flags);
  1346. return 0;
  1347. }
  1348. /*
  1349. * Compute the cpu's hierarchical load factor for each task group.
  1350. * This needs to be done in a top-down fashion because the load of a child
  1351. * group is a fraction of its parents load.
  1352. */
  1353. static int tg_load_down(struct task_group *tg, void *data)
  1354. {
  1355. unsigned long load;
  1356. long cpu = (long)data;
  1357. if (!tg->parent) {
  1358. load = cpu_rq(cpu)->load.weight;
  1359. } else {
  1360. load = tg->parent->cfs_rq[cpu]->h_load;
  1361. load *= tg->cfs_rq[cpu]->shares;
  1362. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1363. }
  1364. tg->cfs_rq[cpu]->h_load = load;
  1365. return 0;
  1366. }
  1367. static void update_shares(struct sched_domain *sd)
  1368. {
  1369. s64 elapsed;
  1370. u64 now;
  1371. if (root_task_group_empty())
  1372. return;
  1373. now = cpu_clock(raw_smp_processor_id());
  1374. elapsed = now - sd->last_update;
  1375. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1376. sd->last_update = now;
  1377. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1378. }
  1379. }
  1380. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1381. {
  1382. if (root_task_group_empty())
  1383. return;
  1384. spin_unlock(&rq->lock);
  1385. update_shares(sd);
  1386. spin_lock(&rq->lock);
  1387. }
  1388. static void update_h_load(long cpu)
  1389. {
  1390. if (root_task_group_empty())
  1391. return;
  1392. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1393. }
  1394. #else
  1395. static inline void update_shares(struct sched_domain *sd)
  1396. {
  1397. }
  1398. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1399. {
  1400. }
  1401. #endif
  1402. #ifdef CONFIG_PREEMPT
  1403. /*
  1404. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1405. * way at the expense of forcing extra atomic operations in all
  1406. * invocations. This assures that the double_lock is acquired using the
  1407. * same underlying policy as the spinlock_t on this architecture, which
  1408. * reduces latency compared to the unfair variant below. However, it
  1409. * also adds more overhead and therefore may reduce throughput.
  1410. */
  1411. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1412. __releases(this_rq->lock)
  1413. __acquires(busiest->lock)
  1414. __acquires(this_rq->lock)
  1415. {
  1416. spin_unlock(&this_rq->lock);
  1417. double_rq_lock(this_rq, busiest);
  1418. return 1;
  1419. }
  1420. #else
  1421. /*
  1422. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1423. * latency by eliminating extra atomic operations when the locks are
  1424. * already in proper order on entry. This favors lower cpu-ids and will
  1425. * grant the double lock to lower cpus over higher ids under contention,
  1426. * regardless of entry order into the function.
  1427. */
  1428. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1429. __releases(this_rq->lock)
  1430. __acquires(busiest->lock)
  1431. __acquires(this_rq->lock)
  1432. {
  1433. int ret = 0;
  1434. if (unlikely(!spin_trylock(&busiest->lock))) {
  1435. if (busiest < this_rq) {
  1436. spin_unlock(&this_rq->lock);
  1437. spin_lock(&busiest->lock);
  1438. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1439. ret = 1;
  1440. } else
  1441. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1442. }
  1443. return ret;
  1444. }
  1445. #endif /* CONFIG_PREEMPT */
  1446. /*
  1447. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1448. */
  1449. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. {
  1451. if (unlikely(!irqs_disabled())) {
  1452. /* printk() doesn't work good under rq->lock */
  1453. spin_unlock(&this_rq->lock);
  1454. BUG_ON(1);
  1455. }
  1456. return _double_lock_balance(this_rq, busiest);
  1457. }
  1458. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1459. __releases(busiest->lock)
  1460. {
  1461. spin_unlock(&busiest->lock);
  1462. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1463. }
  1464. #endif
  1465. #ifdef CONFIG_FAIR_GROUP_SCHED
  1466. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1467. {
  1468. #ifdef CONFIG_SMP
  1469. cfs_rq->shares = shares;
  1470. #endif
  1471. }
  1472. #endif
  1473. static void calc_load_account_active(struct rq *this_rq);
  1474. #include "sched_stats.h"
  1475. #include "sched_idletask.c"
  1476. #include "sched_fair.c"
  1477. #include "sched_rt.c"
  1478. #ifdef CONFIG_SCHED_DEBUG
  1479. # include "sched_debug.c"
  1480. #endif
  1481. #define sched_class_highest (&rt_sched_class)
  1482. #define for_each_class(class) \
  1483. for (class = sched_class_highest; class; class = class->next)
  1484. static void inc_nr_running(struct rq *rq)
  1485. {
  1486. rq->nr_running++;
  1487. }
  1488. static void dec_nr_running(struct rq *rq)
  1489. {
  1490. rq->nr_running--;
  1491. }
  1492. static void set_load_weight(struct task_struct *p)
  1493. {
  1494. if (task_has_rt_policy(p)) {
  1495. p->se.load.weight = prio_to_weight[0] * 2;
  1496. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1497. return;
  1498. }
  1499. /*
  1500. * SCHED_IDLE tasks get minimal weight:
  1501. */
  1502. if (p->policy == SCHED_IDLE) {
  1503. p->se.load.weight = WEIGHT_IDLEPRIO;
  1504. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1505. return;
  1506. }
  1507. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1508. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1509. }
  1510. static void update_avg(u64 *avg, u64 sample)
  1511. {
  1512. s64 diff = sample - *avg;
  1513. *avg += diff >> 3;
  1514. }
  1515. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1516. {
  1517. if (wakeup)
  1518. p->se.start_runtime = p->se.sum_exec_runtime;
  1519. sched_info_queued(p);
  1520. p->sched_class->enqueue_task(rq, p, wakeup);
  1521. p->se.on_rq = 1;
  1522. }
  1523. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1524. {
  1525. if (sleep) {
  1526. if (p->se.last_wakeup) {
  1527. update_avg(&p->se.avg_overlap,
  1528. p->se.sum_exec_runtime - p->se.last_wakeup);
  1529. p->se.last_wakeup = 0;
  1530. } else {
  1531. update_avg(&p->se.avg_wakeup,
  1532. sysctl_sched_wakeup_granularity);
  1533. }
  1534. }
  1535. sched_info_dequeued(p);
  1536. p->sched_class->dequeue_task(rq, p, sleep);
  1537. p->se.on_rq = 0;
  1538. }
  1539. /*
  1540. * __normal_prio - return the priority that is based on the static prio
  1541. */
  1542. static inline int __normal_prio(struct task_struct *p)
  1543. {
  1544. return p->static_prio;
  1545. }
  1546. /*
  1547. * Calculate the expected normal priority: i.e. priority
  1548. * without taking RT-inheritance into account. Might be
  1549. * boosted by interactivity modifiers. Changes upon fork,
  1550. * setprio syscalls, and whenever the interactivity
  1551. * estimator recalculates.
  1552. */
  1553. static inline int normal_prio(struct task_struct *p)
  1554. {
  1555. int prio;
  1556. if (task_has_rt_policy(p))
  1557. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1558. else
  1559. prio = __normal_prio(p);
  1560. return prio;
  1561. }
  1562. /*
  1563. * Calculate the current priority, i.e. the priority
  1564. * taken into account by the scheduler. This value might
  1565. * be boosted by RT tasks, or might be boosted by
  1566. * interactivity modifiers. Will be RT if the task got
  1567. * RT-boosted. If not then it returns p->normal_prio.
  1568. */
  1569. static int effective_prio(struct task_struct *p)
  1570. {
  1571. p->normal_prio = normal_prio(p);
  1572. /*
  1573. * If we are RT tasks or we were boosted to RT priority,
  1574. * keep the priority unchanged. Otherwise, update priority
  1575. * to the normal priority:
  1576. */
  1577. if (!rt_prio(p->prio))
  1578. return p->normal_prio;
  1579. return p->prio;
  1580. }
  1581. /*
  1582. * activate_task - move a task to the runqueue.
  1583. */
  1584. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1585. {
  1586. if (task_contributes_to_load(p))
  1587. rq->nr_uninterruptible--;
  1588. enqueue_task(rq, p, wakeup);
  1589. inc_nr_running(rq);
  1590. }
  1591. /*
  1592. * deactivate_task - remove a task from the runqueue.
  1593. */
  1594. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1595. {
  1596. if (task_contributes_to_load(p))
  1597. rq->nr_uninterruptible++;
  1598. dequeue_task(rq, p, sleep);
  1599. dec_nr_running(rq);
  1600. }
  1601. /**
  1602. * task_curr - is this task currently executing on a CPU?
  1603. * @p: the task in question.
  1604. */
  1605. inline int task_curr(const struct task_struct *p)
  1606. {
  1607. return cpu_curr(task_cpu(p)) == p;
  1608. }
  1609. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1610. {
  1611. set_task_rq(p, cpu);
  1612. #ifdef CONFIG_SMP
  1613. /*
  1614. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1615. * successfuly executed on another CPU. We must ensure that updates of
  1616. * per-task data have been completed by this moment.
  1617. */
  1618. smp_wmb();
  1619. task_thread_info(p)->cpu = cpu;
  1620. #endif
  1621. }
  1622. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1623. const struct sched_class *prev_class,
  1624. int oldprio, int running)
  1625. {
  1626. if (prev_class != p->sched_class) {
  1627. if (prev_class->switched_from)
  1628. prev_class->switched_from(rq, p, running);
  1629. p->sched_class->switched_to(rq, p, running);
  1630. } else
  1631. p->sched_class->prio_changed(rq, p, oldprio, running);
  1632. }
  1633. #ifdef CONFIG_SMP
  1634. /* Used instead of source_load when we know the type == 0 */
  1635. static unsigned long weighted_cpuload(const int cpu)
  1636. {
  1637. return cpu_rq(cpu)->load.weight;
  1638. }
  1639. /*
  1640. * Is this task likely cache-hot:
  1641. */
  1642. static int
  1643. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1644. {
  1645. s64 delta;
  1646. /*
  1647. * Buddy candidates are cache hot:
  1648. */
  1649. if (sched_feat(CACHE_HOT_BUDDY) &&
  1650. (&p->se == cfs_rq_of(&p->se)->next ||
  1651. &p->se == cfs_rq_of(&p->se)->last))
  1652. return 1;
  1653. if (p->sched_class != &fair_sched_class)
  1654. return 0;
  1655. if (sysctl_sched_migration_cost == -1)
  1656. return 1;
  1657. if (sysctl_sched_migration_cost == 0)
  1658. return 0;
  1659. delta = now - p->se.exec_start;
  1660. return delta < (s64)sysctl_sched_migration_cost;
  1661. }
  1662. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1663. {
  1664. int old_cpu = task_cpu(p);
  1665. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1666. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1667. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1668. u64 clock_offset;
  1669. clock_offset = old_rq->clock - new_rq->clock;
  1670. trace_sched_migrate_task(p, new_cpu);
  1671. #ifdef CONFIG_SCHEDSTATS
  1672. if (p->se.wait_start)
  1673. p->se.wait_start -= clock_offset;
  1674. if (p->se.sleep_start)
  1675. p->se.sleep_start -= clock_offset;
  1676. if (p->se.block_start)
  1677. p->se.block_start -= clock_offset;
  1678. #endif
  1679. if (old_cpu != new_cpu) {
  1680. p->se.nr_migrations++;
  1681. new_rq->nr_migrations_in++;
  1682. #ifdef CONFIG_SCHEDSTATS
  1683. if (task_hot(p, old_rq->clock, NULL))
  1684. schedstat_inc(p, se.nr_forced2_migrations);
  1685. #endif
  1686. perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1687. 1, 1, NULL, 0);
  1688. }
  1689. p->se.vruntime -= old_cfsrq->min_vruntime -
  1690. new_cfsrq->min_vruntime;
  1691. __set_task_cpu(p, new_cpu);
  1692. }
  1693. struct migration_req {
  1694. struct list_head list;
  1695. struct task_struct *task;
  1696. int dest_cpu;
  1697. struct completion done;
  1698. };
  1699. /*
  1700. * The task's runqueue lock must be held.
  1701. * Returns true if you have to wait for migration thread.
  1702. */
  1703. static int
  1704. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1705. {
  1706. struct rq *rq = task_rq(p);
  1707. /*
  1708. * If the task is not on a runqueue (and not running), then
  1709. * it is sufficient to simply update the task's cpu field.
  1710. */
  1711. if (!p->se.on_rq && !task_running(rq, p)) {
  1712. set_task_cpu(p, dest_cpu);
  1713. return 0;
  1714. }
  1715. init_completion(&req->done);
  1716. req->task = p;
  1717. req->dest_cpu = dest_cpu;
  1718. list_add(&req->list, &rq->migration_queue);
  1719. return 1;
  1720. }
  1721. /*
  1722. * wait_task_context_switch - wait for a thread to complete at least one
  1723. * context switch.
  1724. *
  1725. * @p must not be current.
  1726. */
  1727. void wait_task_context_switch(struct task_struct *p)
  1728. {
  1729. unsigned long nvcsw, nivcsw, flags;
  1730. int running;
  1731. struct rq *rq;
  1732. nvcsw = p->nvcsw;
  1733. nivcsw = p->nivcsw;
  1734. for (;;) {
  1735. /*
  1736. * The runqueue is assigned before the actual context
  1737. * switch. We need to take the runqueue lock.
  1738. *
  1739. * We could check initially without the lock but it is
  1740. * very likely that we need to take the lock in every
  1741. * iteration.
  1742. */
  1743. rq = task_rq_lock(p, &flags);
  1744. running = task_running(rq, p);
  1745. task_rq_unlock(rq, &flags);
  1746. if (likely(!running))
  1747. break;
  1748. /*
  1749. * The switch count is incremented before the actual
  1750. * context switch. We thus wait for two switches to be
  1751. * sure at least one completed.
  1752. */
  1753. if ((p->nvcsw - nvcsw) > 1)
  1754. break;
  1755. if ((p->nivcsw - nivcsw) > 1)
  1756. break;
  1757. cpu_relax();
  1758. }
  1759. }
  1760. /*
  1761. * wait_task_inactive - wait for a thread to unschedule.
  1762. *
  1763. * If @match_state is nonzero, it's the @p->state value just checked and
  1764. * not expected to change. If it changes, i.e. @p might have woken up,
  1765. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1766. * we return a positive number (its total switch count). If a second call
  1767. * a short while later returns the same number, the caller can be sure that
  1768. * @p has remained unscheduled the whole time.
  1769. *
  1770. * The caller must ensure that the task *will* unschedule sometime soon,
  1771. * else this function might spin for a *long* time. This function can't
  1772. * be called with interrupts off, or it may introduce deadlock with
  1773. * smp_call_function() if an IPI is sent by the same process we are
  1774. * waiting to become inactive.
  1775. */
  1776. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1777. {
  1778. unsigned long flags;
  1779. int running, on_rq;
  1780. unsigned long ncsw;
  1781. struct rq *rq;
  1782. for (;;) {
  1783. /*
  1784. * We do the initial early heuristics without holding
  1785. * any task-queue locks at all. We'll only try to get
  1786. * the runqueue lock when things look like they will
  1787. * work out!
  1788. */
  1789. rq = task_rq(p);
  1790. /*
  1791. * If the task is actively running on another CPU
  1792. * still, just relax and busy-wait without holding
  1793. * any locks.
  1794. *
  1795. * NOTE! Since we don't hold any locks, it's not
  1796. * even sure that "rq" stays as the right runqueue!
  1797. * But we don't care, since "task_running()" will
  1798. * return false if the runqueue has changed and p
  1799. * is actually now running somewhere else!
  1800. */
  1801. while (task_running(rq, p)) {
  1802. if (match_state && unlikely(p->state != match_state))
  1803. return 0;
  1804. cpu_relax();
  1805. }
  1806. /*
  1807. * Ok, time to look more closely! We need the rq
  1808. * lock now, to be *sure*. If we're wrong, we'll
  1809. * just go back and repeat.
  1810. */
  1811. rq = task_rq_lock(p, &flags);
  1812. trace_sched_wait_task(rq, p);
  1813. running = task_running(rq, p);
  1814. on_rq = p->se.on_rq;
  1815. ncsw = 0;
  1816. if (!match_state || p->state == match_state)
  1817. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1818. task_rq_unlock(rq, &flags);
  1819. /*
  1820. * If it changed from the expected state, bail out now.
  1821. */
  1822. if (unlikely(!ncsw))
  1823. break;
  1824. /*
  1825. * Was it really running after all now that we
  1826. * checked with the proper locks actually held?
  1827. *
  1828. * Oops. Go back and try again..
  1829. */
  1830. if (unlikely(running)) {
  1831. cpu_relax();
  1832. continue;
  1833. }
  1834. /*
  1835. * It's not enough that it's not actively running,
  1836. * it must be off the runqueue _entirely_, and not
  1837. * preempted!
  1838. *
  1839. * So if it was still runnable (but just not actively
  1840. * running right now), it's preempted, and we should
  1841. * yield - it could be a while.
  1842. */
  1843. if (unlikely(on_rq)) {
  1844. schedule_timeout_uninterruptible(1);
  1845. continue;
  1846. }
  1847. /*
  1848. * Ahh, all good. It wasn't running, and it wasn't
  1849. * runnable, which means that it will never become
  1850. * running in the future either. We're all done!
  1851. */
  1852. break;
  1853. }
  1854. return ncsw;
  1855. }
  1856. /***
  1857. * kick_process - kick a running thread to enter/exit the kernel
  1858. * @p: the to-be-kicked thread
  1859. *
  1860. * Cause a process which is running on another CPU to enter
  1861. * kernel-mode, without any delay. (to get signals handled.)
  1862. *
  1863. * NOTE: this function doesnt have to take the runqueue lock,
  1864. * because all it wants to ensure is that the remote task enters
  1865. * the kernel. If the IPI races and the task has been migrated
  1866. * to another CPU then no harm is done and the purpose has been
  1867. * achieved as well.
  1868. */
  1869. void kick_process(struct task_struct *p)
  1870. {
  1871. int cpu;
  1872. preempt_disable();
  1873. cpu = task_cpu(p);
  1874. if ((cpu != smp_processor_id()) && task_curr(p))
  1875. smp_send_reschedule(cpu);
  1876. preempt_enable();
  1877. }
  1878. EXPORT_SYMBOL_GPL(kick_process);
  1879. /*
  1880. * Return a low guess at the load of a migration-source cpu weighted
  1881. * according to the scheduling class and "nice" value.
  1882. *
  1883. * We want to under-estimate the load of migration sources, to
  1884. * balance conservatively.
  1885. */
  1886. static unsigned long source_load(int cpu, int type)
  1887. {
  1888. struct rq *rq = cpu_rq(cpu);
  1889. unsigned long total = weighted_cpuload(cpu);
  1890. if (type == 0 || !sched_feat(LB_BIAS))
  1891. return total;
  1892. return min(rq->cpu_load[type-1], total);
  1893. }
  1894. /*
  1895. * Return a high guess at the load of a migration-target cpu weighted
  1896. * according to the scheduling class and "nice" value.
  1897. */
  1898. static unsigned long target_load(int cpu, int type)
  1899. {
  1900. struct rq *rq = cpu_rq(cpu);
  1901. unsigned long total = weighted_cpuload(cpu);
  1902. if (type == 0 || !sched_feat(LB_BIAS))
  1903. return total;
  1904. return max(rq->cpu_load[type-1], total);
  1905. }
  1906. /*
  1907. * find_idlest_group finds and returns the least busy CPU group within the
  1908. * domain.
  1909. */
  1910. static struct sched_group *
  1911. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1912. {
  1913. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1914. unsigned long min_load = ULONG_MAX, this_load = 0;
  1915. int load_idx = sd->forkexec_idx;
  1916. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1917. do {
  1918. unsigned long load, avg_load;
  1919. int local_group;
  1920. int i;
  1921. /* Skip over this group if it has no CPUs allowed */
  1922. if (!cpumask_intersects(sched_group_cpus(group),
  1923. &p->cpus_allowed))
  1924. continue;
  1925. local_group = cpumask_test_cpu(this_cpu,
  1926. sched_group_cpus(group));
  1927. /* Tally up the load of all CPUs in the group */
  1928. avg_load = 0;
  1929. for_each_cpu(i, sched_group_cpus(group)) {
  1930. /* Bias balancing toward cpus of our domain */
  1931. if (local_group)
  1932. load = source_load(i, load_idx);
  1933. else
  1934. load = target_load(i, load_idx);
  1935. avg_load += load;
  1936. }
  1937. /* Adjust by relative CPU power of the group */
  1938. avg_load = sg_div_cpu_power(group,
  1939. avg_load * SCHED_LOAD_SCALE);
  1940. if (local_group) {
  1941. this_load = avg_load;
  1942. this = group;
  1943. } else if (avg_load < min_load) {
  1944. min_load = avg_load;
  1945. idlest = group;
  1946. }
  1947. } while (group = group->next, group != sd->groups);
  1948. if (!idlest || 100*this_load < imbalance*min_load)
  1949. return NULL;
  1950. return idlest;
  1951. }
  1952. /*
  1953. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1954. */
  1955. static int
  1956. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1957. {
  1958. unsigned long load, min_load = ULONG_MAX;
  1959. int idlest = -1;
  1960. int i;
  1961. /* Traverse only the allowed CPUs */
  1962. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1963. load = weighted_cpuload(i);
  1964. if (load < min_load || (load == min_load && i == this_cpu)) {
  1965. min_load = load;
  1966. idlest = i;
  1967. }
  1968. }
  1969. return idlest;
  1970. }
  1971. /*
  1972. * sched_balance_self: balance the current task (running on cpu) in domains
  1973. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1974. * SD_BALANCE_EXEC.
  1975. *
  1976. * Balance, ie. select the least loaded group.
  1977. *
  1978. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1979. *
  1980. * preempt must be disabled.
  1981. */
  1982. static int sched_balance_self(int cpu, int flag)
  1983. {
  1984. struct task_struct *t = current;
  1985. struct sched_domain *tmp, *sd = NULL;
  1986. for_each_domain(cpu, tmp) {
  1987. /*
  1988. * If power savings logic is enabled for a domain, stop there.
  1989. */
  1990. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1991. break;
  1992. if (tmp->flags & flag)
  1993. sd = tmp;
  1994. }
  1995. if (sd)
  1996. update_shares(sd);
  1997. while (sd) {
  1998. struct sched_group *group;
  1999. int new_cpu, weight;
  2000. if (!(sd->flags & flag)) {
  2001. sd = sd->child;
  2002. continue;
  2003. }
  2004. group = find_idlest_group(sd, t, cpu);
  2005. if (!group) {
  2006. sd = sd->child;
  2007. continue;
  2008. }
  2009. new_cpu = find_idlest_cpu(group, t, cpu);
  2010. if (new_cpu == -1 || new_cpu == cpu) {
  2011. /* Now try balancing at a lower domain level of cpu */
  2012. sd = sd->child;
  2013. continue;
  2014. }
  2015. /* Now try balancing at a lower domain level of new_cpu */
  2016. cpu = new_cpu;
  2017. weight = cpumask_weight(sched_domain_span(sd));
  2018. sd = NULL;
  2019. for_each_domain(cpu, tmp) {
  2020. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  2021. break;
  2022. if (tmp->flags & flag)
  2023. sd = tmp;
  2024. }
  2025. /* while loop will break here if sd == NULL */
  2026. }
  2027. return cpu;
  2028. }
  2029. #endif /* CONFIG_SMP */
  2030. /**
  2031. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2032. * @p: the task to evaluate
  2033. * @func: the function to be called
  2034. * @info: the function call argument
  2035. *
  2036. * Calls the function @func when the task is currently running. This might
  2037. * be on the current CPU, which just calls the function directly
  2038. */
  2039. void task_oncpu_function_call(struct task_struct *p,
  2040. void (*func) (void *info), void *info)
  2041. {
  2042. int cpu;
  2043. preempt_disable();
  2044. cpu = task_cpu(p);
  2045. if (task_curr(p))
  2046. smp_call_function_single(cpu, func, info, 1);
  2047. preempt_enable();
  2048. }
  2049. /***
  2050. * try_to_wake_up - wake up a thread
  2051. * @p: the to-be-woken-up thread
  2052. * @state: the mask of task states that can be woken
  2053. * @sync: do a synchronous wakeup?
  2054. *
  2055. * Put it on the run-queue if it's not already there. The "current"
  2056. * thread is always on the run-queue (except when the actual
  2057. * re-schedule is in progress), and as such you're allowed to do
  2058. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2059. * runnable without the overhead of this.
  2060. *
  2061. * returns failure only if the task is already active.
  2062. */
  2063. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2064. {
  2065. int cpu, orig_cpu, this_cpu, success = 0;
  2066. unsigned long flags;
  2067. long old_state;
  2068. struct rq *rq;
  2069. if (!sched_feat(SYNC_WAKEUPS))
  2070. sync = 0;
  2071. #ifdef CONFIG_SMP
  2072. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2073. struct sched_domain *sd;
  2074. this_cpu = raw_smp_processor_id();
  2075. cpu = task_cpu(p);
  2076. for_each_domain(this_cpu, sd) {
  2077. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2078. update_shares(sd);
  2079. break;
  2080. }
  2081. }
  2082. }
  2083. #endif
  2084. smp_wmb();
  2085. rq = task_rq_lock(p, &flags);
  2086. update_rq_clock(rq);
  2087. old_state = p->state;
  2088. if (!(old_state & state))
  2089. goto out;
  2090. if (p->se.on_rq)
  2091. goto out_running;
  2092. cpu = task_cpu(p);
  2093. orig_cpu = cpu;
  2094. this_cpu = smp_processor_id();
  2095. #ifdef CONFIG_SMP
  2096. if (unlikely(task_running(rq, p)))
  2097. goto out_activate;
  2098. cpu = p->sched_class->select_task_rq(p, sync);
  2099. if (cpu != orig_cpu) {
  2100. set_task_cpu(p, cpu);
  2101. task_rq_unlock(rq, &flags);
  2102. /* might preempt at this point */
  2103. rq = task_rq_lock(p, &flags);
  2104. old_state = p->state;
  2105. if (!(old_state & state))
  2106. goto out;
  2107. if (p->se.on_rq)
  2108. goto out_running;
  2109. this_cpu = smp_processor_id();
  2110. cpu = task_cpu(p);
  2111. }
  2112. #ifdef CONFIG_SCHEDSTATS
  2113. schedstat_inc(rq, ttwu_count);
  2114. if (cpu == this_cpu)
  2115. schedstat_inc(rq, ttwu_local);
  2116. else {
  2117. struct sched_domain *sd;
  2118. for_each_domain(this_cpu, sd) {
  2119. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2120. schedstat_inc(sd, ttwu_wake_remote);
  2121. break;
  2122. }
  2123. }
  2124. }
  2125. #endif /* CONFIG_SCHEDSTATS */
  2126. out_activate:
  2127. #endif /* CONFIG_SMP */
  2128. schedstat_inc(p, se.nr_wakeups);
  2129. if (sync)
  2130. schedstat_inc(p, se.nr_wakeups_sync);
  2131. if (orig_cpu != cpu)
  2132. schedstat_inc(p, se.nr_wakeups_migrate);
  2133. if (cpu == this_cpu)
  2134. schedstat_inc(p, se.nr_wakeups_local);
  2135. else
  2136. schedstat_inc(p, se.nr_wakeups_remote);
  2137. activate_task(rq, p, 1);
  2138. success = 1;
  2139. /*
  2140. * Only attribute actual wakeups done by this task.
  2141. */
  2142. if (!in_interrupt()) {
  2143. struct sched_entity *se = &current->se;
  2144. u64 sample = se->sum_exec_runtime;
  2145. if (se->last_wakeup)
  2146. sample -= se->last_wakeup;
  2147. else
  2148. sample -= se->start_runtime;
  2149. update_avg(&se->avg_wakeup, sample);
  2150. se->last_wakeup = se->sum_exec_runtime;
  2151. }
  2152. out_running:
  2153. trace_sched_wakeup(rq, p, success);
  2154. check_preempt_curr(rq, p, sync);
  2155. p->state = TASK_RUNNING;
  2156. #ifdef CONFIG_SMP
  2157. if (p->sched_class->task_wake_up)
  2158. p->sched_class->task_wake_up(rq, p);
  2159. #endif
  2160. out:
  2161. task_rq_unlock(rq, &flags);
  2162. return success;
  2163. }
  2164. /**
  2165. * wake_up_process - Wake up a specific process
  2166. * @p: The process to be woken up.
  2167. *
  2168. * Attempt to wake up the nominated process and move it to the set of runnable
  2169. * processes. Returns 1 if the process was woken up, 0 if it was already
  2170. * running.
  2171. *
  2172. * It may be assumed that this function implies a write memory barrier before
  2173. * changing the task state if and only if any tasks are woken up.
  2174. */
  2175. int wake_up_process(struct task_struct *p)
  2176. {
  2177. return try_to_wake_up(p, TASK_ALL, 0);
  2178. }
  2179. EXPORT_SYMBOL(wake_up_process);
  2180. int wake_up_state(struct task_struct *p, unsigned int state)
  2181. {
  2182. return try_to_wake_up(p, state, 0);
  2183. }
  2184. /*
  2185. * Perform scheduler related setup for a newly forked process p.
  2186. * p is forked by current.
  2187. *
  2188. * __sched_fork() is basic setup used by init_idle() too:
  2189. */
  2190. static void __sched_fork(struct task_struct *p)
  2191. {
  2192. p->se.exec_start = 0;
  2193. p->se.sum_exec_runtime = 0;
  2194. p->se.prev_sum_exec_runtime = 0;
  2195. p->se.nr_migrations = 0;
  2196. p->se.last_wakeup = 0;
  2197. p->se.avg_overlap = 0;
  2198. p->se.start_runtime = 0;
  2199. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2200. #ifdef CONFIG_SCHEDSTATS
  2201. p->se.wait_start = 0;
  2202. p->se.wait_max = 0;
  2203. p->se.wait_count = 0;
  2204. p->se.wait_sum = 0;
  2205. p->se.sleep_start = 0;
  2206. p->se.sleep_max = 0;
  2207. p->se.sum_sleep_runtime = 0;
  2208. p->se.block_start = 0;
  2209. p->se.block_max = 0;
  2210. p->se.exec_max = 0;
  2211. p->se.slice_max = 0;
  2212. p->se.nr_migrations_cold = 0;
  2213. p->se.nr_failed_migrations_affine = 0;
  2214. p->se.nr_failed_migrations_running = 0;
  2215. p->se.nr_failed_migrations_hot = 0;
  2216. p->se.nr_forced_migrations = 0;
  2217. p->se.nr_forced2_migrations = 0;
  2218. p->se.nr_wakeups = 0;
  2219. p->se.nr_wakeups_sync = 0;
  2220. p->se.nr_wakeups_migrate = 0;
  2221. p->se.nr_wakeups_local = 0;
  2222. p->se.nr_wakeups_remote = 0;
  2223. p->se.nr_wakeups_affine = 0;
  2224. p->se.nr_wakeups_affine_attempts = 0;
  2225. p->se.nr_wakeups_passive = 0;
  2226. p->se.nr_wakeups_idle = 0;
  2227. #endif
  2228. INIT_LIST_HEAD(&p->rt.run_list);
  2229. p->se.on_rq = 0;
  2230. INIT_LIST_HEAD(&p->se.group_node);
  2231. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2232. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2233. #endif
  2234. /*
  2235. * We mark the process as running here, but have not actually
  2236. * inserted it onto the runqueue yet. This guarantees that
  2237. * nobody will actually run it, and a signal or other external
  2238. * event cannot wake it up and insert it on the runqueue either.
  2239. */
  2240. p->state = TASK_RUNNING;
  2241. }
  2242. /*
  2243. * fork()/clone()-time setup:
  2244. */
  2245. void sched_fork(struct task_struct *p, int clone_flags)
  2246. {
  2247. int cpu = get_cpu();
  2248. __sched_fork(p);
  2249. #ifdef CONFIG_SMP
  2250. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2251. #endif
  2252. set_task_cpu(p, cpu);
  2253. /*
  2254. * Make sure we do not leak PI boosting priority to the child.
  2255. */
  2256. p->prio = current->normal_prio;
  2257. /*
  2258. * Revert to default priority/policy on fork if requested.
  2259. */
  2260. if (unlikely(p->sched_reset_on_fork)) {
  2261. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2262. p->policy = SCHED_NORMAL;
  2263. if (p->normal_prio < DEFAULT_PRIO)
  2264. p->prio = DEFAULT_PRIO;
  2265. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2266. p->static_prio = NICE_TO_PRIO(0);
  2267. set_load_weight(p);
  2268. }
  2269. /*
  2270. * We don't need the reset flag anymore after the fork. It has
  2271. * fulfilled its duty:
  2272. */
  2273. p->sched_reset_on_fork = 0;
  2274. }
  2275. if (!rt_prio(p->prio))
  2276. p->sched_class = &fair_sched_class;
  2277. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2278. if (likely(sched_info_on()))
  2279. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2280. #endif
  2281. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2282. p->oncpu = 0;
  2283. #endif
  2284. #ifdef CONFIG_PREEMPT
  2285. /* Want to start with kernel preemption disabled. */
  2286. task_thread_info(p)->preempt_count = 1;
  2287. #endif
  2288. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2289. put_cpu();
  2290. }
  2291. /*
  2292. * wake_up_new_task - wake up a newly created task for the first time.
  2293. *
  2294. * This function will do some initial scheduler statistics housekeeping
  2295. * that must be done for every newly created context, then puts the task
  2296. * on the runqueue and wakes it.
  2297. */
  2298. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2299. {
  2300. unsigned long flags;
  2301. struct rq *rq;
  2302. rq = task_rq_lock(p, &flags);
  2303. BUG_ON(p->state != TASK_RUNNING);
  2304. update_rq_clock(rq);
  2305. p->prio = effective_prio(p);
  2306. if (!p->sched_class->task_new || !current->se.on_rq) {
  2307. activate_task(rq, p, 0);
  2308. } else {
  2309. /*
  2310. * Let the scheduling class do new task startup
  2311. * management (if any):
  2312. */
  2313. p->sched_class->task_new(rq, p);
  2314. inc_nr_running(rq);
  2315. }
  2316. trace_sched_wakeup_new(rq, p, 1);
  2317. check_preempt_curr(rq, p, 0);
  2318. #ifdef CONFIG_SMP
  2319. if (p->sched_class->task_wake_up)
  2320. p->sched_class->task_wake_up(rq, p);
  2321. #endif
  2322. task_rq_unlock(rq, &flags);
  2323. }
  2324. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2325. /**
  2326. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2327. * @notifier: notifier struct to register
  2328. */
  2329. void preempt_notifier_register(struct preempt_notifier *notifier)
  2330. {
  2331. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2332. }
  2333. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2334. /**
  2335. * preempt_notifier_unregister - no longer interested in preemption notifications
  2336. * @notifier: notifier struct to unregister
  2337. *
  2338. * This is safe to call from within a preemption notifier.
  2339. */
  2340. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2341. {
  2342. hlist_del(&notifier->link);
  2343. }
  2344. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2345. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2346. {
  2347. struct preempt_notifier *notifier;
  2348. struct hlist_node *node;
  2349. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2350. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2351. }
  2352. static void
  2353. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2354. struct task_struct *next)
  2355. {
  2356. struct preempt_notifier *notifier;
  2357. struct hlist_node *node;
  2358. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2359. notifier->ops->sched_out(notifier, next);
  2360. }
  2361. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2362. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2363. {
  2364. }
  2365. static void
  2366. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2367. struct task_struct *next)
  2368. {
  2369. }
  2370. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2371. /**
  2372. * prepare_task_switch - prepare to switch tasks
  2373. * @rq: the runqueue preparing to switch
  2374. * @prev: the current task that is being switched out
  2375. * @next: the task we are going to switch to.
  2376. *
  2377. * This is called with the rq lock held and interrupts off. It must
  2378. * be paired with a subsequent finish_task_switch after the context
  2379. * switch.
  2380. *
  2381. * prepare_task_switch sets up locking and calls architecture specific
  2382. * hooks.
  2383. */
  2384. static inline void
  2385. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2386. struct task_struct *next)
  2387. {
  2388. fire_sched_out_preempt_notifiers(prev, next);
  2389. prepare_lock_switch(rq, next);
  2390. prepare_arch_switch(next);
  2391. }
  2392. /**
  2393. * finish_task_switch - clean up after a task-switch
  2394. * @rq: runqueue associated with task-switch
  2395. * @prev: the thread we just switched away from.
  2396. *
  2397. * finish_task_switch must be called after the context switch, paired
  2398. * with a prepare_task_switch call before the context switch.
  2399. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2400. * and do any other architecture-specific cleanup actions.
  2401. *
  2402. * Note that we may have delayed dropping an mm in context_switch(). If
  2403. * so, we finish that here outside of the runqueue lock. (Doing it
  2404. * with the lock held can cause deadlocks; see schedule() for
  2405. * details.)
  2406. */
  2407. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2408. __releases(rq->lock)
  2409. {
  2410. struct mm_struct *mm = rq->prev_mm;
  2411. long prev_state;
  2412. rq->prev_mm = NULL;
  2413. /*
  2414. * A task struct has one reference for the use as "current".
  2415. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2416. * schedule one last time. The schedule call will never return, and
  2417. * the scheduled task must drop that reference.
  2418. * The test for TASK_DEAD must occur while the runqueue locks are
  2419. * still held, otherwise prev could be scheduled on another cpu, die
  2420. * there before we look at prev->state, and then the reference would
  2421. * be dropped twice.
  2422. * Manfred Spraul <manfred@colorfullife.com>
  2423. */
  2424. prev_state = prev->state;
  2425. finish_arch_switch(prev);
  2426. perf_counter_task_sched_in(current, cpu_of(rq));
  2427. finish_lock_switch(rq, prev);
  2428. fire_sched_in_preempt_notifiers(current);
  2429. if (mm)
  2430. mmdrop(mm);
  2431. if (unlikely(prev_state == TASK_DEAD)) {
  2432. /*
  2433. * Remove function-return probe instances associated with this
  2434. * task and put them back on the free list.
  2435. */
  2436. kprobe_flush_task(prev);
  2437. put_task_struct(prev);
  2438. }
  2439. }
  2440. #ifdef CONFIG_SMP
  2441. /* assumes rq->lock is held */
  2442. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2443. {
  2444. if (prev->sched_class->pre_schedule)
  2445. prev->sched_class->pre_schedule(rq, prev);
  2446. }
  2447. /* rq->lock is NOT held, but preemption is disabled */
  2448. static inline void post_schedule(struct rq *rq)
  2449. {
  2450. if (rq->post_schedule) {
  2451. unsigned long flags;
  2452. spin_lock_irqsave(&rq->lock, flags);
  2453. if (rq->curr->sched_class->post_schedule)
  2454. rq->curr->sched_class->post_schedule(rq);
  2455. spin_unlock_irqrestore(&rq->lock, flags);
  2456. rq->post_schedule = 0;
  2457. }
  2458. }
  2459. #else
  2460. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2461. {
  2462. }
  2463. static inline void post_schedule(struct rq *rq)
  2464. {
  2465. }
  2466. #endif
  2467. /**
  2468. * schedule_tail - first thing a freshly forked thread must call.
  2469. * @prev: the thread we just switched away from.
  2470. */
  2471. asmlinkage void schedule_tail(struct task_struct *prev)
  2472. __releases(rq->lock)
  2473. {
  2474. struct rq *rq = this_rq();
  2475. finish_task_switch(rq, prev);
  2476. /*
  2477. * FIXME: do we need to worry about rq being invalidated by the
  2478. * task_switch?
  2479. */
  2480. post_schedule(rq);
  2481. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2482. /* In this case, finish_task_switch does not reenable preemption */
  2483. preempt_enable();
  2484. #endif
  2485. if (current->set_child_tid)
  2486. put_user(task_pid_vnr(current), current->set_child_tid);
  2487. }
  2488. /*
  2489. * context_switch - switch to the new MM and the new
  2490. * thread's register state.
  2491. */
  2492. static inline void
  2493. context_switch(struct rq *rq, struct task_struct *prev,
  2494. struct task_struct *next)
  2495. {
  2496. struct mm_struct *mm, *oldmm;
  2497. prepare_task_switch(rq, prev, next);
  2498. trace_sched_switch(rq, prev, next);
  2499. mm = next->mm;
  2500. oldmm = prev->active_mm;
  2501. /*
  2502. * For paravirt, this is coupled with an exit in switch_to to
  2503. * combine the page table reload and the switch backend into
  2504. * one hypercall.
  2505. */
  2506. arch_start_context_switch(prev);
  2507. if (unlikely(!mm)) {
  2508. next->active_mm = oldmm;
  2509. atomic_inc(&oldmm->mm_count);
  2510. enter_lazy_tlb(oldmm, next);
  2511. } else
  2512. switch_mm(oldmm, mm, next);
  2513. if (unlikely(!prev->mm)) {
  2514. prev->active_mm = NULL;
  2515. rq->prev_mm = oldmm;
  2516. }
  2517. /*
  2518. * Since the runqueue lock will be released by the next
  2519. * task (which is an invalid locking op but in the case
  2520. * of the scheduler it's an obvious special-case), so we
  2521. * do an early lockdep release here:
  2522. */
  2523. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2524. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2525. #endif
  2526. /* Here we just switch the register state and the stack. */
  2527. switch_to(prev, next, prev);
  2528. barrier();
  2529. /*
  2530. * this_rq must be evaluated again because prev may have moved
  2531. * CPUs since it called schedule(), thus the 'rq' on its stack
  2532. * frame will be invalid.
  2533. */
  2534. finish_task_switch(this_rq(), prev);
  2535. }
  2536. /*
  2537. * nr_running, nr_uninterruptible and nr_context_switches:
  2538. *
  2539. * externally visible scheduler statistics: current number of runnable
  2540. * threads, current number of uninterruptible-sleeping threads, total
  2541. * number of context switches performed since bootup.
  2542. */
  2543. unsigned long nr_running(void)
  2544. {
  2545. unsigned long i, sum = 0;
  2546. for_each_online_cpu(i)
  2547. sum += cpu_rq(i)->nr_running;
  2548. return sum;
  2549. }
  2550. unsigned long nr_uninterruptible(void)
  2551. {
  2552. unsigned long i, sum = 0;
  2553. for_each_possible_cpu(i)
  2554. sum += cpu_rq(i)->nr_uninterruptible;
  2555. /*
  2556. * Since we read the counters lockless, it might be slightly
  2557. * inaccurate. Do not allow it to go below zero though:
  2558. */
  2559. if (unlikely((long)sum < 0))
  2560. sum = 0;
  2561. return sum;
  2562. }
  2563. unsigned long long nr_context_switches(void)
  2564. {
  2565. int i;
  2566. unsigned long long sum = 0;
  2567. for_each_possible_cpu(i)
  2568. sum += cpu_rq(i)->nr_switches;
  2569. return sum;
  2570. }
  2571. unsigned long nr_iowait(void)
  2572. {
  2573. unsigned long i, sum = 0;
  2574. for_each_possible_cpu(i)
  2575. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2576. return sum;
  2577. }
  2578. /* Variables and functions for calc_load */
  2579. static atomic_long_t calc_load_tasks;
  2580. static unsigned long calc_load_update;
  2581. unsigned long avenrun[3];
  2582. EXPORT_SYMBOL(avenrun);
  2583. /**
  2584. * get_avenrun - get the load average array
  2585. * @loads: pointer to dest load array
  2586. * @offset: offset to add
  2587. * @shift: shift count to shift the result left
  2588. *
  2589. * These values are estimates at best, so no need for locking.
  2590. */
  2591. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2592. {
  2593. loads[0] = (avenrun[0] + offset) << shift;
  2594. loads[1] = (avenrun[1] + offset) << shift;
  2595. loads[2] = (avenrun[2] + offset) << shift;
  2596. }
  2597. static unsigned long
  2598. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2599. {
  2600. load *= exp;
  2601. load += active * (FIXED_1 - exp);
  2602. return load >> FSHIFT;
  2603. }
  2604. /*
  2605. * calc_load - update the avenrun load estimates 10 ticks after the
  2606. * CPUs have updated calc_load_tasks.
  2607. */
  2608. void calc_global_load(void)
  2609. {
  2610. unsigned long upd = calc_load_update + 10;
  2611. long active;
  2612. if (time_before(jiffies, upd))
  2613. return;
  2614. active = atomic_long_read(&calc_load_tasks);
  2615. active = active > 0 ? active * FIXED_1 : 0;
  2616. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2617. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2618. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2619. calc_load_update += LOAD_FREQ;
  2620. }
  2621. /*
  2622. * Either called from update_cpu_load() or from a cpu going idle
  2623. */
  2624. static void calc_load_account_active(struct rq *this_rq)
  2625. {
  2626. long nr_active, delta;
  2627. nr_active = this_rq->nr_running;
  2628. nr_active += (long) this_rq->nr_uninterruptible;
  2629. if (nr_active != this_rq->calc_load_active) {
  2630. delta = nr_active - this_rq->calc_load_active;
  2631. this_rq->calc_load_active = nr_active;
  2632. atomic_long_add(delta, &calc_load_tasks);
  2633. }
  2634. }
  2635. /*
  2636. * Externally visible per-cpu scheduler statistics:
  2637. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2638. */
  2639. u64 cpu_nr_migrations(int cpu)
  2640. {
  2641. return cpu_rq(cpu)->nr_migrations_in;
  2642. }
  2643. /*
  2644. * Update rq->cpu_load[] statistics. This function is usually called every
  2645. * scheduler tick (TICK_NSEC).
  2646. */
  2647. static void update_cpu_load(struct rq *this_rq)
  2648. {
  2649. unsigned long this_load = this_rq->load.weight;
  2650. int i, scale;
  2651. this_rq->nr_load_updates++;
  2652. /* Update our load: */
  2653. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2654. unsigned long old_load, new_load;
  2655. /* scale is effectively 1 << i now, and >> i divides by scale */
  2656. old_load = this_rq->cpu_load[i];
  2657. new_load = this_load;
  2658. /*
  2659. * Round up the averaging division if load is increasing. This
  2660. * prevents us from getting stuck on 9 if the load is 10, for
  2661. * example.
  2662. */
  2663. if (new_load > old_load)
  2664. new_load += scale-1;
  2665. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2666. }
  2667. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2668. this_rq->calc_load_update += LOAD_FREQ;
  2669. calc_load_account_active(this_rq);
  2670. }
  2671. }
  2672. #ifdef CONFIG_SMP
  2673. /*
  2674. * double_rq_lock - safely lock two runqueues
  2675. *
  2676. * Note this does not disable interrupts like task_rq_lock,
  2677. * you need to do so manually before calling.
  2678. */
  2679. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2680. __acquires(rq1->lock)
  2681. __acquires(rq2->lock)
  2682. {
  2683. BUG_ON(!irqs_disabled());
  2684. if (rq1 == rq2) {
  2685. spin_lock(&rq1->lock);
  2686. __acquire(rq2->lock); /* Fake it out ;) */
  2687. } else {
  2688. if (rq1 < rq2) {
  2689. spin_lock(&rq1->lock);
  2690. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2691. } else {
  2692. spin_lock(&rq2->lock);
  2693. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2694. }
  2695. }
  2696. update_rq_clock(rq1);
  2697. update_rq_clock(rq2);
  2698. }
  2699. /*
  2700. * double_rq_unlock - safely unlock two runqueues
  2701. *
  2702. * Note this does not restore interrupts like task_rq_unlock,
  2703. * you need to do so manually after calling.
  2704. */
  2705. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2706. __releases(rq1->lock)
  2707. __releases(rq2->lock)
  2708. {
  2709. spin_unlock(&rq1->lock);
  2710. if (rq1 != rq2)
  2711. spin_unlock(&rq2->lock);
  2712. else
  2713. __release(rq2->lock);
  2714. }
  2715. /*
  2716. * If dest_cpu is allowed for this process, migrate the task to it.
  2717. * This is accomplished by forcing the cpu_allowed mask to only
  2718. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2719. * the cpu_allowed mask is restored.
  2720. */
  2721. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2722. {
  2723. struct migration_req req;
  2724. unsigned long flags;
  2725. struct rq *rq;
  2726. rq = task_rq_lock(p, &flags);
  2727. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2728. || unlikely(!cpu_active(dest_cpu)))
  2729. goto out;
  2730. /* force the process onto the specified CPU */
  2731. if (migrate_task(p, dest_cpu, &req)) {
  2732. /* Need to wait for migration thread (might exit: take ref). */
  2733. struct task_struct *mt = rq->migration_thread;
  2734. get_task_struct(mt);
  2735. task_rq_unlock(rq, &flags);
  2736. wake_up_process(mt);
  2737. put_task_struct(mt);
  2738. wait_for_completion(&req.done);
  2739. return;
  2740. }
  2741. out:
  2742. task_rq_unlock(rq, &flags);
  2743. }
  2744. /*
  2745. * sched_exec - execve() is a valuable balancing opportunity, because at
  2746. * this point the task has the smallest effective memory and cache footprint.
  2747. */
  2748. void sched_exec(void)
  2749. {
  2750. int new_cpu, this_cpu = get_cpu();
  2751. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2752. put_cpu();
  2753. if (new_cpu != this_cpu)
  2754. sched_migrate_task(current, new_cpu);
  2755. }
  2756. /*
  2757. * pull_task - move a task from a remote runqueue to the local runqueue.
  2758. * Both runqueues must be locked.
  2759. */
  2760. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2761. struct rq *this_rq, int this_cpu)
  2762. {
  2763. deactivate_task(src_rq, p, 0);
  2764. set_task_cpu(p, this_cpu);
  2765. activate_task(this_rq, p, 0);
  2766. /*
  2767. * Note that idle threads have a prio of MAX_PRIO, for this test
  2768. * to be always true for them.
  2769. */
  2770. check_preempt_curr(this_rq, p, 0);
  2771. }
  2772. /*
  2773. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2774. */
  2775. static
  2776. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2777. struct sched_domain *sd, enum cpu_idle_type idle,
  2778. int *all_pinned)
  2779. {
  2780. int tsk_cache_hot = 0;
  2781. /*
  2782. * We do not migrate tasks that are:
  2783. * 1) running (obviously), or
  2784. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2785. * 3) are cache-hot on their current CPU.
  2786. */
  2787. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2788. schedstat_inc(p, se.nr_failed_migrations_affine);
  2789. return 0;
  2790. }
  2791. *all_pinned = 0;
  2792. if (task_running(rq, p)) {
  2793. schedstat_inc(p, se.nr_failed_migrations_running);
  2794. return 0;
  2795. }
  2796. /*
  2797. * Aggressive migration if:
  2798. * 1) task is cache cold, or
  2799. * 2) too many balance attempts have failed.
  2800. */
  2801. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2802. if (!tsk_cache_hot ||
  2803. sd->nr_balance_failed > sd->cache_nice_tries) {
  2804. #ifdef CONFIG_SCHEDSTATS
  2805. if (tsk_cache_hot) {
  2806. schedstat_inc(sd, lb_hot_gained[idle]);
  2807. schedstat_inc(p, se.nr_forced_migrations);
  2808. }
  2809. #endif
  2810. return 1;
  2811. }
  2812. if (tsk_cache_hot) {
  2813. schedstat_inc(p, se.nr_failed_migrations_hot);
  2814. return 0;
  2815. }
  2816. return 1;
  2817. }
  2818. static unsigned long
  2819. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2820. unsigned long max_load_move, struct sched_domain *sd,
  2821. enum cpu_idle_type idle, int *all_pinned,
  2822. int *this_best_prio, struct rq_iterator *iterator)
  2823. {
  2824. int loops = 0, pulled = 0, pinned = 0;
  2825. struct task_struct *p;
  2826. long rem_load_move = max_load_move;
  2827. if (max_load_move == 0)
  2828. goto out;
  2829. pinned = 1;
  2830. /*
  2831. * Start the load-balancing iterator:
  2832. */
  2833. p = iterator->start(iterator->arg);
  2834. next:
  2835. if (!p || loops++ > sysctl_sched_nr_migrate)
  2836. goto out;
  2837. if ((p->se.load.weight >> 1) > rem_load_move ||
  2838. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2839. p = iterator->next(iterator->arg);
  2840. goto next;
  2841. }
  2842. pull_task(busiest, p, this_rq, this_cpu);
  2843. pulled++;
  2844. rem_load_move -= p->se.load.weight;
  2845. #ifdef CONFIG_PREEMPT
  2846. /*
  2847. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2848. * will stop after the first task is pulled to minimize the critical
  2849. * section.
  2850. */
  2851. if (idle == CPU_NEWLY_IDLE)
  2852. goto out;
  2853. #endif
  2854. /*
  2855. * We only want to steal up to the prescribed amount of weighted load.
  2856. */
  2857. if (rem_load_move > 0) {
  2858. if (p->prio < *this_best_prio)
  2859. *this_best_prio = p->prio;
  2860. p = iterator->next(iterator->arg);
  2861. goto next;
  2862. }
  2863. out:
  2864. /*
  2865. * Right now, this is one of only two places pull_task() is called,
  2866. * so we can safely collect pull_task() stats here rather than
  2867. * inside pull_task().
  2868. */
  2869. schedstat_add(sd, lb_gained[idle], pulled);
  2870. if (all_pinned)
  2871. *all_pinned = pinned;
  2872. return max_load_move - rem_load_move;
  2873. }
  2874. /*
  2875. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2876. * this_rq, as part of a balancing operation within domain "sd".
  2877. * Returns 1 if successful and 0 otherwise.
  2878. *
  2879. * Called with both runqueues locked.
  2880. */
  2881. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2882. unsigned long max_load_move,
  2883. struct sched_domain *sd, enum cpu_idle_type idle,
  2884. int *all_pinned)
  2885. {
  2886. const struct sched_class *class = sched_class_highest;
  2887. unsigned long total_load_moved = 0;
  2888. int this_best_prio = this_rq->curr->prio;
  2889. do {
  2890. total_load_moved +=
  2891. class->load_balance(this_rq, this_cpu, busiest,
  2892. max_load_move - total_load_moved,
  2893. sd, idle, all_pinned, &this_best_prio);
  2894. class = class->next;
  2895. #ifdef CONFIG_PREEMPT
  2896. /*
  2897. * NEWIDLE balancing is a source of latency, so preemptible
  2898. * kernels will stop after the first task is pulled to minimize
  2899. * the critical section.
  2900. */
  2901. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2902. break;
  2903. #endif
  2904. } while (class && max_load_move > total_load_moved);
  2905. return total_load_moved > 0;
  2906. }
  2907. static int
  2908. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2909. struct sched_domain *sd, enum cpu_idle_type idle,
  2910. struct rq_iterator *iterator)
  2911. {
  2912. struct task_struct *p = iterator->start(iterator->arg);
  2913. int pinned = 0;
  2914. while (p) {
  2915. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2916. pull_task(busiest, p, this_rq, this_cpu);
  2917. /*
  2918. * Right now, this is only the second place pull_task()
  2919. * is called, so we can safely collect pull_task()
  2920. * stats here rather than inside pull_task().
  2921. */
  2922. schedstat_inc(sd, lb_gained[idle]);
  2923. return 1;
  2924. }
  2925. p = iterator->next(iterator->arg);
  2926. }
  2927. return 0;
  2928. }
  2929. /*
  2930. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2931. * part of active balancing operations within "domain".
  2932. * Returns 1 if successful and 0 otherwise.
  2933. *
  2934. * Called with both runqueues locked.
  2935. */
  2936. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2937. struct sched_domain *sd, enum cpu_idle_type idle)
  2938. {
  2939. const struct sched_class *class;
  2940. for_each_class(class) {
  2941. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2942. return 1;
  2943. }
  2944. return 0;
  2945. }
  2946. /********** Helpers for find_busiest_group ************************/
  2947. /*
  2948. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2949. * during load balancing.
  2950. */
  2951. struct sd_lb_stats {
  2952. struct sched_group *busiest; /* Busiest group in this sd */
  2953. struct sched_group *this; /* Local group in this sd */
  2954. unsigned long total_load; /* Total load of all groups in sd */
  2955. unsigned long total_pwr; /* Total power of all groups in sd */
  2956. unsigned long avg_load; /* Average load across all groups in sd */
  2957. /** Statistics of this group */
  2958. unsigned long this_load;
  2959. unsigned long this_load_per_task;
  2960. unsigned long this_nr_running;
  2961. /* Statistics of the busiest group */
  2962. unsigned long max_load;
  2963. unsigned long busiest_load_per_task;
  2964. unsigned long busiest_nr_running;
  2965. int group_imb; /* Is there imbalance in this sd */
  2966. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2967. int power_savings_balance; /* Is powersave balance needed for this sd */
  2968. struct sched_group *group_min; /* Least loaded group in sd */
  2969. struct sched_group *group_leader; /* Group which relieves group_min */
  2970. unsigned long min_load_per_task; /* load_per_task in group_min */
  2971. unsigned long leader_nr_running; /* Nr running of group_leader */
  2972. unsigned long min_nr_running; /* Nr running of group_min */
  2973. #endif
  2974. };
  2975. /*
  2976. * sg_lb_stats - stats of a sched_group required for load_balancing
  2977. */
  2978. struct sg_lb_stats {
  2979. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2980. unsigned long group_load; /* Total load over the CPUs of the group */
  2981. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2982. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2983. unsigned long group_capacity;
  2984. int group_imb; /* Is there an imbalance in the group ? */
  2985. };
  2986. /**
  2987. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2988. * @group: The group whose first cpu is to be returned.
  2989. */
  2990. static inline unsigned int group_first_cpu(struct sched_group *group)
  2991. {
  2992. return cpumask_first(sched_group_cpus(group));
  2993. }
  2994. /**
  2995. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2996. * @sd: The sched_domain whose load_idx is to be obtained.
  2997. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2998. */
  2999. static inline int get_sd_load_idx(struct sched_domain *sd,
  3000. enum cpu_idle_type idle)
  3001. {
  3002. int load_idx;
  3003. switch (idle) {
  3004. case CPU_NOT_IDLE:
  3005. load_idx = sd->busy_idx;
  3006. break;
  3007. case CPU_NEWLY_IDLE:
  3008. load_idx = sd->newidle_idx;
  3009. break;
  3010. default:
  3011. load_idx = sd->idle_idx;
  3012. break;
  3013. }
  3014. return load_idx;
  3015. }
  3016. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3017. /**
  3018. * init_sd_power_savings_stats - Initialize power savings statistics for
  3019. * the given sched_domain, during load balancing.
  3020. *
  3021. * @sd: Sched domain whose power-savings statistics are to be initialized.
  3022. * @sds: Variable containing the statistics for sd.
  3023. * @idle: Idle status of the CPU at which we're performing load-balancing.
  3024. */
  3025. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3026. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3027. {
  3028. /*
  3029. * Busy processors will not participate in power savings
  3030. * balance.
  3031. */
  3032. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3033. sds->power_savings_balance = 0;
  3034. else {
  3035. sds->power_savings_balance = 1;
  3036. sds->min_nr_running = ULONG_MAX;
  3037. sds->leader_nr_running = 0;
  3038. }
  3039. }
  3040. /**
  3041. * update_sd_power_savings_stats - Update the power saving stats for a
  3042. * sched_domain while performing load balancing.
  3043. *
  3044. * @group: sched_group belonging to the sched_domain under consideration.
  3045. * @sds: Variable containing the statistics of the sched_domain
  3046. * @local_group: Does group contain the CPU for which we're performing
  3047. * load balancing ?
  3048. * @sgs: Variable containing the statistics of the group.
  3049. */
  3050. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3051. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3052. {
  3053. if (!sds->power_savings_balance)
  3054. return;
  3055. /*
  3056. * If the local group is idle or completely loaded
  3057. * no need to do power savings balance at this domain
  3058. */
  3059. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3060. !sds->this_nr_running))
  3061. sds->power_savings_balance = 0;
  3062. /*
  3063. * If a group is already running at full capacity or idle,
  3064. * don't include that group in power savings calculations
  3065. */
  3066. if (!sds->power_savings_balance ||
  3067. sgs->sum_nr_running >= sgs->group_capacity ||
  3068. !sgs->sum_nr_running)
  3069. return;
  3070. /*
  3071. * Calculate the group which has the least non-idle load.
  3072. * This is the group from where we need to pick up the load
  3073. * for saving power
  3074. */
  3075. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3076. (sgs->sum_nr_running == sds->min_nr_running &&
  3077. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3078. sds->group_min = group;
  3079. sds->min_nr_running = sgs->sum_nr_running;
  3080. sds->min_load_per_task = sgs->sum_weighted_load /
  3081. sgs->sum_nr_running;
  3082. }
  3083. /*
  3084. * Calculate the group which is almost near its
  3085. * capacity but still has some space to pick up some load
  3086. * from other group and save more power
  3087. */
  3088. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  3089. return;
  3090. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3091. (sgs->sum_nr_running == sds->leader_nr_running &&
  3092. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3093. sds->group_leader = group;
  3094. sds->leader_nr_running = sgs->sum_nr_running;
  3095. }
  3096. }
  3097. /**
  3098. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3099. * @sds: Variable containing the statistics of the sched_domain
  3100. * under consideration.
  3101. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3102. * @imbalance: Variable to store the imbalance.
  3103. *
  3104. * Description:
  3105. * Check if we have potential to perform some power-savings balance.
  3106. * If yes, set the busiest group to be the least loaded group in the
  3107. * sched_domain, so that it's CPUs can be put to idle.
  3108. *
  3109. * Returns 1 if there is potential to perform power-savings balance.
  3110. * Else returns 0.
  3111. */
  3112. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3113. int this_cpu, unsigned long *imbalance)
  3114. {
  3115. if (!sds->power_savings_balance)
  3116. return 0;
  3117. if (sds->this != sds->group_leader ||
  3118. sds->group_leader == sds->group_min)
  3119. return 0;
  3120. *imbalance = sds->min_load_per_task;
  3121. sds->busiest = sds->group_min;
  3122. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3123. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3124. group_first_cpu(sds->group_leader);
  3125. }
  3126. return 1;
  3127. }
  3128. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3129. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3130. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3131. {
  3132. return;
  3133. }
  3134. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3135. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3136. {
  3137. return;
  3138. }
  3139. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3140. int this_cpu, unsigned long *imbalance)
  3141. {
  3142. return 0;
  3143. }
  3144. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3145. static void update_sched_power(struct sched_domain *sd)
  3146. {
  3147. struct sched_domain *child = sd->child;
  3148. struct sched_group *group, *sdg = sd->groups;
  3149. unsigned long power = sdg->__cpu_power;
  3150. if (!child) {
  3151. /* compute cpu power for this cpu */
  3152. return;
  3153. }
  3154. sdg->__cpu_power = 0;
  3155. group = child->groups;
  3156. do {
  3157. sdg->__cpu_power += group->__cpu_power;
  3158. group = group->next;
  3159. } while (group != child->groups);
  3160. if (power != sdg->__cpu_power)
  3161. sdg->reciprocal_cpu_power = reciprocal_value(sdg->__cpu_power);
  3162. }
  3163. /**
  3164. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3165. * @group: sched_group whose statistics are to be updated.
  3166. * @this_cpu: Cpu for which load balance is currently performed.
  3167. * @idle: Idle status of this_cpu
  3168. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3169. * @sd_idle: Idle status of the sched_domain containing group.
  3170. * @local_group: Does group contain this_cpu.
  3171. * @cpus: Set of cpus considered for load balancing.
  3172. * @balance: Should we balance.
  3173. * @sgs: variable to hold the statistics for this group.
  3174. */
  3175. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3176. struct sched_group *group, int this_cpu,
  3177. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3178. int local_group, const struct cpumask *cpus,
  3179. int *balance, struct sg_lb_stats *sgs)
  3180. {
  3181. unsigned long load, max_cpu_load, min_cpu_load;
  3182. int i;
  3183. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3184. unsigned long sum_avg_load_per_task;
  3185. unsigned long avg_load_per_task;
  3186. if (local_group) {
  3187. balance_cpu = group_first_cpu(group);
  3188. if (balance_cpu == this_cpu)
  3189. update_sched_power(sd);
  3190. }
  3191. /* Tally up the load of all CPUs in the group */
  3192. sum_avg_load_per_task = avg_load_per_task = 0;
  3193. max_cpu_load = 0;
  3194. min_cpu_load = ~0UL;
  3195. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3196. struct rq *rq = cpu_rq(i);
  3197. if (*sd_idle && rq->nr_running)
  3198. *sd_idle = 0;
  3199. /* Bias balancing toward cpus of our domain */
  3200. if (local_group) {
  3201. if (idle_cpu(i) && !first_idle_cpu) {
  3202. first_idle_cpu = 1;
  3203. balance_cpu = i;
  3204. }
  3205. load = target_load(i, load_idx);
  3206. } else {
  3207. load = source_load(i, load_idx);
  3208. if (load > max_cpu_load)
  3209. max_cpu_load = load;
  3210. if (min_cpu_load > load)
  3211. min_cpu_load = load;
  3212. }
  3213. sgs->group_load += load;
  3214. sgs->sum_nr_running += rq->nr_running;
  3215. sgs->sum_weighted_load += weighted_cpuload(i);
  3216. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3217. }
  3218. /*
  3219. * First idle cpu or the first cpu(busiest) in this sched group
  3220. * is eligible for doing load balancing at this and above
  3221. * domains. In the newly idle case, we will allow all the cpu's
  3222. * to do the newly idle load balance.
  3223. */
  3224. if (idle != CPU_NEWLY_IDLE && local_group &&
  3225. balance_cpu != this_cpu && balance) {
  3226. *balance = 0;
  3227. return;
  3228. }
  3229. /* Adjust by relative CPU power of the group */
  3230. sgs->avg_load = sg_div_cpu_power(group,
  3231. sgs->group_load * SCHED_LOAD_SCALE);
  3232. /*
  3233. * Consider the group unbalanced when the imbalance is larger
  3234. * than the average weight of two tasks.
  3235. *
  3236. * APZ: with cgroup the avg task weight can vary wildly and
  3237. * might not be a suitable number - should we keep a
  3238. * normalized nr_running number somewhere that negates
  3239. * the hierarchy?
  3240. */
  3241. avg_load_per_task = sg_div_cpu_power(group,
  3242. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3243. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3244. sgs->group_imb = 1;
  3245. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3246. }
  3247. /**
  3248. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3249. * @sd: sched_domain whose statistics are to be updated.
  3250. * @this_cpu: Cpu for which load balance is currently performed.
  3251. * @idle: Idle status of this_cpu
  3252. * @sd_idle: Idle status of the sched_domain containing group.
  3253. * @cpus: Set of cpus considered for load balancing.
  3254. * @balance: Should we balance.
  3255. * @sds: variable to hold the statistics for this sched_domain.
  3256. */
  3257. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3258. enum cpu_idle_type idle, int *sd_idle,
  3259. const struct cpumask *cpus, int *balance,
  3260. struct sd_lb_stats *sds)
  3261. {
  3262. struct sched_domain *child = sd->child;
  3263. struct sched_group *group = sd->groups;
  3264. struct sg_lb_stats sgs;
  3265. int load_idx, prefer_sibling = 0;
  3266. if (child && child->flags & SD_PREFER_SIBLING)
  3267. prefer_sibling = 1;
  3268. init_sd_power_savings_stats(sd, sds, idle);
  3269. load_idx = get_sd_load_idx(sd, idle);
  3270. do {
  3271. int local_group;
  3272. local_group = cpumask_test_cpu(this_cpu,
  3273. sched_group_cpus(group));
  3274. memset(&sgs, 0, sizeof(sgs));
  3275. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3276. local_group, cpus, balance, &sgs);
  3277. if (local_group && balance && !(*balance))
  3278. return;
  3279. sds->total_load += sgs.group_load;
  3280. sds->total_pwr += group->__cpu_power;
  3281. /*
  3282. * In case the child domain prefers tasks go to siblings
  3283. * first, lower the group capacity to one so that we'll try
  3284. * and move all the excess tasks away.
  3285. */
  3286. if (prefer_sibling)
  3287. sgs.group_capacity = 1;
  3288. if (local_group) {
  3289. sds->this_load = sgs.avg_load;
  3290. sds->this = group;
  3291. sds->this_nr_running = sgs.sum_nr_running;
  3292. sds->this_load_per_task = sgs.sum_weighted_load;
  3293. } else if (sgs.avg_load > sds->max_load &&
  3294. (sgs.sum_nr_running > sgs.group_capacity ||
  3295. sgs.group_imb)) {
  3296. sds->max_load = sgs.avg_load;
  3297. sds->busiest = group;
  3298. sds->busiest_nr_running = sgs.sum_nr_running;
  3299. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3300. sds->group_imb = sgs.group_imb;
  3301. }
  3302. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3303. group = group->next;
  3304. } while (group != sd->groups);
  3305. }
  3306. /**
  3307. * fix_small_imbalance - Calculate the minor imbalance that exists
  3308. * amongst the groups of a sched_domain, during
  3309. * load balancing.
  3310. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3311. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3312. * @imbalance: Variable to store the imbalance.
  3313. */
  3314. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3315. int this_cpu, unsigned long *imbalance)
  3316. {
  3317. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3318. unsigned int imbn = 2;
  3319. if (sds->this_nr_running) {
  3320. sds->this_load_per_task /= sds->this_nr_running;
  3321. if (sds->busiest_load_per_task >
  3322. sds->this_load_per_task)
  3323. imbn = 1;
  3324. } else
  3325. sds->this_load_per_task =
  3326. cpu_avg_load_per_task(this_cpu);
  3327. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3328. sds->busiest_load_per_task * imbn) {
  3329. *imbalance = sds->busiest_load_per_task;
  3330. return;
  3331. }
  3332. /*
  3333. * OK, we don't have enough imbalance to justify moving tasks,
  3334. * however we may be able to increase total CPU power used by
  3335. * moving them.
  3336. */
  3337. pwr_now += sds->busiest->__cpu_power *
  3338. min(sds->busiest_load_per_task, sds->max_load);
  3339. pwr_now += sds->this->__cpu_power *
  3340. min(sds->this_load_per_task, sds->this_load);
  3341. pwr_now /= SCHED_LOAD_SCALE;
  3342. /* Amount of load we'd subtract */
  3343. tmp = sg_div_cpu_power(sds->busiest,
  3344. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3345. if (sds->max_load > tmp)
  3346. pwr_move += sds->busiest->__cpu_power *
  3347. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3348. /* Amount of load we'd add */
  3349. if (sds->max_load * sds->busiest->__cpu_power <
  3350. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3351. tmp = sg_div_cpu_power(sds->this,
  3352. sds->max_load * sds->busiest->__cpu_power);
  3353. else
  3354. tmp = sg_div_cpu_power(sds->this,
  3355. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3356. pwr_move += sds->this->__cpu_power *
  3357. min(sds->this_load_per_task, sds->this_load + tmp);
  3358. pwr_move /= SCHED_LOAD_SCALE;
  3359. /* Move if we gain throughput */
  3360. if (pwr_move > pwr_now)
  3361. *imbalance = sds->busiest_load_per_task;
  3362. }
  3363. /**
  3364. * calculate_imbalance - Calculate the amount of imbalance present within the
  3365. * groups of a given sched_domain during load balance.
  3366. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3367. * @this_cpu: Cpu for which currently load balance is being performed.
  3368. * @imbalance: The variable to store the imbalance.
  3369. */
  3370. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3371. unsigned long *imbalance)
  3372. {
  3373. unsigned long max_pull;
  3374. /*
  3375. * In the presence of smp nice balancing, certain scenarios can have
  3376. * max load less than avg load(as we skip the groups at or below
  3377. * its cpu_power, while calculating max_load..)
  3378. */
  3379. if (sds->max_load < sds->avg_load) {
  3380. *imbalance = 0;
  3381. return fix_small_imbalance(sds, this_cpu, imbalance);
  3382. }
  3383. /* Don't want to pull so many tasks that a group would go idle */
  3384. max_pull = min(sds->max_load - sds->avg_load,
  3385. sds->max_load - sds->busiest_load_per_task);
  3386. /* How much load to actually move to equalise the imbalance */
  3387. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3388. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3389. / SCHED_LOAD_SCALE;
  3390. /*
  3391. * if *imbalance is less than the average load per runnable task
  3392. * there is no gaurantee that any tasks will be moved so we'll have
  3393. * a think about bumping its value to force at least one task to be
  3394. * moved
  3395. */
  3396. if (*imbalance < sds->busiest_load_per_task)
  3397. return fix_small_imbalance(sds, this_cpu, imbalance);
  3398. }
  3399. /******* find_busiest_group() helpers end here *********************/
  3400. /**
  3401. * find_busiest_group - Returns the busiest group within the sched_domain
  3402. * if there is an imbalance. If there isn't an imbalance, and
  3403. * the user has opted for power-savings, it returns a group whose
  3404. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3405. * such a group exists.
  3406. *
  3407. * Also calculates the amount of weighted load which should be moved
  3408. * to restore balance.
  3409. *
  3410. * @sd: The sched_domain whose busiest group is to be returned.
  3411. * @this_cpu: The cpu for which load balancing is currently being performed.
  3412. * @imbalance: Variable which stores amount of weighted load which should
  3413. * be moved to restore balance/put a group to idle.
  3414. * @idle: The idle status of this_cpu.
  3415. * @sd_idle: The idleness of sd
  3416. * @cpus: The set of CPUs under consideration for load-balancing.
  3417. * @balance: Pointer to a variable indicating if this_cpu
  3418. * is the appropriate cpu to perform load balancing at this_level.
  3419. *
  3420. * Returns: - the busiest group if imbalance exists.
  3421. * - If no imbalance and user has opted for power-savings balance,
  3422. * return the least loaded group whose CPUs can be
  3423. * put to idle by rebalancing its tasks onto our group.
  3424. */
  3425. static struct sched_group *
  3426. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3427. unsigned long *imbalance, enum cpu_idle_type idle,
  3428. int *sd_idle, const struct cpumask *cpus, int *balance)
  3429. {
  3430. struct sd_lb_stats sds;
  3431. memset(&sds, 0, sizeof(sds));
  3432. /*
  3433. * Compute the various statistics relavent for load balancing at
  3434. * this level.
  3435. */
  3436. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3437. balance, &sds);
  3438. /* Cases where imbalance does not exist from POV of this_cpu */
  3439. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3440. * at this level.
  3441. * 2) There is no busy sibling group to pull from.
  3442. * 3) This group is the busiest group.
  3443. * 4) This group is more busy than the avg busieness at this
  3444. * sched_domain.
  3445. * 5) The imbalance is within the specified limit.
  3446. * 6) Any rebalance would lead to ping-pong
  3447. */
  3448. if (balance && !(*balance))
  3449. goto ret;
  3450. if (!sds.busiest || sds.busiest_nr_running == 0)
  3451. goto out_balanced;
  3452. if (sds.this_load >= sds.max_load)
  3453. goto out_balanced;
  3454. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3455. if (sds.this_load >= sds.avg_load)
  3456. goto out_balanced;
  3457. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3458. goto out_balanced;
  3459. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3460. if (sds.group_imb)
  3461. sds.busiest_load_per_task =
  3462. min(sds.busiest_load_per_task, sds.avg_load);
  3463. /*
  3464. * We're trying to get all the cpus to the average_load, so we don't
  3465. * want to push ourselves above the average load, nor do we wish to
  3466. * reduce the max loaded cpu below the average load, as either of these
  3467. * actions would just result in more rebalancing later, and ping-pong
  3468. * tasks around. Thus we look for the minimum possible imbalance.
  3469. * Negative imbalances (*we* are more loaded than anyone else) will
  3470. * be counted as no imbalance for these purposes -- we can't fix that
  3471. * by pulling tasks to us. Be careful of negative numbers as they'll
  3472. * appear as very large values with unsigned longs.
  3473. */
  3474. if (sds.max_load <= sds.busiest_load_per_task)
  3475. goto out_balanced;
  3476. /* Looks like there is an imbalance. Compute it */
  3477. calculate_imbalance(&sds, this_cpu, imbalance);
  3478. return sds.busiest;
  3479. out_balanced:
  3480. /*
  3481. * There is no obvious imbalance. But check if we can do some balancing
  3482. * to save power.
  3483. */
  3484. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3485. return sds.busiest;
  3486. ret:
  3487. *imbalance = 0;
  3488. return NULL;
  3489. }
  3490. /*
  3491. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3492. */
  3493. static struct rq *
  3494. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3495. unsigned long imbalance, const struct cpumask *cpus)
  3496. {
  3497. struct rq *busiest = NULL, *rq;
  3498. unsigned long max_load = 0;
  3499. int i;
  3500. for_each_cpu(i, sched_group_cpus(group)) {
  3501. unsigned long wl;
  3502. if (!cpumask_test_cpu(i, cpus))
  3503. continue;
  3504. rq = cpu_rq(i);
  3505. wl = weighted_cpuload(i);
  3506. if (rq->nr_running == 1 && wl > imbalance)
  3507. continue;
  3508. if (wl > max_load) {
  3509. max_load = wl;
  3510. busiest = rq;
  3511. }
  3512. }
  3513. return busiest;
  3514. }
  3515. /*
  3516. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3517. * so long as it is large enough.
  3518. */
  3519. #define MAX_PINNED_INTERVAL 512
  3520. /* Working cpumask for load_balance and load_balance_newidle. */
  3521. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3522. /*
  3523. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3524. * tasks if there is an imbalance.
  3525. */
  3526. static int load_balance(int this_cpu, struct rq *this_rq,
  3527. struct sched_domain *sd, enum cpu_idle_type idle,
  3528. int *balance)
  3529. {
  3530. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3531. struct sched_group *group;
  3532. unsigned long imbalance;
  3533. struct rq *busiest;
  3534. unsigned long flags;
  3535. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3536. cpumask_setall(cpus);
  3537. /*
  3538. * When power savings policy is enabled for the parent domain, idle
  3539. * sibling can pick up load irrespective of busy siblings. In this case,
  3540. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3541. * portraying it as CPU_NOT_IDLE.
  3542. */
  3543. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3544. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3545. sd_idle = 1;
  3546. schedstat_inc(sd, lb_count[idle]);
  3547. redo:
  3548. update_shares(sd);
  3549. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3550. cpus, balance);
  3551. if (*balance == 0)
  3552. goto out_balanced;
  3553. if (!group) {
  3554. schedstat_inc(sd, lb_nobusyg[idle]);
  3555. goto out_balanced;
  3556. }
  3557. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3558. if (!busiest) {
  3559. schedstat_inc(sd, lb_nobusyq[idle]);
  3560. goto out_balanced;
  3561. }
  3562. BUG_ON(busiest == this_rq);
  3563. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3564. ld_moved = 0;
  3565. if (busiest->nr_running > 1) {
  3566. /*
  3567. * Attempt to move tasks. If find_busiest_group has found
  3568. * an imbalance but busiest->nr_running <= 1, the group is
  3569. * still unbalanced. ld_moved simply stays zero, so it is
  3570. * correctly treated as an imbalance.
  3571. */
  3572. local_irq_save(flags);
  3573. double_rq_lock(this_rq, busiest);
  3574. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3575. imbalance, sd, idle, &all_pinned);
  3576. double_rq_unlock(this_rq, busiest);
  3577. local_irq_restore(flags);
  3578. /*
  3579. * some other cpu did the load balance for us.
  3580. */
  3581. if (ld_moved && this_cpu != smp_processor_id())
  3582. resched_cpu(this_cpu);
  3583. /* All tasks on this runqueue were pinned by CPU affinity */
  3584. if (unlikely(all_pinned)) {
  3585. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3586. if (!cpumask_empty(cpus))
  3587. goto redo;
  3588. goto out_balanced;
  3589. }
  3590. }
  3591. if (!ld_moved) {
  3592. schedstat_inc(sd, lb_failed[idle]);
  3593. sd->nr_balance_failed++;
  3594. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3595. spin_lock_irqsave(&busiest->lock, flags);
  3596. /* don't kick the migration_thread, if the curr
  3597. * task on busiest cpu can't be moved to this_cpu
  3598. */
  3599. if (!cpumask_test_cpu(this_cpu,
  3600. &busiest->curr->cpus_allowed)) {
  3601. spin_unlock_irqrestore(&busiest->lock, flags);
  3602. all_pinned = 1;
  3603. goto out_one_pinned;
  3604. }
  3605. if (!busiest->active_balance) {
  3606. busiest->active_balance = 1;
  3607. busiest->push_cpu = this_cpu;
  3608. active_balance = 1;
  3609. }
  3610. spin_unlock_irqrestore(&busiest->lock, flags);
  3611. if (active_balance)
  3612. wake_up_process(busiest->migration_thread);
  3613. /*
  3614. * We've kicked active balancing, reset the failure
  3615. * counter.
  3616. */
  3617. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3618. }
  3619. } else
  3620. sd->nr_balance_failed = 0;
  3621. if (likely(!active_balance)) {
  3622. /* We were unbalanced, so reset the balancing interval */
  3623. sd->balance_interval = sd->min_interval;
  3624. } else {
  3625. /*
  3626. * If we've begun active balancing, start to back off. This
  3627. * case may not be covered by the all_pinned logic if there
  3628. * is only 1 task on the busy runqueue (because we don't call
  3629. * move_tasks).
  3630. */
  3631. if (sd->balance_interval < sd->max_interval)
  3632. sd->balance_interval *= 2;
  3633. }
  3634. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3635. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3636. ld_moved = -1;
  3637. goto out;
  3638. out_balanced:
  3639. schedstat_inc(sd, lb_balanced[idle]);
  3640. sd->nr_balance_failed = 0;
  3641. out_one_pinned:
  3642. /* tune up the balancing interval */
  3643. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3644. (sd->balance_interval < sd->max_interval))
  3645. sd->balance_interval *= 2;
  3646. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3647. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3648. ld_moved = -1;
  3649. else
  3650. ld_moved = 0;
  3651. out:
  3652. if (ld_moved)
  3653. update_shares(sd);
  3654. return ld_moved;
  3655. }
  3656. /*
  3657. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3658. * tasks if there is an imbalance.
  3659. *
  3660. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3661. * this_rq is locked.
  3662. */
  3663. static int
  3664. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3665. {
  3666. struct sched_group *group;
  3667. struct rq *busiest = NULL;
  3668. unsigned long imbalance;
  3669. int ld_moved = 0;
  3670. int sd_idle = 0;
  3671. int all_pinned = 0;
  3672. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3673. cpumask_setall(cpus);
  3674. /*
  3675. * When power savings policy is enabled for the parent domain, idle
  3676. * sibling can pick up load irrespective of busy siblings. In this case,
  3677. * let the state of idle sibling percolate up as IDLE, instead of
  3678. * portraying it as CPU_NOT_IDLE.
  3679. */
  3680. if (sd->flags & SD_SHARE_CPUPOWER &&
  3681. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3682. sd_idle = 1;
  3683. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3684. redo:
  3685. update_shares_locked(this_rq, sd);
  3686. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3687. &sd_idle, cpus, NULL);
  3688. if (!group) {
  3689. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3690. goto out_balanced;
  3691. }
  3692. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3693. if (!busiest) {
  3694. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3695. goto out_balanced;
  3696. }
  3697. BUG_ON(busiest == this_rq);
  3698. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3699. ld_moved = 0;
  3700. if (busiest->nr_running > 1) {
  3701. /* Attempt to move tasks */
  3702. double_lock_balance(this_rq, busiest);
  3703. /* this_rq->clock is already updated */
  3704. update_rq_clock(busiest);
  3705. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3706. imbalance, sd, CPU_NEWLY_IDLE,
  3707. &all_pinned);
  3708. double_unlock_balance(this_rq, busiest);
  3709. if (unlikely(all_pinned)) {
  3710. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3711. if (!cpumask_empty(cpus))
  3712. goto redo;
  3713. }
  3714. }
  3715. if (!ld_moved) {
  3716. int active_balance = 0;
  3717. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3718. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3719. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3720. return -1;
  3721. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3722. return -1;
  3723. if (sd->nr_balance_failed++ < 2)
  3724. return -1;
  3725. /*
  3726. * The only task running in a non-idle cpu can be moved to this
  3727. * cpu in an attempt to completely freeup the other CPU
  3728. * package. The same method used to move task in load_balance()
  3729. * have been extended for load_balance_newidle() to speedup
  3730. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3731. *
  3732. * The package power saving logic comes from
  3733. * find_busiest_group(). If there are no imbalance, then
  3734. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3735. * f_b_g() will select a group from which a running task may be
  3736. * pulled to this cpu in order to make the other package idle.
  3737. * If there is no opportunity to make a package idle and if
  3738. * there are no imbalance, then f_b_g() will return NULL and no
  3739. * action will be taken in load_balance_newidle().
  3740. *
  3741. * Under normal task pull operation due to imbalance, there
  3742. * will be more than one task in the source run queue and
  3743. * move_tasks() will succeed. ld_moved will be true and this
  3744. * active balance code will not be triggered.
  3745. */
  3746. /* Lock busiest in correct order while this_rq is held */
  3747. double_lock_balance(this_rq, busiest);
  3748. /*
  3749. * don't kick the migration_thread, if the curr
  3750. * task on busiest cpu can't be moved to this_cpu
  3751. */
  3752. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3753. double_unlock_balance(this_rq, busiest);
  3754. all_pinned = 1;
  3755. return ld_moved;
  3756. }
  3757. if (!busiest->active_balance) {
  3758. busiest->active_balance = 1;
  3759. busiest->push_cpu = this_cpu;
  3760. active_balance = 1;
  3761. }
  3762. double_unlock_balance(this_rq, busiest);
  3763. /*
  3764. * Should not call ttwu while holding a rq->lock
  3765. */
  3766. spin_unlock(&this_rq->lock);
  3767. if (active_balance)
  3768. wake_up_process(busiest->migration_thread);
  3769. spin_lock(&this_rq->lock);
  3770. } else
  3771. sd->nr_balance_failed = 0;
  3772. update_shares_locked(this_rq, sd);
  3773. return ld_moved;
  3774. out_balanced:
  3775. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3776. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3777. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3778. return -1;
  3779. sd->nr_balance_failed = 0;
  3780. return 0;
  3781. }
  3782. /*
  3783. * idle_balance is called by schedule() if this_cpu is about to become
  3784. * idle. Attempts to pull tasks from other CPUs.
  3785. */
  3786. static void idle_balance(int this_cpu, struct rq *this_rq)
  3787. {
  3788. struct sched_domain *sd;
  3789. int pulled_task = 0;
  3790. unsigned long next_balance = jiffies + HZ;
  3791. for_each_domain(this_cpu, sd) {
  3792. unsigned long interval;
  3793. if (!(sd->flags & SD_LOAD_BALANCE))
  3794. continue;
  3795. if (sd->flags & SD_BALANCE_NEWIDLE)
  3796. /* If we've pulled tasks over stop searching: */
  3797. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3798. sd);
  3799. interval = msecs_to_jiffies(sd->balance_interval);
  3800. if (time_after(next_balance, sd->last_balance + interval))
  3801. next_balance = sd->last_balance + interval;
  3802. if (pulled_task)
  3803. break;
  3804. }
  3805. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3806. /*
  3807. * We are going idle. next_balance may be set based on
  3808. * a busy processor. So reset next_balance.
  3809. */
  3810. this_rq->next_balance = next_balance;
  3811. }
  3812. }
  3813. /*
  3814. * active_load_balance is run by migration threads. It pushes running tasks
  3815. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3816. * running on each physical CPU where possible, and avoids physical /
  3817. * logical imbalances.
  3818. *
  3819. * Called with busiest_rq locked.
  3820. */
  3821. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3822. {
  3823. int target_cpu = busiest_rq->push_cpu;
  3824. struct sched_domain *sd;
  3825. struct rq *target_rq;
  3826. /* Is there any task to move? */
  3827. if (busiest_rq->nr_running <= 1)
  3828. return;
  3829. target_rq = cpu_rq(target_cpu);
  3830. /*
  3831. * This condition is "impossible", if it occurs
  3832. * we need to fix it. Originally reported by
  3833. * Bjorn Helgaas on a 128-cpu setup.
  3834. */
  3835. BUG_ON(busiest_rq == target_rq);
  3836. /* move a task from busiest_rq to target_rq */
  3837. double_lock_balance(busiest_rq, target_rq);
  3838. update_rq_clock(busiest_rq);
  3839. update_rq_clock(target_rq);
  3840. /* Search for an sd spanning us and the target CPU. */
  3841. for_each_domain(target_cpu, sd) {
  3842. if ((sd->flags & SD_LOAD_BALANCE) &&
  3843. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3844. break;
  3845. }
  3846. if (likely(sd)) {
  3847. schedstat_inc(sd, alb_count);
  3848. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3849. sd, CPU_IDLE))
  3850. schedstat_inc(sd, alb_pushed);
  3851. else
  3852. schedstat_inc(sd, alb_failed);
  3853. }
  3854. double_unlock_balance(busiest_rq, target_rq);
  3855. }
  3856. #ifdef CONFIG_NO_HZ
  3857. static struct {
  3858. atomic_t load_balancer;
  3859. cpumask_var_t cpu_mask;
  3860. cpumask_var_t ilb_grp_nohz_mask;
  3861. } nohz ____cacheline_aligned = {
  3862. .load_balancer = ATOMIC_INIT(-1),
  3863. };
  3864. int get_nohz_load_balancer(void)
  3865. {
  3866. return atomic_read(&nohz.load_balancer);
  3867. }
  3868. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3869. /**
  3870. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3871. * @cpu: The cpu whose lowest level of sched domain is to
  3872. * be returned.
  3873. * @flag: The flag to check for the lowest sched_domain
  3874. * for the given cpu.
  3875. *
  3876. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3877. */
  3878. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3879. {
  3880. struct sched_domain *sd;
  3881. for_each_domain(cpu, sd)
  3882. if (sd && (sd->flags & flag))
  3883. break;
  3884. return sd;
  3885. }
  3886. /**
  3887. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3888. * @cpu: The cpu whose domains we're iterating over.
  3889. * @sd: variable holding the value of the power_savings_sd
  3890. * for cpu.
  3891. * @flag: The flag to filter the sched_domains to be iterated.
  3892. *
  3893. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3894. * set, starting from the lowest sched_domain to the highest.
  3895. */
  3896. #define for_each_flag_domain(cpu, sd, flag) \
  3897. for (sd = lowest_flag_domain(cpu, flag); \
  3898. (sd && (sd->flags & flag)); sd = sd->parent)
  3899. /**
  3900. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3901. * @ilb_group: group to be checked for semi-idleness
  3902. *
  3903. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3904. *
  3905. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3906. * and atleast one non-idle CPU. This helper function checks if the given
  3907. * sched_group is semi-idle or not.
  3908. */
  3909. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3910. {
  3911. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3912. sched_group_cpus(ilb_group));
  3913. /*
  3914. * A sched_group is semi-idle when it has atleast one busy cpu
  3915. * and atleast one idle cpu.
  3916. */
  3917. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3918. return 0;
  3919. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3920. return 0;
  3921. return 1;
  3922. }
  3923. /**
  3924. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3925. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3926. *
  3927. * Returns: Returns the id of the idle load balancer if it exists,
  3928. * Else, returns >= nr_cpu_ids.
  3929. *
  3930. * This algorithm picks the idle load balancer such that it belongs to a
  3931. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3932. * completely idle packages/cores just for the purpose of idle load balancing
  3933. * when there are other idle cpu's which are better suited for that job.
  3934. */
  3935. static int find_new_ilb(int cpu)
  3936. {
  3937. struct sched_domain *sd;
  3938. struct sched_group *ilb_group;
  3939. /*
  3940. * Have idle load balancer selection from semi-idle packages only
  3941. * when power-aware load balancing is enabled
  3942. */
  3943. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3944. goto out_done;
  3945. /*
  3946. * Optimize for the case when we have no idle CPUs or only one
  3947. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3948. */
  3949. if (cpumask_weight(nohz.cpu_mask) < 2)
  3950. goto out_done;
  3951. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3952. ilb_group = sd->groups;
  3953. do {
  3954. if (is_semi_idle_group(ilb_group))
  3955. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3956. ilb_group = ilb_group->next;
  3957. } while (ilb_group != sd->groups);
  3958. }
  3959. out_done:
  3960. return cpumask_first(nohz.cpu_mask);
  3961. }
  3962. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3963. static inline int find_new_ilb(int call_cpu)
  3964. {
  3965. return cpumask_first(nohz.cpu_mask);
  3966. }
  3967. #endif
  3968. /*
  3969. * This routine will try to nominate the ilb (idle load balancing)
  3970. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3971. * load balancing on behalf of all those cpus. If all the cpus in the system
  3972. * go into this tickless mode, then there will be no ilb owner (as there is
  3973. * no need for one) and all the cpus will sleep till the next wakeup event
  3974. * arrives...
  3975. *
  3976. * For the ilb owner, tick is not stopped. And this tick will be used
  3977. * for idle load balancing. ilb owner will still be part of
  3978. * nohz.cpu_mask..
  3979. *
  3980. * While stopping the tick, this cpu will become the ilb owner if there
  3981. * is no other owner. And will be the owner till that cpu becomes busy
  3982. * or if all cpus in the system stop their ticks at which point
  3983. * there is no need for ilb owner.
  3984. *
  3985. * When the ilb owner becomes busy, it nominates another owner, during the
  3986. * next busy scheduler_tick()
  3987. */
  3988. int select_nohz_load_balancer(int stop_tick)
  3989. {
  3990. int cpu = smp_processor_id();
  3991. if (stop_tick) {
  3992. cpu_rq(cpu)->in_nohz_recently = 1;
  3993. if (!cpu_active(cpu)) {
  3994. if (atomic_read(&nohz.load_balancer) != cpu)
  3995. return 0;
  3996. /*
  3997. * If we are going offline and still the leader,
  3998. * give up!
  3999. */
  4000. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4001. BUG();
  4002. return 0;
  4003. }
  4004. cpumask_set_cpu(cpu, nohz.cpu_mask);
  4005. /* time for ilb owner also to sleep */
  4006. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4007. if (atomic_read(&nohz.load_balancer) == cpu)
  4008. atomic_set(&nohz.load_balancer, -1);
  4009. return 0;
  4010. }
  4011. if (atomic_read(&nohz.load_balancer) == -1) {
  4012. /* make me the ilb owner */
  4013. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  4014. return 1;
  4015. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  4016. int new_ilb;
  4017. if (!(sched_smt_power_savings ||
  4018. sched_mc_power_savings))
  4019. return 1;
  4020. /*
  4021. * Check to see if there is a more power-efficient
  4022. * ilb.
  4023. */
  4024. new_ilb = find_new_ilb(cpu);
  4025. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4026. atomic_set(&nohz.load_balancer, -1);
  4027. resched_cpu(new_ilb);
  4028. return 0;
  4029. }
  4030. return 1;
  4031. }
  4032. } else {
  4033. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4034. return 0;
  4035. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4036. if (atomic_read(&nohz.load_balancer) == cpu)
  4037. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4038. BUG();
  4039. }
  4040. return 0;
  4041. }
  4042. #endif
  4043. static DEFINE_SPINLOCK(balancing);
  4044. /*
  4045. * It checks each scheduling domain to see if it is due to be balanced,
  4046. * and initiates a balancing operation if so.
  4047. *
  4048. * Balancing parameters are set up in arch_init_sched_domains.
  4049. */
  4050. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4051. {
  4052. int balance = 1;
  4053. struct rq *rq = cpu_rq(cpu);
  4054. unsigned long interval;
  4055. struct sched_domain *sd;
  4056. /* Earliest time when we have to do rebalance again */
  4057. unsigned long next_balance = jiffies + 60*HZ;
  4058. int update_next_balance = 0;
  4059. int need_serialize;
  4060. for_each_domain(cpu, sd) {
  4061. if (!(sd->flags & SD_LOAD_BALANCE))
  4062. continue;
  4063. interval = sd->balance_interval;
  4064. if (idle != CPU_IDLE)
  4065. interval *= sd->busy_factor;
  4066. /* scale ms to jiffies */
  4067. interval = msecs_to_jiffies(interval);
  4068. if (unlikely(!interval))
  4069. interval = 1;
  4070. if (interval > HZ*NR_CPUS/10)
  4071. interval = HZ*NR_CPUS/10;
  4072. need_serialize = sd->flags & SD_SERIALIZE;
  4073. if (need_serialize) {
  4074. if (!spin_trylock(&balancing))
  4075. goto out;
  4076. }
  4077. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4078. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4079. /*
  4080. * We've pulled tasks over so either we're no
  4081. * longer idle, or one of our SMT siblings is
  4082. * not idle.
  4083. */
  4084. idle = CPU_NOT_IDLE;
  4085. }
  4086. sd->last_balance = jiffies;
  4087. }
  4088. if (need_serialize)
  4089. spin_unlock(&balancing);
  4090. out:
  4091. if (time_after(next_balance, sd->last_balance + interval)) {
  4092. next_balance = sd->last_balance + interval;
  4093. update_next_balance = 1;
  4094. }
  4095. /*
  4096. * Stop the load balance at this level. There is another
  4097. * CPU in our sched group which is doing load balancing more
  4098. * actively.
  4099. */
  4100. if (!balance)
  4101. break;
  4102. }
  4103. /*
  4104. * next_balance will be updated only when there is a need.
  4105. * When the cpu is attached to null domain for ex, it will not be
  4106. * updated.
  4107. */
  4108. if (likely(update_next_balance))
  4109. rq->next_balance = next_balance;
  4110. }
  4111. /*
  4112. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4113. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4114. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4115. */
  4116. static void run_rebalance_domains(struct softirq_action *h)
  4117. {
  4118. int this_cpu = smp_processor_id();
  4119. struct rq *this_rq = cpu_rq(this_cpu);
  4120. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4121. CPU_IDLE : CPU_NOT_IDLE;
  4122. rebalance_domains(this_cpu, idle);
  4123. #ifdef CONFIG_NO_HZ
  4124. /*
  4125. * If this cpu is the owner for idle load balancing, then do the
  4126. * balancing on behalf of the other idle cpus whose ticks are
  4127. * stopped.
  4128. */
  4129. if (this_rq->idle_at_tick &&
  4130. atomic_read(&nohz.load_balancer) == this_cpu) {
  4131. struct rq *rq;
  4132. int balance_cpu;
  4133. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4134. if (balance_cpu == this_cpu)
  4135. continue;
  4136. /*
  4137. * If this cpu gets work to do, stop the load balancing
  4138. * work being done for other cpus. Next load
  4139. * balancing owner will pick it up.
  4140. */
  4141. if (need_resched())
  4142. break;
  4143. rebalance_domains(balance_cpu, CPU_IDLE);
  4144. rq = cpu_rq(balance_cpu);
  4145. if (time_after(this_rq->next_balance, rq->next_balance))
  4146. this_rq->next_balance = rq->next_balance;
  4147. }
  4148. }
  4149. #endif
  4150. }
  4151. static inline int on_null_domain(int cpu)
  4152. {
  4153. return !rcu_dereference(cpu_rq(cpu)->sd);
  4154. }
  4155. /*
  4156. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4157. *
  4158. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4159. * idle load balancing owner or decide to stop the periodic load balancing,
  4160. * if the whole system is idle.
  4161. */
  4162. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4163. {
  4164. #ifdef CONFIG_NO_HZ
  4165. /*
  4166. * If we were in the nohz mode recently and busy at the current
  4167. * scheduler tick, then check if we need to nominate new idle
  4168. * load balancer.
  4169. */
  4170. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4171. rq->in_nohz_recently = 0;
  4172. if (atomic_read(&nohz.load_balancer) == cpu) {
  4173. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4174. atomic_set(&nohz.load_balancer, -1);
  4175. }
  4176. if (atomic_read(&nohz.load_balancer) == -1) {
  4177. int ilb = find_new_ilb(cpu);
  4178. if (ilb < nr_cpu_ids)
  4179. resched_cpu(ilb);
  4180. }
  4181. }
  4182. /*
  4183. * If this cpu is idle and doing idle load balancing for all the
  4184. * cpus with ticks stopped, is it time for that to stop?
  4185. */
  4186. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4187. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4188. resched_cpu(cpu);
  4189. return;
  4190. }
  4191. /*
  4192. * If this cpu is idle and the idle load balancing is done by
  4193. * someone else, then no need raise the SCHED_SOFTIRQ
  4194. */
  4195. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4196. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4197. return;
  4198. #endif
  4199. /* Don't need to rebalance while attached to NULL domain */
  4200. if (time_after_eq(jiffies, rq->next_balance) &&
  4201. likely(!on_null_domain(cpu)))
  4202. raise_softirq(SCHED_SOFTIRQ);
  4203. }
  4204. #else /* CONFIG_SMP */
  4205. /*
  4206. * on UP we do not need to balance between CPUs:
  4207. */
  4208. static inline void idle_balance(int cpu, struct rq *rq)
  4209. {
  4210. }
  4211. #endif
  4212. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4213. EXPORT_PER_CPU_SYMBOL(kstat);
  4214. /*
  4215. * Return any ns on the sched_clock that have not yet been accounted in
  4216. * @p in case that task is currently running.
  4217. *
  4218. * Called with task_rq_lock() held on @rq.
  4219. */
  4220. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4221. {
  4222. u64 ns = 0;
  4223. if (task_current(rq, p)) {
  4224. update_rq_clock(rq);
  4225. ns = rq->clock - p->se.exec_start;
  4226. if ((s64)ns < 0)
  4227. ns = 0;
  4228. }
  4229. return ns;
  4230. }
  4231. unsigned long long task_delta_exec(struct task_struct *p)
  4232. {
  4233. unsigned long flags;
  4234. struct rq *rq;
  4235. u64 ns = 0;
  4236. rq = task_rq_lock(p, &flags);
  4237. ns = do_task_delta_exec(p, rq);
  4238. task_rq_unlock(rq, &flags);
  4239. return ns;
  4240. }
  4241. /*
  4242. * Return accounted runtime for the task.
  4243. * In case the task is currently running, return the runtime plus current's
  4244. * pending runtime that have not been accounted yet.
  4245. */
  4246. unsigned long long task_sched_runtime(struct task_struct *p)
  4247. {
  4248. unsigned long flags;
  4249. struct rq *rq;
  4250. u64 ns = 0;
  4251. rq = task_rq_lock(p, &flags);
  4252. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4253. task_rq_unlock(rq, &flags);
  4254. return ns;
  4255. }
  4256. /*
  4257. * Return sum_exec_runtime for the thread group.
  4258. * In case the task is currently running, return the sum plus current's
  4259. * pending runtime that have not been accounted yet.
  4260. *
  4261. * Note that the thread group might have other running tasks as well,
  4262. * so the return value not includes other pending runtime that other
  4263. * running tasks might have.
  4264. */
  4265. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4266. {
  4267. struct task_cputime totals;
  4268. unsigned long flags;
  4269. struct rq *rq;
  4270. u64 ns;
  4271. rq = task_rq_lock(p, &flags);
  4272. thread_group_cputime(p, &totals);
  4273. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4274. task_rq_unlock(rq, &flags);
  4275. return ns;
  4276. }
  4277. /*
  4278. * Account user cpu time to a process.
  4279. * @p: the process that the cpu time gets accounted to
  4280. * @cputime: the cpu time spent in user space since the last update
  4281. * @cputime_scaled: cputime scaled by cpu frequency
  4282. */
  4283. void account_user_time(struct task_struct *p, cputime_t cputime,
  4284. cputime_t cputime_scaled)
  4285. {
  4286. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4287. cputime64_t tmp;
  4288. /* Add user time to process. */
  4289. p->utime = cputime_add(p->utime, cputime);
  4290. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4291. account_group_user_time(p, cputime);
  4292. /* Add user time to cpustat. */
  4293. tmp = cputime_to_cputime64(cputime);
  4294. if (TASK_NICE(p) > 0)
  4295. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4296. else
  4297. cpustat->user = cputime64_add(cpustat->user, tmp);
  4298. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4299. /* Account for user time used */
  4300. acct_update_integrals(p);
  4301. }
  4302. /*
  4303. * Account guest cpu time to a process.
  4304. * @p: the process that the cpu time gets accounted to
  4305. * @cputime: the cpu time spent in virtual machine since the last update
  4306. * @cputime_scaled: cputime scaled by cpu frequency
  4307. */
  4308. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4309. cputime_t cputime_scaled)
  4310. {
  4311. cputime64_t tmp;
  4312. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4313. tmp = cputime_to_cputime64(cputime);
  4314. /* Add guest time to process. */
  4315. p->utime = cputime_add(p->utime, cputime);
  4316. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4317. account_group_user_time(p, cputime);
  4318. p->gtime = cputime_add(p->gtime, cputime);
  4319. /* Add guest time to cpustat. */
  4320. cpustat->user = cputime64_add(cpustat->user, tmp);
  4321. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4322. }
  4323. /*
  4324. * Account system cpu time to a process.
  4325. * @p: the process that the cpu time gets accounted to
  4326. * @hardirq_offset: the offset to subtract from hardirq_count()
  4327. * @cputime: the cpu time spent in kernel space since the last update
  4328. * @cputime_scaled: cputime scaled by cpu frequency
  4329. */
  4330. void account_system_time(struct task_struct *p, int hardirq_offset,
  4331. cputime_t cputime, cputime_t cputime_scaled)
  4332. {
  4333. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4334. cputime64_t tmp;
  4335. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4336. account_guest_time(p, cputime, cputime_scaled);
  4337. return;
  4338. }
  4339. /* Add system time to process. */
  4340. p->stime = cputime_add(p->stime, cputime);
  4341. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4342. account_group_system_time(p, cputime);
  4343. /* Add system time to cpustat. */
  4344. tmp = cputime_to_cputime64(cputime);
  4345. if (hardirq_count() - hardirq_offset)
  4346. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4347. else if (softirq_count())
  4348. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4349. else
  4350. cpustat->system = cputime64_add(cpustat->system, tmp);
  4351. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4352. /* Account for system time used */
  4353. acct_update_integrals(p);
  4354. }
  4355. /*
  4356. * Account for involuntary wait time.
  4357. * @steal: the cpu time spent in involuntary wait
  4358. */
  4359. void account_steal_time(cputime_t cputime)
  4360. {
  4361. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4362. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4363. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4364. }
  4365. /*
  4366. * Account for idle time.
  4367. * @cputime: the cpu time spent in idle wait
  4368. */
  4369. void account_idle_time(cputime_t cputime)
  4370. {
  4371. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4372. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4373. struct rq *rq = this_rq();
  4374. if (atomic_read(&rq->nr_iowait) > 0)
  4375. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4376. else
  4377. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4378. }
  4379. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4380. /*
  4381. * Account a single tick of cpu time.
  4382. * @p: the process that the cpu time gets accounted to
  4383. * @user_tick: indicates if the tick is a user or a system tick
  4384. */
  4385. void account_process_tick(struct task_struct *p, int user_tick)
  4386. {
  4387. cputime_t one_jiffy = jiffies_to_cputime(1);
  4388. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4389. struct rq *rq = this_rq();
  4390. if (user_tick)
  4391. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4392. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4393. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4394. one_jiffy_scaled);
  4395. else
  4396. account_idle_time(one_jiffy);
  4397. }
  4398. /*
  4399. * Account multiple ticks of steal time.
  4400. * @p: the process from which the cpu time has been stolen
  4401. * @ticks: number of stolen ticks
  4402. */
  4403. void account_steal_ticks(unsigned long ticks)
  4404. {
  4405. account_steal_time(jiffies_to_cputime(ticks));
  4406. }
  4407. /*
  4408. * Account multiple ticks of idle time.
  4409. * @ticks: number of stolen ticks
  4410. */
  4411. void account_idle_ticks(unsigned long ticks)
  4412. {
  4413. account_idle_time(jiffies_to_cputime(ticks));
  4414. }
  4415. #endif
  4416. /*
  4417. * Use precise platform statistics if available:
  4418. */
  4419. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4420. cputime_t task_utime(struct task_struct *p)
  4421. {
  4422. return p->utime;
  4423. }
  4424. cputime_t task_stime(struct task_struct *p)
  4425. {
  4426. return p->stime;
  4427. }
  4428. #else
  4429. cputime_t task_utime(struct task_struct *p)
  4430. {
  4431. clock_t utime = cputime_to_clock_t(p->utime),
  4432. total = utime + cputime_to_clock_t(p->stime);
  4433. u64 temp;
  4434. /*
  4435. * Use CFS's precise accounting:
  4436. */
  4437. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4438. if (total) {
  4439. temp *= utime;
  4440. do_div(temp, total);
  4441. }
  4442. utime = (clock_t)temp;
  4443. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4444. return p->prev_utime;
  4445. }
  4446. cputime_t task_stime(struct task_struct *p)
  4447. {
  4448. clock_t stime;
  4449. /*
  4450. * Use CFS's precise accounting. (we subtract utime from
  4451. * the total, to make sure the total observed by userspace
  4452. * grows monotonically - apps rely on that):
  4453. */
  4454. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4455. cputime_to_clock_t(task_utime(p));
  4456. if (stime >= 0)
  4457. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4458. return p->prev_stime;
  4459. }
  4460. #endif
  4461. inline cputime_t task_gtime(struct task_struct *p)
  4462. {
  4463. return p->gtime;
  4464. }
  4465. /*
  4466. * This function gets called by the timer code, with HZ frequency.
  4467. * We call it with interrupts disabled.
  4468. *
  4469. * It also gets called by the fork code, when changing the parent's
  4470. * timeslices.
  4471. */
  4472. void scheduler_tick(void)
  4473. {
  4474. int cpu = smp_processor_id();
  4475. struct rq *rq = cpu_rq(cpu);
  4476. struct task_struct *curr = rq->curr;
  4477. sched_clock_tick();
  4478. spin_lock(&rq->lock);
  4479. update_rq_clock(rq);
  4480. update_cpu_load(rq);
  4481. curr->sched_class->task_tick(rq, curr, 0);
  4482. spin_unlock(&rq->lock);
  4483. perf_counter_task_tick(curr, cpu);
  4484. #ifdef CONFIG_SMP
  4485. rq->idle_at_tick = idle_cpu(cpu);
  4486. trigger_load_balance(rq, cpu);
  4487. #endif
  4488. }
  4489. notrace unsigned long get_parent_ip(unsigned long addr)
  4490. {
  4491. if (in_lock_functions(addr)) {
  4492. addr = CALLER_ADDR2;
  4493. if (in_lock_functions(addr))
  4494. addr = CALLER_ADDR3;
  4495. }
  4496. return addr;
  4497. }
  4498. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4499. defined(CONFIG_PREEMPT_TRACER))
  4500. void __kprobes add_preempt_count(int val)
  4501. {
  4502. #ifdef CONFIG_DEBUG_PREEMPT
  4503. /*
  4504. * Underflow?
  4505. */
  4506. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4507. return;
  4508. #endif
  4509. preempt_count() += val;
  4510. #ifdef CONFIG_DEBUG_PREEMPT
  4511. /*
  4512. * Spinlock count overflowing soon?
  4513. */
  4514. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4515. PREEMPT_MASK - 10);
  4516. #endif
  4517. if (preempt_count() == val)
  4518. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4519. }
  4520. EXPORT_SYMBOL(add_preempt_count);
  4521. void __kprobes sub_preempt_count(int val)
  4522. {
  4523. #ifdef CONFIG_DEBUG_PREEMPT
  4524. /*
  4525. * Underflow?
  4526. */
  4527. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4528. return;
  4529. /*
  4530. * Is the spinlock portion underflowing?
  4531. */
  4532. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4533. !(preempt_count() & PREEMPT_MASK)))
  4534. return;
  4535. #endif
  4536. if (preempt_count() == val)
  4537. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4538. preempt_count() -= val;
  4539. }
  4540. EXPORT_SYMBOL(sub_preempt_count);
  4541. #endif
  4542. /*
  4543. * Print scheduling while atomic bug:
  4544. */
  4545. static noinline void __schedule_bug(struct task_struct *prev)
  4546. {
  4547. struct pt_regs *regs = get_irq_regs();
  4548. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4549. prev->comm, prev->pid, preempt_count());
  4550. debug_show_held_locks(prev);
  4551. print_modules();
  4552. if (irqs_disabled())
  4553. print_irqtrace_events(prev);
  4554. if (regs)
  4555. show_regs(regs);
  4556. else
  4557. dump_stack();
  4558. }
  4559. /*
  4560. * Various schedule()-time debugging checks and statistics:
  4561. */
  4562. static inline void schedule_debug(struct task_struct *prev)
  4563. {
  4564. /*
  4565. * Test if we are atomic. Since do_exit() needs to call into
  4566. * schedule() atomically, we ignore that path for now.
  4567. * Otherwise, whine if we are scheduling when we should not be.
  4568. */
  4569. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4570. __schedule_bug(prev);
  4571. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4572. schedstat_inc(this_rq(), sched_count);
  4573. #ifdef CONFIG_SCHEDSTATS
  4574. if (unlikely(prev->lock_depth >= 0)) {
  4575. schedstat_inc(this_rq(), bkl_count);
  4576. schedstat_inc(prev, sched_info.bkl_count);
  4577. }
  4578. #endif
  4579. }
  4580. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4581. {
  4582. if (prev->state == TASK_RUNNING) {
  4583. u64 runtime = prev->se.sum_exec_runtime;
  4584. runtime -= prev->se.prev_sum_exec_runtime;
  4585. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4586. /*
  4587. * In order to avoid avg_overlap growing stale when we are
  4588. * indeed overlapping and hence not getting put to sleep, grow
  4589. * the avg_overlap on preemption.
  4590. *
  4591. * We use the average preemption runtime because that
  4592. * correlates to the amount of cache footprint a task can
  4593. * build up.
  4594. */
  4595. update_avg(&prev->se.avg_overlap, runtime);
  4596. }
  4597. prev->sched_class->put_prev_task(rq, prev);
  4598. }
  4599. /*
  4600. * Pick up the highest-prio task:
  4601. */
  4602. static inline struct task_struct *
  4603. pick_next_task(struct rq *rq)
  4604. {
  4605. const struct sched_class *class;
  4606. struct task_struct *p;
  4607. /*
  4608. * Optimization: we know that if all tasks are in
  4609. * the fair class we can call that function directly:
  4610. */
  4611. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4612. p = fair_sched_class.pick_next_task(rq);
  4613. if (likely(p))
  4614. return p;
  4615. }
  4616. class = sched_class_highest;
  4617. for ( ; ; ) {
  4618. p = class->pick_next_task(rq);
  4619. if (p)
  4620. return p;
  4621. /*
  4622. * Will never be NULL as the idle class always
  4623. * returns a non-NULL p:
  4624. */
  4625. class = class->next;
  4626. }
  4627. }
  4628. /*
  4629. * schedule() is the main scheduler function.
  4630. */
  4631. asmlinkage void __sched schedule(void)
  4632. {
  4633. struct task_struct *prev, *next;
  4634. unsigned long *switch_count;
  4635. struct rq *rq;
  4636. int cpu;
  4637. need_resched:
  4638. preempt_disable();
  4639. cpu = smp_processor_id();
  4640. rq = cpu_rq(cpu);
  4641. rcu_qsctr_inc(cpu);
  4642. prev = rq->curr;
  4643. switch_count = &prev->nivcsw;
  4644. release_kernel_lock(prev);
  4645. need_resched_nonpreemptible:
  4646. schedule_debug(prev);
  4647. if (sched_feat(HRTICK))
  4648. hrtick_clear(rq);
  4649. spin_lock_irq(&rq->lock);
  4650. update_rq_clock(rq);
  4651. clear_tsk_need_resched(prev);
  4652. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4653. if (unlikely(signal_pending_state(prev->state, prev)))
  4654. prev->state = TASK_RUNNING;
  4655. else
  4656. deactivate_task(rq, prev, 1);
  4657. switch_count = &prev->nvcsw;
  4658. }
  4659. pre_schedule(rq, prev);
  4660. if (unlikely(!rq->nr_running))
  4661. idle_balance(cpu, rq);
  4662. put_prev_task(rq, prev);
  4663. next = pick_next_task(rq);
  4664. if (likely(prev != next)) {
  4665. sched_info_switch(prev, next);
  4666. perf_counter_task_sched_out(prev, next, cpu);
  4667. rq->nr_switches++;
  4668. rq->curr = next;
  4669. ++*switch_count;
  4670. context_switch(rq, prev, next); /* unlocks the rq */
  4671. /*
  4672. * the context switch might have flipped the stack from under
  4673. * us, hence refresh the local variables.
  4674. */
  4675. cpu = smp_processor_id();
  4676. rq = cpu_rq(cpu);
  4677. } else
  4678. spin_unlock_irq(&rq->lock);
  4679. post_schedule(rq);
  4680. if (unlikely(reacquire_kernel_lock(current) < 0))
  4681. goto need_resched_nonpreemptible;
  4682. preempt_enable_no_resched();
  4683. if (need_resched())
  4684. goto need_resched;
  4685. }
  4686. EXPORT_SYMBOL(schedule);
  4687. #ifdef CONFIG_SMP
  4688. /*
  4689. * Look out! "owner" is an entirely speculative pointer
  4690. * access and not reliable.
  4691. */
  4692. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4693. {
  4694. unsigned int cpu;
  4695. struct rq *rq;
  4696. if (!sched_feat(OWNER_SPIN))
  4697. return 0;
  4698. #ifdef CONFIG_DEBUG_PAGEALLOC
  4699. /*
  4700. * Need to access the cpu field knowing that
  4701. * DEBUG_PAGEALLOC could have unmapped it if
  4702. * the mutex owner just released it and exited.
  4703. */
  4704. if (probe_kernel_address(&owner->cpu, cpu))
  4705. goto out;
  4706. #else
  4707. cpu = owner->cpu;
  4708. #endif
  4709. /*
  4710. * Even if the access succeeded (likely case),
  4711. * the cpu field may no longer be valid.
  4712. */
  4713. if (cpu >= nr_cpumask_bits)
  4714. goto out;
  4715. /*
  4716. * We need to validate that we can do a
  4717. * get_cpu() and that we have the percpu area.
  4718. */
  4719. if (!cpu_online(cpu))
  4720. goto out;
  4721. rq = cpu_rq(cpu);
  4722. for (;;) {
  4723. /*
  4724. * Owner changed, break to re-assess state.
  4725. */
  4726. if (lock->owner != owner)
  4727. break;
  4728. /*
  4729. * Is that owner really running on that cpu?
  4730. */
  4731. if (task_thread_info(rq->curr) != owner || need_resched())
  4732. return 0;
  4733. cpu_relax();
  4734. }
  4735. out:
  4736. return 1;
  4737. }
  4738. #endif
  4739. #ifdef CONFIG_PREEMPT
  4740. /*
  4741. * this is the entry point to schedule() from in-kernel preemption
  4742. * off of preempt_enable. Kernel preemptions off return from interrupt
  4743. * occur there and call schedule directly.
  4744. */
  4745. asmlinkage void __sched preempt_schedule(void)
  4746. {
  4747. struct thread_info *ti = current_thread_info();
  4748. /*
  4749. * If there is a non-zero preempt_count or interrupts are disabled,
  4750. * we do not want to preempt the current task. Just return..
  4751. */
  4752. if (likely(ti->preempt_count || irqs_disabled()))
  4753. return;
  4754. do {
  4755. add_preempt_count(PREEMPT_ACTIVE);
  4756. schedule();
  4757. sub_preempt_count(PREEMPT_ACTIVE);
  4758. /*
  4759. * Check again in case we missed a preemption opportunity
  4760. * between schedule and now.
  4761. */
  4762. barrier();
  4763. } while (need_resched());
  4764. }
  4765. EXPORT_SYMBOL(preempt_schedule);
  4766. /*
  4767. * this is the entry point to schedule() from kernel preemption
  4768. * off of irq context.
  4769. * Note, that this is called and return with irqs disabled. This will
  4770. * protect us against recursive calling from irq.
  4771. */
  4772. asmlinkage void __sched preempt_schedule_irq(void)
  4773. {
  4774. struct thread_info *ti = current_thread_info();
  4775. /* Catch callers which need to be fixed */
  4776. BUG_ON(ti->preempt_count || !irqs_disabled());
  4777. do {
  4778. add_preempt_count(PREEMPT_ACTIVE);
  4779. local_irq_enable();
  4780. schedule();
  4781. local_irq_disable();
  4782. sub_preempt_count(PREEMPT_ACTIVE);
  4783. /*
  4784. * Check again in case we missed a preemption opportunity
  4785. * between schedule and now.
  4786. */
  4787. barrier();
  4788. } while (need_resched());
  4789. }
  4790. #endif /* CONFIG_PREEMPT */
  4791. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4792. void *key)
  4793. {
  4794. return try_to_wake_up(curr->private, mode, sync);
  4795. }
  4796. EXPORT_SYMBOL(default_wake_function);
  4797. /*
  4798. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4799. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4800. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4801. *
  4802. * There are circumstances in which we can try to wake a task which has already
  4803. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4804. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4805. */
  4806. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4807. int nr_exclusive, int sync, void *key)
  4808. {
  4809. wait_queue_t *curr, *next;
  4810. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4811. unsigned flags = curr->flags;
  4812. if (curr->func(curr, mode, sync, key) &&
  4813. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4814. break;
  4815. }
  4816. }
  4817. /**
  4818. * __wake_up - wake up threads blocked on a waitqueue.
  4819. * @q: the waitqueue
  4820. * @mode: which threads
  4821. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4822. * @key: is directly passed to the wakeup function
  4823. *
  4824. * It may be assumed that this function implies a write memory barrier before
  4825. * changing the task state if and only if any tasks are woken up.
  4826. */
  4827. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4828. int nr_exclusive, void *key)
  4829. {
  4830. unsigned long flags;
  4831. spin_lock_irqsave(&q->lock, flags);
  4832. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4833. spin_unlock_irqrestore(&q->lock, flags);
  4834. }
  4835. EXPORT_SYMBOL(__wake_up);
  4836. /*
  4837. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4838. */
  4839. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4840. {
  4841. __wake_up_common(q, mode, 1, 0, NULL);
  4842. }
  4843. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4844. {
  4845. __wake_up_common(q, mode, 1, 0, key);
  4846. }
  4847. /**
  4848. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4849. * @q: the waitqueue
  4850. * @mode: which threads
  4851. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4852. * @key: opaque value to be passed to wakeup targets
  4853. *
  4854. * The sync wakeup differs that the waker knows that it will schedule
  4855. * away soon, so while the target thread will be woken up, it will not
  4856. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4857. * with each other. This can prevent needless bouncing between CPUs.
  4858. *
  4859. * On UP it can prevent extra preemption.
  4860. *
  4861. * It may be assumed that this function implies a write memory barrier before
  4862. * changing the task state if and only if any tasks are woken up.
  4863. */
  4864. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4865. int nr_exclusive, void *key)
  4866. {
  4867. unsigned long flags;
  4868. int sync = 1;
  4869. if (unlikely(!q))
  4870. return;
  4871. if (unlikely(!nr_exclusive))
  4872. sync = 0;
  4873. spin_lock_irqsave(&q->lock, flags);
  4874. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4875. spin_unlock_irqrestore(&q->lock, flags);
  4876. }
  4877. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4878. /*
  4879. * __wake_up_sync - see __wake_up_sync_key()
  4880. */
  4881. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4882. {
  4883. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4884. }
  4885. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4886. /**
  4887. * complete: - signals a single thread waiting on this completion
  4888. * @x: holds the state of this particular completion
  4889. *
  4890. * This will wake up a single thread waiting on this completion. Threads will be
  4891. * awakened in the same order in which they were queued.
  4892. *
  4893. * See also complete_all(), wait_for_completion() and related routines.
  4894. *
  4895. * It may be assumed that this function implies a write memory barrier before
  4896. * changing the task state if and only if any tasks are woken up.
  4897. */
  4898. void complete(struct completion *x)
  4899. {
  4900. unsigned long flags;
  4901. spin_lock_irqsave(&x->wait.lock, flags);
  4902. x->done++;
  4903. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4904. spin_unlock_irqrestore(&x->wait.lock, flags);
  4905. }
  4906. EXPORT_SYMBOL(complete);
  4907. /**
  4908. * complete_all: - signals all threads waiting on this completion
  4909. * @x: holds the state of this particular completion
  4910. *
  4911. * This will wake up all threads waiting on this particular completion event.
  4912. *
  4913. * It may be assumed that this function implies a write memory barrier before
  4914. * changing the task state if and only if any tasks are woken up.
  4915. */
  4916. void complete_all(struct completion *x)
  4917. {
  4918. unsigned long flags;
  4919. spin_lock_irqsave(&x->wait.lock, flags);
  4920. x->done += UINT_MAX/2;
  4921. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4922. spin_unlock_irqrestore(&x->wait.lock, flags);
  4923. }
  4924. EXPORT_SYMBOL(complete_all);
  4925. static inline long __sched
  4926. do_wait_for_common(struct completion *x, long timeout, int state)
  4927. {
  4928. if (!x->done) {
  4929. DECLARE_WAITQUEUE(wait, current);
  4930. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4931. __add_wait_queue_tail(&x->wait, &wait);
  4932. do {
  4933. if (signal_pending_state(state, current)) {
  4934. timeout = -ERESTARTSYS;
  4935. break;
  4936. }
  4937. __set_current_state(state);
  4938. spin_unlock_irq(&x->wait.lock);
  4939. timeout = schedule_timeout(timeout);
  4940. spin_lock_irq(&x->wait.lock);
  4941. } while (!x->done && timeout);
  4942. __remove_wait_queue(&x->wait, &wait);
  4943. if (!x->done)
  4944. return timeout;
  4945. }
  4946. x->done--;
  4947. return timeout ?: 1;
  4948. }
  4949. static long __sched
  4950. wait_for_common(struct completion *x, long timeout, int state)
  4951. {
  4952. might_sleep();
  4953. spin_lock_irq(&x->wait.lock);
  4954. timeout = do_wait_for_common(x, timeout, state);
  4955. spin_unlock_irq(&x->wait.lock);
  4956. return timeout;
  4957. }
  4958. /**
  4959. * wait_for_completion: - waits for completion of a task
  4960. * @x: holds the state of this particular completion
  4961. *
  4962. * This waits to be signaled for completion of a specific task. It is NOT
  4963. * interruptible and there is no timeout.
  4964. *
  4965. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4966. * and interrupt capability. Also see complete().
  4967. */
  4968. void __sched wait_for_completion(struct completion *x)
  4969. {
  4970. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4971. }
  4972. EXPORT_SYMBOL(wait_for_completion);
  4973. /**
  4974. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4975. * @x: holds the state of this particular completion
  4976. * @timeout: timeout value in jiffies
  4977. *
  4978. * This waits for either a completion of a specific task to be signaled or for a
  4979. * specified timeout to expire. The timeout is in jiffies. It is not
  4980. * interruptible.
  4981. */
  4982. unsigned long __sched
  4983. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4984. {
  4985. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4986. }
  4987. EXPORT_SYMBOL(wait_for_completion_timeout);
  4988. /**
  4989. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4990. * @x: holds the state of this particular completion
  4991. *
  4992. * This waits for completion of a specific task to be signaled. It is
  4993. * interruptible.
  4994. */
  4995. int __sched wait_for_completion_interruptible(struct completion *x)
  4996. {
  4997. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4998. if (t == -ERESTARTSYS)
  4999. return t;
  5000. return 0;
  5001. }
  5002. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5003. /**
  5004. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5005. * @x: holds the state of this particular completion
  5006. * @timeout: timeout value in jiffies
  5007. *
  5008. * This waits for either a completion of a specific task to be signaled or for a
  5009. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5010. */
  5011. unsigned long __sched
  5012. wait_for_completion_interruptible_timeout(struct completion *x,
  5013. unsigned long timeout)
  5014. {
  5015. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5016. }
  5017. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5018. /**
  5019. * wait_for_completion_killable: - waits for completion of a task (killable)
  5020. * @x: holds the state of this particular completion
  5021. *
  5022. * This waits to be signaled for completion of a specific task. It can be
  5023. * interrupted by a kill signal.
  5024. */
  5025. int __sched wait_for_completion_killable(struct completion *x)
  5026. {
  5027. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5028. if (t == -ERESTARTSYS)
  5029. return t;
  5030. return 0;
  5031. }
  5032. EXPORT_SYMBOL(wait_for_completion_killable);
  5033. /**
  5034. * try_wait_for_completion - try to decrement a completion without blocking
  5035. * @x: completion structure
  5036. *
  5037. * Returns: 0 if a decrement cannot be done without blocking
  5038. * 1 if a decrement succeeded.
  5039. *
  5040. * If a completion is being used as a counting completion,
  5041. * attempt to decrement the counter without blocking. This
  5042. * enables us to avoid waiting if the resource the completion
  5043. * is protecting is not available.
  5044. */
  5045. bool try_wait_for_completion(struct completion *x)
  5046. {
  5047. int ret = 1;
  5048. spin_lock_irq(&x->wait.lock);
  5049. if (!x->done)
  5050. ret = 0;
  5051. else
  5052. x->done--;
  5053. spin_unlock_irq(&x->wait.lock);
  5054. return ret;
  5055. }
  5056. EXPORT_SYMBOL(try_wait_for_completion);
  5057. /**
  5058. * completion_done - Test to see if a completion has any waiters
  5059. * @x: completion structure
  5060. *
  5061. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5062. * 1 if there are no waiters.
  5063. *
  5064. */
  5065. bool completion_done(struct completion *x)
  5066. {
  5067. int ret = 1;
  5068. spin_lock_irq(&x->wait.lock);
  5069. if (!x->done)
  5070. ret = 0;
  5071. spin_unlock_irq(&x->wait.lock);
  5072. return ret;
  5073. }
  5074. EXPORT_SYMBOL(completion_done);
  5075. static long __sched
  5076. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5077. {
  5078. unsigned long flags;
  5079. wait_queue_t wait;
  5080. init_waitqueue_entry(&wait, current);
  5081. __set_current_state(state);
  5082. spin_lock_irqsave(&q->lock, flags);
  5083. __add_wait_queue(q, &wait);
  5084. spin_unlock(&q->lock);
  5085. timeout = schedule_timeout(timeout);
  5086. spin_lock_irq(&q->lock);
  5087. __remove_wait_queue(q, &wait);
  5088. spin_unlock_irqrestore(&q->lock, flags);
  5089. return timeout;
  5090. }
  5091. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5092. {
  5093. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5094. }
  5095. EXPORT_SYMBOL(interruptible_sleep_on);
  5096. long __sched
  5097. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5098. {
  5099. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5100. }
  5101. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5102. void __sched sleep_on(wait_queue_head_t *q)
  5103. {
  5104. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5105. }
  5106. EXPORT_SYMBOL(sleep_on);
  5107. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5108. {
  5109. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5110. }
  5111. EXPORT_SYMBOL(sleep_on_timeout);
  5112. #ifdef CONFIG_RT_MUTEXES
  5113. /*
  5114. * rt_mutex_setprio - set the current priority of a task
  5115. * @p: task
  5116. * @prio: prio value (kernel-internal form)
  5117. *
  5118. * This function changes the 'effective' priority of a task. It does
  5119. * not touch ->normal_prio like __setscheduler().
  5120. *
  5121. * Used by the rt_mutex code to implement priority inheritance logic.
  5122. */
  5123. void rt_mutex_setprio(struct task_struct *p, int prio)
  5124. {
  5125. unsigned long flags;
  5126. int oldprio, on_rq, running;
  5127. struct rq *rq;
  5128. const struct sched_class *prev_class = p->sched_class;
  5129. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5130. rq = task_rq_lock(p, &flags);
  5131. update_rq_clock(rq);
  5132. oldprio = p->prio;
  5133. on_rq = p->se.on_rq;
  5134. running = task_current(rq, p);
  5135. if (on_rq)
  5136. dequeue_task(rq, p, 0);
  5137. if (running)
  5138. p->sched_class->put_prev_task(rq, p);
  5139. if (rt_prio(prio))
  5140. p->sched_class = &rt_sched_class;
  5141. else
  5142. p->sched_class = &fair_sched_class;
  5143. p->prio = prio;
  5144. if (running)
  5145. p->sched_class->set_curr_task(rq);
  5146. if (on_rq) {
  5147. enqueue_task(rq, p, 0);
  5148. check_class_changed(rq, p, prev_class, oldprio, running);
  5149. }
  5150. task_rq_unlock(rq, &flags);
  5151. }
  5152. #endif
  5153. void set_user_nice(struct task_struct *p, long nice)
  5154. {
  5155. int old_prio, delta, on_rq;
  5156. unsigned long flags;
  5157. struct rq *rq;
  5158. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5159. return;
  5160. /*
  5161. * We have to be careful, if called from sys_setpriority(),
  5162. * the task might be in the middle of scheduling on another CPU.
  5163. */
  5164. rq = task_rq_lock(p, &flags);
  5165. update_rq_clock(rq);
  5166. /*
  5167. * The RT priorities are set via sched_setscheduler(), but we still
  5168. * allow the 'normal' nice value to be set - but as expected
  5169. * it wont have any effect on scheduling until the task is
  5170. * SCHED_FIFO/SCHED_RR:
  5171. */
  5172. if (task_has_rt_policy(p)) {
  5173. p->static_prio = NICE_TO_PRIO(nice);
  5174. goto out_unlock;
  5175. }
  5176. on_rq = p->se.on_rq;
  5177. if (on_rq)
  5178. dequeue_task(rq, p, 0);
  5179. p->static_prio = NICE_TO_PRIO(nice);
  5180. set_load_weight(p);
  5181. old_prio = p->prio;
  5182. p->prio = effective_prio(p);
  5183. delta = p->prio - old_prio;
  5184. if (on_rq) {
  5185. enqueue_task(rq, p, 0);
  5186. /*
  5187. * If the task increased its priority or is running and
  5188. * lowered its priority, then reschedule its CPU:
  5189. */
  5190. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5191. resched_task(rq->curr);
  5192. }
  5193. out_unlock:
  5194. task_rq_unlock(rq, &flags);
  5195. }
  5196. EXPORT_SYMBOL(set_user_nice);
  5197. /*
  5198. * can_nice - check if a task can reduce its nice value
  5199. * @p: task
  5200. * @nice: nice value
  5201. */
  5202. int can_nice(const struct task_struct *p, const int nice)
  5203. {
  5204. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5205. int nice_rlim = 20 - nice;
  5206. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5207. capable(CAP_SYS_NICE));
  5208. }
  5209. #ifdef __ARCH_WANT_SYS_NICE
  5210. /*
  5211. * sys_nice - change the priority of the current process.
  5212. * @increment: priority increment
  5213. *
  5214. * sys_setpriority is a more generic, but much slower function that
  5215. * does similar things.
  5216. */
  5217. SYSCALL_DEFINE1(nice, int, increment)
  5218. {
  5219. long nice, retval;
  5220. /*
  5221. * Setpriority might change our priority at the same moment.
  5222. * We don't have to worry. Conceptually one call occurs first
  5223. * and we have a single winner.
  5224. */
  5225. if (increment < -40)
  5226. increment = -40;
  5227. if (increment > 40)
  5228. increment = 40;
  5229. nice = TASK_NICE(current) + increment;
  5230. if (nice < -20)
  5231. nice = -20;
  5232. if (nice > 19)
  5233. nice = 19;
  5234. if (increment < 0 && !can_nice(current, nice))
  5235. return -EPERM;
  5236. retval = security_task_setnice(current, nice);
  5237. if (retval)
  5238. return retval;
  5239. set_user_nice(current, nice);
  5240. return 0;
  5241. }
  5242. #endif
  5243. /**
  5244. * task_prio - return the priority value of a given task.
  5245. * @p: the task in question.
  5246. *
  5247. * This is the priority value as seen by users in /proc.
  5248. * RT tasks are offset by -200. Normal tasks are centered
  5249. * around 0, value goes from -16 to +15.
  5250. */
  5251. int task_prio(const struct task_struct *p)
  5252. {
  5253. return p->prio - MAX_RT_PRIO;
  5254. }
  5255. /**
  5256. * task_nice - return the nice value of a given task.
  5257. * @p: the task in question.
  5258. */
  5259. int task_nice(const struct task_struct *p)
  5260. {
  5261. return TASK_NICE(p);
  5262. }
  5263. EXPORT_SYMBOL(task_nice);
  5264. /**
  5265. * idle_cpu - is a given cpu idle currently?
  5266. * @cpu: the processor in question.
  5267. */
  5268. int idle_cpu(int cpu)
  5269. {
  5270. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5271. }
  5272. /**
  5273. * idle_task - return the idle task for a given cpu.
  5274. * @cpu: the processor in question.
  5275. */
  5276. struct task_struct *idle_task(int cpu)
  5277. {
  5278. return cpu_rq(cpu)->idle;
  5279. }
  5280. /**
  5281. * find_process_by_pid - find a process with a matching PID value.
  5282. * @pid: the pid in question.
  5283. */
  5284. static struct task_struct *find_process_by_pid(pid_t pid)
  5285. {
  5286. return pid ? find_task_by_vpid(pid) : current;
  5287. }
  5288. /* Actually do priority change: must hold rq lock. */
  5289. static void
  5290. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5291. {
  5292. BUG_ON(p->se.on_rq);
  5293. p->policy = policy;
  5294. switch (p->policy) {
  5295. case SCHED_NORMAL:
  5296. case SCHED_BATCH:
  5297. case SCHED_IDLE:
  5298. p->sched_class = &fair_sched_class;
  5299. break;
  5300. case SCHED_FIFO:
  5301. case SCHED_RR:
  5302. p->sched_class = &rt_sched_class;
  5303. break;
  5304. }
  5305. p->rt_priority = prio;
  5306. p->normal_prio = normal_prio(p);
  5307. /* we are holding p->pi_lock already */
  5308. p->prio = rt_mutex_getprio(p);
  5309. set_load_weight(p);
  5310. }
  5311. /*
  5312. * check the target process has a UID that matches the current process's
  5313. */
  5314. static bool check_same_owner(struct task_struct *p)
  5315. {
  5316. const struct cred *cred = current_cred(), *pcred;
  5317. bool match;
  5318. rcu_read_lock();
  5319. pcred = __task_cred(p);
  5320. match = (cred->euid == pcred->euid ||
  5321. cred->euid == pcred->uid);
  5322. rcu_read_unlock();
  5323. return match;
  5324. }
  5325. static int __sched_setscheduler(struct task_struct *p, int policy,
  5326. struct sched_param *param, bool user)
  5327. {
  5328. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5329. unsigned long flags;
  5330. const struct sched_class *prev_class = p->sched_class;
  5331. struct rq *rq;
  5332. int reset_on_fork;
  5333. /* may grab non-irq protected spin_locks */
  5334. BUG_ON(in_interrupt());
  5335. recheck:
  5336. /* double check policy once rq lock held */
  5337. if (policy < 0) {
  5338. reset_on_fork = p->sched_reset_on_fork;
  5339. policy = oldpolicy = p->policy;
  5340. } else {
  5341. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5342. policy &= ~SCHED_RESET_ON_FORK;
  5343. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5344. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5345. policy != SCHED_IDLE)
  5346. return -EINVAL;
  5347. }
  5348. /*
  5349. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5350. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5351. * SCHED_BATCH and SCHED_IDLE is 0.
  5352. */
  5353. if (param->sched_priority < 0 ||
  5354. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5355. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5356. return -EINVAL;
  5357. if (rt_policy(policy) != (param->sched_priority != 0))
  5358. return -EINVAL;
  5359. /*
  5360. * Allow unprivileged RT tasks to decrease priority:
  5361. */
  5362. if (user && !capable(CAP_SYS_NICE)) {
  5363. if (rt_policy(policy)) {
  5364. unsigned long rlim_rtprio;
  5365. if (!lock_task_sighand(p, &flags))
  5366. return -ESRCH;
  5367. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5368. unlock_task_sighand(p, &flags);
  5369. /* can't set/change the rt policy */
  5370. if (policy != p->policy && !rlim_rtprio)
  5371. return -EPERM;
  5372. /* can't increase priority */
  5373. if (param->sched_priority > p->rt_priority &&
  5374. param->sched_priority > rlim_rtprio)
  5375. return -EPERM;
  5376. }
  5377. /*
  5378. * Like positive nice levels, dont allow tasks to
  5379. * move out of SCHED_IDLE either:
  5380. */
  5381. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5382. return -EPERM;
  5383. /* can't change other user's priorities */
  5384. if (!check_same_owner(p))
  5385. return -EPERM;
  5386. /* Normal users shall not reset the sched_reset_on_fork flag */
  5387. if (p->sched_reset_on_fork && !reset_on_fork)
  5388. return -EPERM;
  5389. }
  5390. if (user) {
  5391. #ifdef CONFIG_RT_GROUP_SCHED
  5392. /*
  5393. * Do not allow realtime tasks into groups that have no runtime
  5394. * assigned.
  5395. */
  5396. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5397. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5398. return -EPERM;
  5399. #endif
  5400. retval = security_task_setscheduler(p, policy, param);
  5401. if (retval)
  5402. return retval;
  5403. }
  5404. /*
  5405. * make sure no PI-waiters arrive (or leave) while we are
  5406. * changing the priority of the task:
  5407. */
  5408. spin_lock_irqsave(&p->pi_lock, flags);
  5409. /*
  5410. * To be able to change p->policy safely, the apropriate
  5411. * runqueue lock must be held.
  5412. */
  5413. rq = __task_rq_lock(p);
  5414. /* recheck policy now with rq lock held */
  5415. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5416. policy = oldpolicy = -1;
  5417. __task_rq_unlock(rq);
  5418. spin_unlock_irqrestore(&p->pi_lock, flags);
  5419. goto recheck;
  5420. }
  5421. update_rq_clock(rq);
  5422. on_rq = p->se.on_rq;
  5423. running = task_current(rq, p);
  5424. if (on_rq)
  5425. deactivate_task(rq, p, 0);
  5426. if (running)
  5427. p->sched_class->put_prev_task(rq, p);
  5428. p->sched_reset_on_fork = reset_on_fork;
  5429. oldprio = p->prio;
  5430. __setscheduler(rq, p, policy, param->sched_priority);
  5431. if (running)
  5432. p->sched_class->set_curr_task(rq);
  5433. if (on_rq) {
  5434. activate_task(rq, p, 0);
  5435. check_class_changed(rq, p, prev_class, oldprio, running);
  5436. }
  5437. __task_rq_unlock(rq);
  5438. spin_unlock_irqrestore(&p->pi_lock, flags);
  5439. rt_mutex_adjust_pi(p);
  5440. return 0;
  5441. }
  5442. /**
  5443. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5444. * @p: the task in question.
  5445. * @policy: new policy.
  5446. * @param: structure containing the new RT priority.
  5447. *
  5448. * NOTE that the task may be already dead.
  5449. */
  5450. int sched_setscheduler(struct task_struct *p, int policy,
  5451. struct sched_param *param)
  5452. {
  5453. return __sched_setscheduler(p, policy, param, true);
  5454. }
  5455. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5456. /**
  5457. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5458. * @p: the task in question.
  5459. * @policy: new policy.
  5460. * @param: structure containing the new RT priority.
  5461. *
  5462. * Just like sched_setscheduler, only don't bother checking if the
  5463. * current context has permission. For example, this is needed in
  5464. * stop_machine(): we create temporary high priority worker threads,
  5465. * but our caller might not have that capability.
  5466. */
  5467. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5468. struct sched_param *param)
  5469. {
  5470. return __sched_setscheduler(p, policy, param, false);
  5471. }
  5472. static int
  5473. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5474. {
  5475. struct sched_param lparam;
  5476. struct task_struct *p;
  5477. int retval;
  5478. if (!param || pid < 0)
  5479. return -EINVAL;
  5480. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5481. return -EFAULT;
  5482. rcu_read_lock();
  5483. retval = -ESRCH;
  5484. p = find_process_by_pid(pid);
  5485. if (p != NULL)
  5486. retval = sched_setscheduler(p, policy, &lparam);
  5487. rcu_read_unlock();
  5488. return retval;
  5489. }
  5490. /**
  5491. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5492. * @pid: the pid in question.
  5493. * @policy: new policy.
  5494. * @param: structure containing the new RT priority.
  5495. */
  5496. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5497. struct sched_param __user *, param)
  5498. {
  5499. /* negative values for policy are not valid */
  5500. if (policy < 0)
  5501. return -EINVAL;
  5502. return do_sched_setscheduler(pid, policy, param);
  5503. }
  5504. /**
  5505. * sys_sched_setparam - set/change the RT priority of a thread
  5506. * @pid: the pid in question.
  5507. * @param: structure containing the new RT priority.
  5508. */
  5509. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5510. {
  5511. return do_sched_setscheduler(pid, -1, param);
  5512. }
  5513. /**
  5514. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5515. * @pid: the pid in question.
  5516. */
  5517. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5518. {
  5519. struct task_struct *p;
  5520. int retval;
  5521. if (pid < 0)
  5522. return -EINVAL;
  5523. retval = -ESRCH;
  5524. read_lock(&tasklist_lock);
  5525. p = find_process_by_pid(pid);
  5526. if (p) {
  5527. retval = security_task_getscheduler(p);
  5528. if (!retval)
  5529. retval = p->policy
  5530. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5531. }
  5532. read_unlock(&tasklist_lock);
  5533. return retval;
  5534. }
  5535. /**
  5536. * sys_sched_getparam - get the RT priority of a thread
  5537. * @pid: the pid in question.
  5538. * @param: structure containing the RT priority.
  5539. */
  5540. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5541. {
  5542. struct sched_param lp;
  5543. struct task_struct *p;
  5544. int retval;
  5545. if (!param || pid < 0)
  5546. return -EINVAL;
  5547. read_lock(&tasklist_lock);
  5548. p = find_process_by_pid(pid);
  5549. retval = -ESRCH;
  5550. if (!p)
  5551. goto out_unlock;
  5552. retval = security_task_getscheduler(p);
  5553. if (retval)
  5554. goto out_unlock;
  5555. lp.sched_priority = p->rt_priority;
  5556. read_unlock(&tasklist_lock);
  5557. /*
  5558. * This one might sleep, we cannot do it with a spinlock held ...
  5559. */
  5560. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5561. return retval;
  5562. out_unlock:
  5563. read_unlock(&tasklist_lock);
  5564. return retval;
  5565. }
  5566. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5567. {
  5568. cpumask_var_t cpus_allowed, new_mask;
  5569. struct task_struct *p;
  5570. int retval;
  5571. get_online_cpus();
  5572. read_lock(&tasklist_lock);
  5573. p = find_process_by_pid(pid);
  5574. if (!p) {
  5575. read_unlock(&tasklist_lock);
  5576. put_online_cpus();
  5577. return -ESRCH;
  5578. }
  5579. /*
  5580. * It is not safe to call set_cpus_allowed with the
  5581. * tasklist_lock held. We will bump the task_struct's
  5582. * usage count and then drop tasklist_lock.
  5583. */
  5584. get_task_struct(p);
  5585. read_unlock(&tasklist_lock);
  5586. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5587. retval = -ENOMEM;
  5588. goto out_put_task;
  5589. }
  5590. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5591. retval = -ENOMEM;
  5592. goto out_free_cpus_allowed;
  5593. }
  5594. retval = -EPERM;
  5595. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5596. goto out_unlock;
  5597. retval = security_task_setscheduler(p, 0, NULL);
  5598. if (retval)
  5599. goto out_unlock;
  5600. cpuset_cpus_allowed(p, cpus_allowed);
  5601. cpumask_and(new_mask, in_mask, cpus_allowed);
  5602. again:
  5603. retval = set_cpus_allowed_ptr(p, new_mask);
  5604. if (!retval) {
  5605. cpuset_cpus_allowed(p, cpus_allowed);
  5606. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5607. /*
  5608. * We must have raced with a concurrent cpuset
  5609. * update. Just reset the cpus_allowed to the
  5610. * cpuset's cpus_allowed
  5611. */
  5612. cpumask_copy(new_mask, cpus_allowed);
  5613. goto again;
  5614. }
  5615. }
  5616. out_unlock:
  5617. free_cpumask_var(new_mask);
  5618. out_free_cpus_allowed:
  5619. free_cpumask_var(cpus_allowed);
  5620. out_put_task:
  5621. put_task_struct(p);
  5622. put_online_cpus();
  5623. return retval;
  5624. }
  5625. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5626. struct cpumask *new_mask)
  5627. {
  5628. if (len < cpumask_size())
  5629. cpumask_clear(new_mask);
  5630. else if (len > cpumask_size())
  5631. len = cpumask_size();
  5632. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5633. }
  5634. /**
  5635. * sys_sched_setaffinity - set the cpu affinity of a process
  5636. * @pid: pid of the process
  5637. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5638. * @user_mask_ptr: user-space pointer to the new cpu mask
  5639. */
  5640. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5641. unsigned long __user *, user_mask_ptr)
  5642. {
  5643. cpumask_var_t new_mask;
  5644. int retval;
  5645. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5646. return -ENOMEM;
  5647. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5648. if (retval == 0)
  5649. retval = sched_setaffinity(pid, new_mask);
  5650. free_cpumask_var(new_mask);
  5651. return retval;
  5652. }
  5653. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5654. {
  5655. struct task_struct *p;
  5656. int retval;
  5657. get_online_cpus();
  5658. read_lock(&tasklist_lock);
  5659. retval = -ESRCH;
  5660. p = find_process_by_pid(pid);
  5661. if (!p)
  5662. goto out_unlock;
  5663. retval = security_task_getscheduler(p);
  5664. if (retval)
  5665. goto out_unlock;
  5666. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5667. out_unlock:
  5668. read_unlock(&tasklist_lock);
  5669. put_online_cpus();
  5670. return retval;
  5671. }
  5672. /**
  5673. * sys_sched_getaffinity - get the cpu affinity of a process
  5674. * @pid: pid of the process
  5675. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5676. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5677. */
  5678. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5679. unsigned long __user *, user_mask_ptr)
  5680. {
  5681. int ret;
  5682. cpumask_var_t mask;
  5683. if (len < cpumask_size())
  5684. return -EINVAL;
  5685. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5686. return -ENOMEM;
  5687. ret = sched_getaffinity(pid, mask);
  5688. if (ret == 0) {
  5689. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5690. ret = -EFAULT;
  5691. else
  5692. ret = cpumask_size();
  5693. }
  5694. free_cpumask_var(mask);
  5695. return ret;
  5696. }
  5697. /**
  5698. * sys_sched_yield - yield the current processor to other threads.
  5699. *
  5700. * This function yields the current CPU to other tasks. If there are no
  5701. * other threads running on this CPU then this function will return.
  5702. */
  5703. SYSCALL_DEFINE0(sched_yield)
  5704. {
  5705. struct rq *rq = this_rq_lock();
  5706. schedstat_inc(rq, yld_count);
  5707. current->sched_class->yield_task(rq);
  5708. /*
  5709. * Since we are going to call schedule() anyway, there's
  5710. * no need to preempt or enable interrupts:
  5711. */
  5712. __release(rq->lock);
  5713. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5714. _raw_spin_unlock(&rq->lock);
  5715. preempt_enable_no_resched();
  5716. schedule();
  5717. return 0;
  5718. }
  5719. static inline int should_resched(void)
  5720. {
  5721. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5722. }
  5723. static void __cond_resched(void)
  5724. {
  5725. add_preempt_count(PREEMPT_ACTIVE);
  5726. schedule();
  5727. sub_preempt_count(PREEMPT_ACTIVE);
  5728. }
  5729. int __sched _cond_resched(void)
  5730. {
  5731. if (should_resched()) {
  5732. __cond_resched();
  5733. return 1;
  5734. }
  5735. return 0;
  5736. }
  5737. EXPORT_SYMBOL(_cond_resched);
  5738. /*
  5739. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5740. * call schedule, and on return reacquire the lock.
  5741. *
  5742. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5743. * operations here to prevent schedule() from being called twice (once via
  5744. * spin_unlock(), once by hand).
  5745. */
  5746. int __cond_resched_lock(spinlock_t *lock)
  5747. {
  5748. int resched = should_resched();
  5749. int ret = 0;
  5750. if (spin_needbreak(lock) || resched) {
  5751. spin_unlock(lock);
  5752. if (resched)
  5753. __cond_resched();
  5754. else
  5755. cpu_relax();
  5756. ret = 1;
  5757. spin_lock(lock);
  5758. }
  5759. return ret;
  5760. }
  5761. EXPORT_SYMBOL(__cond_resched_lock);
  5762. int __sched __cond_resched_softirq(void)
  5763. {
  5764. BUG_ON(!in_softirq());
  5765. if (should_resched()) {
  5766. local_bh_enable();
  5767. __cond_resched();
  5768. local_bh_disable();
  5769. return 1;
  5770. }
  5771. return 0;
  5772. }
  5773. EXPORT_SYMBOL(__cond_resched_softirq);
  5774. /**
  5775. * yield - yield the current processor to other threads.
  5776. *
  5777. * This is a shortcut for kernel-space yielding - it marks the
  5778. * thread runnable and calls sys_sched_yield().
  5779. */
  5780. void __sched yield(void)
  5781. {
  5782. set_current_state(TASK_RUNNING);
  5783. sys_sched_yield();
  5784. }
  5785. EXPORT_SYMBOL(yield);
  5786. /*
  5787. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5788. * that process accounting knows that this is a task in IO wait state.
  5789. *
  5790. * But don't do that if it is a deliberate, throttling IO wait (this task
  5791. * has set its backing_dev_info: the queue against which it should throttle)
  5792. */
  5793. void __sched io_schedule(void)
  5794. {
  5795. struct rq *rq = raw_rq();
  5796. delayacct_blkio_start();
  5797. atomic_inc(&rq->nr_iowait);
  5798. current->in_iowait = 1;
  5799. schedule();
  5800. current->in_iowait = 0;
  5801. atomic_dec(&rq->nr_iowait);
  5802. delayacct_blkio_end();
  5803. }
  5804. EXPORT_SYMBOL(io_schedule);
  5805. long __sched io_schedule_timeout(long timeout)
  5806. {
  5807. struct rq *rq = raw_rq();
  5808. long ret;
  5809. delayacct_blkio_start();
  5810. atomic_inc(&rq->nr_iowait);
  5811. current->in_iowait = 1;
  5812. ret = schedule_timeout(timeout);
  5813. current->in_iowait = 0;
  5814. atomic_dec(&rq->nr_iowait);
  5815. delayacct_blkio_end();
  5816. return ret;
  5817. }
  5818. /**
  5819. * sys_sched_get_priority_max - return maximum RT priority.
  5820. * @policy: scheduling class.
  5821. *
  5822. * this syscall returns the maximum rt_priority that can be used
  5823. * by a given scheduling class.
  5824. */
  5825. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5826. {
  5827. int ret = -EINVAL;
  5828. switch (policy) {
  5829. case SCHED_FIFO:
  5830. case SCHED_RR:
  5831. ret = MAX_USER_RT_PRIO-1;
  5832. break;
  5833. case SCHED_NORMAL:
  5834. case SCHED_BATCH:
  5835. case SCHED_IDLE:
  5836. ret = 0;
  5837. break;
  5838. }
  5839. return ret;
  5840. }
  5841. /**
  5842. * sys_sched_get_priority_min - return minimum RT priority.
  5843. * @policy: scheduling class.
  5844. *
  5845. * this syscall returns the minimum rt_priority that can be used
  5846. * by a given scheduling class.
  5847. */
  5848. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5849. {
  5850. int ret = -EINVAL;
  5851. switch (policy) {
  5852. case SCHED_FIFO:
  5853. case SCHED_RR:
  5854. ret = 1;
  5855. break;
  5856. case SCHED_NORMAL:
  5857. case SCHED_BATCH:
  5858. case SCHED_IDLE:
  5859. ret = 0;
  5860. }
  5861. return ret;
  5862. }
  5863. /**
  5864. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5865. * @pid: pid of the process.
  5866. * @interval: userspace pointer to the timeslice value.
  5867. *
  5868. * this syscall writes the default timeslice value of a given process
  5869. * into the user-space timespec buffer. A value of '0' means infinity.
  5870. */
  5871. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5872. struct timespec __user *, interval)
  5873. {
  5874. struct task_struct *p;
  5875. unsigned int time_slice;
  5876. int retval;
  5877. struct timespec t;
  5878. if (pid < 0)
  5879. return -EINVAL;
  5880. retval = -ESRCH;
  5881. read_lock(&tasklist_lock);
  5882. p = find_process_by_pid(pid);
  5883. if (!p)
  5884. goto out_unlock;
  5885. retval = security_task_getscheduler(p);
  5886. if (retval)
  5887. goto out_unlock;
  5888. /*
  5889. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5890. * tasks that are on an otherwise idle runqueue:
  5891. */
  5892. time_slice = 0;
  5893. if (p->policy == SCHED_RR) {
  5894. time_slice = DEF_TIMESLICE;
  5895. } else if (p->policy != SCHED_FIFO) {
  5896. struct sched_entity *se = &p->se;
  5897. unsigned long flags;
  5898. struct rq *rq;
  5899. rq = task_rq_lock(p, &flags);
  5900. if (rq->cfs.load.weight)
  5901. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5902. task_rq_unlock(rq, &flags);
  5903. }
  5904. read_unlock(&tasklist_lock);
  5905. jiffies_to_timespec(time_slice, &t);
  5906. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5907. return retval;
  5908. out_unlock:
  5909. read_unlock(&tasklist_lock);
  5910. return retval;
  5911. }
  5912. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5913. void sched_show_task(struct task_struct *p)
  5914. {
  5915. unsigned long free = 0;
  5916. unsigned state;
  5917. state = p->state ? __ffs(p->state) + 1 : 0;
  5918. printk(KERN_INFO "%-13.13s %c", p->comm,
  5919. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5920. #if BITS_PER_LONG == 32
  5921. if (state == TASK_RUNNING)
  5922. printk(KERN_CONT " running ");
  5923. else
  5924. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5925. #else
  5926. if (state == TASK_RUNNING)
  5927. printk(KERN_CONT " running task ");
  5928. else
  5929. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5930. #endif
  5931. #ifdef CONFIG_DEBUG_STACK_USAGE
  5932. free = stack_not_used(p);
  5933. #endif
  5934. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5935. task_pid_nr(p), task_pid_nr(p->real_parent),
  5936. (unsigned long)task_thread_info(p)->flags);
  5937. show_stack(p, NULL);
  5938. }
  5939. void show_state_filter(unsigned long state_filter)
  5940. {
  5941. struct task_struct *g, *p;
  5942. #if BITS_PER_LONG == 32
  5943. printk(KERN_INFO
  5944. " task PC stack pid father\n");
  5945. #else
  5946. printk(KERN_INFO
  5947. " task PC stack pid father\n");
  5948. #endif
  5949. read_lock(&tasklist_lock);
  5950. do_each_thread(g, p) {
  5951. /*
  5952. * reset the NMI-timeout, listing all files on a slow
  5953. * console might take alot of time:
  5954. */
  5955. touch_nmi_watchdog();
  5956. if (!state_filter || (p->state & state_filter))
  5957. sched_show_task(p);
  5958. } while_each_thread(g, p);
  5959. touch_all_softlockup_watchdogs();
  5960. #ifdef CONFIG_SCHED_DEBUG
  5961. sysrq_sched_debug_show();
  5962. #endif
  5963. read_unlock(&tasklist_lock);
  5964. /*
  5965. * Only show locks if all tasks are dumped:
  5966. */
  5967. if (state_filter == -1)
  5968. debug_show_all_locks();
  5969. }
  5970. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5971. {
  5972. idle->sched_class = &idle_sched_class;
  5973. }
  5974. /**
  5975. * init_idle - set up an idle thread for a given CPU
  5976. * @idle: task in question
  5977. * @cpu: cpu the idle task belongs to
  5978. *
  5979. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5980. * flag, to make booting more robust.
  5981. */
  5982. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5983. {
  5984. struct rq *rq = cpu_rq(cpu);
  5985. unsigned long flags;
  5986. spin_lock_irqsave(&rq->lock, flags);
  5987. __sched_fork(idle);
  5988. idle->se.exec_start = sched_clock();
  5989. idle->prio = idle->normal_prio = MAX_PRIO;
  5990. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5991. __set_task_cpu(idle, cpu);
  5992. rq->curr = rq->idle = idle;
  5993. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5994. idle->oncpu = 1;
  5995. #endif
  5996. spin_unlock_irqrestore(&rq->lock, flags);
  5997. /* Set the preempt count _outside_ the spinlocks! */
  5998. #if defined(CONFIG_PREEMPT)
  5999. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  6000. #else
  6001. task_thread_info(idle)->preempt_count = 0;
  6002. #endif
  6003. /*
  6004. * The idle tasks have their own, simple scheduling class:
  6005. */
  6006. idle->sched_class = &idle_sched_class;
  6007. ftrace_graph_init_task(idle);
  6008. }
  6009. /*
  6010. * In a system that switches off the HZ timer nohz_cpu_mask
  6011. * indicates which cpus entered this state. This is used
  6012. * in the rcu update to wait only for active cpus. For system
  6013. * which do not switch off the HZ timer nohz_cpu_mask should
  6014. * always be CPU_BITS_NONE.
  6015. */
  6016. cpumask_var_t nohz_cpu_mask;
  6017. /*
  6018. * Increase the granularity value when there are more CPUs,
  6019. * because with more CPUs the 'effective latency' as visible
  6020. * to users decreases. But the relationship is not linear,
  6021. * so pick a second-best guess by going with the log2 of the
  6022. * number of CPUs.
  6023. *
  6024. * This idea comes from the SD scheduler of Con Kolivas:
  6025. */
  6026. static inline void sched_init_granularity(void)
  6027. {
  6028. unsigned int factor = 1 + ilog2(num_online_cpus());
  6029. const unsigned long limit = 200000000;
  6030. sysctl_sched_min_granularity *= factor;
  6031. if (sysctl_sched_min_granularity > limit)
  6032. sysctl_sched_min_granularity = limit;
  6033. sysctl_sched_latency *= factor;
  6034. if (sysctl_sched_latency > limit)
  6035. sysctl_sched_latency = limit;
  6036. sysctl_sched_wakeup_granularity *= factor;
  6037. sysctl_sched_shares_ratelimit *= factor;
  6038. }
  6039. #ifdef CONFIG_SMP
  6040. /*
  6041. * This is how migration works:
  6042. *
  6043. * 1) we queue a struct migration_req structure in the source CPU's
  6044. * runqueue and wake up that CPU's migration thread.
  6045. * 2) we down() the locked semaphore => thread blocks.
  6046. * 3) migration thread wakes up (implicitly it forces the migrated
  6047. * thread off the CPU)
  6048. * 4) it gets the migration request and checks whether the migrated
  6049. * task is still in the wrong runqueue.
  6050. * 5) if it's in the wrong runqueue then the migration thread removes
  6051. * it and puts it into the right queue.
  6052. * 6) migration thread up()s the semaphore.
  6053. * 7) we wake up and the migration is done.
  6054. */
  6055. /*
  6056. * Change a given task's CPU affinity. Migrate the thread to a
  6057. * proper CPU and schedule it away if the CPU it's executing on
  6058. * is removed from the allowed bitmask.
  6059. *
  6060. * NOTE: the caller must have a valid reference to the task, the
  6061. * task must not exit() & deallocate itself prematurely. The
  6062. * call is not atomic; no spinlocks may be held.
  6063. */
  6064. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6065. {
  6066. struct migration_req req;
  6067. unsigned long flags;
  6068. struct rq *rq;
  6069. int ret = 0;
  6070. rq = task_rq_lock(p, &flags);
  6071. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  6072. ret = -EINVAL;
  6073. goto out;
  6074. }
  6075. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6076. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6077. ret = -EINVAL;
  6078. goto out;
  6079. }
  6080. if (p->sched_class->set_cpus_allowed)
  6081. p->sched_class->set_cpus_allowed(p, new_mask);
  6082. else {
  6083. cpumask_copy(&p->cpus_allowed, new_mask);
  6084. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6085. }
  6086. /* Can the task run on the task's current CPU? If so, we're done */
  6087. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6088. goto out;
  6089. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  6090. /* Need help from migration thread: drop lock and wait. */
  6091. struct task_struct *mt = rq->migration_thread;
  6092. get_task_struct(mt);
  6093. task_rq_unlock(rq, &flags);
  6094. wake_up_process(rq->migration_thread);
  6095. put_task_struct(mt);
  6096. wait_for_completion(&req.done);
  6097. tlb_migrate_finish(p->mm);
  6098. return 0;
  6099. }
  6100. out:
  6101. task_rq_unlock(rq, &flags);
  6102. return ret;
  6103. }
  6104. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6105. /*
  6106. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6107. * this because either it can't run here any more (set_cpus_allowed()
  6108. * away from this CPU, or CPU going down), or because we're
  6109. * attempting to rebalance this task on exec (sched_exec).
  6110. *
  6111. * So we race with normal scheduler movements, but that's OK, as long
  6112. * as the task is no longer on this CPU.
  6113. *
  6114. * Returns non-zero if task was successfully migrated.
  6115. */
  6116. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6117. {
  6118. struct rq *rq_dest, *rq_src;
  6119. int ret = 0, on_rq;
  6120. if (unlikely(!cpu_active(dest_cpu)))
  6121. return ret;
  6122. rq_src = cpu_rq(src_cpu);
  6123. rq_dest = cpu_rq(dest_cpu);
  6124. double_rq_lock(rq_src, rq_dest);
  6125. /* Already moved. */
  6126. if (task_cpu(p) != src_cpu)
  6127. goto done;
  6128. /* Affinity changed (again). */
  6129. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6130. goto fail;
  6131. on_rq = p->se.on_rq;
  6132. if (on_rq)
  6133. deactivate_task(rq_src, p, 0);
  6134. set_task_cpu(p, dest_cpu);
  6135. if (on_rq) {
  6136. activate_task(rq_dest, p, 0);
  6137. check_preempt_curr(rq_dest, p, 0);
  6138. }
  6139. done:
  6140. ret = 1;
  6141. fail:
  6142. double_rq_unlock(rq_src, rq_dest);
  6143. return ret;
  6144. }
  6145. /*
  6146. * migration_thread - this is a highprio system thread that performs
  6147. * thread migration by bumping thread off CPU then 'pushing' onto
  6148. * another runqueue.
  6149. */
  6150. static int migration_thread(void *data)
  6151. {
  6152. int cpu = (long)data;
  6153. struct rq *rq;
  6154. rq = cpu_rq(cpu);
  6155. BUG_ON(rq->migration_thread != current);
  6156. set_current_state(TASK_INTERRUPTIBLE);
  6157. while (!kthread_should_stop()) {
  6158. struct migration_req *req;
  6159. struct list_head *head;
  6160. spin_lock_irq(&rq->lock);
  6161. if (cpu_is_offline(cpu)) {
  6162. spin_unlock_irq(&rq->lock);
  6163. break;
  6164. }
  6165. if (rq->active_balance) {
  6166. active_load_balance(rq, cpu);
  6167. rq->active_balance = 0;
  6168. }
  6169. head = &rq->migration_queue;
  6170. if (list_empty(head)) {
  6171. spin_unlock_irq(&rq->lock);
  6172. schedule();
  6173. set_current_state(TASK_INTERRUPTIBLE);
  6174. continue;
  6175. }
  6176. req = list_entry(head->next, struct migration_req, list);
  6177. list_del_init(head->next);
  6178. spin_unlock(&rq->lock);
  6179. __migrate_task(req->task, cpu, req->dest_cpu);
  6180. local_irq_enable();
  6181. complete(&req->done);
  6182. }
  6183. __set_current_state(TASK_RUNNING);
  6184. return 0;
  6185. }
  6186. #ifdef CONFIG_HOTPLUG_CPU
  6187. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6188. {
  6189. int ret;
  6190. local_irq_disable();
  6191. ret = __migrate_task(p, src_cpu, dest_cpu);
  6192. local_irq_enable();
  6193. return ret;
  6194. }
  6195. /*
  6196. * Figure out where task on dead CPU should go, use force if necessary.
  6197. */
  6198. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6199. {
  6200. int dest_cpu;
  6201. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6202. again:
  6203. /* Look for allowed, online CPU in same node. */
  6204. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6205. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6206. goto move;
  6207. /* Any allowed, online CPU? */
  6208. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6209. if (dest_cpu < nr_cpu_ids)
  6210. goto move;
  6211. /* No more Mr. Nice Guy. */
  6212. if (dest_cpu >= nr_cpu_ids) {
  6213. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6214. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6215. /*
  6216. * Don't tell them about moving exiting tasks or
  6217. * kernel threads (both mm NULL), since they never
  6218. * leave kernel.
  6219. */
  6220. if (p->mm && printk_ratelimit()) {
  6221. printk(KERN_INFO "process %d (%s) no "
  6222. "longer affine to cpu%d\n",
  6223. task_pid_nr(p), p->comm, dead_cpu);
  6224. }
  6225. }
  6226. move:
  6227. /* It can have affinity changed while we were choosing. */
  6228. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6229. goto again;
  6230. }
  6231. /*
  6232. * While a dead CPU has no uninterruptible tasks queued at this point,
  6233. * it might still have a nonzero ->nr_uninterruptible counter, because
  6234. * for performance reasons the counter is not stricly tracking tasks to
  6235. * their home CPUs. So we just add the counter to another CPU's counter,
  6236. * to keep the global sum constant after CPU-down:
  6237. */
  6238. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6239. {
  6240. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6241. unsigned long flags;
  6242. local_irq_save(flags);
  6243. double_rq_lock(rq_src, rq_dest);
  6244. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6245. rq_src->nr_uninterruptible = 0;
  6246. double_rq_unlock(rq_src, rq_dest);
  6247. local_irq_restore(flags);
  6248. }
  6249. /* Run through task list and migrate tasks from the dead cpu. */
  6250. static void migrate_live_tasks(int src_cpu)
  6251. {
  6252. struct task_struct *p, *t;
  6253. read_lock(&tasklist_lock);
  6254. do_each_thread(t, p) {
  6255. if (p == current)
  6256. continue;
  6257. if (task_cpu(p) == src_cpu)
  6258. move_task_off_dead_cpu(src_cpu, p);
  6259. } while_each_thread(t, p);
  6260. read_unlock(&tasklist_lock);
  6261. }
  6262. /*
  6263. * Schedules idle task to be the next runnable task on current CPU.
  6264. * It does so by boosting its priority to highest possible.
  6265. * Used by CPU offline code.
  6266. */
  6267. void sched_idle_next(void)
  6268. {
  6269. int this_cpu = smp_processor_id();
  6270. struct rq *rq = cpu_rq(this_cpu);
  6271. struct task_struct *p = rq->idle;
  6272. unsigned long flags;
  6273. /* cpu has to be offline */
  6274. BUG_ON(cpu_online(this_cpu));
  6275. /*
  6276. * Strictly not necessary since rest of the CPUs are stopped by now
  6277. * and interrupts disabled on the current cpu.
  6278. */
  6279. spin_lock_irqsave(&rq->lock, flags);
  6280. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6281. update_rq_clock(rq);
  6282. activate_task(rq, p, 0);
  6283. spin_unlock_irqrestore(&rq->lock, flags);
  6284. }
  6285. /*
  6286. * Ensures that the idle task is using init_mm right before its cpu goes
  6287. * offline.
  6288. */
  6289. void idle_task_exit(void)
  6290. {
  6291. struct mm_struct *mm = current->active_mm;
  6292. BUG_ON(cpu_online(smp_processor_id()));
  6293. if (mm != &init_mm)
  6294. switch_mm(mm, &init_mm, current);
  6295. mmdrop(mm);
  6296. }
  6297. /* called under rq->lock with disabled interrupts */
  6298. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6299. {
  6300. struct rq *rq = cpu_rq(dead_cpu);
  6301. /* Must be exiting, otherwise would be on tasklist. */
  6302. BUG_ON(!p->exit_state);
  6303. /* Cannot have done final schedule yet: would have vanished. */
  6304. BUG_ON(p->state == TASK_DEAD);
  6305. get_task_struct(p);
  6306. /*
  6307. * Drop lock around migration; if someone else moves it,
  6308. * that's OK. No task can be added to this CPU, so iteration is
  6309. * fine.
  6310. */
  6311. spin_unlock_irq(&rq->lock);
  6312. move_task_off_dead_cpu(dead_cpu, p);
  6313. spin_lock_irq(&rq->lock);
  6314. put_task_struct(p);
  6315. }
  6316. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6317. static void migrate_dead_tasks(unsigned int dead_cpu)
  6318. {
  6319. struct rq *rq = cpu_rq(dead_cpu);
  6320. struct task_struct *next;
  6321. for ( ; ; ) {
  6322. if (!rq->nr_running)
  6323. break;
  6324. update_rq_clock(rq);
  6325. next = pick_next_task(rq);
  6326. if (!next)
  6327. break;
  6328. next->sched_class->put_prev_task(rq, next);
  6329. migrate_dead(dead_cpu, next);
  6330. }
  6331. }
  6332. /*
  6333. * remove the tasks which were accounted by rq from calc_load_tasks.
  6334. */
  6335. static void calc_global_load_remove(struct rq *rq)
  6336. {
  6337. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6338. rq->calc_load_active = 0;
  6339. }
  6340. #endif /* CONFIG_HOTPLUG_CPU */
  6341. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6342. static struct ctl_table sd_ctl_dir[] = {
  6343. {
  6344. .procname = "sched_domain",
  6345. .mode = 0555,
  6346. },
  6347. {0, },
  6348. };
  6349. static struct ctl_table sd_ctl_root[] = {
  6350. {
  6351. .ctl_name = CTL_KERN,
  6352. .procname = "kernel",
  6353. .mode = 0555,
  6354. .child = sd_ctl_dir,
  6355. },
  6356. {0, },
  6357. };
  6358. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6359. {
  6360. struct ctl_table *entry =
  6361. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6362. return entry;
  6363. }
  6364. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6365. {
  6366. struct ctl_table *entry;
  6367. /*
  6368. * In the intermediate directories, both the child directory and
  6369. * procname are dynamically allocated and could fail but the mode
  6370. * will always be set. In the lowest directory the names are
  6371. * static strings and all have proc handlers.
  6372. */
  6373. for (entry = *tablep; entry->mode; entry++) {
  6374. if (entry->child)
  6375. sd_free_ctl_entry(&entry->child);
  6376. if (entry->proc_handler == NULL)
  6377. kfree(entry->procname);
  6378. }
  6379. kfree(*tablep);
  6380. *tablep = NULL;
  6381. }
  6382. static void
  6383. set_table_entry(struct ctl_table *entry,
  6384. const char *procname, void *data, int maxlen,
  6385. mode_t mode, proc_handler *proc_handler)
  6386. {
  6387. entry->procname = procname;
  6388. entry->data = data;
  6389. entry->maxlen = maxlen;
  6390. entry->mode = mode;
  6391. entry->proc_handler = proc_handler;
  6392. }
  6393. static struct ctl_table *
  6394. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6395. {
  6396. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6397. if (table == NULL)
  6398. return NULL;
  6399. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6400. sizeof(long), 0644, proc_doulongvec_minmax);
  6401. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6402. sizeof(long), 0644, proc_doulongvec_minmax);
  6403. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6404. sizeof(int), 0644, proc_dointvec_minmax);
  6405. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6406. sizeof(int), 0644, proc_dointvec_minmax);
  6407. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6408. sizeof(int), 0644, proc_dointvec_minmax);
  6409. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6410. sizeof(int), 0644, proc_dointvec_minmax);
  6411. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6412. sizeof(int), 0644, proc_dointvec_minmax);
  6413. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6414. sizeof(int), 0644, proc_dointvec_minmax);
  6415. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6416. sizeof(int), 0644, proc_dointvec_minmax);
  6417. set_table_entry(&table[9], "cache_nice_tries",
  6418. &sd->cache_nice_tries,
  6419. sizeof(int), 0644, proc_dointvec_minmax);
  6420. set_table_entry(&table[10], "flags", &sd->flags,
  6421. sizeof(int), 0644, proc_dointvec_minmax);
  6422. set_table_entry(&table[11], "name", sd->name,
  6423. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6424. /* &table[12] is terminator */
  6425. return table;
  6426. }
  6427. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6428. {
  6429. struct ctl_table *entry, *table;
  6430. struct sched_domain *sd;
  6431. int domain_num = 0, i;
  6432. char buf[32];
  6433. for_each_domain(cpu, sd)
  6434. domain_num++;
  6435. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6436. if (table == NULL)
  6437. return NULL;
  6438. i = 0;
  6439. for_each_domain(cpu, sd) {
  6440. snprintf(buf, 32, "domain%d", i);
  6441. entry->procname = kstrdup(buf, GFP_KERNEL);
  6442. entry->mode = 0555;
  6443. entry->child = sd_alloc_ctl_domain_table(sd);
  6444. entry++;
  6445. i++;
  6446. }
  6447. return table;
  6448. }
  6449. static struct ctl_table_header *sd_sysctl_header;
  6450. static void register_sched_domain_sysctl(void)
  6451. {
  6452. int i, cpu_num = num_online_cpus();
  6453. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6454. char buf[32];
  6455. WARN_ON(sd_ctl_dir[0].child);
  6456. sd_ctl_dir[0].child = entry;
  6457. if (entry == NULL)
  6458. return;
  6459. for_each_online_cpu(i) {
  6460. snprintf(buf, 32, "cpu%d", i);
  6461. entry->procname = kstrdup(buf, GFP_KERNEL);
  6462. entry->mode = 0555;
  6463. entry->child = sd_alloc_ctl_cpu_table(i);
  6464. entry++;
  6465. }
  6466. WARN_ON(sd_sysctl_header);
  6467. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6468. }
  6469. /* may be called multiple times per register */
  6470. static void unregister_sched_domain_sysctl(void)
  6471. {
  6472. if (sd_sysctl_header)
  6473. unregister_sysctl_table(sd_sysctl_header);
  6474. sd_sysctl_header = NULL;
  6475. if (sd_ctl_dir[0].child)
  6476. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6477. }
  6478. #else
  6479. static void register_sched_domain_sysctl(void)
  6480. {
  6481. }
  6482. static void unregister_sched_domain_sysctl(void)
  6483. {
  6484. }
  6485. #endif
  6486. static void set_rq_online(struct rq *rq)
  6487. {
  6488. if (!rq->online) {
  6489. const struct sched_class *class;
  6490. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6491. rq->online = 1;
  6492. for_each_class(class) {
  6493. if (class->rq_online)
  6494. class->rq_online(rq);
  6495. }
  6496. }
  6497. }
  6498. static void set_rq_offline(struct rq *rq)
  6499. {
  6500. if (rq->online) {
  6501. const struct sched_class *class;
  6502. for_each_class(class) {
  6503. if (class->rq_offline)
  6504. class->rq_offline(rq);
  6505. }
  6506. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6507. rq->online = 0;
  6508. }
  6509. }
  6510. /*
  6511. * migration_call - callback that gets triggered when a CPU is added.
  6512. * Here we can start up the necessary migration thread for the new CPU.
  6513. */
  6514. static int __cpuinit
  6515. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6516. {
  6517. struct task_struct *p;
  6518. int cpu = (long)hcpu;
  6519. unsigned long flags;
  6520. struct rq *rq;
  6521. switch (action) {
  6522. case CPU_UP_PREPARE:
  6523. case CPU_UP_PREPARE_FROZEN:
  6524. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6525. if (IS_ERR(p))
  6526. return NOTIFY_BAD;
  6527. kthread_bind(p, cpu);
  6528. /* Must be high prio: stop_machine expects to yield to it. */
  6529. rq = task_rq_lock(p, &flags);
  6530. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6531. task_rq_unlock(rq, &flags);
  6532. get_task_struct(p);
  6533. cpu_rq(cpu)->migration_thread = p;
  6534. rq->calc_load_update = calc_load_update;
  6535. break;
  6536. case CPU_ONLINE:
  6537. case CPU_ONLINE_FROZEN:
  6538. /* Strictly unnecessary, as first user will wake it. */
  6539. wake_up_process(cpu_rq(cpu)->migration_thread);
  6540. /* Update our root-domain */
  6541. rq = cpu_rq(cpu);
  6542. spin_lock_irqsave(&rq->lock, flags);
  6543. if (rq->rd) {
  6544. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6545. set_rq_online(rq);
  6546. }
  6547. spin_unlock_irqrestore(&rq->lock, flags);
  6548. break;
  6549. #ifdef CONFIG_HOTPLUG_CPU
  6550. case CPU_UP_CANCELED:
  6551. case CPU_UP_CANCELED_FROZEN:
  6552. if (!cpu_rq(cpu)->migration_thread)
  6553. break;
  6554. /* Unbind it from offline cpu so it can run. Fall thru. */
  6555. kthread_bind(cpu_rq(cpu)->migration_thread,
  6556. cpumask_any(cpu_online_mask));
  6557. kthread_stop(cpu_rq(cpu)->migration_thread);
  6558. put_task_struct(cpu_rq(cpu)->migration_thread);
  6559. cpu_rq(cpu)->migration_thread = NULL;
  6560. break;
  6561. case CPU_DEAD:
  6562. case CPU_DEAD_FROZEN:
  6563. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6564. migrate_live_tasks(cpu);
  6565. rq = cpu_rq(cpu);
  6566. kthread_stop(rq->migration_thread);
  6567. put_task_struct(rq->migration_thread);
  6568. rq->migration_thread = NULL;
  6569. /* Idle task back to normal (off runqueue, low prio) */
  6570. spin_lock_irq(&rq->lock);
  6571. update_rq_clock(rq);
  6572. deactivate_task(rq, rq->idle, 0);
  6573. rq->idle->static_prio = MAX_PRIO;
  6574. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6575. rq->idle->sched_class = &idle_sched_class;
  6576. migrate_dead_tasks(cpu);
  6577. spin_unlock_irq(&rq->lock);
  6578. cpuset_unlock();
  6579. migrate_nr_uninterruptible(rq);
  6580. BUG_ON(rq->nr_running != 0);
  6581. calc_global_load_remove(rq);
  6582. /*
  6583. * No need to migrate the tasks: it was best-effort if
  6584. * they didn't take sched_hotcpu_mutex. Just wake up
  6585. * the requestors.
  6586. */
  6587. spin_lock_irq(&rq->lock);
  6588. while (!list_empty(&rq->migration_queue)) {
  6589. struct migration_req *req;
  6590. req = list_entry(rq->migration_queue.next,
  6591. struct migration_req, list);
  6592. list_del_init(&req->list);
  6593. spin_unlock_irq(&rq->lock);
  6594. complete(&req->done);
  6595. spin_lock_irq(&rq->lock);
  6596. }
  6597. spin_unlock_irq(&rq->lock);
  6598. break;
  6599. case CPU_DYING:
  6600. case CPU_DYING_FROZEN:
  6601. /* Update our root-domain */
  6602. rq = cpu_rq(cpu);
  6603. spin_lock_irqsave(&rq->lock, flags);
  6604. if (rq->rd) {
  6605. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6606. set_rq_offline(rq);
  6607. }
  6608. spin_unlock_irqrestore(&rq->lock, flags);
  6609. break;
  6610. #endif
  6611. }
  6612. return NOTIFY_OK;
  6613. }
  6614. /*
  6615. * Register at high priority so that task migration (migrate_all_tasks)
  6616. * happens before everything else. This has to be lower priority than
  6617. * the notifier in the perf_counter subsystem, though.
  6618. */
  6619. static struct notifier_block __cpuinitdata migration_notifier = {
  6620. .notifier_call = migration_call,
  6621. .priority = 10
  6622. };
  6623. static int __init migration_init(void)
  6624. {
  6625. void *cpu = (void *)(long)smp_processor_id();
  6626. int err;
  6627. /* Start one for the boot CPU: */
  6628. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6629. BUG_ON(err == NOTIFY_BAD);
  6630. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6631. register_cpu_notifier(&migration_notifier);
  6632. return 0;
  6633. }
  6634. early_initcall(migration_init);
  6635. #endif
  6636. #ifdef CONFIG_SMP
  6637. #ifdef CONFIG_SCHED_DEBUG
  6638. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6639. struct cpumask *groupmask)
  6640. {
  6641. struct sched_group *group = sd->groups;
  6642. char str[256];
  6643. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6644. cpumask_clear(groupmask);
  6645. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6646. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6647. printk("does not load-balance\n");
  6648. if (sd->parent)
  6649. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6650. " has parent");
  6651. return -1;
  6652. }
  6653. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6654. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6655. printk(KERN_ERR "ERROR: domain->span does not contain "
  6656. "CPU%d\n", cpu);
  6657. }
  6658. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6659. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6660. " CPU%d\n", cpu);
  6661. }
  6662. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6663. do {
  6664. if (!group) {
  6665. printk("\n");
  6666. printk(KERN_ERR "ERROR: group is NULL\n");
  6667. break;
  6668. }
  6669. if (!group->__cpu_power) {
  6670. printk(KERN_CONT "\n");
  6671. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6672. "set\n");
  6673. break;
  6674. }
  6675. if (!cpumask_weight(sched_group_cpus(group))) {
  6676. printk(KERN_CONT "\n");
  6677. printk(KERN_ERR "ERROR: empty group\n");
  6678. break;
  6679. }
  6680. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6681. printk(KERN_CONT "\n");
  6682. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6683. break;
  6684. }
  6685. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6686. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6687. printk(KERN_CONT " %s", str);
  6688. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6689. printk(KERN_CONT " (__cpu_power = %d)",
  6690. group->__cpu_power);
  6691. }
  6692. group = group->next;
  6693. } while (group != sd->groups);
  6694. printk(KERN_CONT "\n");
  6695. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6696. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6697. if (sd->parent &&
  6698. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6699. printk(KERN_ERR "ERROR: parent span is not a superset "
  6700. "of domain->span\n");
  6701. return 0;
  6702. }
  6703. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6704. {
  6705. cpumask_var_t groupmask;
  6706. int level = 0;
  6707. if (!sd) {
  6708. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6709. return;
  6710. }
  6711. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6712. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6713. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6714. return;
  6715. }
  6716. for (;;) {
  6717. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6718. break;
  6719. level++;
  6720. sd = sd->parent;
  6721. if (!sd)
  6722. break;
  6723. }
  6724. free_cpumask_var(groupmask);
  6725. }
  6726. #else /* !CONFIG_SCHED_DEBUG */
  6727. # define sched_domain_debug(sd, cpu) do { } while (0)
  6728. #endif /* CONFIG_SCHED_DEBUG */
  6729. static int sd_degenerate(struct sched_domain *sd)
  6730. {
  6731. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6732. return 1;
  6733. /* Following flags need at least 2 groups */
  6734. if (sd->flags & (SD_LOAD_BALANCE |
  6735. SD_BALANCE_NEWIDLE |
  6736. SD_BALANCE_FORK |
  6737. SD_BALANCE_EXEC |
  6738. SD_SHARE_CPUPOWER |
  6739. SD_SHARE_PKG_RESOURCES)) {
  6740. if (sd->groups != sd->groups->next)
  6741. return 0;
  6742. }
  6743. /* Following flags don't use groups */
  6744. if (sd->flags & (SD_WAKE_IDLE |
  6745. SD_WAKE_AFFINE |
  6746. SD_WAKE_BALANCE))
  6747. return 0;
  6748. return 1;
  6749. }
  6750. static int
  6751. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6752. {
  6753. unsigned long cflags = sd->flags, pflags = parent->flags;
  6754. if (sd_degenerate(parent))
  6755. return 1;
  6756. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6757. return 0;
  6758. /* Does parent contain flags not in child? */
  6759. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6760. if (cflags & SD_WAKE_AFFINE)
  6761. pflags &= ~SD_WAKE_BALANCE;
  6762. /* Flags needing groups don't count if only 1 group in parent */
  6763. if (parent->groups == parent->groups->next) {
  6764. pflags &= ~(SD_LOAD_BALANCE |
  6765. SD_BALANCE_NEWIDLE |
  6766. SD_BALANCE_FORK |
  6767. SD_BALANCE_EXEC |
  6768. SD_SHARE_CPUPOWER |
  6769. SD_SHARE_PKG_RESOURCES);
  6770. if (nr_node_ids == 1)
  6771. pflags &= ~SD_SERIALIZE;
  6772. }
  6773. if (~cflags & pflags)
  6774. return 0;
  6775. return 1;
  6776. }
  6777. static void free_rootdomain(struct root_domain *rd)
  6778. {
  6779. cpupri_cleanup(&rd->cpupri);
  6780. free_cpumask_var(rd->rto_mask);
  6781. free_cpumask_var(rd->online);
  6782. free_cpumask_var(rd->span);
  6783. kfree(rd);
  6784. }
  6785. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6786. {
  6787. struct root_domain *old_rd = NULL;
  6788. unsigned long flags;
  6789. spin_lock_irqsave(&rq->lock, flags);
  6790. if (rq->rd) {
  6791. old_rd = rq->rd;
  6792. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6793. set_rq_offline(rq);
  6794. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6795. /*
  6796. * If we dont want to free the old_rt yet then
  6797. * set old_rd to NULL to skip the freeing later
  6798. * in this function:
  6799. */
  6800. if (!atomic_dec_and_test(&old_rd->refcount))
  6801. old_rd = NULL;
  6802. }
  6803. atomic_inc(&rd->refcount);
  6804. rq->rd = rd;
  6805. cpumask_set_cpu(rq->cpu, rd->span);
  6806. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6807. set_rq_online(rq);
  6808. spin_unlock_irqrestore(&rq->lock, flags);
  6809. if (old_rd)
  6810. free_rootdomain(old_rd);
  6811. }
  6812. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6813. {
  6814. gfp_t gfp = GFP_KERNEL;
  6815. memset(rd, 0, sizeof(*rd));
  6816. if (bootmem)
  6817. gfp = GFP_NOWAIT;
  6818. if (!alloc_cpumask_var(&rd->span, gfp))
  6819. goto out;
  6820. if (!alloc_cpumask_var(&rd->online, gfp))
  6821. goto free_span;
  6822. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6823. goto free_online;
  6824. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6825. goto free_rto_mask;
  6826. return 0;
  6827. free_rto_mask:
  6828. free_cpumask_var(rd->rto_mask);
  6829. free_online:
  6830. free_cpumask_var(rd->online);
  6831. free_span:
  6832. free_cpumask_var(rd->span);
  6833. out:
  6834. return -ENOMEM;
  6835. }
  6836. static void init_defrootdomain(void)
  6837. {
  6838. init_rootdomain(&def_root_domain, true);
  6839. atomic_set(&def_root_domain.refcount, 1);
  6840. }
  6841. static struct root_domain *alloc_rootdomain(void)
  6842. {
  6843. struct root_domain *rd;
  6844. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6845. if (!rd)
  6846. return NULL;
  6847. if (init_rootdomain(rd, false) != 0) {
  6848. kfree(rd);
  6849. return NULL;
  6850. }
  6851. return rd;
  6852. }
  6853. /*
  6854. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6855. * hold the hotplug lock.
  6856. */
  6857. static void
  6858. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6859. {
  6860. struct rq *rq = cpu_rq(cpu);
  6861. struct sched_domain *tmp;
  6862. /* Remove the sched domains which do not contribute to scheduling. */
  6863. for (tmp = sd; tmp; ) {
  6864. struct sched_domain *parent = tmp->parent;
  6865. if (!parent)
  6866. break;
  6867. if (sd_parent_degenerate(tmp, parent)) {
  6868. tmp->parent = parent->parent;
  6869. if (parent->parent)
  6870. parent->parent->child = tmp;
  6871. } else
  6872. tmp = tmp->parent;
  6873. }
  6874. if (sd && sd_degenerate(sd)) {
  6875. sd = sd->parent;
  6876. if (sd)
  6877. sd->child = NULL;
  6878. }
  6879. sched_domain_debug(sd, cpu);
  6880. rq_attach_root(rq, rd);
  6881. rcu_assign_pointer(rq->sd, sd);
  6882. }
  6883. /* cpus with isolated domains */
  6884. static cpumask_var_t cpu_isolated_map;
  6885. /* Setup the mask of cpus configured for isolated domains */
  6886. static int __init isolated_cpu_setup(char *str)
  6887. {
  6888. cpulist_parse(str, cpu_isolated_map);
  6889. return 1;
  6890. }
  6891. __setup("isolcpus=", isolated_cpu_setup);
  6892. /*
  6893. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6894. * to a function which identifies what group(along with sched group) a CPU
  6895. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6896. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6897. *
  6898. * init_sched_build_groups will build a circular linked list of the groups
  6899. * covered by the given span, and will set each group's ->cpumask correctly,
  6900. * and ->cpu_power to 0.
  6901. */
  6902. static void
  6903. init_sched_build_groups(const struct cpumask *span,
  6904. const struct cpumask *cpu_map,
  6905. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6906. struct sched_group **sg,
  6907. struct cpumask *tmpmask),
  6908. struct cpumask *covered, struct cpumask *tmpmask)
  6909. {
  6910. struct sched_group *first = NULL, *last = NULL;
  6911. int i;
  6912. cpumask_clear(covered);
  6913. for_each_cpu(i, span) {
  6914. struct sched_group *sg;
  6915. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6916. int j;
  6917. if (cpumask_test_cpu(i, covered))
  6918. continue;
  6919. cpumask_clear(sched_group_cpus(sg));
  6920. sg->__cpu_power = 0;
  6921. for_each_cpu(j, span) {
  6922. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6923. continue;
  6924. cpumask_set_cpu(j, covered);
  6925. cpumask_set_cpu(j, sched_group_cpus(sg));
  6926. }
  6927. if (!first)
  6928. first = sg;
  6929. if (last)
  6930. last->next = sg;
  6931. last = sg;
  6932. }
  6933. last->next = first;
  6934. }
  6935. #define SD_NODES_PER_DOMAIN 16
  6936. #ifdef CONFIG_NUMA
  6937. /**
  6938. * find_next_best_node - find the next node to include in a sched_domain
  6939. * @node: node whose sched_domain we're building
  6940. * @used_nodes: nodes already in the sched_domain
  6941. *
  6942. * Find the next node to include in a given scheduling domain. Simply
  6943. * finds the closest node not already in the @used_nodes map.
  6944. *
  6945. * Should use nodemask_t.
  6946. */
  6947. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6948. {
  6949. int i, n, val, min_val, best_node = 0;
  6950. min_val = INT_MAX;
  6951. for (i = 0; i < nr_node_ids; i++) {
  6952. /* Start at @node */
  6953. n = (node + i) % nr_node_ids;
  6954. if (!nr_cpus_node(n))
  6955. continue;
  6956. /* Skip already used nodes */
  6957. if (node_isset(n, *used_nodes))
  6958. continue;
  6959. /* Simple min distance search */
  6960. val = node_distance(node, n);
  6961. if (val < min_val) {
  6962. min_val = val;
  6963. best_node = n;
  6964. }
  6965. }
  6966. node_set(best_node, *used_nodes);
  6967. return best_node;
  6968. }
  6969. /**
  6970. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6971. * @node: node whose cpumask we're constructing
  6972. * @span: resulting cpumask
  6973. *
  6974. * Given a node, construct a good cpumask for its sched_domain to span. It
  6975. * should be one that prevents unnecessary balancing, but also spreads tasks
  6976. * out optimally.
  6977. */
  6978. static void sched_domain_node_span(int node, struct cpumask *span)
  6979. {
  6980. nodemask_t used_nodes;
  6981. int i;
  6982. cpumask_clear(span);
  6983. nodes_clear(used_nodes);
  6984. cpumask_or(span, span, cpumask_of_node(node));
  6985. node_set(node, used_nodes);
  6986. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6987. int next_node = find_next_best_node(node, &used_nodes);
  6988. cpumask_or(span, span, cpumask_of_node(next_node));
  6989. }
  6990. }
  6991. #endif /* CONFIG_NUMA */
  6992. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6993. /*
  6994. * The cpus mask in sched_group and sched_domain hangs off the end.
  6995. *
  6996. * ( See the the comments in include/linux/sched.h:struct sched_group
  6997. * and struct sched_domain. )
  6998. */
  6999. struct static_sched_group {
  7000. struct sched_group sg;
  7001. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7002. };
  7003. struct static_sched_domain {
  7004. struct sched_domain sd;
  7005. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7006. };
  7007. struct s_data {
  7008. #ifdef CONFIG_NUMA
  7009. int sd_allnodes;
  7010. cpumask_var_t domainspan;
  7011. cpumask_var_t covered;
  7012. cpumask_var_t notcovered;
  7013. #endif
  7014. cpumask_var_t nodemask;
  7015. cpumask_var_t this_sibling_map;
  7016. cpumask_var_t this_core_map;
  7017. cpumask_var_t send_covered;
  7018. cpumask_var_t tmpmask;
  7019. struct sched_group **sched_group_nodes;
  7020. struct root_domain *rd;
  7021. };
  7022. enum s_alloc {
  7023. sa_sched_groups = 0,
  7024. sa_rootdomain,
  7025. sa_tmpmask,
  7026. sa_send_covered,
  7027. sa_this_core_map,
  7028. sa_this_sibling_map,
  7029. sa_nodemask,
  7030. sa_sched_group_nodes,
  7031. #ifdef CONFIG_NUMA
  7032. sa_notcovered,
  7033. sa_covered,
  7034. sa_domainspan,
  7035. #endif
  7036. sa_none,
  7037. };
  7038. /*
  7039. * SMT sched-domains:
  7040. */
  7041. #ifdef CONFIG_SCHED_SMT
  7042. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7043. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  7044. static int
  7045. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7046. struct sched_group **sg, struct cpumask *unused)
  7047. {
  7048. if (sg)
  7049. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  7050. return cpu;
  7051. }
  7052. #endif /* CONFIG_SCHED_SMT */
  7053. /*
  7054. * multi-core sched-domains:
  7055. */
  7056. #ifdef CONFIG_SCHED_MC
  7057. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7058. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7059. #endif /* CONFIG_SCHED_MC */
  7060. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7061. static int
  7062. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7063. struct sched_group **sg, struct cpumask *mask)
  7064. {
  7065. int group;
  7066. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7067. group = cpumask_first(mask);
  7068. if (sg)
  7069. *sg = &per_cpu(sched_group_core, group).sg;
  7070. return group;
  7071. }
  7072. #elif defined(CONFIG_SCHED_MC)
  7073. static int
  7074. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7075. struct sched_group **sg, struct cpumask *unused)
  7076. {
  7077. if (sg)
  7078. *sg = &per_cpu(sched_group_core, cpu).sg;
  7079. return cpu;
  7080. }
  7081. #endif
  7082. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7083. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7084. static int
  7085. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7086. struct sched_group **sg, struct cpumask *mask)
  7087. {
  7088. int group;
  7089. #ifdef CONFIG_SCHED_MC
  7090. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7091. group = cpumask_first(mask);
  7092. #elif defined(CONFIG_SCHED_SMT)
  7093. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7094. group = cpumask_first(mask);
  7095. #else
  7096. group = cpu;
  7097. #endif
  7098. if (sg)
  7099. *sg = &per_cpu(sched_group_phys, group).sg;
  7100. return group;
  7101. }
  7102. #ifdef CONFIG_NUMA
  7103. /*
  7104. * The init_sched_build_groups can't handle what we want to do with node
  7105. * groups, so roll our own. Now each node has its own list of groups which
  7106. * gets dynamically allocated.
  7107. */
  7108. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7109. static struct sched_group ***sched_group_nodes_bycpu;
  7110. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7111. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7112. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7113. struct sched_group **sg,
  7114. struct cpumask *nodemask)
  7115. {
  7116. int group;
  7117. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7118. group = cpumask_first(nodemask);
  7119. if (sg)
  7120. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7121. return group;
  7122. }
  7123. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7124. {
  7125. struct sched_group *sg = group_head;
  7126. int j;
  7127. if (!sg)
  7128. return;
  7129. do {
  7130. for_each_cpu(j, sched_group_cpus(sg)) {
  7131. struct sched_domain *sd;
  7132. sd = &per_cpu(phys_domains, j).sd;
  7133. if (j != group_first_cpu(sd->groups)) {
  7134. /*
  7135. * Only add "power" once for each
  7136. * physical package.
  7137. */
  7138. continue;
  7139. }
  7140. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  7141. }
  7142. sg = sg->next;
  7143. } while (sg != group_head);
  7144. }
  7145. static int build_numa_sched_groups(struct s_data *d,
  7146. const struct cpumask *cpu_map, int num)
  7147. {
  7148. struct sched_domain *sd;
  7149. struct sched_group *sg, *prev;
  7150. int n, j;
  7151. cpumask_clear(d->covered);
  7152. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7153. if (cpumask_empty(d->nodemask)) {
  7154. d->sched_group_nodes[num] = NULL;
  7155. goto out;
  7156. }
  7157. sched_domain_node_span(num, d->domainspan);
  7158. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7159. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7160. GFP_KERNEL, num);
  7161. if (!sg) {
  7162. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7163. num);
  7164. return -ENOMEM;
  7165. }
  7166. d->sched_group_nodes[num] = sg;
  7167. for_each_cpu(j, d->nodemask) {
  7168. sd = &per_cpu(node_domains, j).sd;
  7169. sd->groups = sg;
  7170. }
  7171. sg->__cpu_power = 0;
  7172. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7173. sg->next = sg;
  7174. cpumask_or(d->covered, d->covered, d->nodemask);
  7175. prev = sg;
  7176. for (j = 0; j < nr_node_ids; j++) {
  7177. n = (num + j) % nr_node_ids;
  7178. cpumask_complement(d->notcovered, d->covered);
  7179. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7180. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7181. if (cpumask_empty(d->tmpmask))
  7182. break;
  7183. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7184. if (cpumask_empty(d->tmpmask))
  7185. continue;
  7186. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7187. GFP_KERNEL, num);
  7188. if (!sg) {
  7189. printk(KERN_WARNING
  7190. "Can not alloc domain group for node %d\n", j);
  7191. return -ENOMEM;
  7192. }
  7193. sg->__cpu_power = 0;
  7194. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7195. sg->next = prev->next;
  7196. cpumask_or(d->covered, d->covered, d->tmpmask);
  7197. prev->next = sg;
  7198. prev = sg;
  7199. }
  7200. out:
  7201. return 0;
  7202. }
  7203. #endif /* CONFIG_NUMA */
  7204. #ifdef CONFIG_NUMA
  7205. /* Free memory allocated for various sched_group structures */
  7206. static void free_sched_groups(const struct cpumask *cpu_map,
  7207. struct cpumask *nodemask)
  7208. {
  7209. int cpu, i;
  7210. for_each_cpu(cpu, cpu_map) {
  7211. struct sched_group **sched_group_nodes
  7212. = sched_group_nodes_bycpu[cpu];
  7213. if (!sched_group_nodes)
  7214. continue;
  7215. for (i = 0; i < nr_node_ids; i++) {
  7216. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7217. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7218. if (cpumask_empty(nodemask))
  7219. continue;
  7220. if (sg == NULL)
  7221. continue;
  7222. sg = sg->next;
  7223. next_sg:
  7224. oldsg = sg;
  7225. sg = sg->next;
  7226. kfree(oldsg);
  7227. if (oldsg != sched_group_nodes[i])
  7228. goto next_sg;
  7229. }
  7230. kfree(sched_group_nodes);
  7231. sched_group_nodes_bycpu[cpu] = NULL;
  7232. }
  7233. }
  7234. #else /* !CONFIG_NUMA */
  7235. static void free_sched_groups(const struct cpumask *cpu_map,
  7236. struct cpumask *nodemask)
  7237. {
  7238. }
  7239. #endif /* CONFIG_NUMA */
  7240. /*
  7241. * Initialize sched groups cpu_power.
  7242. *
  7243. * cpu_power indicates the capacity of sched group, which is used while
  7244. * distributing the load between different sched groups in a sched domain.
  7245. * Typically cpu_power for all the groups in a sched domain will be same unless
  7246. * there are asymmetries in the topology. If there are asymmetries, group
  7247. * having more cpu_power will pickup more load compared to the group having
  7248. * less cpu_power.
  7249. */
  7250. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7251. {
  7252. struct sched_domain *child;
  7253. struct sched_group *group;
  7254. long power;
  7255. int weight;
  7256. WARN_ON(!sd || !sd->groups);
  7257. if (cpu != group_first_cpu(sd->groups))
  7258. return;
  7259. child = sd->child;
  7260. sd->groups->__cpu_power = 0;
  7261. if (!child) {
  7262. power = SCHED_LOAD_SCALE;
  7263. weight = cpumask_weight(sched_domain_span(sd));
  7264. /*
  7265. * SMT siblings share the power of a single core.
  7266. */
  7267. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1)
  7268. power /= weight;
  7269. sg_inc_cpu_power(sd->groups, power);
  7270. return;
  7271. }
  7272. /*
  7273. * Add cpu_power of each child group to this groups cpu_power.
  7274. */
  7275. group = child->groups;
  7276. do {
  7277. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7278. group = group->next;
  7279. } while (group != child->groups);
  7280. }
  7281. /*
  7282. * Initializers for schedule domains
  7283. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7284. */
  7285. #ifdef CONFIG_SCHED_DEBUG
  7286. # define SD_INIT_NAME(sd, type) sd->name = #type
  7287. #else
  7288. # define SD_INIT_NAME(sd, type) do { } while (0)
  7289. #endif
  7290. #define SD_INIT(sd, type) sd_init_##type(sd)
  7291. #define SD_INIT_FUNC(type) \
  7292. static noinline void sd_init_##type(struct sched_domain *sd) \
  7293. { \
  7294. memset(sd, 0, sizeof(*sd)); \
  7295. *sd = SD_##type##_INIT; \
  7296. sd->level = SD_LV_##type; \
  7297. SD_INIT_NAME(sd, type); \
  7298. }
  7299. SD_INIT_FUNC(CPU)
  7300. #ifdef CONFIG_NUMA
  7301. SD_INIT_FUNC(ALLNODES)
  7302. SD_INIT_FUNC(NODE)
  7303. #endif
  7304. #ifdef CONFIG_SCHED_SMT
  7305. SD_INIT_FUNC(SIBLING)
  7306. #endif
  7307. #ifdef CONFIG_SCHED_MC
  7308. SD_INIT_FUNC(MC)
  7309. #endif
  7310. static int default_relax_domain_level = -1;
  7311. static int __init setup_relax_domain_level(char *str)
  7312. {
  7313. unsigned long val;
  7314. val = simple_strtoul(str, NULL, 0);
  7315. if (val < SD_LV_MAX)
  7316. default_relax_domain_level = val;
  7317. return 1;
  7318. }
  7319. __setup("relax_domain_level=", setup_relax_domain_level);
  7320. static void set_domain_attribute(struct sched_domain *sd,
  7321. struct sched_domain_attr *attr)
  7322. {
  7323. int request;
  7324. if (!attr || attr->relax_domain_level < 0) {
  7325. if (default_relax_domain_level < 0)
  7326. return;
  7327. else
  7328. request = default_relax_domain_level;
  7329. } else
  7330. request = attr->relax_domain_level;
  7331. if (request < sd->level) {
  7332. /* turn off idle balance on this domain */
  7333. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7334. } else {
  7335. /* turn on idle balance on this domain */
  7336. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7337. }
  7338. }
  7339. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7340. const struct cpumask *cpu_map)
  7341. {
  7342. switch (what) {
  7343. case sa_sched_groups:
  7344. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7345. d->sched_group_nodes = NULL;
  7346. case sa_rootdomain:
  7347. free_rootdomain(d->rd); /* fall through */
  7348. case sa_tmpmask:
  7349. free_cpumask_var(d->tmpmask); /* fall through */
  7350. case sa_send_covered:
  7351. free_cpumask_var(d->send_covered); /* fall through */
  7352. case sa_this_core_map:
  7353. free_cpumask_var(d->this_core_map); /* fall through */
  7354. case sa_this_sibling_map:
  7355. free_cpumask_var(d->this_sibling_map); /* fall through */
  7356. case sa_nodemask:
  7357. free_cpumask_var(d->nodemask); /* fall through */
  7358. case sa_sched_group_nodes:
  7359. #ifdef CONFIG_NUMA
  7360. kfree(d->sched_group_nodes); /* fall through */
  7361. case sa_notcovered:
  7362. free_cpumask_var(d->notcovered); /* fall through */
  7363. case sa_covered:
  7364. free_cpumask_var(d->covered); /* fall through */
  7365. case sa_domainspan:
  7366. free_cpumask_var(d->domainspan); /* fall through */
  7367. #endif
  7368. case sa_none:
  7369. break;
  7370. }
  7371. }
  7372. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7373. const struct cpumask *cpu_map)
  7374. {
  7375. #ifdef CONFIG_NUMA
  7376. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7377. return sa_none;
  7378. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7379. return sa_domainspan;
  7380. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7381. return sa_covered;
  7382. /* Allocate the per-node list of sched groups */
  7383. d->sched_group_nodes = kcalloc(nr_node_ids,
  7384. sizeof(struct sched_group *), GFP_KERNEL);
  7385. if (!d->sched_group_nodes) {
  7386. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7387. return sa_notcovered;
  7388. }
  7389. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7390. #endif
  7391. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7392. return sa_sched_group_nodes;
  7393. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7394. return sa_nodemask;
  7395. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7396. return sa_this_sibling_map;
  7397. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7398. return sa_this_core_map;
  7399. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7400. return sa_send_covered;
  7401. d->rd = alloc_rootdomain();
  7402. if (!d->rd) {
  7403. printk(KERN_WARNING "Cannot alloc root domain\n");
  7404. return sa_tmpmask;
  7405. }
  7406. return sa_rootdomain;
  7407. }
  7408. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7409. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7410. {
  7411. struct sched_domain *sd = NULL;
  7412. #ifdef CONFIG_NUMA
  7413. struct sched_domain *parent;
  7414. d->sd_allnodes = 0;
  7415. if (cpumask_weight(cpu_map) >
  7416. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7417. sd = &per_cpu(allnodes_domains, i).sd;
  7418. SD_INIT(sd, ALLNODES);
  7419. set_domain_attribute(sd, attr);
  7420. cpumask_copy(sched_domain_span(sd), cpu_map);
  7421. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7422. d->sd_allnodes = 1;
  7423. }
  7424. parent = sd;
  7425. sd = &per_cpu(node_domains, i).sd;
  7426. SD_INIT(sd, NODE);
  7427. set_domain_attribute(sd, attr);
  7428. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7429. sd->parent = parent;
  7430. if (parent)
  7431. parent->child = sd;
  7432. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7433. #endif
  7434. return sd;
  7435. }
  7436. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7437. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7438. struct sched_domain *parent, int i)
  7439. {
  7440. struct sched_domain *sd;
  7441. sd = &per_cpu(phys_domains, i).sd;
  7442. SD_INIT(sd, CPU);
  7443. set_domain_attribute(sd, attr);
  7444. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7445. sd->parent = parent;
  7446. if (parent)
  7447. parent->child = sd;
  7448. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7449. return sd;
  7450. }
  7451. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7452. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7453. struct sched_domain *parent, int i)
  7454. {
  7455. struct sched_domain *sd = parent;
  7456. #ifdef CONFIG_SCHED_MC
  7457. sd = &per_cpu(core_domains, i).sd;
  7458. SD_INIT(sd, MC);
  7459. set_domain_attribute(sd, attr);
  7460. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7461. sd->parent = parent;
  7462. parent->child = sd;
  7463. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7464. #endif
  7465. return sd;
  7466. }
  7467. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7468. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7469. struct sched_domain *parent, int i)
  7470. {
  7471. struct sched_domain *sd = parent;
  7472. #ifdef CONFIG_SCHED_SMT
  7473. sd = &per_cpu(cpu_domains, i).sd;
  7474. SD_INIT(sd, SIBLING);
  7475. set_domain_attribute(sd, attr);
  7476. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7477. sd->parent = parent;
  7478. parent->child = sd;
  7479. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7480. #endif
  7481. return sd;
  7482. }
  7483. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7484. const struct cpumask *cpu_map, int cpu)
  7485. {
  7486. switch (l) {
  7487. #ifdef CONFIG_SCHED_SMT
  7488. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7489. cpumask_and(d->this_sibling_map, cpu_map,
  7490. topology_thread_cpumask(cpu));
  7491. if (cpu == cpumask_first(d->this_sibling_map))
  7492. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7493. &cpu_to_cpu_group,
  7494. d->send_covered, d->tmpmask);
  7495. break;
  7496. #endif
  7497. #ifdef CONFIG_SCHED_MC
  7498. case SD_LV_MC: /* set up multi-core groups */
  7499. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7500. if (cpu == cpumask_first(d->this_core_map))
  7501. init_sched_build_groups(d->this_core_map, cpu_map,
  7502. &cpu_to_core_group,
  7503. d->send_covered, d->tmpmask);
  7504. break;
  7505. #endif
  7506. case SD_LV_CPU: /* set up physical groups */
  7507. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7508. if (!cpumask_empty(d->nodemask))
  7509. init_sched_build_groups(d->nodemask, cpu_map,
  7510. &cpu_to_phys_group,
  7511. d->send_covered, d->tmpmask);
  7512. break;
  7513. #ifdef CONFIG_NUMA
  7514. case SD_LV_ALLNODES:
  7515. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7516. d->send_covered, d->tmpmask);
  7517. break;
  7518. #endif
  7519. default:
  7520. break;
  7521. }
  7522. }
  7523. /*
  7524. * Build sched domains for a given set of cpus and attach the sched domains
  7525. * to the individual cpus
  7526. */
  7527. static int __build_sched_domains(const struct cpumask *cpu_map,
  7528. struct sched_domain_attr *attr)
  7529. {
  7530. enum s_alloc alloc_state = sa_none;
  7531. struct s_data d;
  7532. struct sched_domain *sd;
  7533. int i;
  7534. #ifdef CONFIG_NUMA
  7535. d.sd_allnodes = 0;
  7536. #endif
  7537. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7538. if (alloc_state != sa_rootdomain)
  7539. goto error;
  7540. alloc_state = sa_sched_groups;
  7541. /*
  7542. * Set up domains for cpus specified by the cpu_map.
  7543. */
  7544. for_each_cpu(i, cpu_map) {
  7545. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7546. cpu_map);
  7547. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7548. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7549. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7550. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7551. }
  7552. for_each_cpu(i, cpu_map) {
  7553. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7554. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7555. }
  7556. /* Set up physical groups */
  7557. for (i = 0; i < nr_node_ids; i++)
  7558. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7559. #ifdef CONFIG_NUMA
  7560. /* Set up node groups */
  7561. if (d.sd_allnodes)
  7562. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7563. for (i = 0; i < nr_node_ids; i++)
  7564. if (build_numa_sched_groups(&d, cpu_map, i))
  7565. goto error;
  7566. #endif
  7567. /* Calculate CPU power for physical packages and nodes */
  7568. #ifdef CONFIG_SCHED_SMT
  7569. for_each_cpu(i, cpu_map) {
  7570. sd = &per_cpu(cpu_domains, i).sd;
  7571. init_sched_groups_power(i, sd);
  7572. }
  7573. #endif
  7574. #ifdef CONFIG_SCHED_MC
  7575. for_each_cpu(i, cpu_map) {
  7576. sd = &per_cpu(core_domains, i).sd;
  7577. init_sched_groups_power(i, sd);
  7578. }
  7579. #endif
  7580. for_each_cpu(i, cpu_map) {
  7581. sd = &per_cpu(phys_domains, i).sd;
  7582. init_sched_groups_power(i, sd);
  7583. }
  7584. #ifdef CONFIG_NUMA
  7585. for (i = 0; i < nr_node_ids; i++)
  7586. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7587. if (d.sd_allnodes) {
  7588. struct sched_group *sg;
  7589. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7590. d.tmpmask);
  7591. init_numa_sched_groups_power(sg);
  7592. }
  7593. #endif
  7594. /* Attach the domains */
  7595. for_each_cpu(i, cpu_map) {
  7596. #ifdef CONFIG_SCHED_SMT
  7597. sd = &per_cpu(cpu_domains, i).sd;
  7598. #elif defined(CONFIG_SCHED_MC)
  7599. sd = &per_cpu(core_domains, i).sd;
  7600. #else
  7601. sd = &per_cpu(phys_domains, i).sd;
  7602. #endif
  7603. cpu_attach_domain(sd, d.rd, i);
  7604. }
  7605. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7606. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7607. return 0;
  7608. error:
  7609. __free_domain_allocs(&d, alloc_state, cpu_map);
  7610. return -ENOMEM;
  7611. }
  7612. static int build_sched_domains(const struct cpumask *cpu_map)
  7613. {
  7614. return __build_sched_domains(cpu_map, NULL);
  7615. }
  7616. static struct cpumask *doms_cur; /* current sched domains */
  7617. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7618. static struct sched_domain_attr *dattr_cur;
  7619. /* attribues of custom domains in 'doms_cur' */
  7620. /*
  7621. * Special case: If a kmalloc of a doms_cur partition (array of
  7622. * cpumask) fails, then fallback to a single sched domain,
  7623. * as determined by the single cpumask fallback_doms.
  7624. */
  7625. static cpumask_var_t fallback_doms;
  7626. /*
  7627. * arch_update_cpu_topology lets virtualized architectures update the
  7628. * cpu core maps. It is supposed to return 1 if the topology changed
  7629. * or 0 if it stayed the same.
  7630. */
  7631. int __attribute__((weak)) arch_update_cpu_topology(void)
  7632. {
  7633. return 0;
  7634. }
  7635. /*
  7636. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7637. * For now this just excludes isolated cpus, but could be used to
  7638. * exclude other special cases in the future.
  7639. */
  7640. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7641. {
  7642. int err;
  7643. arch_update_cpu_topology();
  7644. ndoms_cur = 1;
  7645. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7646. if (!doms_cur)
  7647. doms_cur = fallback_doms;
  7648. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7649. dattr_cur = NULL;
  7650. err = build_sched_domains(doms_cur);
  7651. register_sched_domain_sysctl();
  7652. return err;
  7653. }
  7654. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7655. struct cpumask *tmpmask)
  7656. {
  7657. free_sched_groups(cpu_map, tmpmask);
  7658. }
  7659. /*
  7660. * Detach sched domains from a group of cpus specified in cpu_map
  7661. * These cpus will now be attached to the NULL domain
  7662. */
  7663. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7664. {
  7665. /* Save because hotplug lock held. */
  7666. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7667. int i;
  7668. for_each_cpu(i, cpu_map)
  7669. cpu_attach_domain(NULL, &def_root_domain, i);
  7670. synchronize_sched();
  7671. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7672. }
  7673. /* handle null as "default" */
  7674. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7675. struct sched_domain_attr *new, int idx_new)
  7676. {
  7677. struct sched_domain_attr tmp;
  7678. /* fast path */
  7679. if (!new && !cur)
  7680. return 1;
  7681. tmp = SD_ATTR_INIT;
  7682. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7683. new ? (new + idx_new) : &tmp,
  7684. sizeof(struct sched_domain_attr));
  7685. }
  7686. /*
  7687. * Partition sched domains as specified by the 'ndoms_new'
  7688. * cpumasks in the array doms_new[] of cpumasks. This compares
  7689. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7690. * It destroys each deleted domain and builds each new domain.
  7691. *
  7692. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7693. * The masks don't intersect (don't overlap.) We should setup one
  7694. * sched domain for each mask. CPUs not in any of the cpumasks will
  7695. * not be load balanced. If the same cpumask appears both in the
  7696. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7697. * it as it is.
  7698. *
  7699. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7700. * ownership of it and will kfree it when done with it. If the caller
  7701. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7702. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7703. * the single partition 'fallback_doms', it also forces the domains
  7704. * to be rebuilt.
  7705. *
  7706. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7707. * ndoms_new == 0 is a special case for destroying existing domains,
  7708. * and it will not create the default domain.
  7709. *
  7710. * Call with hotplug lock held
  7711. */
  7712. /* FIXME: Change to struct cpumask *doms_new[] */
  7713. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7714. struct sched_domain_attr *dattr_new)
  7715. {
  7716. int i, j, n;
  7717. int new_topology;
  7718. mutex_lock(&sched_domains_mutex);
  7719. /* always unregister in case we don't destroy any domains */
  7720. unregister_sched_domain_sysctl();
  7721. /* Let architecture update cpu core mappings. */
  7722. new_topology = arch_update_cpu_topology();
  7723. n = doms_new ? ndoms_new : 0;
  7724. /* Destroy deleted domains */
  7725. for (i = 0; i < ndoms_cur; i++) {
  7726. for (j = 0; j < n && !new_topology; j++) {
  7727. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7728. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7729. goto match1;
  7730. }
  7731. /* no match - a current sched domain not in new doms_new[] */
  7732. detach_destroy_domains(doms_cur + i);
  7733. match1:
  7734. ;
  7735. }
  7736. if (doms_new == NULL) {
  7737. ndoms_cur = 0;
  7738. doms_new = fallback_doms;
  7739. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7740. WARN_ON_ONCE(dattr_new);
  7741. }
  7742. /* Build new domains */
  7743. for (i = 0; i < ndoms_new; i++) {
  7744. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7745. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7746. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7747. goto match2;
  7748. }
  7749. /* no match - add a new doms_new */
  7750. __build_sched_domains(doms_new + i,
  7751. dattr_new ? dattr_new + i : NULL);
  7752. match2:
  7753. ;
  7754. }
  7755. /* Remember the new sched domains */
  7756. if (doms_cur != fallback_doms)
  7757. kfree(doms_cur);
  7758. kfree(dattr_cur); /* kfree(NULL) is safe */
  7759. doms_cur = doms_new;
  7760. dattr_cur = dattr_new;
  7761. ndoms_cur = ndoms_new;
  7762. register_sched_domain_sysctl();
  7763. mutex_unlock(&sched_domains_mutex);
  7764. }
  7765. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7766. static void arch_reinit_sched_domains(void)
  7767. {
  7768. get_online_cpus();
  7769. /* Destroy domains first to force the rebuild */
  7770. partition_sched_domains(0, NULL, NULL);
  7771. rebuild_sched_domains();
  7772. put_online_cpus();
  7773. }
  7774. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7775. {
  7776. unsigned int level = 0;
  7777. if (sscanf(buf, "%u", &level) != 1)
  7778. return -EINVAL;
  7779. /*
  7780. * level is always be positive so don't check for
  7781. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7782. * What happens on 0 or 1 byte write,
  7783. * need to check for count as well?
  7784. */
  7785. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7786. return -EINVAL;
  7787. if (smt)
  7788. sched_smt_power_savings = level;
  7789. else
  7790. sched_mc_power_savings = level;
  7791. arch_reinit_sched_domains();
  7792. return count;
  7793. }
  7794. #ifdef CONFIG_SCHED_MC
  7795. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7796. char *page)
  7797. {
  7798. return sprintf(page, "%u\n", sched_mc_power_savings);
  7799. }
  7800. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7801. const char *buf, size_t count)
  7802. {
  7803. return sched_power_savings_store(buf, count, 0);
  7804. }
  7805. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7806. sched_mc_power_savings_show,
  7807. sched_mc_power_savings_store);
  7808. #endif
  7809. #ifdef CONFIG_SCHED_SMT
  7810. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7811. char *page)
  7812. {
  7813. return sprintf(page, "%u\n", sched_smt_power_savings);
  7814. }
  7815. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7816. const char *buf, size_t count)
  7817. {
  7818. return sched_power_savings_store(buf, count, 1);
  7819. }
  7820. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7821. sched_smt_power_savings_show,
  7822. sched_smt_power_savings_store);
  7823. #endif
  7824. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7825. {
  7826. int err = 0;
  7827. #ifdef CONFIG_SCHED_SMT
  7828. if (smt_capable())
  7829. err = sysfs_create_file(&cls->kset.kobj,
  7830. &attr_sched_smt_power_savings.attr);
  7831. #endif
  7832. #ifdef CONFIG_SCHED_MC
  7833. if (!err && mc_capable())
  7834. err = sysfs_create_file(&cls->kset.kobj,
  7835. &attr_sched_mc_power_savings.attr);
  7836. #endif
  7837. return err;
  7838. }
  7839. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7840. #ifndef CONFIG_CPUSETS
  7841. /*
  7842. * Add online and remove offline CPUs from the scheduler domains.
  7843. * When cpusets are enabled they take over this function.
  7844. */
  7845. static int update_sched_domains(struct notifier_block *nfb,
  7846. unsigned long action, void *hcpu)
  7847. {
  7848. switch (action) {
  7849. case CPU_ONLINE:
  7850. case CPU_ONLINE_FROZEN:
  7851. case CPU_DEAD:
  7852. case CPU_DEAD_FROZEN:
  7853. partition_sched_domains(1, NULL, NULL);
  7854. return NOTIFY_OK;
  7855. default:
  7856. return NOTIFY_DONE;
  7857. }
  7858. }
  7859. #endif
  7860. static int update_runtime(struct notifier_block *nfb,
  7861. unsigned long action, void *hcpu)
  7862. {
  7863. int cpu = (int)(long)hcpu;
  7864. switch (action) {
  7865. case CPU_DOWN_PREPARE:
  7866. case CPU_DOWN_PREPARE_FROZEN:
  7867. disable_runtime(cpu_rq(cpu));
  7868. return NOTIFY_OK;
  7869. case CPU_DOWN_FAILED:
  7870. case CPU_DOWN_FAILED_FROZEN:
  7871. case CPU_ONLINE:
  7872. case CPU_ONLINE_FROZEN:
  7873. enable_runtime(cpu_rq(cpu));
  7874. return NOTIFY_OK;
  7875. default:
  7876. return NOTIFY_DONE;
  7877. }
  7878. }
  7879. void __init sched_init_smp(void)
  7880. {
  7881. cpumask_var_t non_isolated_cpus;
  7882. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7883. #if defined(CONFIG_NUMA)
  7884. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7885. GFP_KERNEL);
  7886. BUG_ON(sched_group_nodes_bycpu == NULL);
  7887. #endif
  7888. get_online_cpus();
  7889. mutex_lock(&sched_domains_mutex);
  7890. arch_init_sched_domains(cpu_online_mask);
  7891. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7892. if (cpumask_empty(non_isolated_cpus))
  7893. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7894. mutex_unlock(&sched_domains_mutex);
  7895. put_online_cpus();
  7896. #ifndef CONFIG_CPUSETS
  7897. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7898. hotcpu_notifier(update_sched_domains, 0);
  7899. #endif
  7900. /* RT runtime code needs to handle some hotplug events */
  7901. hotcpu_notifier(update_runtime, 0);
  7902. init_hrtick();
  7903. /* Move init over to a non-isolated CPU */
  7904. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7905. BUG();
  7906. sched_init_granularity();
  7907. free_cpumask_var(non_isolated_cpus);
  7908. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7909. init_sched_rt_class();
  7910. }
  7911. #else
  7912. void __init sched_init_smp(void)
  7913. {
  7914. sched_init_granularity();
  7915. }
  7916. #endif /* CONFIG_SMP */
  7917. const_debug unsigned int sysctl_timer_migration = 1;
  7918. int in_sched_functions(unsigned long addr)
  7919. {
  7920. return in_lock_functions(addr) ||
  7921. (addr >= (unsigned long)__sched_text_start
  7922. && addr < (unsigned long)__sched_text_end);
  7923. }
  7924. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7925. {
  7926. cfs_rq->tasks_timeline = RB_ROOT;
  7927. INIT_LIST_HEAD(&cfs_rq->tasks);
  7928. #ifdef CONFIG_FAIR_GROUP_SCHED
  7929. cfs_rq->rq = rq;
  7930. #endif
  7931. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7932. }
  7933. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7934. {
  7935. struct rt_prio_array *array;
  7936. int i;
  7937. array = &rt_rq->active;
  7938. for (i = 0; i < MAX_RT_PRIO; i++) {
  7939. INIT_LIST_HEAD(array->queue + i);
  7940. __clear_bit(i, array->bitmap);
  7941. }
  7942. /* delimiter for bitsearch: */
  7943. __set_bit(MAX_RT_PRIO, array->bitmap);
  7944. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7945. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7946. #ifdef CONFIG_SMP
  7947. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7948. #endif
  7949. #endif
  7950. #ifdef CONFIG_SMP
  7951. rt_rq->rt_nr_migratory = 0;
  7952. rt_rq->overloaded = 0;
  7953. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7954. #endif
  7955. rt_rq->rt_time = 0;
  7956. rt_rq->rt_throttled = 0;
  7957. rt_rq->rt_runtime = 0;
  7958. spin_lock_init(&rt_rq->rt_runtime_lock);
  7959. #ifdef CONFIG_RT_GROUP_SCHED
  7960. rt_rq->rt_nr_boosted = 0;
  7961. rt_rq->rq = rq;
  7962. #endif
  7963. }
  7964. #ifdef CONFIG_FAIR_GROUP_SCHED
  7965. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7966. struct sched_entity *se, int cpu, int add,
  7967. struct sched_entity *parent)
  7968. {
  7969. struct rq *rq = cpu_rq(cpu);
  7970. tg->cfs_rq[cpu] = cfs_rq;
  7971. init_cfs_rq(cfs_rq, rq);
  7972. cfs_rq->tg = tg;
  7973. if (add)
  7974. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7975. tg->se[cpu] = se;
  7976. /* se could be NULL for init_task_group */
  7977. if (!se)
  7978. return;
  7979. if (!parent)
  7980. se->cfs_rq = &rq->cfs;
  7981. else
  7982. se->cfs_rq = parent->my_q;
  7983. se->my_q = cfs_rq;
  7984. se->load.weight = tg->shares;
  7985. se->load.inv_weight = 0;
  7986. se->parent = parent;
  7987. }
  7988. #endif
  7989. #ifdef CONFIG_RT_GROUP_SCHED
  7990. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7991. struct sched_rt_entity *rt_se, int cpu, int add,
  7992. struct sched_rt_entity *parent)
  7993. {
  7994. struct rq *rq = cpu_rq(cpu);
  7995. tg->rt_rq[cpu] = rt_rq;
  7996. init_rt_rq(rt_rq, rq);
  7997. rt_rq->tg = tg;
  7998. rt_rq->rt_se = rt_se;
  7999. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8000. if (add)
  8001. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8002. tg->rt_se[cpu] = rt_se;
  8003. if (!rt_se)
  8004. return;
  8005. if (!parent)
  8006. rt_se->rt_rq = &rq->rt;
  8007. else
  8008. rt_se->rt_rq = parent->my_q;
  8009. rt_se->my_q = rt_rq;
  8010. rt_se->parent = parent;
  8011. INIT_LIST_HEAD(&rt_se->run_list);
  8012. }
  8013. #endif
  8014. void __init sched_init(void)
  8015. {
  8016. int i, j;
  8017. unsigned long alloc_size = 0, ptr;
  8018. #ifdef CONFIG_FAIR_GROUP_SCHED
  8019. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8020. #endif
  8021. #ifdef CONFIG_RT_GROUP_SCHED
  8022. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8023. #endif
  8024. #ifdef CONFIG_USER_SCHED
  8025. alloc_size *= 2;
  8026. #endif
  8027. #ifdef CONFIG_CPUMASK_OFFSTACK
  8028. alloc_size += num_possible_cpus() * cpumask_size();
  8029. #endif
  8030. /*
  8031. * As sched_init() is called before page_alloc is setup,
  8032. * we use alloc_bootmem().
  8033. */
  8034. if (alloc_size) {
  8035. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8036. #ifdef CONFIG_FAIR_GROUP_SCHED
  8037. init_task_group.se = (struct sched_entity **)ptr;
  8038. ptr += nr_cpu_ids * sizeof(void **);
  8039. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8040. ptr += nr_cpu_ids * sizeof(void **);
  8041. #ifdef CONFIG_USER_SCHED
  8042. root_task_group.se = (struct sched_entity **)ptr;
  8043. ptr += nr_cpu_ids * sizeof(void **);
  8044. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8045. ptr += nr_cpu_ids * sizeof(void **);
  8046. #endif /* CONFIG_USER_SCHED */
  8047. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8048. #ifdef CONFIG_RT_GROUP_SCHED
  8049. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8050. ptr += nr_cpu_ids * sizeof(void **);
  8051. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8052. ptr += nr_cpu_ids * sizeof(void **);
  8053. #ifdef CONFIG_USER_SCHED
  8054. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8055. ptr += nr_cpu_ids * sizeof(void **);
  8056. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8057. ptr += nr_cpu_ids * sizeof(void **);
  8058. #endif /* CONFIG_USER_SCHED */
  8059. #endif /* CONFIG_RT_GROUP_SCHED */
  8060. #ifdef CONFIG_CPUMASK_OFFSTACK
  8061. for_each_possible_cpu(i) {
  8062. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8063. ptr += cpumask_size();
  8064. }
  8065. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8066. }
  8067. #ifdef CONFIG_SMP
  8068. init_defrootdomain();
  8069. #endif
  8070. init_rt_bandwidth(&def_rt_bandwidth,
  8071. global_rt_period(), global_rt_runtime());
  8072. #ifdef CONFIG_RT_GROUP_SCHED
  8073. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8074. global_rt_period(), global_rt_runtime());
  8075. #ifdef CONFIG_USER_SCHED
  8076. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8077. global_rt_period(), RUNTIME_INF);
  8078. #endif /* CONFIG_USER_SCHED */
  8079. #endif /* CONFIG_RT_GROUP_SCHED */
  8080. #ifdef CONFIG_GROUP_SCHED
  8081. list_add(&init_task_group.list, &task_groups);
  8082. INIT_LIST_HEAD(&init_task_group.children);
  8083. #ifdef CONFIG_USER_SCHED
  8084. INIT_LIST_HEAD(&root_task_group.children);
  8085. init_task_group.parent = &root_task_group;
  8086. list_add(&init_task_group.siblings, &root_task_group.children);
  8087. #endif /* CONFIG_USER_SCHED */
  8088. #endif /* CONFIG_GROUP_SCHED */
  8089. for_each_possible_cpu(i) {
  8090. struct rq *rq;
  8091. rq = cpu_rq(i);
  8092. spin_lock_init(&rq->lock);
  8093. rq->nr_running = 0;
  8094. rq->calc_load_active = 0;
  8095. rq->calc_load_update = jiffies + LOAD_FREQ;
  8096. init_cfs_rq(&rq->cfs, rq);
  8097. init_rt_rq(&rq->rt, rq);
  8098. #ifdef CONFIG_FAIR_GROUP_SCHED
  8099. init_task_group.shares = init_task_group_load;
  8100. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8101. #ifdef CONFIG_CGROUP_SCHED
  8102. /*
  8103. * How much cpu bandwidth does init_task_group get?
  8104. *
  8105. * In case of task-groups formed thr' the cgroup filesystem, it
  8106. * gets 100% of the cpu resources in the system. This overall
  8107. * system cpu resource is divided among the tasks of
  8108. * init_task_group and its child task-groups in a fair manner,
  8109. * based on each entity's (task or task-group's) weight
  8110. * (se->load.weight).
  8111. *
  8112. * In other words, if init_task_group has 10 tasks of weight
  8113. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8114. * then A0's share of the cpu resource is:
  8115. *
  8116. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8117. *
  8118. * We achieve this by letting init_task_group's tasks sit
  8119. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8120. */
  8121. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8122. #elif defined CONFIG_USER_SCHED
  8123. root_task_group.shares = NICE_0_LOAD;
  8124. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8125. /*
  8126. * In case of task-groups formed thr' the user id of tasks,
  8127. * init_task_group represents tasks belonging to root user.
  8128. * Hence it forms a sibling of all subsequent groups formed.
  8129. * In this case, init_task_group gets only a fraction of overall
  8130. * system cpu resource, based on the weight assigned to root
  8131. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8132. * by letting tasks of init_task_group sit in a separate cfs_rq
  8133. * (init_tg_cfs_rq) and having one entity represent this group of
  8134. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8135. */
  8136. init_tg_cfs_entry(&init_task_group,
  8137. &per_cpu(init_tg_cfs_rq, i),
  8138. &per_cpu(init_sched_entity, i), i, 1,
  8139. root_task_group.se[i]);
  8140. #endif
  8141. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8142. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8143. #ifdef CONFIG_RT_GROUP_SCHED
  8144. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8145. #ifdef CONFIG_CGROUP_SCHED
  8146. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8147. #elif defined CONFIG_USER_SCHED
  8148. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8149. init_tg_rt_entry(&init_task_group,
  8150. &per_cpu(init_rt_rq, i),
  8151. &per_cpu(init_sched_rt_entity, i), i, 1,
  8152. root_task_group.rt_se[i]);
  8153. #endif
  8154. #endif
  8155. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8156. rq->cpu_load[j] = 0;
  8157. #ifdef CONFIG_SMP
  8158. rq->sd = NULL;
  8159. rq->rd = NULL;
  8160. rq->post_schedule = 0;
  8161. rq->active_balance = 0;
  8162. rq->next_balance = jiffies;
  8163. rq->push_cpu = 0;
  8164. rq->cpu = i;
  8165. rq->online = 0;
  8166. rq->migration_thread = NULL;
  8167. INIT_LIST_HEAD(&rq->migration_queue);
  8168. rq_attach_root(rq, &def_root_domain);
  8169. #endif
  8170. init_rq_hrtick(rq);
  8171. atomic_set(&rq->nr_iowait, 0);
  8172. }
  8173. set_load_weight(&init_task);
  8174. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8175. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8176. #endif
  8177. #ifdef CONFIG_SMP
  8178. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8179. #endif
  8180. #ifdef CONFIG_RT_MUTEXES
  8181. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8182. #endif
  8183. /*
  8184. * The boot idle thread does lazy MMU switching as well:
  8185. */
  8186. atomic_inc(&init_mm.mm_count);
  8187. enter_lazy_tlb(&init_mm, current);
  8188. /*
  8189. * Make us the idle thread. Technically, schedule() should not be
  8190. * called from this thread, however somewhere below it might be,
  8191. * but because we are the idle thread, we just pick up running again
  8192. * when this runqueue becomes "idle".
  8193. */
  8194. init_idle(current, smp_processor_id());
  8195. calc_load_update = jiffies + LOAD_FREQ;
  8196. /*
  8197. * During early bootup we pretend to be a normal task:
  8198. */
  8199. current->sched_class = &fair_sched_class;
  8200. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8201. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8202. #ifdef CONFIG_SMP
  8203. #ifdef CONFIG_NO_HZ
  8204. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8205. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8206. #endif
  8207. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8208. #endif /* SMP */
  8209. perf_counter_init();
  8210. scheduler_running = 1;
  8211. }
  8212. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8213. static inline int preempt_count_equals(int preempt_offset)
  8214. {
  8215. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8216. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8217. }
  8218. void __might_sleep(char *file, int line, int preempt_offset)
  8219. {
  8220. #ifdef in_atomic
  8221. static unsigned long prev_jiffy; /* ratelimiting */
  8222. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8223. system_state != SYSTEM_RUNNING || oops_in_progress)
  8224. return;
  8225. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8226. return;
  8227. prev_jiffy = jiffies;
  8228. printk(KERN_ERR
  8229. "BUG: sleeping function called from invalid context at %s:%d\n",
  8230. file, line);
  8231. printk(KERN_ERR
  8232. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8233. in_atomic(), irqs_disabled(),
  8234. current->pid, current->comm);
  8235. debug_show_held_locks(current);
  8236. if (irqs_disabled())
  8237. print_irqtrace_events(current);
  8238. dump_stack();
  8239. #endif
  8240. }
  8241. EXPORT_SYMBOL(__might_sleep);
  8242. #endif
  8243. #ifdef CONFIG_MAGIC_SYSRQ
  8244. static void normalize_task(struct rq *rq, struct task_struct *p)
  8245. {
  8246. int on_rq;
  8247. update_rq_clock(rq);
  8248. on_rq = p->se.on_rq;
  8249. if (on_rq)
  8250. deactivate_task(rq, p, 0);
  8251. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8252. if (on_rq) {
  8253. activate_task(rq, p, 0);
  8254. resched_task(rq->curr);
  8255. }
  8256. }
  8257. void normalize_rt_tasks(void)
  8258. {
  8259. struct task_struct *g, *p;
  8260. unsigned long flags;
  8261. struct rq *rq;
  8262. read_lock_irqsave(&tasklist_lock, flags);
  8263. do_each_thread(g, p) {
  8264. /*
  8265. * Only normalize user tasks:
  8266. */
  8267. if (!p->mm)
  8268. continue;
  8269. p->se.exec_start = 0;
  8270. #ifdef CONFIG_SCHEDSTATS
  8271. p->se.wait_start = 0;
  8272. p->se.sleep_start = 0;
  8273. p->se.block_start = 0;
  8274. #endif
  8275. if (!rt_task(p)) {
  8276. /*
  8277. * Renice negative nice level userspace
  8278. * tasks back to 0:
  8279. */
  8280. if (TASK_NICE(p) < 0 && p->mm)
  8281. set_user_nice(p, 0);
  8282. continue;
  8283. }
  8284. spin_lock(&p->pi_lock);
  8285. rq = __task_rq_lock(p);
  8286. normalize_task(rq, p);
  8287. __task_rq_unlock(rq);
  8288. spin_unlock(&p->pi_lock);
  8289. } while_each_thread(g, p);
  8290. read_unlock_irqrestore(&tasklist_lock, flags);
  8291. }
  8292. #endif /* CONFIG_MAGIC_SYSRQ */
  8293. #ifdef CONFIG_IA64
  8294. /*
  8295. * These functions are only useful for the IA64 MCA handling.
  8296. *
  8297. * They can only be called when the whole system has been
  8298. * stopped - every CPU needs to be quiescent, and no scheduling
  8299. * activity can take place. Using them for anything else would
  8300. * be a serious bug, and as a result, they aren't even visible
  8301. * under any other configuration.
  8302. */
  8303. /**
  8304. * curr_task - return the current task for a given cpu.
  8305. * @cpu: the processor in question.
  8306. *
  8307. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8308. */
  8309. struct task_struct *curr_task(int cpu)
  8310. {
  8311. return cpu_curr(cpu);
  8312. }
  8313. /**
  8314. * set_curr_task - set the current task for a given cpu.
  8315. * @cpu: the processor in question.
  8316. * @p: the task pointer to set.
  8317. *
  8318. * Description: This function must only be used when non-maskable interrupts
  8319. * are serviced on a separate stack. It allows the architecture to switch the
  8320. * notion of the current task on a cpu in a non-blocking manner. This function
  8321. * must be called with all CPU's synchronized, and interrupts disabled, the
  8322. * and caller must save the original value of the current task (see
  8323. * curr_task() above) and restore that value before reenabling interrupts and
  8324. * re-starting the system.
  8325. *
  8326. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8327. */
  8328. void set_curr_task(int cpu, struct task_struct *p)
  8329. {
  8330. cpu_curr(cpu) = p;
  8331. }
  8332. #endif
  8333. #ifdef CONFIG_FAIR_GROUP_SCHED
  8334. static void free_fair_sched_group(struct task_group *tg)
  8335. {
  8336. int i;
  8337. for_each_possible_cpu(i) {
  8338. if (tg->cfs_rq)
  8339. kfree(tg->cfs_rq[i]);
  8340. if (tg->se)
  8341. kfree(tg->se[i]);
  8342. }
  8343. kfree(tg->cfs_rq);
  8344. kfree(tg->se);
  8345. }
  8346. static
  8347. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8348. {
  8349. struct cfs_rq *cfs_rq;
  8350. struct sched_entity *se;
  8351. struct rq *rq;
  8352. int i;
  8353. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8354. if (!tg->cfs_rq)
  8355. goto err;
  8356. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8357. if (!tg->se)
  8358. goto err;
  8359. tg->shares = NICE_0_LOAD;
  8360. for_each_possible_cpu(i) {
  8361. rq = cpu_rq(i);
  8362. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8363. GFP_KERNEL, cpu_to_node(i));
  8364. if (!cfs_rq)
  8365. goto err;
  8366. se = kzalloc_node(sizeof(struct sched_entity),
  8367. GFP_KERNEL, cpu_to_node(i));
  8368. if (!se)
  8369. goto err;
  8370. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8371. }
  8372. return 1;
  8373. err:
  8374. return 0;
  8375. }
  8376. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8377. {
  8378. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8379. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8380. }
  8381. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8382. {
  8383. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8384. }
  8385. #else /* !CONFG_FAIR_GROUP_SCHED */
  8386. static inline void free_fair_sched_group(struct task_group *tg)
  8387. {
  8388. }
  8389. static inline
  8390. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8391. {
  8392. return 1;
  8393. }
  8394. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8395. {
  8396. }
  8397. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8398. {
  8399. }
  8400. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8401. #ifdef CONFIG_RT_GROUP_SCHED
  8402. static void free_rt_sched_group(struct task_group *tg)
  8403. {
  8404. int i;
  8405. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8406. for_each_possible_cpu(i) {
  8407. if (tg->rt_rq)
  8408. kfree(tg->rt_rq[i]);
  8409. if (tg->rt_se)
  8410. kfree(tg->rt_se[i]);
  8411. }
  8412. kfree(tg->rt_rq);
  8413. kfree(tg->rt_se);
  8414. }
  8415. static
  8416. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8417. {
  8418. struct rt_rq *rt_rq;
  8419. struct sched_rt_entity *rt_se;
  8420. struct rq *rq;
  8421. int i;
  8422. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8423. if (!tg->rt_rq)
  8424. goto err;
  8425. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8426. if (!tg->rt_se)
  8427. goto err;
  8428. init_rt_bandwidth(&tg->rt_bandwidth,
  8429. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8430. for_each_possible_cpu(i) {
  8431. rq = cpu_rq(i);
  8432. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8433. GFP_KERNEL, cpu_to_node(i));
  8434. if (!rt_rq)
  8435. goto err;
  8436. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8437. GFP_KERNEL, cpu_to_node(i));
  8438. if (!rt_se)
  8439. goto err;
  8440. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8441. }
  8442. return 1;
  8443. err:
  8444. return 0;
  8445. }
  8446. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8447. {
  8448. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8449. &cpu_rq(cpu)->leaf_rt_rq_list);
  8450. }
  8451. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8452. {
  8453. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8454. }
  8455. #else /* !CONFIG_RT_GROUP_SCHED */
  8456. static inline void free_rt_sched_group(struct task_group *tg)
  8457. {
  8458. }
  8459. static inline
  8460. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8461. {
  8462. return 1;
  8463. }
  8464. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8465. {
  8466. }
  8467. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8468. {
  8469. }
  8470. #endif /* CONFIG_RT_GROUP_SCHED */
  8471. #ifdef CONFIG_GROUP_SCHED
  8472. static void free_sched_group(struct task_group *tg)
  8473. {
  8474. free_fair_sched_group(tg);
  8475. free_rt_sched_group(tg);
  8476. kfree(tg);
  8477. }
  8478. /* allocate runqueue etc for a new task group */
  8479. struct task_group *sched_create_group(struct task_group *parent)
  8480. {
  8481. struct task_group *tg;
  8482. unsigned long flags;
  8483. int i;
  8484. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8485. if (!tg)
  8486. return ERR_PTR(-ENOMEM);
  8487. if (!alloc_fair_sched_group(tg, parent))
  8488. goto err;
  8489. if (!alloc_rt_sched_group(tg, parent))
  8490. goto err;
  8491. spin_lock_irqsave(&task_group_lock, flags);
  8492. for_each_possible_cpu(i) {
  8493. register_fair_sched_group(tg, i);
  8494. register_rt_sched_group(tg, i);
  8495. }
  8496. list_add_rcu(&tg->list, &task_groups);
  8497. WARN_ON(!parent); /* root should already exist */
  8498. tg->parent = parent;
  8499. INIT_LIST_HEAD(&tg->children);
  8500. list_add_rcu(&tg->siblings, &parent->children);
  8501. spin_unlock_irqrestore(&task_group_lock, flags);
  8502. return tg;
  8503. err:
  8504. free_sched_group(tg);
  8505. return ERR_PTR(-ENOMEM);
  8506. }
  8507. /* rcu callback to free various structures associated with a task group */
  8508. static void free_sched_group_rcu(struct rcu_head *rhp)
  8509. {
  8510. /* now it should be safe to free those cfs_rqs */
  8511. free_sched_group(container_of(rhp, struct task_group, rcu));
  8512. }
  8513. /* Destroy runqueue etc associated with a task group */
  8514. void sched_destroy_group(struct task_group *tg)
  8515. {
  8516. unsigned long flags;
  8517. int i;
  8518. spin_lock_irqsave(&task_group_lock, flags);
  8519. for_each_possible_cpu(i) {
  8520. unregister_fair_sched_group(tg, i);
  8521. unregister_rt_sched_group(tg, i);
  8522. }
  8523. list_del_rcu(&tg->list);
  8524. list_del_rcu(&tg->siblings);
  8525. spin_unlock_irqrestore(&task_group_lock, flags);
  8526. /* wait for possible concurrent references to cfs_rqs complete */
  8527. call_rcu(&tg->rcu, free_sched_group_rcu);
  8528. }
  8529. /* change task's runqueue when it moves between groups.
  8530. * The caller of this function should have put the task in its new group
  8531. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8532. * reflect its new group.
  8533. */
  8534. void sched_move_task(struct task_struct *tsk)
  8535. {
  8536. int on_rq, running;
  8537. unsigned long flags;
  8538. struct rq *rq;
  8539. rq = task_rq_lock(tsk, &flags);
  8540. update_rq_clock(rq);
  8541. running = task_current(rq, tsk);
  8542. on_rq = tsk->se.on_rq;
  8543. if (on_rq)
  8544. dequeue_task(rq, tsk, 0);
  8545. if (unlikely(running))
  8546. tsk->sched_class->put_prev_task(rq, tsk);
  8547. set_task_rq(tsk, task_cpu(tsk));
  8548. #ifdef CONFIG_FAIR_GROUP_SCHED
  8549. if (tsk->sched_class->moved_group)
  8550. tsk->sched_class->moved_group(tsk);
  8551. #endif
  8552. if (unlikely(running))
  8553. tsk->sched_class->set_curr_task(rq);
  8554. if (on_rq)
  8555. enqueue_task(rq, tsk, 0);
  8556. task_rq_unlock(rq, &flags);
  8557. }
  8558. #endif /* CONFIG_GROUP_SCHED */
  8559. #ifdef CONFIG_FAIR_GROUP_SCHED
  8560. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8561. {
  8562. struct cfs_rq *cfs_rq = se->cfs_rq;
  8563. int on_rq;
  8564. on_rq = se->on_rq;
  8565. if (on_rq)
  8566. dequeue_entity(cfs_rq, se, 0);
  8567. se->load.weight = shares;
  8568. se->load.inv_weight = 0;
  8569. if (on_rq)
  8570. enqueue_entity(cfs_rq, se, 0);
  8571. }
  8572. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8573. {
  8574. struct cfs_rq *cfs_rq = se->cfs_rq;
  8575. struct rq *rq = cfs_rq->rq;
  8576. unsigned long flags;
  8577. spin_lock_irqsave(&rq->lock, flags);
  8578. __set_se_shares(se, shares);
  8579. spin_unlock_irqrestore(&rq->lock, flags);
  8580. }
  8581. static DEFINE_MUTEX(shares_mutex);
  8582. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8583. {
  8584. int i;
  8585. unsigned long flags;
  8586. /*
  8587. * We can't change the weight of the root cgroup.
  8588. */
  8589. if (!tg->se[0])
  8590. return -EINVAL;
  8591. if (shares < MIN_SHARES)
  8592. shares = MIN_SHARES;
  8593. else if (shares > MAX_SHARES)
  8594. shares = MAX_SHARES;
  8595. mutex_lock(&shares_mutex);
  8596. if (tg->shares == shares)
  8597. goto done;
  8598. spin_lock_irqsave(&task_group_lock, flags);
  8599. for_each_possible_cpu(i)
  8600. unregister_fair_sched_group(tg, i);
  8601. list_del_rcu(&tg->siblings);
  8602. spin_unlock_irqrestore(&task_group_lock, flags);
  8603. /* wait for any ongoing reference to this group to finish */
  8604. synchronize_sched();
  8605. /*
  8606. * Now we are free to modify the group's share on each cpu
  8607. * w/o tripping rebalance_share or load_balance_fair.
  8608. */
  8609. tg->shares = shares;
  8610. for_each_possible_cpu(i) {
  8611. /*
  8612. * force a rebalance
  8613. */
  8614. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8615. set_se_shares(tg->se[i], shares);
  8616. }
  8617. /*
  8618. * Enable load balance activity on this group, by inserting it back on
  8619. * each cpu's rq->leaf_cfs_rq_list.
  8620. */
  8621. spin_lock_irqsave(&task_group_lock, flags);
  8622. for_each_possible_cpu(i)
  8623. register_fair_sched_group(tg, i);
  8624. list_add_rcu(&tg->siblings, &tg->parent->children);
  8625. spin_unlock_irqrestore(&task_group_lock, flags);
  8626. done:
  8627. mutex_unlock(&shares_mutex);
  8628. return 0;
  8629. }
  8630. unsigned long sched_group_shares(struct task_group *tg)
  8631. {
  8632. return tg->shares;
  8633. }
  8634. #endif
  8635. #ifdef CONFIG_RT_GROUP_SCHED
  8636. /*
  8637. * Ensure that the real time constraints are schedulable.
  8638. */
  8639. static DEFINE_MUTEX(rt_constraints_mutex);
  8640. static unsigned long to_ratio(u64 period, u64 runtime)
  8641. {
  8642. if (runtime == RUNTIME_INF)
  8643. return 1ULL << 20;
  8644. return div64_u64(runtime << 20, period);
  8645. }
  8646. /* Must be called with tasklist_lock held */
  8647. static inline int tg_has_rt_tasks(struct task_group *tg)
  8648. {
  8649. struct task_struct *g, *p;
  8650. do_each_thread(g, p) {
  8651. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8652. return 1;
  8653. } while_each_thread(g, p);
  8654. return 0;
  8655. }
  8656. struct rt_schedulable_data {
  8657. struct task_group *tg;
  8658. u64 rt_period;
  8659. u64 rt_runtime;
  8660. };
  8661. static int tg_schedulable(struct task_group *tg, void *data)
  8662. {
  8663. struct rt_schedulable_data *d = data;
  8664. struct task_group *child;
  8665. unsigned long total, sum = 0;
  8666. u64 period, runtime;
  8667. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8668. runtime = tg->rt_bandwidth.rt_runtime;
  8669. if (tg == d->tg) {
  8670. period = d->rt_period;
  8671. runtime = d->rt_runtime;
  8672. }
  8673. #ifdef CONFIG_USER_SCHED
  8674. if (tg == &root_task_group) {
  8675. period = global_rt_period();
  8676. runtime = global_rt_runtime();
  8677. }
  8678. #endif
  8679. /*
  8680. * Cannot have more runtime than the period.
  8681. */
  8682. if (runtime > period && runtime != RUNTIME_INF)
  8683. return -EINVAL;
  8684. /*
  8685. * Ensure we don't starve existing RT tasks.
  8686. */
  8687. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8688. return -EBUSY;
  8689. total = to_ratio(period, runtime);
  8690. /*
  8691. * Nobody can have more than the global setting allows.
  8692. */
  8693. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8694. return -EINVAL;
  8695. /*
  8696. * The sum of our children's runtime should not exceed our own.
  8697. */
  8698. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8699. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8700. runtime = child->rt_bandwidth.rt_runtime;
  8701. if (child == d->tg) {
  8702. period = d->rt_period;
  8703. runtime = d->rt_runtime;
  8704. }
  8705. sum += to_ratio(period, runtime);
  8706. }
  8707. if (sum > total)
  8708. return -EINVAL;
  8709. return 0;
  8710. }
  8711. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8712. {
  8713. struct rt_schedulable_data data = {
  8714. .tg = tg,
  8715. .rt_period = period,
  8716. .rt_runtime = runtime,
  8717. };
  8718. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8719. }
  8720. static int tg_set_bandwidth(struct task_group *tg,
  8721. u64 rt_period, u64 rt_runtime)
  8722. {
  8723. int i, err = 0;
  8724. mutex_lock(&rt_constraints_mutex);
  8725. read_lock(&tasklist_lock);
  8726. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8727. if (err)
  8728. goto unlock;
  8729. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8730. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8731. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8732. for_each_possible_cpu(i) {
  8733. struct rt_rq *rt_rq = tg->rt_rq[i];
  8734. spin_lock(&rt_rq->rt_runtime_lock);
  8735. rt_rq->rt_runtime = rt_runtime;
  8736. spin_unlock(&rt_rq->rt_runtime_lock);
  8737. }
  8738. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8739. unlock:
  8740. read_unlock(&tasklist_lock);
  8741. mutex_unlock(&rt_constraints_mutex);
  8742. return err;
  8743. }
  8744. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8745. {
  8746. u64 rt_runtime, rt_period;
  8747. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8748. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8749. if (rt_runtime_us < 0)
  8750. rt_runtime = RUNTIME_INF;
  8751. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8752. }
  8753. long sched_group_rt_runtime(struct task_group *tg)
  8754. {
  8755. u64 rt_runtime_us;
  8756. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8757. return -1;
  8758. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8759. do_div(rt_runtime_us, NSEC_PER_USEC);
  8760. return rt_runtime_us;
  8761. }
  8762. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8763. {
  8764. u64 rt_runtime, rt_period;
  8765. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8766. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8767. if (rt_period == 0)
  8768. return -EINVAL;
  8769. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8770. }
  8771. long sched_group_rt_period(struct task_group *tg)
  8772. {
  8773. u64 rt_period_us;
  8774. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8775. do_div(rt_period_us, NSEC_PER_USEC);
  8776. return rt_period_us;
  8777. }
  8778. static int sched_rt_global_constraints(void)
  8779. {
  8780. u64 runtime, period;
  8781. int ret = 0;
  8782. if (sysctl_sched_rt_period <= 0)
  8783. return -EINVAL;
  8784. runtime = global_rt_runtime();
  8785. period = global_rt_period();
  8786. /*
  8787. * Sanity check on the sysctl variables.
  8788. */
  8789. if (runtime > period && runtime != RUNTIME_INF)
  8790. return -EINVAL;
  8791. mutex_lock(&rt_constraints_mutex);
  8792. read_lock(&tasklist_lock);
  8793. ret = __rt_schedulable(NULL, 0, 0);
  8794. read_unlock(&tasklist_lock);
  8795. mutex_unlock(&rt_constraints_mutex);
  8796. return ret;
  8797. }
  8798. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8799. {
  8800. /* Don't accept realtime tasks when there is no way for them to run */
  8801. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8802. return 0;
  8803. return 1;
  8804. }
  8805. #else /* !CONFIG_RT_GROUP_SCHED */
  8806. static int sched_rt_global_constraints(void)
  8807. {
  8808. unsigned long flags;
  8809. int i;
  8810. if (sysctl_sched_rt_period <= 0)
  8811. return -EINVAL;
  8812. /*
  8813. * There's always some RT tasks in the root group
  8814. * -- migration, kstopmachine etc..
  8815. */
  8816. if (sysctl_sched_rt_runtime == 0)
  8817. return -EBUSY;
  8818. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8819. for_each_possible_cpu(i) {
  8820. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8821. spin_lock(&rt_rq->rt_runtime_lock);
  8822. rt_rq->rt_runtime = global_rt_runtime();
  8823. spin_unlock(&rt_rq->rt_runtime_lock);
  8824. }
  8825. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8826. return 0;
  8827. }
  8828. #endif /* CONFIG_RT_GROUP_SCHED */
  8829. int sched_rt_handler(struct ctl_table *table, int write,
  8830. struct file *filp, void __user *buffer, size_t *lenp,
  8831. loff_t *ppos)
  8832. {
  8833. int ret;
  8834. int old_period, old_runtime;
  8835. static DEFINE_MUTEX(mutex);
  8836. mutex_lock(&mutex);
  8837. old_period = sysctl_sched_rt_period;
  8838. old_runtime = sysctl_sched_rt_runtime;
  8839. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8840. if (!ret && write) {
  8841. ret = sched_rt_global_constraints();
  8842. if (ret) {
  8843. sysctl_sched_rt_period = old_period;
  8844. sysctl_sched_rt_runtime = old_runtime;
  8845. } else {
  8846. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8847. def_rt_bandwidth.rt_period =
  8848. ns_to_ktime(global_rt_period());
  8849. }
  8850. }
  8851. mutex_unlock(&mutex);
  8852. return ret;
  8853. }
  8854. #ifdef CONFIG_CGROUP_SCHED
  8855. /* return corresponding task_group object of a cgroup */
  8856. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8857. {
  8858. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8859. struct task_group, css);
  8860. }
  8861. static struct cgroup_subsys_state *
  8862. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8863. {
  8864. struct task_group *tg, *parent;
  8865. if (!cgrp->parent) {
  8866. /* This is early initialization for the top cgroup */
  8867. return &init_task_group.css;
  8868. }
  8869. parent = cgroup_tg(cgrp->parent);
  8870. tg = sched_create_group(parent);
  8871. if (IS_ERR(tg))
  8872. return ERR_PTR(-ENOMEM);
  8873. return &tg->css;
  8874. }
  8875. static void
  8876. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8877. {
  8878. struct task_group *tg = cgroup_tg(cgrp);
  8879. sched_destroy_group(tg);
  8880. }
  8881. static int
  8882. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8883. struct task_struct *tsk)
  8884. {
  8885. #ifdef CONFIG_RT_GROUP_SCHED
  8886. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8887. return -EINVAL;
  8888. #else
  8889. /* We don't support RT-tasks being in separate groups */
  8890. if (tsk->sched_class != &fair_sched_class)
  8891. return -EINVAL;
  8892. #endif
  8893. return 0;
  8894. }
  8895. static void
  8896. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8897. struct cgroup *old_cont, struct task_struct *tsk)
  8898. {
  8899. sched_move_task(tsk);
  8900. }
  8901. #ifdef CONFIG_FAIR_GROUP_SCHED
  8902. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8903. u64 shareval)
  8904. {
  8905. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8906. }
  8907. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8908. {
  8909. struct task_group *tg = cgroup_tg(cgrp);
  8910. return (u64) tg->shares;
  8911. }
  8912. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8913. #ifdef CONFIG_RT_GROUP_SCHED
  8914. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8915. s64 val)
  8916. {
  8917. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8918. }
  8919. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8920. {
  8921. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8922. }
  8923. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8924. u64 rt_period_us)
  8925. {
  8926. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8927. }
  8928. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8929. {
  8930. return sched_group_rt_period(cgroup_tg(cgrp));
  8931. }
  8932. #endif /* CONFIG_RT_GROUP_SCHED */
  8933. static struct cftype cpu_files[] = {
  8934. #ifdef CONFIG_FAIR_GROUP_SCHED
  8935. {
  8936. .name = "shares",
  8937. .read_u64 = cpu_shares_read_u64,
  8938. .write_u64 = cpu_shares_write_u64,
  8939. },
  8940. #endif
  8941. #ifdef CONFIG_RT_GROUP_SCHED
  8942. {
  8943. .name = "rt_runtime_us",
  8944. .read_s64 = cpu_rt_runtime_read,
  8945. .write_s64 = cpu_rt_runtime_write,
  8946. },
  8947. {
  8948. .name = "rt_period_us",
  8949. .read_u64 = cpu_rt_period_read_uint,
  8950. .write_u64 = cpu_rt_period_write_uint,
  8951. },
  8952. #endif
  8953. };
  8954. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8955. {
  8956. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8957. }
  8958. struct cgroup_subsys cpu_cgroup_subsys = {
  8959. .name = "cpu",
  8960. .create = cpu_cgroup_create,
  8961. .destroy = cpu_cgroup_destroy,
  8962. .can_attach = cpu_cgroup_can_attach,
  8963. .attach = cpu_cgroup_attach,
  8964. .populate = cpu_cgroup_populate,
  8965. .subsys_id = cpu_cgroup_subsys_id,
  8966. .early_init = 1,
  8967. };
  8968. #endif /* CONFIG_CGROUP_SCHED */
  8969. #ifdef CONFIG_CGROUP_CPUACCT
  8970. /*
  8971. * CPU accounting code for task groups.
  8972. *
  8973. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8974. * (balbir@in.ibm.com).
  8975. */
  8976. /* track cpu usage of a group of tasks and its child groups */
  8977. struct cpuacct {
  8978. struct cgroup_subsys_state css;
  8979. /* cpuusage holds pointer to a u64-type object on every cpu */
  8980. u64 *cpuusage;
  8981. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8982. struct cpuacct *parent;
  8983. };
  8984. struct cgroup_subsys cpuacct_subsys;
  8985. /* return cpu accounting group corresponding to this container */
  8986. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8987. {
  8988. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8989. struct cpuacct, css);
  8990. }
  8991. /* return cpu accounting group to which this task belongs */
  8992. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8993. {
  8994. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8995. struct cpuacct, css);
  8996. }
  8997. /* create a new cpu accounting group */
  8998. static struct cgroup_subsys_state *cpuacct_create(
  8999. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9000. {
  9001. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9002. int i;
  9003. if (!ca)
  9004. goto out;
  9005. ca->cpuusage = alloc_percpu(u64);
  9006. if (!ca->cpuusage)
  9007. goto out_free_ca;
  9008. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9009. if (percpu_counter_init(&ca->cpustat[i], 0))
  9010. goto out_free_counters;
  9011. if (cgrp->parent)
  9012. ca->parent = cgroup_ca(cgrp->parent);
  9013. return &ca->css;
  9014. out_free_counters:
  9015. while (--i >= 0)
  9016. percpu_counter_destroy(&ca->cpustat[i]);
  9017. free_percpu(ca->cpuusage);
  9018. out_free_ca:
  9019. kfree(ca);
  9020. out:
  9021. return ERR_PTR(-ENOMEM);
  9022. }
  9023. /* destroy an existing cpu accounting group */
  9024. static void
  9025. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9026. {
  9027. struct cpuacct *ca = cgroup_ca(cgrp);
  9028. int i;
  9029. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9030. percpu_counter_destroy(&ca->cpustat[i]);
  9031. free_percpu(ca->cpuusage);
  9032. kfree(ca);
  9033. }
  9034. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9035. {
  9036. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9037. u64 data;
  9038. #ifndef CONFIG_64BIT
  9039. /*
  9040. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9041. */
  9042. spin_lock_irq(&cpu_rq(cpu)->lock);
  9043. data = *cpuusage;
  9044. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9045. #else
  9046. data = *cpuusage;
  9047. #endif
  9048. return data;
  9049. }
  9050. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9051. {
  9052. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9053. #ifndef CONFIG_64BIT
  9054. /*
  9055. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9056. */
  9057. spin_lock_irq(&cpu_rq(cpu)->lock);
  9058. *cpuusage = val;
  9059. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9060. #else
  9061. *cpuusage = val;
  9062. #endif
  9063. }
  9064. /* return total cpu usage (in nanoseconds) of a group */
  9065. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9066. {
  9067. struct cpuacct *ca = cgroup_ca(cgrp);
  9068. u64 totalcpuusage = 0;
  9069. int i;
  9070. for_each_present_cpu(i)
  9071. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9072. return totalcpuusage;
  9073. }
  9074. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9075. u64 reset)
  9076. {
  9077. struct cpuacct *ca = cgroup_ca(cgrp);
  9078. int err = 0;
  9079. int i;
  9080. if (reset) {
  9081. err = -EINVAL;
  9082. goto out;
  9083. }
  9084. for_each_present_cpu(i)
  9085. cpuacct_cpuusage_write(ca, i, 0);
  9086. out:
  9087. return err;
  9088. }
  9089. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9090. struct seq_file *m)
  9091. {
  9092. struct cpuacct *ca = cgroup_ca(cgroup);
  9093. u64 percpu;
  9094. int i;
  9095. for_each_present_cpu(i) {
  9096. percpu = cpuacct_cpuusage_read(ca, i);
  9097. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9098. }
  9099. seq_printf(m, "\n");
  9100. return 0;
  9101. }
  9102. static const char *cpuacct_stat_desc[] = {
  9103. [CPUACCT_STAT_USER] = "user",
  9104. [CPUACCT_STAT_SYSTEM] = "system",
  9105. };
  9106. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9107. struct cgroup_map_cb *cb)
  9108. {
  9109. struct cpuacct *ca = cgroup_ca(cgrp);
  9110. int i;
  9111. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9112. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9113. val = cputime64_to_clock_t(val);
  9114. cb->fill(cb, cpuacct_stat_desc[i], val);
  9115. }
  9116. return 0;
  9117. }
  9118. static struct cftype files[] = {
  9119. {
  9120. .name = "usage",
  9121. .read_u64 = cpuusage_read,
  9122. .write_u64 = cpuusage_write,
  9123. },
  9124. {
  9125. .name = "usage_percpu",
  9126. .read_seq_string = cpuacct_percpu_seq_read,
  9127. },
  9128. {
  9129. .name = "stat",
  9130. .read_map = cpuacct_stats_show,
  9131. },
  9132. };
  9133. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9134. {
  9135. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9136. }
  9137. /*
  9138. * charge this task's execution time to its accounting group.
  9139. *
  9140. * called with rq->lock held.
  9141. */
  9142. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9143. {
  9144. struct cpuacct *ca;
  9145. int cpu;
  9146. if (unlikely(!cpuacct_subsys.active))
  9147. return;
  9148. cpu = task_cpu(tsk);
  9149. rcu_read_lock();
  9150. ca = task_ca(tsk);
  9151. for (; ca; ca = ca->parent) {
  9152. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9153. *cpuusage += cputime;
  9154. }
  9155. rcu_read_unlock();
  9156. }
  9157. /*
  9158. * Charge the system/user time to the task's accounting group.
  9159. */
  9160. static void cpuacct_update_stats(struct task_struct *tsk,
  9161. enum cpuacct_stat_index idx, cputime_t val)
  9162. {
  9163. struct cpuacct *ca;
  9164. if (unlikely(!cpuacct_subsys.active))
  9165. return;
  9166. rcu_read_lock();
  9167. ca = task_ca(tsk);
  9168. do {
  9169. percpu_counter_add(&ca->cpustat[idx], val);
  9170. ca = ca->parent;
  9171. } while (ca);
  9172. rcu_read_unlock();
  9173. }
  9174. struct cgroup_subsys cpuacct_subsys = {
  9175. .name = "cpuacct",
  9176. .create = cpuacct_create,
  9177. .destroy = cpuacct_destroy,
  9178. .populate = cpuacct_populate,
  9179. .subsys_id = cpuacct_subsys_id,
  9180. };
  9181. #endif /* CONFIG_CGROUP_CPUACCT */