tcp_input.c 170 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/slab.h>
  64. #include <linux/module.h>
  65. #include <linux/sysctl.h>
  66. #include <linux/kernel.h>
  67. #include <net/dst.h>
  68. #include <net/tcp.h>
  69. #include <net/inet_common.h>
  70. #include <linux/ipsec.h>
  71. #include <asm/unaligned.h>
  72. #include <net/netdma.h>
  73. int sysctl_tcp_timestamps __read_mostly = 1;
  74. int sysctl_tcp_window_scaling __read_mostly = 1;
  75. int sysctl_tcp_sack __read_mostly = 1;
  76. int sysctl_tcp_fack __read_mostly = 1;
  77. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  78. EXPORT_SYMBOL(sysctl_tcp_reordering);
  79. int sysctl_tcp_ecn __read_mostly = 2;
  80. EXPORT_SYMBOL(sysctl_tcp_ecn);
  81. int sysctl_tcp_dsack __read_mostly = 1;
  82. int sysctl_tcp_app_win __read_mostly = 31;
  83. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  84. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  85. int sysctl_tcp_stdurg __read_mostly;
  86. int sysctl_tcp_rfc1337 __read_mostly;
  87. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  88. int sysctl_tcp_frto __read_mostly = 2;
  89. int sysctl_tcp_frto_response __read_mostly;
  90. int sysctl_tcp_nometrics_save __read_mostly;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_abc __read_mostly;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  102. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  103. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  104. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  105. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  106. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  107. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  108. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  109. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  110. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  111. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  112. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  113. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  114. /* Adapt the MSS value used to make delayed ack decision to the
  115. * real world.
  116. */
  117. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  118. {
  119. struct inet_connection_sock *icsk = inet_csk(sk);
  120. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  121. unsigned int len;
  122. icsk->icsk_ack.last_seg_size = 0;
  123. /* skb->len may jitter because of SACKs, even if peer
  124. * sends good full-sized frames.
  125. */
  126. len = skb_shinfo(skb)->gso_size ? : skb->len;
  127. if (len >= icsk->icsk_ack.rcv_mss) {
  128. icsk->icsk_ack.rcv_mss = len;
  129. } else {
  130. /* Otherwise, we make more careful check taking into account,
  131. * that SACKs block is variable.
  132. *
  133. * "len" is invariant segment length, including TCP header.
  134. */
  135. len += skb->data - skb_transport_header(skb);
  136. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  137. /* If PSH is not set, packet should be
  138. * full sized, provided peer TCP is not badly broken.
  139. * This observation (if it is correct 8)) allows
  140. * to handle super-low mtu links fairly.
  141. */
  142. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  143. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  144. /* Subtract also invariant (if peer is RFC compliant),
  145. * tcp header plus fixed timestamp option length.
  146. * Resulting "len" is MSS free of SACK jitter.
  147. */
  148. len -= tcp_sk(sk)->tcp_header_len;
  149. icsk->icsk_ack.last_seg_size = len;
  150. if (len == lss) {
  151. icsk->icsk_ack.rcv_mss = len;
  152. return;
  153. }
  154. }
  155. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  156. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  158. }
  159. }
  160. static void tcp_incr_quickack(struct sock *sk)
  161. {
  162. struct inet_connection_sock *icsk = inet_csk(sk);
  163. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  164. if (quickacks == 0)
  165. quickacks = 2;
  166. if (quickacks > icsk->icsk_ack.quick)
  167. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  168. }
  169. static void tcp_enter_quickack_mode(struct sock *sk)
  170. {
  171. struct inet_connection_sock *icsk = inet_csk(sk);
  172. tcp_incr_quickack(sk);
  173. icsk->icsk_ack.pingpong = 0;
  174. icsk->icsk_ack.ato = TCP_ATO_MIN;
  175. }
  176. /* Send ACKs quickly, if "quick" count is not exhausted
  177. * and the session is not interactive.
  178. */
  179. static inline int tcp_in_quickack_mode(const struct sock *sk)
  180. {
  181. const struct inet_connection_sock *icsk = inet_csk(sk);
  182. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  183. }
  184. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  185. {
  186. if (tp->ecn_flags & TCP_ECN_OK)
  187. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  188. }
  189. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  190. {
  191. if (tcp_hdr(skb)->cwr)
  192. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  193. }
  194. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  195. {
  196. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  197. }
  198. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  199. {
  200. if (!(tp->ecn_flags & TCP_ECN_OK))
  201. return;
  202. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  203. case INET_ECN_NOT_ECT:
  204. /* Funny extension: if ECT is not set on a segment,
  205. * and we already seen ECT on a previous segment,
  206. * it is probably a retransmit.
  207. */
  208. if (tp->ecn_flags & TCP_ECN_SEEN)
  209. tcp_enter_quickack_mode((struct sock *)tp);
  210. break;
  211. case INET_ECN_CE:
  212. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  213. /* fallinto */
  214. default:
  215. tp->ecn_flags |= TCP_ECN_SEEN;
  216. }
  217. }
  218. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  219. {
  220. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  221. tp->ecn_flags &= ~TCP_ECN_OK;
  222. }
  223. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  224. {
  225. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  226. tp->ecn_flags &= ~TCP_ECN_OK;
  227. }
  228. static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  229. {
  230. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  231. return 1;
  232. return 0;
  233. }
  234. /* Buffer size and advertised window tuning.
  235. *
  236. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  237. */
  238. static void tcp_fixup_sndbuf(struct sock *sk)
  239. {
  240. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  241. sndmem *= TCP_INIT_CWND;
  242. if (sk->sk_sndbuf < sndmem)
  243. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  244. }
  245. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  246. *
  247. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  248. * forward and advertised in receiver window (tp->rcv_wnd) and
  249. * "application buffer", required to isolate scheduling/application
  250. * latencies from network.
  251. * window_clamp is maximal advertised window. It can be less than
  252. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  253. * is reserved for "application" buffer. The less window_clamp is
  254. * the smoother our behaviour from viewpoint of network, but the lower
  255. * throughput and the higher sensitivity of the connection to losses. 8)
  256. *
  257. * rcv_ssthresh is more strict window_clamp used at "slow start"
  258. * phase to predict further behaviour of this connection.
  259. * It is used for two goals:
  260. * - to enforce header prediction at sender, even when application
  261. * requires some significant "application buffer". It is check #1.
  262. * - to prevent pruning of receive queue because of misprediction
  263. * of receiver window. Check #2.
  264. *
  265. * The scheme does not work when sender sends good segments opening
  266. * window and then starts to feed us spaghetti. But it should work
  267. * in common situations. Otherwise, we have to rely on queue collapsing.
  268. */
  269. /* Slow part of check#2. */
  270. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  271. {
  272. struct tcp_sock *tp = tcp_sk(sk);
  273. /* Optimize this! */
  274. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  275. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  276. while (tp->rcv_ssthresh <= window) {
  277. if (truesize <= skb->len)
  278. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  279. truesize >>= 1;
  280. window >>= 1;
  281. }
  282. return 0;
  283. }
  284. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  285. {
  286. struct tcp_sock *tp = tcp_sk(sk);
  287. /* Check #1 */
  288. if (tp->rcv_ssthresh < tp->window_clamp &&
  289. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  290. !sk_under_memory_pressure(sk)) {
  291. int incr;
  292. /* Check #2. Increase window, if skb with such overhead
  293. * will fit to rcvbuf in future.
  294. */
  295. if (tcp_win_from_space(skb->truesize) <= skb->len)
  296. incr = 2 * tp->advmss;
  297. else
  298. incr = __tcp_grow_window(sk, skb);
  299. if (incr) {
  300. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  301. tp->window_clamp);
  302. inet_csk(sk)->icsk_ack.quick |= 1;
  303. }
  304. }
  305. }
  306. /* 3. Tuning rcvbuf, when connection enters established state. */
  307. static void tcp_fixup_rcvbuf(struct sock *sk)
  308. {
  309. u32 mss = tcp_sk(sk)->advmss;
  310. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  311. int rcvmem;
  312. /* Limit to 10 segments if mss <= 1460,
  313. * or 14600/mss segments, with a minimum of two segments.
  314. */
  315. if (mss > 1460)
  316. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  317. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  318. while (tcp_win_from_space(rcvmem) < mss)
  319. rcvmem += 128;
  320. rcvmem *= icwnd;
  321. if (sk->sk_rcvbuf < rcvmem)
  322. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  323. }
  324. /* 4. Try to fixup all. It is made immediately after connection enters
  325. * established state.
  326. */
  327. static void tcp_init_buffer_space(struct sock *sk)
  328. {
  329. struct tcp_sock *tp = tcp_sk(sk);
  330. int maxwin;
  331. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  332. tcp_fixup_rcvbuf(sk);
  333. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  334. tcp_fixup_sndbuf(sk);
  335. tp->rcvq_space.space = tp->rcv_wnd;
  336. maxwin = tcp_full_space(sk);
  337. if (tp->window_clamp >= maxwin) {
  338. tp->window_clamp = maxwin;
  339. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  340. tp->window_clamp = max(maxwin -
  341. (maxwin >> sysctl_tcp_app_win),
  342. 4 * tp->advmss);
  343. }
  344. /* Force reservation of one segment. */
  345. if (sysctl_tcp_app_win &&
  346. tp->window_clamp > 2 * tp->advmss &&
  347. tp->window_clamp + tp->advmss > maxwin)
  348. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  349. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  350. tp->snd_cwnd_stamp = tcp_time_stamp;
  351. }
  352. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  353. static void tcp_clamp_window(struct sock *sk)
  354. {
  355. struct tcp_sock *tp = tcp_sk(sk);
  356. struct inet_connection_sock *icsk = inet_csk(sk);
  357. icsk->icsk_ack.quick = 0;
  358. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  359. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  360. !sk_under_memory_pressure(sk) &&
  361. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  362. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  363. sysctl_tcp_rmem[2]);
  364. }
  365. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  366. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  367. }
  368. /* Initialize RCV_MSS value.
  369. * RCV_MSS is an our guess about MSS used by the peer.
  370. * We haven't any direct information about the MSS.
  371. * It's better to underestimate the RCV_MSS rather than overestimate.
  372. * Overestimations make us ACKing less frequently than needed.
  373. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  374. */
  375. void tcp_initialize_rcv_mss(struct sock *sk)
  376. {
  377. const struct tcp_sock *tp = tcp_sk(sk);
  378. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  379. hint = min(hint, tp->rcv_wnd / 2);
  380. hint = min(hint, TCP_MSS_DEFAULT);
  381. hint = max(hint, TCP_MIN_MSS);
  382. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  383. }
  384. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  385. /* Receiver "autotuning" code.
  386. *
  387. * The algorithm for RTT estimation w/o timestamps is based on
  388. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  389. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  390. *
  391. * More detail on this code can be found at
  392. * <http://staff.psc.edu/jheffner/>,
  393. * though this reference is out of date. A new paper
  394. * is pending.
  395. */
  396. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  397. {
  398. u32 new_sample = tp->rcv_rtt_est.rtt;
  399. long m = sample;
  400. if (m == 0)
  401. m = 1;
  402. if (new_sample != 0) {
  403. /* If we sample in larger samples in the non-timestamp
  404. * case, we could grossly overestimate the RTT especially
  405. * with chatty applications or bulk transfer apps which
  406. * are stalled on filesystem I/O.
  407. *
  408. * Also, since we are only going for a minimum in the
  409. * non-timestamp case, we do not smooth things out
  410. * else with timestamps disabled convergence takes too
  411. * long.
  412. */
  413. if (!win_dep) {
  414. m -= (new_sample >> 3);
  415. new_sample += m;
  416. } else if (m < new_sample)
  417. new_sample = m << 3;
  418. } else {
  419. /* No previous measure. */
  420. new_sample = m << 3;
  421. }
  422. if (tp->rcv_rtt_est.rtt != new_sample)
  423. tp->rcv_rtt_est.rtt = new_sample;
  424. }
  425. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  426. {
  427. if (tp->rcv_rtt_est.time == 0)
  428. goto new_measure;
  429. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  430. return;
  431. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  432. new_measure:
  433. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  434. tp->rcv_rtt_est.time = tcp_time_stamp;
  435. }
  436. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  437. const struct sk_buff *skb)
  438. {
  439. struct tcp_sock *tp = tcp_sk(sk);
  440. if (tp->rx_opt.rcv_tsecr &&
  441. (TCP_SKB_CB(skb)->end_seq -
  442. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  443. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  444. }
  445. /*
  446. * This function should be called every time data is copied to user space.
  447. * It calculates the appropriate TCP receive buffer space.
  448. */
  449. void tcp_rcv_space_adjust(struct sock *sk)
  450. {
  451. struct tcp_sock *tp = tcp_sk(sk);
  452. int time;
  453. int space;
  454. if (tp->rcvq_space.time == 0)
  455. goto new_measure;
  456. time = tcp_time_stamp - tp->rcvq_space.time;
  457. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  458. return;
  459. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  460. space = max(tp->rcvq_space.space, space);
  461. if (tp->rcvq_space.space != space) {
  462. int rcvmem;
  463. tp->rcvq_space.space = space;
  464. if (sysctl_tcp_moderate_rcvbuf &&
  465. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  466. int new_clamp = space;
  467. /* Receive space grows, normalize in order to
  468. * take into account packet headers and sk_buff
  469. * structure overhead.
  470. */
  471. space /= tp->advmss;
  472. if (!space)
  473. space = 1;
  474. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  475. while (tcp_win_from_space(rcvmem) < tp->advmss)
  476. rcvmem += 128;
  477. space *= rcvmem;
  478. space = min(space, sysctl_tcp_rmem[2]);
  479. if (space > sk->sk_rcvbuf) {
  480. sk->sk_rcvbuf = space;
  481. /* Make the window clamp follow along. */
  482. tp->window_clamp = new_clamp;
  483. }
  484. }
  485. }
  486. new_measure:
  487. tp->rcvq_space.seq = tp->copied_seq;
  488. tp->rcvq_space.time = tcp_time_stamp;
  489. }
  490. /* There is something which you must keep in mind when you analyze the
  491. * behavior of the tp->ato delayed ack timeout interval. When a
  492. * connection starts up, we want to ack as quickly as possible. The
  493. * problem is that "good" TCP's do slow start at the beginning of data
  494. * transmission. The means that until we send the first few ACK's the
  495. * sender will sit on his end and only queue most of his data, because
  496. * he can only send snd_cwnd unacked packets at any given time. For
  497. * each ACK we send, he increments snd_cwnd and transmits more of his
  498. * queue. -DaveM
  499. */
  500. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  501. {
  502. struct tcp_sock *tp = tcp_sk(sk);
  503. struct inet_connection_sock *icsk = inet_csk(sk);
  504. u32 now;
  505. inet_csk_schedule_ack(sk);
  506. tcp_measure_rcv_mss(sk, skb);
  507. tcp_rcv_rtt_measure(tp);
  508. now = tcp_time_stamp;
  509. if (!icsk->icsk_ack.ato) {
  510. /* The _first_ data packet received, initialize
  511. * delayed ACK engine.
  512. */
  513. tcp_incr_quickack(sk);
  514. icsk->icsk_ack.ato = TCP_ATO_MIN;
  515. } else {
  516. int m = now - icsk->icsk_ack.lrcvtime;
  517. if (m <= TCP_ATO_MIN / 2) {
  518. /* The fastest case is the first. */
  519. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  520. } else if (m < icsk->icsk_ack.ato) {
  521. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  522. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  523. icsk->icsk_ack.ato = icsk->icsk_rto;
  524. } else if (m > icsk->icsk_rto) {
  525. /* Too long gap. Apparently sender failed to
  526. * restart window, so that we send ACKs quickly.
  527. */
  528. tcp_incr_quickack(sk);
  529. sk_mem_reclaim(sk);
  530. }
  531. }
  532. icsk->icsk_ack.lrcvtime = now;
  533. TCP_ECN_check_ce(tp, skb);
  534. if (skb->len >= 128)
  535. tcp_grow_window(sk, skb);
  536. }
  537. /* Called to compute a smoothed rtt estimate. The data fed to this
  538. * routine either comes from timestamps, or from segments that were
  539. * known _not_ to have been retransmitted [see Karn/Partridge
  540. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  541. * piece by Van Jacobson.
  542. * NOTE: the next three routines used to be one big routine.
  543. * To save cycles in the RFC 1323 implementation it was better to break
  544. * it up into three procedures. -- erics
  545. */
  546. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  547. {
  548. struct tcp_sock *tp = tcp_sk(sk);
  549. long m = mrtt; /* RTT */
  550. /* The following amusing code comes from Jacobson's
  551. * article in SIGCOMM '88. Note that rtt and mdev
  552. * are scaled versions of rtt and mean deviation.
  553. * This is designed to be as fast as possible
  554. * m stands for "measurement".
  555. *
  556. * On a 1990 paper the rto value is changed to:
  557. * RTO = rtt + 4 * mdev
  558. *
  559. * Funny. This algorithm seems to be very broken.
  560. * These formulae increase RTO, when it should be decreased, increase
  561. * too slowly, when it should be increased quickly, decrease too quickly
  562. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  563. * does not matter how to _calculate_ it. Seems, it was trap
  564. * that VJ failed to avoid. 8)
  565. */
  566. if (m == 0)
  567. m = 1;
  568. if (tp->srtt != 0) {
  569. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  570. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  571. if (m < 0) {
  572. m = -m; /* m is now abs(error) */
  573. m -= (tp->mdev >> 2); /* similar update on mdev */
  574. /* This is similar to one of Eifel findings.
  575. * Eifel blocks mdev updates when rtt decreases.
  576. * This solution is a bit different: we use finer gain
  577. * for mdev in this case (alpha*beta).
  578. * Like Eifel it also prevents growth of rto,
  579. * but also it limits too fast rto decreases,
  580. * happening in pure Eifel.
  581. */
  582. if (m > 0)
  583. m >>= 3;
  584. } else {
  585. m -= (tp->mdev >> 2); /* similar update on mdev */
  586. }
  587. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  588. if (tp->mdev > tp->mdev_max) {
  589. tp->mdev_max = tp->mdev;
  590. if (tp->mdev_max > tp->rttvar)
  591. tp->rttvar = tp->mdev_max;
  592. }
  593. if (after(tp->snd_una, tp->rtt_seq)) {
  594. if (tp->mdev_max < tp->rttvar)
  595. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  596. tp->rtt_seq = tp->snd_nxt;
  597. tp->mdev_max = tcp_rto_min(sk);
  598. }
  599. } else {
  600. /* no previous measure. */
  601. tp->srtt = m << 3; /* take the measured time to be rtt */
  602. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  603. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  604. tp->rtt_seq = tp->snd_nxt;
  605. }
  606. }
  607. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  608. * routine referred to above.
  609. */
  610. static inline void tcp_set_rto(struct sock *sk)
  611. {
  612. const struct tcp_sock *tp = tcp_sk(sk);
  613. /* Old crap is replaced with new one. 8)
  614. *
  615. * More seriously:
  616. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  617. * It cannot be less due to utterly erratic ACK generation made
  618. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  619. * to do with delayed acks, because at cwnd>2 true delack timeout
  620. * is invisible. Actually, Linux-2.4 also generates erratic
  621. * ACKs in some circumstances.
  622. */
  623. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  624. /* 2. Fixups made earlier cannot be right.
  625. * If we do not estimate RTO correctly without them,
  626. * all the algo is pure shit and should be replaced
  627. * with correct one. It is exactly, which we pretend to do.
  628. */
  629. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  630. * guarantees that rto is higher.
  631. */
  632. tcp_bound_rto(sk);
  633. }
  634. /* Save metrics learned by this TCP session.
  635. This function is called only, when TCP finishes successfully
  636. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  637. */
  638. void tcp_update_metrics(struct sock *sk)
  639. {
  640. struct tcp_sock *tp = tcp_sk(sk);
  641. struct dst_entry *dst = __sk_dst_get(sk);
  642. if (sysctl_tcp_nometrics_save)
  643. return;
  644. dst_confirm(dst);
  645. if (dst && (dst->flags & DST_HOST)) {
  646. const struct inet_connection_sock *icsk = inet_csk(sk);
  647. int m;
  648. unsigned long rtt;
  649. if (icsk->icsk_backoff || !tp->srtt) {
  650. /* This session failed to estimate rtt. Why?
  651. * Probably, no packets returned in time.
  652. * Reset our results.
  653. */
  654. if (!(dst_metric_locked(dst, RTAX_RTT)))
  655. dst_metric_set(dst, RTAX_RTT, 0);
  656. return;
  657. }
  658. rtt = dst_metric_rtt(dst, RTAX_RTT);
  659. m = rtt - tp->srtt;
  660. /* If newly calculated rtt larger than stored one,
  661. * store new one. Otherwise, use EWMA. Remember,
  662. * rtt overestimation is always better than underestimation.
  663. */
  664. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  665. if (m <= 0)
  666. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  667. else
  668. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  669. }
  670. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  671. unsigned long var;
  672. if (m < 0)
  673. m = -m;
  674. /* Scale deviation to rttvar fixed point */
  675. m >>= 1;
  676. if (m < tp->mdev)
  677. m = tp->mdev;
  678. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  679. if (m >= var)
  680. var = m;
  681. else
  682. var -= (var - m) >> 2;
  683. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  684. }
  685. if (tcp_in_initial_slowstart(tp)) {
  686. /* Slow start still did not finish. */
  687. if (dst_metric(dst, RTAX_SSTHRESH) &&
  688. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  689. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  690. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  691. if (!dst_metric_locked(dst, RTAX_CWND) &&
  692. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  693. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  694. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  695. icsk->icsk_ca_state == TCP_CA_Open) {
  696. /* Cong. avoidance phase, cwnd is reliable. */
  697. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  698. dst_metric_set(dst, RTAX_SSTHRESH,
  699. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  700. if (!dst_metric_locked(dst, RTAX_CWND))
  701. dst_metric_set(dst, RTAX_CWND,
  702. (dst_metric(dst, RTAX_CWND) +
  703. tp->snd_cwnd) >> 1);
  704. } else {
  705. /* Else slow start did not finish, cwnd is non-sense,
  706. ssthresh may be also invalid.
  707. */
  708. if (!dst_metric_locked(dst, RTAX_CWND))
  709. dst_metric_set(dst, RTAX_CWND,
  710. (dst_metric(dst, RTAX_CWND) +
  711. tp->snd_ssthresh) >> 1);
  712. if (dst_metric(dst, RTAX_SSTHRESH) &&
  713. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  714. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  715. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  716. }
  717. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  718. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  719. tp->reordering != sysctl_tcp_reordering)
  720. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  721. }
  722. }
  723. }
  724. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  725. {
  726. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  727. if (!cwnd)
  728. cwnd = TCP_INIT_CWND;
  729. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  730. }
  731. /* Set slow start threshold and cwnd not falling to slow start */
  732. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  733. {
  734. struct tcp_sock *tp = tcp_sk(sk);
  735. const struct inet_connection_sock *icsk = inet_csk(sk);
  736. tp->prior_ssthresh = 0;
  737. tp->bytes_acked = 0;
  738. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  739. tp->undo_marker = 0;
  740. if (set_ssthresh)
  741. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  742. tp->snd_cwnd = min(tp->snd_cwnd,
  743. tcp_packets_in_flight(tp) + 1U);
  744. tp->snd_cwnd_cnt = 0;
  745. tp->high_seq = tp->snd_nxt;
  746. tp->snd_cwnd_stamp = tcp_time_stamp;
  747. TCP_ECN_queue_cwr(tp);
  748. tcp_set_ca_state(sk, TCP_CA_CWR);
  749. }
  750. }
  751. /*
  752. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  753. * disables it when reordering is detected
  754. */
  755. static void tcp_disable_fack(struct tcp_sock *tp)
  756. {
  757. /* RFC3517 uses different metric in lost marker => reset on change */
  758. if (tcp_is_fack(tp))
  759. tp->lost_skb_hint = NULL;
  760. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  761. }
  762. /* Take a notice that peer is sending D-SACKs */
  763. static void tcp_dsack_seen(struct tcp_sock *tp)
  764. {
  765. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  766. }
  767. /* Initialize metrics on socket. */
  768. static void tcp_init_metrics(struct sock *sk)
  769. {
  770. struct tcp_sock *tp = tcp_sk(sk);
  771. struct dst_entry *dst = __sk_dst_get(sk);
  772. if (dst == NULL)
  773. goto reset;
  774. dst_confirm(dst);
  775. if (dst_metric_locked(dst, RTAX_CWND))
  776. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  777. if (dst_metric(dst, RTAX_SSTHRESH)) {
  778. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  779. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  780. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  781. } else {
  782. /* ssthresh may have been reduced unnecessarily during.
  783. * 3WHS. Restore it back to its initial default.
  784. */
  785. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  786. }
  787. if (dst_metric(dst, RTAX_REORDERING) &&
  788. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  789. tcp_disable_fack(tp);
  790. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  791. }
  792. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  793. goto reset;
  794. /* Initial rtt is determined from SYN,SYN-ACK.
  795. * The segment is small and rtt may appear much
  796. * less than real one. Use per-dst memory
  797. * to make it more realistic.
  798. *
  799. * A bit of theory. RTT is time passed after "normal" sized packet
  800. * is sent until it is ACKed. In normal circumstances sending small
  801. * packets force peer to delay ACKs and calculation is correct too.
  802. * The algorithm is adaptive and, provided we follow specs, it
  803. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  804. * tricks sort of "quick acks" for time long enough to decrease RTT
  805. * to low value, and then abruptly stops to do it and starts to delay
  806. * ACKs, wait for troubles.
  807. */
  808. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  809. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  810. tp->rtt_seq = tp->snd_nxt;
  811. }
  812. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  813. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  814. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  815. }
  816. tcp_set_rto(sk);
  817. reset:
  818. if (tp->srtt == 0) {
  819. /* RFC2988bis: We've failed to get a valid RTT sample from
  820. * 3WHS. This is most likely due to retransmission,
  821. * including spurious one. Reset the RTO back to 3secs
  822. * from the more aggressive 1sec to avoid more spurious
  823. * retransmission.
  824. */
  825. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  826. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  827. }
  828. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  829. * retransmitted. In light of RFC2988bis' more aggressive 1sec
  830. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  831. * retransmission has occurred.
  832. */
  833. if (tp->total_retrans > 1)
  834. tp->snd_cwnd = 1;
  835. else
  836. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  837. tp->snd_cwnd_stamp = tcp_time_stamp;
  838. }
  839. static void tcp_update_reordering(struct sock *sk, const int metric,
  840. const int ts)
  841. {
  842. struct tcp_sock *tp = tcp_sk(sk);
  843. if (metric > tp->reordering) {
  844. int mib_idx;
  845. tp->reordering = min(TCP_MAX_REORDERING, metric);
  846. /* This exciting event is worth to be remembered. 8) */
  847. if (ts)
  848. mib_idx = LINUX_MIB_TCPTSREORDER;
  849. else if (tcp_is_reno(tp))
  850. mib_idx = LINUX_MIB_TCPRENOREORDER;
  851. else if (tcp_is_fack(tp))
  852. mib_idx = LINUX_MIB_TCPFACKREORDER;
  853. else
  854. mib_idx = LINUX_MIB_TCPSACKREORDER;
  855. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  856. #if FASTRETRANS_DEBUG > 1
  857. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  858. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  859. tp->reordering,
  860. tp->fackets_out,
  861. tp->sacked_out,
  862. tp->undo_marker ? tp->undo_retrans : 0);
  863. #endif
  864. tcp_disable_fack(tp);
  865. }
  866. }
  867. /* This must be called before lost_out is incremented */
  868. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  869. {
  870. if ((tp->retransmit_skb_hint == NULL) ||
  871. before(TCP_SKB_CB(skb)->seq,
  872. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  873. tp->retransmit_skb_hint = skb;
  874. if (!tp->lost_out ||
  875. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  876. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  877. }
  878. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  879. {
  880. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  881. tcp_verify_retransmit_hint(tp, skb);
  882. tp->lost_out += tcp_skb_pcount(skb);
  883. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  884. }
  885. }
  886. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  887. struct sk_buff *skb)
  888. {
  889. tcp_verify_retransmit_hint(tp, skb);
  890. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  891. tp->lost_out += tcp_skb_pcount(skb);
  892. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  893. }
  894. }
  895. /* This procedure tags the retransmission queue when SACKs arrive.
  896. *
  897. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  898. * Packets in queue with these bits set are counted in variables
  899. * sacked_out, retrans_out and lost_out, correspondingly.
  900. *
  901. * Valid combinations are:
  902. * Tag InFlight Description
  903. * 0 1 - orig segment is in flight.
  904. * S 0 - nothing flies, orig reached receiver.
  905. * L 0 - nothing flies, orig lost by net.
  906. * R 2 - both orig and retransmit are in flight.
  907. * L|R 1 - orig is lost, retransmit is in flight.
  908. * S|R 1 - orig reached receiver, retrans is still in flight.
  909. * (L|S|R is logically valid, it could occur when L|R is sacked,
  910. * but it is equivalent to plain S and code short-curcuits it to S.
  911. * L|S is logically invalid, it would mean -1 packet in flight 8))
  912. *
  913. * These 6 states form finite state machine, controlled by the following events:
  914. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  915. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  916. * 3. Loss detection event of two flavors:
  917. * A. Scoreboard estimator decided the packet is lost.
  918. * A'. Reno "three dupacks" marks head of queue lost.
  919. * A''. Its FACK modification, head until snd.fack is lost.
  920. * B. SACK arrives sacking SND.NXT at the moment, when the
  921. * segment was retransmitted.
  922. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  923. *
  924. * It is pleasant to note, that state diagram turns out to be commutative,
  925. * so that we are allowed not to be bothered by order of our actions,
  926. * when multiple events arrive simultaneously. (see the function below).
  927. *
  928. * Reordering detection.
  929. * --------------------
  930. * Reordering metric is maximal distance, which a packet can be displaced
  931. * in packet stream. With SACKs we can estimate it:
  932. *
  933. * 1. SACK fills old hole and the corresponding segment was not
  934. * ever retransmitted -> reordering. Alas, we cannot use it
  935. * when segment was retransmitted.
  936. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  937. * for retransmitted and already SACKed segment -> reordering..
  938. * Both of these heuristics are not used in Loss state, when we cannot
  939. * account for retransmits accurately.
  940. *
  941. * SACK block validation.
  942. * ----------------------
  943. *
  944. * SACK block range validation checks that the received SACK block fits to
  945. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  946. * Note that SND.UNA is not included to the range though being valid because
  947. * it means that the receiver is rather inconsistent with itself reporting
  948. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  949. * perfectly valid, however, in light of RFC2018 which explicitly states
  950. * that "SACK block MUST reflect the newest segment. Even if the newest
  951. * segment is going to be discarded ...", not that it looks very clever
  952. * in case of head skb. Due to potentional receiver driven attacks, we
  953. * choose to avoid immediate execution of a walk in write queue due to
  954. * reneging and defer head skb's loss recovery to standard loss recovery
  955. * procedure that will eventually trigger (nothing forbids us doing this).
  956. *
  957. * Implements also blockage to start_seq wrap-around. Problem lies in the
  958. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  959. * there's no guarantee that it will be before snd_nxt (n). The problem
  960. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  961. * wrap (s_w):
  962. *
  963. * <- outs wnd -> <- wrapzone ->
  964. * u e n u_w e_w s n_w
  965. * | | | | | | |
  966. * |<------------+------+----- TCP seqno space --------------+---------->|
  967. * ...-- <2^31 ->| |<--------...
  968. * ...---- >2^31 ------>| |<--------...
  969. *
  970. * Current code wouldn't be vulnerable but it's better still to discard such
  971. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  972. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  973. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  974. * equal to the ideal case (infinite seqno space without wrap caused issues).
  975. *
  976. * With D-SACK the lower bound is extended to cover sequence space below
  977. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  978. * again, D-SACK block must not to go across snd_una (for the same reason as
  979. * for the normal SACK blocks, explained above). But there all simplicity
  980. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  981. * fully below undo_marker they do not affect behavior in anyway and can
  982. * therefore be safely ignored. In rare cases (which are more or less
  983. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  984. * fragmentation and packet reordering past skb's retransmission. To consider
  985. * them correctly, the acceptable range must be extended even more though
  986. * the exact amount is rather hard to quantify. However, tp->max_window can
  987. * be used as an exaggerated estimate.
  988. */
  989. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  990. u32 start_seq, u32 end_seq)
  991. {
  992. /* Too far in future, or reversed (interpretation is ambiguous) */
  993. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  994. return 0;
  995. /* Nasty start_seq wrap-around check (see comments above) */
  996. if (!before(start_seq, tp->snd_nxt))
  997. return 0;
  998. /* In outstanding window? ...This is valid exit for D-SACKs too.
  999. * start_seq == snd_una is non-sensical (see comments above)
  1000. */
  1001. if (after(start_seq, tp->snd_una))
  1002. return 1;
  1003. if (!is_dsack || !tp->undo_marker)
  1004. return 0;
  1005. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1006. if (after(end_seq, tp->snd_una))
  1007. return 0;
  1008. if (!before(start_seq, tp->undo_marker))
  1009. return 1;
  1010. /* Too old */
  1011. if (!after(end_seq, tp->undo_marker))
  1012. return 0;
  1013. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1014. * start_seq < undo_marker and end_seq >= undo_marker.
  1015. */
  1016. return !before(start_seq, end_seq - tp->max_window);
  1017. }
  1018. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1019. * Event "B". Later note: FACK people cheated me again 8), we have to account
  1020. * for reordering! Ugly, but should help.
  1021. *
  1022. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1023. * less than what is now known to be received by the other end (derived from
  1024. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1025. * retransmitted skbs to avoid some costly processing per ACKs.
  1026. */
  1027. static void tcp_mark_lost_retrans(struct sock *sk)
  1028. {
  1029. const struct inet_connection_sock *icsk = inet_csk(sk);
  1030. struct tcp_sock *tp = tcp_sk(sk);
  1031. struct sk_buff *skb;
  1032. int cnt = 0;
  1033. u32 new_low_seq = tp->snd_nxt;
  1034. u32 received_upto = tcp_highest_sack_seq(tp);
  1035. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1036. !after(received_upto, tp->lost_retrans_low) ||
  1037. icsk->icsk_ca_state != TCP_CA_Recovery)
  1038. return;
  1039. tcp_for_write_queue(skb, sk) {
  1040. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1041. if (skb == tcp_send_head(sk))
  1042. break;
  1043. if (cnt == tp->retrans_out)
  1044. break;
  1045. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1046. continue;
  1047. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1048. continue;
  1049. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1050. * constraint here (see above) but figuring out that at
  1051. * least tp->reordering SACK blocks reside between ack_seq
  1052. * and received_upto is not easy task to do cheaply with
  1053. * the available datastructures.
  1054. *
  1055. * Whether FACK should check here for tp->reordering segs
  1056. * in-between one could argue for either way (it would be
  1057. * rather simple to implement as we could count fack_count
  1058. * during the walk and do tp->fackets_out - fack_count).
  1059. */
  1060. if (after(received_upto, ack_seq)) {
  1061. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1062. tp->retrans_out -= tcp_skb_pcount(skb);
  1063. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1064. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1065. } else {
  1066. if (before(ack_seq, new_low_seq))
  1067. new_low_seq = ack_seq;
  1068. cnt += tcp_skb_pcount(skb);
  1069. }
  1070. }
  1071. if (tp->retrans_out)
  1072. tp->lost_retrans_low = new_low_seq;
  1073. }
  1074. static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1075. struct tcp_sack_block_wire *sp, int num_sacks,
  1076. u32 prior_snd_una)
  1077. {
  1078. struct tcp_sock *tp = tcp_sk(sk);
  1079. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1080. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1081. int dup_sack = 0;
  1082. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1083. dup_sack = 1;
  1084. tcp_dsack_seen(tp);
  1085. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1086. } else if (num_sacks > 1) {
  1087. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1088. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1089. if (!after(end_seq_0, end_seq_1) &&
  1090. !before(start_seq_0, start_seq_1)) {
  1091. dup_sack = 1;
  1092. tcp_dsack_seen(tp);
  1093. NET_INC_STATS_BH(sock_net(sk),
  1094. LINUX_MIB_TCPDSACKOFORECV);
  1095. }
  1096. }
  1097. /* D-SACK for already forgotten data... Do dumb counting. */
  1098. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1099. !after(end_seq_0, prior_snd_una) &&
  1100. after(end_seq_0, tp->undo_marker))
  1101. tp->undo_retrans--;
  1102. return dup_sack;
  1103. }
  1104. struct tcp_sacktag_state {
  1105. int reord;
  1106. int fack_count;
  1107. int flag;
  1108. };
  1109. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1110. * the incoming SACK may not exactly match but we can find smaller MSS
  1111. * aligned portion of it that matches. Therefore we might need to fragment
  1112. * which may fail and creates some hassle (caller must handle error case
  1113. * returns).
  1114. *
  1115. * FIXME: this could be merged to shift decision code
  1116. */
  1117. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1118. u32 start_seq, u32 end_seq)
  1119. {
  1120. int in_sack, err;
  1121. unsigned int pkt_len;
  1122. unsigned int mss;
  1123. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1124. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1125. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1126. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1127. mss = tcp_skb_mss(skb);
  1128. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1129. if (!in_sack) {
  1130. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1131. if (pkt_len < mss)
  1132. pkt_len = mss;
  1133. } else {
  1134. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1135. if (pkt_len < mss)
  1136. return -EINVAL;
  1137. }
  1138. /* Round if necessary so that SACKs cover only full MSSes
  1139. * and/or the remaining small portion (if present)
  1140. */
  1141. if (pkt_len > mss) {
  1142. unsigned int new_len = (pkt_len / mss) * mss;
  1143. if (!in_sack && new_len < pkt_len) {
  1144. new_len += mss;
  1145. if (new_len > skb->len)
  1146. return 0;
  1147. }
  1148. pkt_len = new_len;
  1149. }
  1150. err = tcp_fragment(sk, skb, pkt_len, mss);
  1151. if (err < 0)
  1152. return err;
  1153. }
  1154. return in_sack;
  1155. }
  1156. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1157. static u8 tcp_sacktag_one(struct sock *sk,
  1158. struct tcp_sacktag_state *state, u8 sacked,
  1159. u32 start_seq, u32 end_seq,
  1160. int dup_sack, int pcount)
  1161. {
  1162. struct tcp_sock *tp = tcp_sk(sk);
  1163. int fack_count = state->fack_count;
  1164. /* Account D-SACK for retransmitted packet. */
  1165. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1166. if (tp->undo_marker && tp->undo_retrans &&
  1167. after(end_seq, tp->undo_marker))
  1168. tp->undo_retrans--;
  1169. if (sacked & TCPCB_SACKED_ACKED)
  1170. state->reord = min(fack_count, state->reord);
  1171. }
  1172. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1173. if (!after(end_seq, tp->snd_una))
  1174. return sacked;
  1175. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1176. if (sacked & TCPCB_SACKED_RETRANS) {
  1177. /* If the segment is not tagged as lost,
  1178. * we do not clear RETRANS, believing
  1179. * that retransmission is still in flight.
  1180. */
  1181. if (sacked & TCPCB_LOST) {
  1182. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1183. tp->lost_out -= pcount;
  1184. tp->retrans_out -= pcount;
  1185. }
  1186. } else {
  1187. if (!(sacked & TCPCB_RETRANS)) {
  1188. /* New sack for not retransmitted frame,
  1189. * which was in hole. It is reordering.
  1190. */
  1191. if (before(start_seq,
  1192. tcp_highest_sack_seq(tp)))
  1193. state->reord = min(fack_count,
  1194. state->reord);
  1195. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1196. if (!after(end_seq, tp->frto_highmark))
  1197. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1198. }
  1199. if (sacked & TCPCB_LOST) {
  1200. sacked &= ~TCPCB_LOST;
  1201. tp->lost_out -= pcount;
  1202. }
  1203. }
  1204. sacked |= TCPCB_SACKED_ACKED;
  1205. state->flag |= FLAG_DATA_SACKED;
  1206. tp->sacked_out += pcount;
  1207. fack_count += pcount;
  1208. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1209. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1210. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1211. tp->lost_cnt_hint += pcount;
  1212. if (fack_count > tp->fackets_out)
  1213. tp->fackets_out = fack_count;
  1214. }
  1215. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1216. * frames and clear it. undo_retrans is decreased above, L|R frames
  1217. * are accounted above as well.
  1218. */
  1219. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1220. sacked &= ~TCPCB_SACKED_RETRANS;
  1221. tp->retrans_out -= pcount;
  1222. }
  1223. return sacked;
  1224. }
  1225. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1226. struct tcp_sacktag_state *state,
  1227. unsigned int pcount, int shifted, int mss,
  1228. int dup_sack)
  1229. {
  1230. struct tcp_sock *tp = tcp_sk(sk);
  1231. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1232. BUG_ON(!pcount);
  1233. if (skb == tp->lost_skb_hint)
  1234. tp->lost_cnt_hint += pcount;
  1235. TCP_SKB_CB(prev)->end_seq += shifted;
  1236. TCP_SKB_CB(skb)->seq += shifted;
  1237. skb_shinfo(prev)->gso_segs += pcount;
  1238. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1239. skb_shinfo(skb)->gso_segs -= pcount;
  1240. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1241. * in theory this shouldn't be necessary but as long as DSACK
  1242. * code can come after this skb later on it's better to keep
  1243. * setting gso_size to something.
  1244. */
  1245. if (!skb_shinfo(prev)->gso_size) {
  1246. skb_shinfo(prev)->gso_size = mss;
  1247. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1248. }
  1249. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1250. if (skb_shinfo(skb)->gso_segs <= 1) {
  1251. skb_shinfo(skb)->gso_size = 0;
  1252. skb_shinfo(skb)->gso_type = 0;
  1253. }
  1254. /* We discard results */
  1255. tcp_sacktag_one(sk, state,
  1256. TCP_SKB_CB(skb)->sacked,
  1257. TCP_SKB_CB(skb)->seq,
  1258. TCP_SKB_CB(skb)->end_seq,
  1259. dup_sack, pcount);
  1260. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1261. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1262. if (skb->len > 0) {
  1263. BUG_ON(!tcp_skb_pcount(skb));
  1264. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1265. return 0;
  1266. }
  1267. /* Whole SKB was eaten :-) */
  1268. if (skb == tp->retransmit_skb_hint)
  1269. tp->retransmit_skb_hint = prev;
  1270. if (skb == tp->scoreboard_skb_hint)
  1271. tp->scoreboard_skb_hint = prev;
  1272. if (skb == tp->lost_skb_hint) {
  1273. tp->lost_skb_hint = prev;
  1274. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1275. }
  1276. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1277. if (skb == tcp_highest_sack(sk))
  1278. tcp_advance_highest_sack(sk, skb);
  1279. tcp_unlink_write_queue(skb, sk);
  1280. sk_wmem_free_skb(sk, skb);
  1281. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1282. return 1;
  1283. }
  1284. /* I wish gso_size would have a bit more sane initialization than
  1285. * something-or-zero which complicates things
  1286. */
  1287. static int tcp_skb_seglen(const struct sk_buff *skb)
  1288. {
  1289. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1290. }
  1291. /* Shifting pages past head area doesn't work */
  1292. static int skb_can_shift(const struct sk_buff *skb)
  1293. {
  1294. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1295. }
  1296. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1297. * skb.
  1298. */
  1299. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1300. struct tcp_sacktag_state *state,
  1301. u32 start_seq, u32 end_seq,
  1302. int dup_sack)
  1303. {
  1304. struct tcp_sock *tp = tcp_sk(sk);
  1305. struct sk_buff *prev;
  1306. int mss;
  1307. int pcount = 0;
  1308. int len;
  1309. int in_sack;
  1310. if (!sk_can_gso(sk))
  1311. goto fallback;
  1312. /* Normally R but no L won't result in plain S */
  1313. if (!dup_sack &&
  1314. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1315. goto fallback;
  1316. if (!skb_can_shift(skb))
  1317. goto fallback;
  1318. /* This frame is about to be dropped (was ACKed). */
  1319. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1320. goto fallback;
  1321. /* Can only happen with delayed DSACK + discard craziness */
  1322. if (unlikely(skb == tcp_write_queue_head(sk)))
  1323. goto fallback;
  1324. prev = tcp_write_queue_prev(sk, skb);
  1325. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1326. goto fallback;
  1327. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1328. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1329. if (in_sack) {
  1330. len = skb->len;
  1331. pcount = tcp_skb_pcount(skb);
  1332. mss = tcp_skb_seglen(skb);
  1333. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1334. * drop this restriction as unnecessary
  1335. */
  1336. if (mss != tcp_skb_seglen(prev))
  1337. goto fallback;
  1338. } else {
  1339. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1340. goto noop;
  1341. /* CHECKME: This is non-MSS split case only?, this will
  1342. * cause skipped skbs due to advancing loop btw, original
  1343. * has that feature too
  1344. */
  1345. if (tcp_skb_pcount(skb) <= 1)
  1346. goto noop;
  1347. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1348. if (!in_sack) {
  1349. /* TODO: head merge to next could be attempted here
  1350. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1351. * though it might not be worth of the additional hassle
  1352. *
  1353. * ...we can probably just fallback to what was done
  1354. * previously. We could try merging non-SACKed ones
  1355. * as well but it probably isn't going to buy off
  1356. * because later SACKs might again split them, and
  1357. * it would make skb timestamp tracking considerably
  1358. * harder problem.
  1359. */
  1360. goto fallback;
  1361. }
  1362. len = end_seq - TCP_SKB_CB(skb)->seq;
  1363. BUG_ON(len < 0);
  1364. BUG_ON(len > skb->len);
  1365. /* MSS boundaries should be honoured or else pcount will
  1366. * severely break even though it makes things bit trickier.
  1367. * Optimize common case to avoid most of the divides
  1368. */
  1369. mss = tcp_skb_mss(skb);
  1370. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1371. * drop this restriction as unnecessary
  1372. */
  1373. if (mss != tcp_skb_seglen(prev))
  1374. goto fallback;
  1375. if (len == mss) {
  1376. pcount = 1;
  1377. } else if (len < mss) {
  1378. goto noop;
  1379. } else {
  1380. pcount = len / mss;
  1381. len = pcount * mss;
  1382. }
  1383. }
  1384. if (!skb_shift(prev, skb, len))
  1385. goto fallback;
  1386. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1387. goto out;
  1388. /* Hole filled allows collapsing with the next as well, this is very
  1389. * useful when hole on every nth skb pattern happens
  1390. */
  1391. if (prev == tcp_write_queue_tail(sk))
  1392. goto out;
  1393. skb = tcp_write_queue_next(sk, prev);
  1394. if (!skb_can_shift(skb) ||
  1395. (skb == tcp_send_head(sk)) ||
  1396. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1397. (mss != tcp_skb_seglen(skb)))
  1398. goto out;
  1399. len = skb->len;
  1400. if (skb_shift(prev, skb, len)) {
  1401. pcount += tcp_skb_pcount(skb);
  1402. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1403. }
  1404. out:
  1405. state->fack_count += pcount;
  1406. return prev;
  1407. noop:
  1408. return skb;
  1409. fallback:
  1410. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1411. return NULL;
  1412. }
  1413. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1414. struct tcp_sack_block *next_dup,
  1415. struct tcp_sacktag_state *state,
  1416. u32 start_seq, u32 end_seq,
  1417. int dup_sack_in)
  1418. {
  1419. struct tcp_sock *tp = tcp_sk(sk);
  1420. struct sk_buff *tmp;
  1421. tcp_for_write_queue_from(skb, sk) {
  1422. int in_sack = 0;
  1423. int dup_sack = dup_sack_in;
  1424. if (skb == tcp_send_head(sk))
  1425. break;
  1426. /* queue is in-order => we can short-circuit the walk early */
  1427. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1428. break;
  1429. if ((next_dup != NULL) &&
  1430. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1431. in_sack = tcp_match_skb_to_sack(sk, skb,
  1432. next_dup->start_seq,
  1433. next_dup->end_seq);
  1434. if (in_sack > 0)
  1435. dup_sack = 1;
  1436. }
  1437. /* skb reference here is a bit tricky to get right, since
  1438. * shifting can eat and free both this skb and the next,
  1439. * so not even _safe variant of the loop is enough.
  1440. */
  1441. if (in_sack <= 0) {
  1442. tmp = tcp_shift_skb_data(sk, skb, state,
  1443. start_seq, end_seq, dup_sack);
  1444. if (tmp != NULL) {
  1445. if (tmp != skb) {
  1446. skb = tmp;
  1447. continue;
  1448. }
  1449. in_sack = 0;
  1450. } else {
  1451. in_sack = tcp_match_skb_to_sack(sk, skb,
  1452. start_seq,
  1453. end_seq);
  1454. }
  1455. }
  1456. if (unlikely(in_sack < 0))
  1457. break;
  1458. if (in_sack) {
  1459. TCP_SKB_CB(skb)->sacked =
  1460. tcp_sacktag_one(sk,
  1461. state,
  1462. TCP_SKB_CB(skb)->sacked,
  1463. TCP_SKB_CB(skb)->seq,
  1464. TCP_SKB_CB(skb)->end_seq,
  1465. dup_sack,
  1466. tcp_skb_pcount(skb));
  1467. if (!before(TCP_SKB_CB(skb)->seq,
  1468. tcp_highest_sack_seq(tp)))
  1469. tcp_advance_highest_sack(sk, skb);
  1470. }
  1471. state->fack_count += tcp_skb_pcount(skb);
  1472. }
  1473. return skb;
  1474. }
  1475. /* Avoid all extra work that is being done by sacktag while walking in
  1476. * a normal way
  1477. */
  1478. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1479. struct tcp_sacktag_state *state,
  1480. u32 skip_to_seq)
  1481. {
  1482. tcp_for_write_queue_from(skb, sk) {
  1483. if (skb == tcp_send_head(sk))
  1484. break;
  1485. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1486. break;
  1487. state->fack_count += tcp_skb_pcount(skb);
  1488. }
  1489. return skb;
  1490. }
  1491. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1492. struct sock *sk,
  1493. struct tcp_sack_block *next_dup,
  1494. struct tcp_sacktag_state *state,
  1495. u32 skip_to_seq)
  1496. {
  1497. if (next_dup == NULL)
  1498. return skb;
  1499. if (before(next_dup->start_seq, skip_to_seq)) {
  1500. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1501. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1502. next_dup->start_seq, next_dup->end_seq,
  1503. 1);
  1504. }
  1505. return skb;
  1506. }
  1507. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1508. {
  1509. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1510. }
  1511. static int
  1512. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1513. u32 prior_snd_una)
  1514. {
  1515. const struct inet_connection_sock *icsk = inet_csk(sk);
  1516. struct tcp_sock *tp = tcp_sk(sk);
  1517. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1518. TCP_SKB_CB(ack_skb)->sacked);
  1519. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1520. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1521. struct tcp_sack_block *cache;
  1522. struct tcp_sacktag_state state;
  1523. struct sk_buff *skb;
  1524. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1525. int used_sacks;
  1526. int found_dup_sack = 0;
  1527. int i, j;
  1528. int first_sack_index;
  1529. state.flag = 0;
  1530. state.reord = tp->packets_out;
  1531. if (!tp->sacked_out) {
  1532. if (WARN_ON(tp->fackets_out))
  1533. tp->fackets_out = 0;
  1534. tcp_highest_sack_reset(sk);
  1535. }
  1536. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1537. num_sacks, prior_snd_una);
  1538. if (found_dup_sack)
  1539. state.flag |= FLAG_DSACKING_ACK;
  1540. /* Eliminate too old ACKs, but take into
  1541. * account more or less fresh ones, they can
  1542. * contain valid SACK info.
  1543. */
  1544. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1545. return 0;
  1546. if (!tp->packets_out)
  1547. goto out;
  1548. used_sacks = 0;
  1549. first_sack_index = 0;
  1550. for (i = 0; i < num_sacks; i++) {
  1551. int dup_sack = !i && found_dup_sack;
  1552. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1553. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1554. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1555. sp[used_sacks].start_seq,
  1556. sp[used_sacks].end_seq)) {
  1557. int mib_idx;
  1558. if (dup_sack) {
  1559. if (!tp->undo_marker)
  1560. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1561. else
  1562. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1563. } else {
  1564. /* Don't count olds caused by ACK reordering */
  1565. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1566. !after(sp[used_sacks].end_seq, tp->snd_una))
  1567. continue;
  1568. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1569. }
  1570. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1571. if (i == 0)
  1572. first_sack_index = -1;
  1573. continue;
  1574. }
  1575. /* Ignore very old stuff early */
  1576. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1577. continue;
  1578. used_sacks++;
  1579. }
  1580. /* order SACK blocks to allow in order walk of the retrans queue */
  1581. for (i = used_sacks - 1; i > 0; i--) {
  1582. for (j = 0; j < i; j++) {
  1583. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1584. swap(sp[j], sp[j + 1]);
  1585. /* Track where the first SACK block goes to */
  1586. if (j == first_sack_index)
  1587. first_sack_index = j + 1;
  1588. }
  1589. }
  1590. }
  1591. skb = tcp_write_queue_head(sk);
  1592. state.fack_count = 0;
  1593. i = 0;
  1594. if (!tp->sacked_out) {
  1595. /* It's already past, so skip checking against it */
  1596. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1597. } else {
  1598. cache = tp->recv_sack_cache;
  1599. /* Skip empty blocks in at head of the cache */
  1600. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1601. !cache->end_seq)
  1602. cache++;
  1603. }
  1604. while (i < used_sacks) {
  1605. u32 start_seq = sp[i].start_seq;
  1606. u32 end_seq = sp[i].end_seq;
  1607. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1608. struct tcp_sack_block *next_dup = NULL;
  1609. if (found_dup_sack && ((i + 1) == first_sack_index))
  1610. next_dup = &sp[i + 1];
  1611. /* Skip too early cached blocks */
  1612. while (tcp_sack_cache_ok(tp, cache) &&
  1613. !before(start_seq, cache->end_seq))
  1614. cache++;
  1615. /* Can skip some work by looking recv_sack_cache? */
  1616. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1617. after(end_seq, cache->start_seq)) {
  1618. /* Head todo? */
  1619. if (before(start_seq, cache->start_seq)) {
  1620. skb = tcp_sacktag_skip(skb, sk, &state,
  1621. start_seq);
  1622. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1623. &state,
  1624. start_seq,
  1625. cache->start_seq,
  1626. dup_sack);
  1627. }
  1628. /* Rest of the block already fully processed? */
  1629. if (!after(end_seq, cache->end_seq))
  1630. goto advance_sp;
  1631. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1632. &state,
  1633. cache->end_seq);
  1634. /* ...tail remains todo... */
  1635. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1636. /* ...but better entrypoint exists! */
  1637. skb = tcp_highest_sack(sk);
  1638. if (skb == NULL)
  1639. break;
  1640. state.fack_count = tp->fackets_out;
  1641. cache++;
  1642. goto walk;
  1643. }
  1644. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1645. /* Check overlap against next cached too (past this one already) */
  1646. cache++;
  1647. continue;
  1648. }
  1649. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1650. skb = tcp_highest_sack(sk);
  1651. if (skb == NULL)
  1652. break;
  1653. state.fack_count = tp->fackets_out;
  1654. }
  1655. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1656. walk:
  1657. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1658. start_seq, end_seq, dup_sack);
  1659. advance_sp:
  1660. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1661. * due to in-order walk
  1662. */
  1663. if (after(end_seq, tp->frto_highmark))
  1664. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1665. i++;
  1666. }
  1667. /* Clear the head of the cache sack blocks so we can skip it next time */
  1668. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1669. tp->recv_sack_cache[i].start_seq = 0;
  1670. tp->recv_sack_cache[i].end_seq = 0;
  1671. }
  1672. for (j = 0; j < used_sacks; j++)
  1673. tp->recv_sack_cache[i++] = sp[j];
  1674. tcp_mark_lost_retrans(sk);
  1675. tcp_verify_left_out(tp);
  1676. if ((state.reord < tp->fackets_out) &&
  1677. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1678. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1679. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1680. out:
  1681. #if FASTRETRANS_DEBUG > 0
  1682. WARN_ON((int)tp->sacked_out < 0);
  1683. WARN_ON((int)tp->lost_out < 0);
  1684. WARN_ON((int)tp->retrans_out < 0);
  1685. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1686. #endif
  1687. return state.flag;
  1688. }
  1689. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1690. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1691. */
  1692. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1693. {
  1694. u32 holes;
  1695. holes = max(tp->lost_out, 1U);
  1696. holes = min(holes, tp->packets_out);
  1697. if ((tp->sacked_out + holes) > tp->packets_out) {
  1698. tp->sacked_out = tp->packets_out - holes;
  1699. return 1;
  1700. }
  1701. return 0;
  1702. }
  1703. /* If we receive more dupacks than we expected counting segments
  1704. * in assumption of absent reordering, interpret this as reordering.
  1705. * The only another reason could be bug in receiver TCP.
  1706. */
  1707. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1708. {
  1709. struct tcp_sock *tp = tcp_sk(sk);
  1710. if (tcp_limit_reno_sacked(tp))
  1711. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1712. }
  1713. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1714. static void tcp_add_reno_sack(struct sock *sk)
  1715. {
  1716. struct tcp_sock *tp = tcp_sk(sk);
  1717. tp->sacked_out++;
  1718. tcp_check_reno_reordering(sk, 0);
  1719. tcp_verify_left_out(tp);
  1720. }
  1721. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1722. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1723. {
  1724. struct tcp_sock *tp = tcp_sk(sk);
  1725. if (acked > 0) {
  1726. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1727. if (acked - 1 >= tp->sacked_out)
  1728. tp->sacked_out = 0;
  1729. else
  1730. tp->sacked_out -= acked - 1;
  1731. }
  1732. tcp_check_reno_reordering(sk, acked);
  1733. tcp_verify_left_out(tp);
  1734. }
  1735. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1736. {
  1737. tp->sacked_out = 0;
  1738. }
  1739. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1740. {
  1741. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1742. }
  1743. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1744. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1745. */
  1746. int tcp_use_frto(struct sock *sk)
  1747. {
  1748. const struct tcp_sock *tp = tcp_sk(sk);
  1749. const struct inet_connection_sock *icsk = inet_csk(sk);
  1750. struct sk_buff *skb;
  1751. if (!sysctl_tcp_frto)
  1752. return 0;
  1753. /* MTU probe and F-RTO won't really play nicely along currently */
  1754. if (icsk->icsk_mtup.probe_size)
  1755. return 0;
  1756. if (tcp_is_sackfrto(tp))
  1757. return 1;
  1758. /* Avoid expensive walking of rexmit queue if possible */
  1759. if (tp->retrans_out > 1)
  1760. return 0;
  1761. skb = tcp_write_queue_head(sk);
  1762. if (tcp_skb_is_last(sk, skb))
  1763. return 1;
  1764. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1765. tcp_for_write_queue_from(skb, sk) {
  1766. if (skb == tcp_send_head(sk))
  1767. break;
  1768. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1769. return 0;
  1770. /* Short-circuit when first non-SACKed skb has been checked */
  1771. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1772. break;
  1773. }
  1774. return 1;
  1775. }
  1776. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1777. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1778. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1779. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1780. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1781. * bits are handled if the Loss state is really to be entered (in
  1782. * tcp_enter_frto_loss).
  1783. *
  1784. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1785. * does:
  1786. * "Reduce ssthresh if it has not yet been made inside this window."
  1787. */
  1788. void tcp_enter_frto(struct sock *sk)
  1789. {
  1790. const struct inet_connection_sock *icsk = inet_csk(sk);
  1791. struct tcp_sock *tp = tcp_sk(sk);
  1792. struct sk_buff *skb;
  1793. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1794. tp->snd_una == tp->high_seq ||
  1795. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1796. !icsk->icsk_retransmits)) {
  1797. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1798. /* Our state is too optimistic in ssthresh() call because cwnd
  1799. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1800. * recovery has not yet completed. Pattern would be this: RTO,
  1801. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1802. * up here twice).
  1803. * RFC4138 should be more specific on what to do, even though
  1804. * RTO is quite unlikely to occur after the first Cumulative ACK
  1805. * due to back-off and complexity of triggering events ...
  1806. */
  1807. if (tp->frto_counter) {
  1808. u32 stored_cwnd;
  1809. stored_cwnd = tp->snd_cwnd;
  1810. tp->snd_cwnd = 2;
  1811. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1812. tp->snd_cwnd = stored_cwnd;
  1813. } else {
  1814. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1815. }
  1816. /* ... in theory, cong.control module could do "any tricks" in
  1817. * ssthresh(), which means that ca_state, lost bits and lost_out
  1818. * counter would have to be faked before the call occurs. We
  1819. * consider that too expensive, unlikely and hacky, so modules
  1820. * using these in ssthresh() must deal these incompatibility
  1821. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1822. */
  1823. tcp_ca_event(sk, CA_EVENT_FRTO);
  1824. }
  1825. tp->undo_marker = tp->snd_una;
  1826. tp->undo_retrans = 0;
  1827. skb = tcp_write_queue_head(sk);
  1828. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1829. tp->undo_marker = 0;
  1830. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1831. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1832. tp->retrans_out -= tcp_skb_pcount(skb);
  1833. }
  1834. tcp_verify_left_out(tp);
  1835. /* Too bad if TCP was application limited */
  1836. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1837. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1838. * The last condition is necessary at least in tp->frto_counter case.
  1839. */
  1840. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1841. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1842. after(tp->high_seq, tp->snd_una)) {
  1843. tp->frto_highmark = tp->high_seq;
  1844. } else {
  1845. tp->frto_highmark = tp->snd_nxt;
  1846. }
  1847. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1848. tp->high_seq = tp->snd_nxt;
  1849. tp->frto_counter = 1;
  1850. }
  1851. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1852. * which indicates that we should follow the traditional RTO recovery,
  1853. * i.e. mark everything lost and do go-back-N retransmission.
  1854. */
  1855. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1856. {
  1857. struct tcp_sock *tp = tcp_sk(sk);
  1858. struct sk_buff *skb;
  1859. tp->lost_out = 0;
  1860. tp->retrans_out = 0;
  1861. if (tcp_is_reno(tp))
  1862. tcp_reset_reno_sack(tp);
  1863. tcp_for_write_queue(skb, sk) {
  1864. if (skb == tcp_send_head(sk))
  1865. break;
  1866. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1867. /*
  1868. * Count the retransmission made on RTO correctly (only when
  1869. * waiting for the first ACK and did not get it)...
  1870. */
  1871. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1872. /* For some reason this R-bit might get cleared? */
  1873. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1874. tp->retrans_out += tcp_skb_pcount(skb);
  1875. /* ...enter this if branch just for the first segment */
  1876. flag |= FLAG_DATA_ACKED;
  1877. } else {
  1878. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1879. tp->undo_marker = 0;
  1880. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1881. }
  1882. /* Marking forward transmissions that were made after RTO lost
  1883. * can cause unnecessary retransmissions in some scenarios,
  1884. * SACK blocks will mitigate that in some but not in all cases.
  1885. * We used to not mark them but it was causing break-ups with
  1886. * receivers that do only in-order receival.
  1887. *
  1888. * TODO: we could detect presence of such receiver and select
  1889. * different behavior per flow.
  1890. */
  1891. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1892. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1893. tp->lost_out += tcp_skb_pcount(skb);
  1894. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1895. }
  1896. }
  1897. tcp_verify_left_out(tp);
  1898. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1899. tp->snd_cwnd_cnt = 0;
  1900. tp->snd_cwnd_stamp = tcp_time_stamp;
  1901. tp->frto_counter = 0;
  1902. tp->bytes_acked = 0;
  1903. tp->reordering = min_t(unsigned int, tp->reordering,
  1904. sysctl_tcp_reordering);
  1905. tcp_set_ca_state(sk, TCP_CA_Loss);
  1906. tp->high_seq = tp->snd_nxt;
  1907. TCP_ECN_queue_cwr(tp);
  1908. tcp_clear_all_retrans_hints(tp);
  1909. }
  1910. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1911. {
  1912. tp->retrans_out = 0;
  1913. tp->lost_out = 0;
  1914. tp->undo_marker = 0;
  1915. tp->undo_retrans = 0;
  1916. }
  1917. void tcp_clear_retrans(struct tcp_sock *tp)
  1918. {
  1919. tcp_clear_retrans_partial(tp);
  1920. tp->fackets_out = 0;
  1921. tp->sacked_out = 0;
  1922. }
  1923. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1924. * and reset tags completely, otherwise preserve SACKs. If receiver
  1925. * dropped its ofo queue, we will know this due to reneging detection.
  1926. */
  1927. void tcp_enter_loss(struct sock *sk, int how)
  1928. {
  1929. const struct inet_connection_sock *icsk = inet_csk(sk);
  1930. struct tcp_sock *tp = tcp_sk(sk);
  1931. struct sk_buff *skb;
  1932. /* Reduce ssthresh if it has not yet been made inside this window. */
  1933. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1934. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1935. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1936. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1937. tcp_ca_event(sk, CA_EVENT_LOSS);
  1938. }
  1939. tp->snd_cwnd = 1;
  1940. tp->snd_cwnd_cnt = 0;
  1941. tp->snd_cwnd_stamp = tcp_time_stamp;
  1942. tp->bytes_acked = 0;
  1943. tcp_clear_retrans_partial(tp);
  1944. if (tcp_is_reno(tp))
  1945. tcp_reset_reno_sack(tp);
  1946. if (!how) {
  1947. /* Push undo marker, if it was plain RTO and nothing
  1948. * was retransmitted. */
  1949. tp->undo_marker = tp->snd_una;
  1950. } else {
  1951. tp->sacked_out = 0;
  1952. tp->fackets_out = 0;
  1953. }
  1954. tcp_clear_all_retrans_hints(tp);
  1955. tcp_for_write_queue(skb, sk) {
  1956. if (skb == tcp_send_head(sk))
  1957. break;
  1958. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1959. tp->undo_marker = 0;
  1960. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1961. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1962. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1963. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1964. tp->lost_out += tcp_skb_pcount(skb);
  1965. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1966. }
  1967. }
  1968. tcp_verify_left_out(tp);
  1969. tp->reordering = min_t(unsigned int, tp->reordering,
  1970. sysctl_tcp_reordering);
  1971. tcp_set_ca_state(sk, TCP_CA_Loss);
  1972. tp->high_seq = tp->snd_nxt;
  1973. TCP_ECN_queue_cwr(tp);
  1974. /* Abort F-RTO algorithm if one is in progress */
  1975. tp->frto_counter = 0;
  1976. }
  1977. /* If ACK arrived pointing to a remembered SACK, it means that our
  1978. * remembered SACKs do not reflect real state of receiver i.e.
  1979. * receiver _host_ is heavily congested (or buggy).
  1980. *
  1981. * Do processing similar to RTO timeout.
  1982. */
  1983. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1984. {
  1985. if (flag & FLAG_SACK_RENEGING) {
  1986. struct inet_connection_sock *icsk = inet_csk(sk);
  1987. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1988. tcp_enter_loss(sk, 1);
  1989. icsk->icsk_retransmits++;
  1990. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1991. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1992. icsk->icsk_rto, TCP_RTO_MAX);
  1993. return 1;
  1994. }
  1995. return 0;
  1996. }
  1997. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1998. {
  1999. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  2000. }
  2001. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2002. * counter when SACK is enabled (without SACK, sacked_out is used for
  2003. * that purpose).
  2004. *
  2005. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2006. * segments up to the highest received SACK block so far and holes in
  2007. * between them.
  2008. *
  2009. * With reordering, holes may still be in flight, so RFC3517 recovery
  2010. * uses pure sacked_out (total number of SACKed segments) even though
  2011. * it violates the RFC that uses duplicate ACKs, often these are equal
  2012. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2013. * they differ. Since neither occurs due to loss, TCP should really
  2014. * ignore them.
  2015. */
  2016. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2017. {
  2018. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2019. }
  2020. static inline int tcp_skb_timedout(const struct sock *sk,
  2021. const struct sk_buff *skb)
  2022. {
  2023. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2024. }
  2025. static inline int tcp_head_timedout(const struct sock *sk)
  2026. {
  2027. const struct tcp_sock *tp = tcp_sk(sk);
  2028. return tp->packets_out &&
  2029. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2030. }
  2031. /* Linux NewReno/SACK/FACK/ECN state machine.
  2032. * --------------------------------------
  2033. *
  2034. * "Open" Normal state, no dubious events, fast path.
  2035. * "Disorder" In all the respects it is "Open",
  2036. * but requires a bit more attention. It is entered when
  2037. * we see some SACKs or dupacks. It is split of "Open"
  2038. * mainly to move some processing from fast path to slow one.
  2039. * "CWR" CWND was reduced due to some Congestion Notification event.
  2040. * It can be ECN, ICMP source quench, local device congestion.
  2041. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2042. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2043. *
  2044. * tcp_fastretrans_alert() is entered:
  2045. * - each incoming ACK, if state is not "Open"
  2046. * - when arrived ACK is unusual, namely:
  2047. * * SACK
  2048. * * Duplicate ACK.
  2049. * * ECN ECE.
  2050. *
  2051. * Counting packets in flight is pretty simple.
  2052. *
  2053. * in_flight = packets_out - left_out + retrans_out
  2054. *
  2055. * packets_out is SND.NXT-SND.UNA counted in packets.
  2056. *
  2057. * retrans_out is number of retransmitted segments.
  2058. *
  2059. * left_out is number of segments left network, but not ACKed yet.
  2060. *
  2061. * left_out = sacked_out + lost_out
  2062. *
  2063. * sacked_out: Packets, which arrived to receiver out of order
  2064. * and hence not ACKed. With SACKs this number is simply
  2065. * amount of SACKed data. Even without SACKs
  2066. * it is easy to give pretty reliable estimate of this number,
  2067. * counting duplicate ACKs.
  2068. *
  2069. * lost_out: Packets lost by network. TCP has no explicit
  2070. * "loss notification" feedback from network (for now).
  2071. * It means that this number can be only _guessed_.
  2072. * Actually, it is the heuristics to predict lossage that
  2073. * distinguishes different algorithms.
  2074. *
  2075. * F.e. after RTO, when all the queue is considered as lost,
  2076. * lost_out = packets_out and in_flight = retrans_out.
  2077. *
  2078. * Essentially, we have now two algorithms counting
  2079. * lost packets.
  2080. *
  2081. * FACK: It is the simplest heuristics. As soon as we decided
  2082. * that something is lost, we decide that _all_ not SACKed
  2083. * packets until the most forward SACK are lost. I.e.
  2084. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2085. * It is absolutely correct estimate, if network does not reorder
  2086. * packets. And it loses any connection to reality when reordering
  2087. * takes place. We use FACK by default until reordering
  2088. * is suspected on the path to this destination.
  2089. *
  2090. * NewReno: when Recovery is entered, we assume that one segment
  2091. * is lost (classic Reno). While we are in Recovery and
  2092. * a partial ACK arrives, we assume that one more packet
  2093. * is lost (NewReno). This heuristics are the same in NewReno
  2094. * and SACK.
  2095. *
  2096. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2097. * deflation etc. CWND is real congestion window, never inflated, changes
  2098. * only according to classic VJ rules.
  2099. *
  2100. * Really tricky (and requiring careful tuning) part of algorithm
  2101. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2102. * The first determines the moment _when_ we should reduce CWND and,
  2103. * hence, slow down forward transmission. In fact, it determines the moment
  2104. * when we decide that hole is caused by loss, rather than by a reorder.
  2105. *
  2106. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2107. * holes, caused by lost packets.
  2108. *
  2109. * And the most logically complicated part of algorithm is undo
  2110. * heuristics. We detect false retransmits due to both too early
  2111. * fast retransmit (reordering) and underestimated RTO, analyzing
  2112. * timestamps and D-SACKs. When we detect that some segments were
  2113. * retransmitted by mistake and CWND reduction was wrong, we undo
  2114. * window reduction and abort recovery phase. This logic is hidden
  2115. * inside several functions named tcp_try_undo_<something>.
  2116. */
  2117. /* This function decides, when we should leave Disordered state
  2118. * and enter Recovery phase, reducing congestion window.
  2119. *
  2120. * Main question: may we further continue forward transmission
  2121. * with the same cwnd?
  2122. */
  2123. static int tcp_time_to_recover(struct sock *sk)
  2124. {
  2125. struct tcp_sock *tp = tcp_sk(sk);
  2126. __u32 packets_out;
  2127. /* Do not perform any recovery during F-RTO algorithm */
  2128. if (tp->frto_counter)
  2129. return 0;
  2130. /* Trick#1: The loss is proven. */
  2131. if (tp->lost_out)
  2132. return 1;
  2133. /* Not-A-Trick#2 : Classic rule... */
  2134. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2135. return 1;
  2136. /* Trick#3 : when we use RFC2988 timer restart, fast
  2137. * retransmit can be triggered by timeout of queue head.
  2138. */
  2139. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2140. return 1;
  2141. /* Trick#4: It is still not OK... But will it be useful to delay
  2142. * recovery more?
  2143. */
  2144. packets_out = tp->packets_out;
  2145. if (packets_out <= tp->reordering &&
  2146. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2147. !tcp_may_send_now(sk)) {
  2148. /* We have nothing to send. This connection is limited
  2149. * either by receiver window or by application.
  2150. */
  2151. return 1;
  2152. }
  2153. /* If a thin stream is detected, retransmit after first
  2154. * received dupack. Employ only if SACK is supported in order
  2155. * to avoid possible corner-case series of spurious retransmissions
  2156. * Use only if there are no unsent data.
  2157. */
  2158. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2159. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2160. tcp_is_sack(tp) && !tcp_send_head(sk))
  2161. return 1;
  2162. return 0;
  2163. }
  2164. /* New heuristics: it is possible only after we switched to restart timer
  2165. * each time when something is ACKed. Hence, we can detect timed out packets
  2166. * during fast retransmit without falling to slow start.
  2167. *
  2168. * Usefulness of this as is very questionable, since we should know which of
  2169. * the segments is the next to timeout which is relatively expensive to find
  2170. * in general case unless we add some data structure just for that. The
  2171. * current approach certainly won't find the right one too often and when it
  2172. * finally does find _something_ it usually marks large part of the window
  2173. * right away (because a retransmission with a larger timestamp blocks the
  2174. * loop from advancing). -ij
  2175. */
  2176. static void tcp_timeout_skbs(struct sock *sk)
  2177. {
  2178. struct tcp_sock *tp = tcp_sk(sk);
  2179. struct sk_buff *skb;
  2180. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2181. return;
  2182. skb = tp->scoreboard_skb_hint;
  2183. if (tp->scoreboard_skb_hint == NULL)
  2184. skb = tcp_write_queue_head(sk);
  2185. tcp_for_write_queue_from(skb, sk) {
  2186. if (skb == tcp_send_head(sk))
  2187. break;
  2188. if (!tcp_skb_timedout(sk, skb))
  2189. break;
  2190. tcp_skb_mark_lost(tp, skb);
  2191. }
  2192. tp->scoreboard_skb_hint = skb;
  2193. tcp_verify_left_out(tp);
  2194. }
  2195. /* Detect loss in event "A" above by marking head of queue up as lost.
  2196. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2197. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2198. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2199. * the maximum SACKed segments to pass before reaching this limit.
  2200. */
  2201. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2202. {
  2203. struct tcp_sock *tp = tcp_sk(sk);
  2204. struct sk_buff *skb;
  2205. int cnt, oldcnt;
  2206. int err;
  2207. unsigned int mss;
  2208. /* Use SACK to deduce losses of new sequences sent during recovery */
  2209. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2210. WARN_ON(packets > tp->packets_out);
  2211. if (tp->lost_skb_hint) {
  2212. skb = tp->lost_skb_hint;
  2213. cnt = tp->lost_cnt_hint;
  2214. /* Head already handled? */
  2215. if (mark_head && skb != tcp_write_queue_head(sk))
  2216. return;
  2217. } else {
  2218. skb = tcp_write_queue_head(sk);
  2219. cnt = 0;
  2220. }
  2221. tcp_for_write_queue_from(skb, sk) {
  2222. if (skb == tcp_send_head(sk))
  2223. break;
  2224. /* TODO: do this better */
  2225. /* this is not the most efficient way to do this... */
  2226. tp->lost_skb_hint = skb;
  2227. tp->lost_cnt_hint = cnt;
  2228. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2229. break;
  2230. oldcnt = cnt;
  2231. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2232. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2233. cnt += tcp_skb_pcount(skb);
  2234. if (cnt > packets) {
  2235. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2236. (oldcnt >= packets))
  2237. break;
  2238. mss = skb_shinfo(skb)->gso_size;
  2239. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2240. if (err < 0)
  2241. break;
  2242. cnt = packets;
  2243. }
  2244. tcp_skb_mark_lost(tp, skb);
  2245. if (mark_head)
  2246. break;
  2247. }
  2248. tcp_verify_left_out(tp);
  2249. }
  2250. /* Account newly detected lost packet(s) */
  2251. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2252. {
  2253. struct tcp_sock *tp = tcp_sk(sk);
  2254. if (tcp_is_reno(tp)) {
  2255. tcp_mark_head_lost(sk, 1, 1);
  2256. } else if (tcp_is_fack(tp)) {
  2257. int lost = tp->fackets_out - tp->reordering;
  2258. if (lost <= 0)
  2259. lost = 1;
  2260. tcp_mark_head_lost(sk, lost, 0);
  2261. } else {
  2262. int sacked_upto = tp->sacked_out - tp->reordering;
  2263. if (sacked_upto >= 0)
  2264. tcp_mark_head_lost(sk, sacked_upto, 0);
  2265. else if (fast_rexmit)
  2266. tcp_mark_head_lost(sk, 1, 1);
  2267. }
  2268. tcp_timeout_skbs(sk);
  2269. }
  2270. /* CWND moderation, preventing bursts due to too big ACKs
  2271. * in dubious situations.
  2272. */
  2273. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2274. {
  2275. tp->snd_cwnd = min(tp->snd_cwnd,
  2276. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2277. tp->snd_cwnd_stamp = tcp_time_stamp;
  2278. }
  2279. /* Lower bound on congestion window is slow start threshold
  2280. * unless congestion avoidance choice decides to overide it.
  2281. */
  2282. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2283. {
  2284. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2285. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2286. }
  2287. /* Decrease cwnd each second ack. */
  2288. static void tcp_cwnd_down(struct sock *sk, int flag)
  2289. {
  2290. struct tcp_sock *tp = tcp_sk(sk);
  2291. int decr = tp->snd_cwnd_cnt + 1;
  2292. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2293. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2294. tp->snd_cwnd_cnt = decr & 1;
  2295. decr >>= 1;
  2296. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2297. tp->snd_cwnd -= decr;
  2298. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2299. tp->snd_cwnd_stamp = tcp_time_stamp;
  2300. }
  2301. }
  2302. /* Nothing was retransmitted or returned timestamp is less
  2303. * than timestamp of the first retransmission.
  2304. */
  2305. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2306. {
  2307. return !tp->retrans_stamp ||
  2308. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2309. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2310. }
  2311. /* Undo procedures. */
  2312. #if FASTRETRANS_DEBUG > 1
  2313. static void DBGUNDO(struct sock *sk, const char *msg)
  2314. {
  2315. struct tcp_sock *tp = tcp_sk(sk);
  2316. struct inet_sock *inet = inet_sk(sk);
  2317. if (sk->sk_family == AF_INET) {
  2318. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2319. msg,
  2320. &inet->inet_daddr, ntohs(inet->inet_dport),
  2321. tp->snd_cwnd, tcp_left_out(tp),
  2322. tp->snd_ssthresh, tp->prior_ssthresh,
  2323. tp->packets_out);
  2324. }
  2325. #if IS_ENABLED(CONFIG_IPV6)
  2326. else if (sk->sk_family == AF_INET6) {
  2327. struct ipv6_pinfo *np = inet6_sk(sk);
  2328. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2329. msg,
  2330. &np->daddr, ntohs(inet->inet_dport),
  2331. tp->snd_cwnd, tcp_left_out(tp),
  2332. tp->snd_ssthresh, tp->prior_ssthresh,
  2333. tp->packets_out);
  2334. }
  2335. #endif
  2336. }
  2337. #else
  2338. #define DBGUNDO(x...) do { } while (0)
  2339. #endif
  2340. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2341. {
  2342. struct tcp_sock *tp = tcp_sk(sk);
  2343. if (tp->prior_ssthresh) {
  2344. const struct inet_connection_sock *icsk = inet_csk(sk);
  2345. if (icsk->icsk_ca_ops->undo_cwnd)
  2346. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2347. else
  2348. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2349. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2350. tp->snd_ssthresh = tp->prior_ssthresh;
  2351. TCP_ECN_withdraw_cwr(tp);
  2352. }
  2353. } else {
  2354. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2355. }
  2356. tp->snd_cwnd_stamp = tcp_time_stamp;
  2357. }
  2358. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2359. {
  2360. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2361. }
  2362. /* People celebrate: "We love our President!" */
  2363. static int tcp_try_undo_recovery(struct sock *sk)
  2364. {
  2365. struct tcp_sock *tp = tcp_sk(sk);
  2366. if (tcp_may_undo(tp)) {
  2367. int mib_idx;
  2368. /* Happy end! We did not retransmit anything
  2369. * or our original transmission succeeded.
  2370. */
  2371. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2372. tcp_undo_cwr(sk, true);
  2373. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2374. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2375. else
  2376. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2377. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2378. tp->undo_marker = 0;
  2379. }
  2380. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2381. /* Hold old state until something *above* high_seq
  2382. * is ACKed. For Reno it is MUST to prevent false
  2383. * fast retransmits (RFC2582). SACK TCP is safe. */
  2384. tcp_moderate_cwnd(tp);
  2385. return 1;
  2386. }
  2387. tcp_set_ca_state(sk, TCP_CA_Open);
  2388. return 0;
  2389. }
  2390. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2391. static void tcp_try_undo_dsack(struct sock *sk)
  2392. {
  2393. struct tcp_sock *tp = tcp_sk(sk);
  2394. if (tp->undo_marker && !tp->undo_retrans) {
  2395. DBGUNDO(sk, "D-SACK");
  2396. tcp_undo_cwr(sk, true);
  2397. tp->undo_marker = 0;
  2398. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2399. }
  2400. }
  2401. /* We can clear retrans_stamp when there are no retransmissions in the
  2402. * window. It would seem that it is trivially available for us in
  2403. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2404. * what will happen if errors occur when sending retransmission for the
  2405. * second time. ...It could the that such segment has only
  2406. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2407. * the head skb is enough except for some reneging corner cases that
  2408. * are not worth the effort.
  2409. *
  2410. * Main reason for all this complexity is the fact that connection dying
  2411. * time now depends on the validity of the retrans_stamp, in particular,
  2412. * that successive retransmissions of a segment must not advance
  2413. * retrans_stamp under any conditions.
  2414. */
  2415. static int tcp_any_retrans_done(const struct sock *sk)
  2416. {
  2417. const struct tcp_sock *tp = tcp_sk(sk);
  2418. struct sk_buff *skb;
  2419. if (tp->retrans_out)
  2420. return 1;
  2421. skb = tcp_write_queue_head(sk);
  2422. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2423. return 1;
  2424. return 0;
  2425. }
  2426. /* Undo during fast recovery after partial ACK. */
  2427. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2428. {
  2429. struct tcp_sock *tp = tcp_sk(sk);
  2430. /* Partial ACK arrived. Force Hoe's retransmit. */
  2431. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2432. if (tcp_may_undo(tp)) {
  2433. /* Plain luck! Hole if filled with delayed
  2434. * packet, rather than with a retransmit.
  2435. */
  2436. if (!tcp_any_retrans_done(sk))
  2437. tp->retrans_stamp = 0;
  2438. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2439. DBGUNDO(sk, "Hoe");
  2440. tcp_undo_cwr(sk, false);
  2441. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2442. /* So... Do not make Hoe's retransmit yet.
  2443. * If the first packet was delayed, the rest
  2444. * ones are most probably delayed as well.
  2445. */
  2446. failed = 0;
  2447. }
  2448. return failed;
  2449. }
  2450. /* Undo during loss recovery after partial ACK. */
  2451. static int tcp_try_undo_loss(struct sock *sk)
  2452. {
  2453. struct tcp_sock *tp = tcp_sk(sk);
  2454. if (tcp_may_undo(tp)) {
  2455. struct sk_buff *skb;
  2456. tcp_for_write_queue(skb, sk) {
  2457. if (skb == tcp_send_head(sk))
  2458. break;
  2459. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2460. }
  2461. tcp_clear_all_retrans_hints(tp);
  2462. DBGUNDO(sk, "partial loss");
  2463. tp->lost_out = 0;
  2464. tcp_undo_cwr(sk, true);
  2465. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2466. inet_csk(sk)->icsk_retransmits = 0;
  2467. tp->undo_marker = 0;
  2468. if (tcp_is_sack(tp))
  2469. tcp_set_ca_state(sk, TCP_CA_Open);
  2470. return 1;
  2471. }
  2472. return 0;
  2473. }
  2474. static inline void tcp_complete_cwr(struct sock *sk)
  2475. {
  2476. struct tcp_sock *tp = tcp_sk(sk);
  2477. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2478. if (tp->undo_marker) {
  2479. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
  2480. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2481. else /* PRR */
  2482. tp->snd_cwnd = tp->snd_ssthresh;
  2483. tp->snd_cwnd_stamp = tcp_time_stamp;
  2484. }
  2485. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2486. }
  2487. static void tcp_try_keep_open(struct sock *sk)
  2488. {
  2489. struct tcp_sock *tp = tcp_sk(sk);
  2490. int state = TCP_CA_Open;
  2491. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2492. state = TCP_CA_Disorder;
  2493. if (inet_csk(sk)->icsk_ca_state != state) {
  2494. tcp_set_ca_state(sk, state);
  2495. tp->high_seq = tp->snd_nxt;
  2496. }
  2497. }
  2498. static void tcp_try_to_open(struct sock *sk, int flag)
  2499. {
  2500. struct tcp_sock *tp = tcp_sk(sk);
  2501. tcp_verify_left_out(tp);
  2502. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2503. tp->retrans_stamp = 0;
  2504. if (flag & FLAG_ECE)
  2505. tcp_enter_cwr(sk, 1);
  2506. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2507. tcp_try_keep_open(sk);
  2508. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2509. tcp_moderate_cwnd(tp);
  2510. } else {
  2511. tcp_cwnd_down(sk, flag);
  2512. }
  2513. }
  2514. static void tcp_mtup_probe_failed(struct sock *sk)
  2515. {
  2516. struct inet_connection_sock *icsk = inet_csk(sk);
  2517. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2518. icsk->icsk_mtup.probe_size = 0;
  2519. }
  2520. static void tcp_mtup_probe_success(struct sock *sk)
  2521. {
  2522. struct tcp_sock *tp = tcp_sk(sk);
  2523. struct inet_connection_sock *icsk = inet_csk(sk);
  2524. /* FIXME: breaks with very large cwnd */
  2525. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2526. tp->snd_cwnd = tp->snd_cwnd *
  2527. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2528. icsk->icsk_mtup.probe_size;
  2529. tp->snd_cwnd_cnt = 0;
  2530. tp->snd_cwnd_stamp = tcp_time_stamp;
  2531. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2532. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2533. icsk->icsk_mtup.probe_size = 0;
  2534. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2535. }
  2536. /* Do a simple retransmit without using the backoff mechanisms in
  2537. * tcp_timer. This is used for path mtu discovery.
  2538. * The socket is already locked here.
  2539. */
  2540. void tcp_simple_retransmit(struct sock *sk)
  2541. {
  2542. const struct inet_connection_sock *icsk = inet_csk(sk);
  2543. struct tcp_sock *tp = tcp_sk(sk);
  2544. struct sk_buff *skb;
  2545. unsigned int mss = tcp_current_mss(sk);
  2546. u32 prior_lost = tp->lost_out;
  2547. tcp_for_write_queue(skb, sk) {
  2548. if (skb == tcp_send_head(sk))
  2549. break;
  2550. if (tcp_skb_seglen(skb) > mss &&
  2551. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2552. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2553. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2554. tp->retrans_out -= tcp_skb_pcount(skb);
  2555. }
  2556. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2557. }
  2558. }
  2559. tcp_clear_retrans_hints_partial(tp);
  2560. if (prior_lost == tp->lost_out)
  2561. return;
  2562. if (tcp_is_reno(tp))
  2563. tcp_limit_reno_sacked(tp);
  2564. tcp_verify_left_out(tp);
  2565. /* Don't muck with the congestion window here.
  2566. * Reason is that we do not increase amount of _data_
  2567. * in network, but units changed and effective
  2568. * cwnd/ssthresh really reduced now.
  2569. */
  2570. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2571. tp->high_seq = tp->snd_nxt;
  2572. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2573. tp->prior_ssthresh = 0;
  2574. tp->undo_marker = 0;
  2575. tcp_set_ca_state(sk, TCP_CA_Loss);
  2576. }
  2577. tcp_xmit_retransmit_queue(sk);
  2578. }
  2579. EXPORT_SYMBOL(tcp_simple_retransmit);
  2580. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2581. * (proportional rate reduction with slow start reduction bound) as described in
  2582. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2583. * It computes the number of packets to send (sndcnt) based on packets newly
  2584. * delivered:
  2585. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2586. * cwnd reductions across a full RTT.
  2587. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2588. * losses and/or application stalls), do not perform any further cwnd
  2589. * reductions, but instead slow start up to ssthresh.
  2590. */
  2591. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2592. int fast_rexmit, int flag)
  2593. {
  2594. struct tcp_sock *tp = tcp_sk(sk);
  2595. int sndcnt = 0;
  2596. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2597. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2598. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2599. tp->prior_cwnd - 1;
  2600. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2601. } else {
  2602. sndcnt = min_t(int, delta,
  2603. max_t(int, tp->prr_delivered - tp->prr_out,
  2604. newly_acked_sacked) + 1);
  2605. }
  2606. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2607. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2608. }
  2609. /* Process an event, which can update packets-in-flight not trivially.
  2610. * Main goal of this function is to calculate new estimate for left_out,
  2611. * taking into account both packets sitting in receiver's buffer and
  2612. * packets lost by network.
  2613. *
  2614. * Besides that it does CWND reduction, when packet loss is detected
  2615. * and changes state of machine.
  2616. *
  2617. * It does _not_ decide what to send, it is made in function
  2618. * tcp_xmit_retransmit_queue().
  2619. */
  2620. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2621. int newly_acked_sacked, bool is_dupack,
  2622. int flag)
  2623. {
  2624. struct inet_connection_sock *icsk = inet_csk(sk);
  2625. struct tcp_sock *tp = tcp_sk(sk);
  2626. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2627. (tcp_fackets_out(tp) > tp->reordering));
  2628. int fast_rexmit = 0, mib_idx;
  2629. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2630. tp->sacked_out = 0;
  2631. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2632. tp->fackets_out = 0;
  2633. /* Now state machine starts.
  2634. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2635. if (flag & FLAG_ECE)
  2636. tp->prior_ssthresh = 0;
  2637. /* B. In all the states check for reneging SACKs. */
  2638. if (tcp_check_sack_reneging(sk, flag))
  2639. return;
  2640. /* C. Check consistency of the current state. */
  2641. tcp_verify_left_out(tp);
  2642. /* D. Check state exit conditions. State can be terminated
  2643. * when high_seq is ACKed. */
  2644. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2645. WARN_ON(tp->retrans_out != 0);
  2646. tp->retrans_stamp = 0;
  2647. } else if (!before(tp->snd_una, tp->high_seq)) {
  2648. switch (icsk->icsk_ca_state) {
  2649. case TCP_CA_Loss:
  2650. icsk->icsk_retransmits = 0;
  2651. if (tcp_try_undo_recovery(sk))
  2652. return;
  2653. break;
  2654. case TCP_CA_CWR:
  2655. /* CWR is to be held something *above* high_seq
  2656. * is ACKed for CWR bit to reach receiver. */
  2657. if (tp->snd_una != tp->high_seq) {
  2658. tcp_complete_cwr(sk);
  2659. tcp_set_ca_state(sk, TCP_CA_Open);
  2660. }
  2661. break;
  2662. case TCP_CA_Recovery:
  2663. if (tcp_is_reno(tp))
  2664. tcp_reset_reno_sack(tp);
  2665. if (tcp_try_undo_recovery(sk))
  2666. return;
  2667. tcp_complete_cwr(sk);
  2668. break;
  2669. }
  2670. }
  2671. /* E. Process state. */
  2672. switch (icsk->icsk_ca_state) {
  2673. case TCP_CA_Recovery:
  2674. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2675. if (tcp_is_reno(tp) && is_dupack)
  2676. tcp_add_reno_sack(sk);
  2677. } else
  2678. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2679. break;
  2680. case TCP_CA_Loss:
  2681. if (flag & FLAG_DATA_ACKED)
  2682. icsk->icsk_retransmits = 0;
  2683. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2684. tcp_reset_reno_sack(tp);
  2685. if (!tcp_try_undo_loss(sk)) {
  2686. tcp_moderate_cwnd(tp);
  2687. tcp_xmit_retransmit_queue(sk);
  2688. return;
  2689. }
  2690. if (icsk->icsk_ca_state != TCP_CA_Open)
  2691. return;
  2692. /* Loss is undone; fall through to processing in Open state. */
  2693. default:
  2694. if (tcp_is_reno(tp)) {
  2695. if (flag & FLAG_SND_UNA_ADVANCED)
  2696. tcp_reset_reno_sack(tp);
  2697. if (is_dupack)
  2698. tcp_add_reno_sack(sk);
  2699. }
  2700. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2701. tcp_try_undo_dsack(sk);
  2702. if (!tcp_time_to_recover(sk)) {
  2703. tcp_try_to_open(sk, flag);
  2704. return;
  2705. }
  2706. /* MTU probe failure: don't reduce cwnd */
  2707. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2708. icsk->icsk_mtup.probe_size &&
  2709. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2710. tcp_mtup_probe_failed(sk);
  2711. /* Restores the reduction we did in tcp_mtup_probe() */
  2712. tp->snd_cwnd++;
  2713. tcp_simple_retransmit(sk);
  2714. return;
  2715. }
  2716. /* Otherwise enter Recovery state */
  2717. if (tcp_is_reno(tp))
  2718. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2719. else
  2720. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2721. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2722. tp->high_seq = tp->snd_nxt;
  2723. tp->prior_ssthresh = 0;
  2724. tp->undo_marker = tp->snd_una;
  2725. tp->undo_retrans = tp->retrans_out;
  2726. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2727. if (!(flag & FLAG_ECE))
  2728. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2729. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2730. TCP_ECN_queue_cwr(tp);
  2731. }
  2732. tp->bytes_acked = 0;
  2733. tp->snd_cwnd_cnt = 0;
  2734. tp->prior_cwnd = tp->snd_cwnd;
  2735. tp->prr_delivered = 0;
  2736. tp->prr_out = 0;
  2737. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2738. fast_rexmit = 1;
  2739. }
  2740. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2741. tcp_update_scoreboard(sk, fast_rexmit);
  2742. tp->prr_delivered += newly_acked_sacked;
  2743. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2744. tcp_xmit_retransmit_queue(sk);
  2745. }
  2746. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2747. {
  2748. tcp_rtt_estimator(sk, seq_rtt);
  2749. tcp_set_rto(sk);
  2750. inet_csk(sk)->icsk_backoff = 0;
  2751. }
  2752. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2753. /* Read draft-ietf-tcplw-high-performance before mucking
  2754. * with this code. (Supersedes RFC1323)
  2755. */
  2756. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2757. {
  2758. /* RTTM Rule: A TSecr value received in a segment is used to
  2759. * update the averaged RTT measurement only if the segment
  2760. * acknowledges some new data, i.e., only if it advances the
  2761. * left edge of the send window.
  2762. *
  2763. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2764. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2765. *
  2766. * Changed: reset backoff as soon as we see the first valid sample.
  2767. * If we do not, we get strongly overestimated rto. With timestamps
  2768. * samples are accepted even from very old segments: f.e., when rtt=1
  2769. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2770. * answer arrives rto becomes 120 seconds! If at least one of segments
  2771. * in window is lost... Voila. --ANK (010210)
  2772. */
  2773. struct tcp_sock *tp = tcp_sk(sk);
  2774. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2775. }
  2776. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2777. {
  2778. /* We don't have a timestamp. Can only use
  2779. * packets that are not retransmitted to determine
  2780. * rtt estimates. Also, we must not reset the
  2781. * backoff for rto until we get a non-retransmitted
  2782. * packet. This allows us to deal with a situation
  2783. * where the network delay has increased suddenly.
  2784. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2785. */
  2786. if (flag & FLAG_RETRANS_DATA_ACKED)
  2787. return;
  2788. tcp_valid_rtt_meas(sk, seq_rtt);
  2789. }
  2790. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2791. const s32 seq_rtt)
  2792. {
  2793. const struct tcp_sock *tp = tcp_sk(sk);
  2794. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2795. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2796. tcp_ack_saw_tstamp(sk, flag);
  2797. else if (seq_rtt >= 0)
  2798. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2799. }
  2800. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2801. {
  2802. const struct inet_connection_sock *icsk = inet_csk(sk);
  2803. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2804. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2805. }
  2806. /* Restart timer after forward progress on connection.
  2807. * RFC2988 recommends to restart timer to now+rto.
  2808. */
  2809. static void tcp_rearm_rto(struct sock *sk)
  2810. {
  2811. const struct tcp_sock *tp = tcp_sk(sk);
  2812. if (!tp->packets_out) {
  2813. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2814. } else {
  2815. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2816. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2817. }
  2818. }
  2819. /* If we get here, the whole TSO packet has not been acked. */
  2820. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2821. {
  2822. struct tcp_sock *tp = tcp_sk(sk);
  2823. u32 packets_acked;
  2824. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2825. packets_acked = tcp_skb_pcount(skb);
  2826. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2827. return 0;
  2828. packets_acked -= tcp_skb_pcount(skb);
  2829. if (packets_acked) {
  2830. BUG_ON(tcp_skb_pcount(skb) == 0);
  2831. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2832. }
  2833. return packets_acked;
  2834. }
  2835. /* Remove acknowledged frames from the retransmission queue. If our packet
  2836. * is before the ack sequence we can discard it as it's confirmed to have
  2837. * arrived at the other end.
  2838. */
  2839. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2840. u32 prior_snd_una)
  2841. {
  2842. struct tcp_sock *tp = tcp_sk(sk);
  2843. const struct inet_connection_sock *icsk = inet_csk(sk);
  2844. struct sk_buff *skb;
  2845. u32 now = tcp_time_stamp;
  2846. int fully_acked = 1;
  2847. int flag = 0;
  2848. u32 pkts_acked = 0;
  2849. u32 reord = tp->packets_out;
  2850. u32 prior_sacked = tp->sacked_out;
  2851. s32 seq_rtt = -1;
  2852. s32 ca_seq_rtt = -1;
  2853. ktime_t last_ackt = net_invalid_timestamp();
  2854. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2855. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2856. u32 acked_pcount;
  2857. u8 sacked = scb->sacked;
  2858. /* Determine how many packets and what bytes were acked, tso and else */
  2859. if (after(scb->end_seq, tp->snd_una)) {
  2860. if (tcp_skb_pcount(skb) == 1 ||
  2861. !after(tp->snd_una, scb->seq))
  2862. break;
  2863. acked_pcount = tcp_tso_acked(sk, skb);
  2864. if (!acked_pcount)
  2865. break;
  2866. fully_acked = 0;
  2867. } else {
  2868. acked_pcount = tcp_skb_pcount(skb);
  2869. }
  2870. if (sacked & TCPCB_RETRANS) {
  2871. if (sacked & TCPCB_SACKED_RETRANS)
  2872. tp->retrans_out -= acked_pcount;
  2873. flag |= FLAG_RETRANS_DATA_ACKED;
  2874. ca_seq_rtt = -1;
  2875. seq_rtt = -1;
  2876. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2877. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2878. } else {
  2879. ca_seq_rtt = now - scb->when;
  2880. last_ackt = skb->tstamp;
  2881. if (seq_rtt < 0) {
  2882. seq_rtt = ca_seq_rtt;
  2883. }
  2884. if (!(sacked & TCPCB_SACKED_ACKED))
  2885. reord = min(pkts_acked, reord);
  2886. }
  2887. if (sacked & TCPCB_SACKED_ACKED)
  2888. tp->sacked_out -= acked_pcount;
  2889. if (sacked & TCPCB_LOST)
  2890. tp->lost_out -= acked_pcount;
  2891. tp->packets_out -= acked_pcount;
  2892. pkts_acked += acked_pcount;
  2893. /* Initial outgoing SYN's get put onto the write_queue
  2894. * just like anything else we transmit. It is not
  2895. * true data, and if we misinform our callers that
  2896. * this ACK acks real data, we will erroneously exit
  2897. * connection startup slow start one packet too
  2898. * quickly. This is severely frowned upon behavior.
  2899. */
  2900. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2901. flag |= FLAG_DATA_ACKED;
  2902. } else {
  2903. flag |= FLAG_SYN_ACKED;
  2904. tp->retrans_stamp = 0;
  2905. }
  2906. if (!fully_acked)
  2907. break;
  2908. tcp_unlink_write_queue(skb, sk);
  2909. sk_wmem_free_skb(sk, skb);
  2910. tp->scoreboard_skb_hint = NULL;
  2911. if (skb == tp->retransmit_skb_hint)
  2912. tp->retransmit_skb_hint = NULL;
  2913. if (skb == tp->lost_skb_hint)
  2914. tp->lost_skb_hint = NULL;
  2915. }
  2916. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2917. tp->snd_up = tp->snd_una;
  2918. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2919. flag |= FLAG_SACK_RENEGING;
  2920. if (flag & FLAG_ACKED) {
  2921. const struct tcp_congestion_ops *ca_ops
  2922. = inet_csk(sk)->icsk_ca_ops;
  2923. if (unlikely(icsk->icsk_mtup.probe_size &&
  2924. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2925. tcp_mtup_probe_success(sk);
  2926. }
  2927. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2928. tcp_rearm_rto(sk);
  2929. if (tcp_is_reno(tp)) {
  2930. tcp_remove_reno_sacks(sk, pkts_acked);
  2931. } else {
  2932. int delta;
  2933. /* Non-retransmitted hole got filled? That's reordering */
  2934. if (reord < prior_fackets)
  2935. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2936. delta = tcp_is_fack(tp) ? pkts_acked :
  2937. prior_sacked - tp->sacked_out;
  2938. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2939. }
  2940. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2941. if (ca_ops->pkts_acked) {
  2942. s32 rtt_us = -1;
  2943. /* Is the ACK triggering packet unambiguous? */
  2944. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2945. /* High resolution needed and available? */
  2946. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2947. !ktime_equal(last_ackt,
  2948. net_invalid_timestamp()))
  2949. rtt_us = ktime_us_delta(ktime_get_real(),
  2950. last_ackt);
  2951. else if (ca_seq_rtt >= 0)
  2952. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2953. }
  2954. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2955. }
  2956. }
  2957. #if FASTRETRANS_DEBUG > 0
  2958. WARN_ON((int)tp->sacked_out < 0);
  2959. WARN_ON((int)tp->lost_out < 0);
  2960. WARN_ON((int)tp->retrans_out < 0);
  2961. if (!tp->packets_out && tcp_is_sack(tp)) {
  2962. icsk = inet_csk(sk);
  2963. if (tp->lost_out) {
  2964. printk(KERN_DEBUG "Leak l=%u %d\n",
  2965. tp->lost_out, icsk->icsk_ca_state);
  2966. tp->lost_out = 0;
  2967. }
  2968. if (tp->sacked_out) {
  2969. printk(KERN_DEBUG "Leak s=%u %d\n",
  2970. tp->sacked_out, icsk->icsk_ca_state);
  2971. tp->sacked_out = 0;
  2972. }
  2973. if (tp->retrans_out) {
  2974. printk(KERN_DEBUG "Leak r=%u %d\n",
  2975. tp->retrans_out, icsk->icsk_ca_state);
  2976. tp->retrans_out = 0;
  2977. }
  2978. }
  2979. #endif
  2980. return flag;
  2981. }
  2982. static void tcp_ack_probe(struct sock *sk)
  2983. {
  2984. const struct tcp_sock *tp = tcp_sk(sk);
  2985. struct inet_connection_sock *icsk = inet_csk(sk);
  2986. /* Was it a usable window open? */
  2987. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2988. icsk->icsk_backoff = 0;
  2989. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2990. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2991. * This function is not for random using!
  2992. */
  2993. } else {
  2994. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2995. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2996. TCP_RTO_MAX);
  2997. }
  2998. }
  2999. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3000. {
  3001. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3002. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3003. }
  3004. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3005. {
  3006. const struct tcp_sock *tp = tcp_sk(sk);
  3007. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3008. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3009. }
  3010. /* Check that window update is acceptable.
  3011. * The function assumes that snd_una<=ack<=snd_next.
  3012. */
  3013. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3014. const u32 ack, const u32 ack_seq,
  3015. const u32 nwin)
  3016. {
  3017. return after(ack, tp->snd_una) ||
  3018. after(ack_seq, tp->snd_wl1) ||
  3019. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3020. }
  3021. /* Update our send window.
  3022. *
  3023. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3024. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3025. */
  3026. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3027. u32 ack_seq)
  3028. {
  3029. struct tcp_sock *tp = tcp_sk(sk);
  3030. int flag = 0;
  3031. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3032. if (likely(!tcp_hdr(skb)->syn))
  3033. nwin <<= tp->rx_opt.snd_wscale;
  3034. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3035. flag |= FLAG_WIN_UPDATE;
  3036. tcp_update_wl(tp, ack_seq);
  3037. if (tp->snd_wnd != nwin) {
  3038. tp->snd_wnd = nwin;
  3039. /* Note, it is the only place, where
  3040. * fast path is recovered for sending TCP.
  3041. */
  3042. tp->pred_flags = 0;
  3043. tcp_fast_path_check(sk);
  3044. if (nwin > tp->max_window) {
  3045. tp->max_window = nwin;
  3046. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3047. }
  3048. }
  3049. }
  3050. tp->snd_una = ack;
  3051. return flag;
  3052. }
  3053. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3054. * continue in congestion avoidance.
  3055. */
  3056. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3057. {
  3058. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3059. tp->snd_cwnd_cnt = 0;
  3060. tp->bytes_acked = 0;
  3061. TCP_ECN_queue_cwr(tp);
  3062. tcp_moderate_cwnd(tp);
  3063. }
  3064. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3065. * rate halving and continue in congestion avoidance.
  3066. */
  3067. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3068. {
  3069. tcp_enter_cwr(sk, 0);
  3070. }
  3071. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3072. {
  3073. if (flag & FLAG_ECE)
  3074. tcp_ratehalving_spur_to_response(sk);
  3075. else
  3076. tcp_undo_cwr(sk, true);
  3077. }
  3078. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3079. *
  3080. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3081. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3082. * window (but not to or beyond highest sequence sent before RTO):
  3083. * On First ACK, send two new segments out.
  3084. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3085. * algorithm is not part of the F-RTO detection algorithm
  3086. * given in RFC4138 but can be selected separately).
  3087. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3088. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3089. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3090. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3091. *
  3092. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3093. * original window even after we transmit two new data segments.
  3094. *
  3095. * SACK version:
  3096. * on first step, wait until first cumulative ACK arrives, then move to
  3097. * the second step. In second step, the next ACK decides.
  3098. *
  3099. * F-RTO is implemented (mainly) in four functions:
  3100. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3101. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3102. * called when tcp_use_frto() showed green light
  3103. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3104. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3105. * to prove that the RTO is indeed spurious. It transfers the control
  3106. * from F-RTO to the conventional RTO recovery
  3107. */
  3108. static int tcp_process_frto(struct sock *sk, int flag)
  3109. {
  3110. struct tcp_sock *tp = tcp_sk(sk);
  3111. tcp_verify_left_out(tp);
  3112. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3113. if (flag & FLAG_DATA_ACKED)
  3114. inet_csk(sk)->icsk_retransmits = 0;
  3115. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3116. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3117. tp->undo_marker = 0;
  3118. if (!before(tp->snd_una, tp->frto_highmark)) {
  3119. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3120. return 1;
  3121. }
  3122. if (!tcp_is_sackfrto(tp)) {
  3123. /* RFC4138 shortcoming in step 2; should also have case c):
  3124. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3125. * data, winupdate
  3126. */
  3127. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3128. return 1;
  3129. if (!(flag & FLAG_DATA_ACKED)) {
  3130. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3131. flag);
  3132. return 1;
  3133. }
  3134. } else {
  3135. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3136. /* Prevent sending of new data. */
  3137. tp->snd_cwnd = min(tp->snd_cwnd,
  3138. tcp_packets_in_flight(tp));
  3139. return 1;
  3140. }
  3141. if ((tp->frto_counter >= 2) &&
  3142. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3143. ((flag & FLAG_DATA_SACKED) &&
  3144. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3145. /* RFC4138 shortcoming (see comment above) */
  3146. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3147. (flag & FLAG_NOT_DUP))
  3148. return 1;
  3149. tcp_enter_frto_loss(sk, 3, flag);
  3150. return 1;
  3151. }
  3152. }
  3153. if (tp->frto_counter == 1) {
  3154. /* tcp_may_send_now needs to see updated state */
  3155. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3156. tp->frto_counter = 2;
  3157. if (!tcp_may_send_now(sk))
  3158. tcp_enter_frto_loss(sk, 2, flag);
  3159. return 1;
  3160. } else {
  3161. switch (sysctl_tcp_frto_response) {
  3162. case 2:
  3163. tcp_undo_spur_to_response(sk, flag);
  3164. break;
  3165. case 1:
  3166. tcp_conservative_spur_to_response(tp);
  3167. break;
  3168. default:
  3169. tcp_ratehalving_spur_to_response(sk);
  3170. break;
  3171. }
  3172. tp->frto_counter = 0;
  3173. tp->undo_marker = 0;
  3174. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3175. }
  3176. return 0;
  3177. }
  3178. /* This routine deals with incoming acks, but not outgoing ones. */
  3179. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3180. {
  3181. struct inet_connection_sock *icsk = inet_csk(sk);
  3182. struct tcp_sock *tp = tcp_sk(sk);
  3183. u32 prior_snd_una = tp->snd_una;
  3184. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3185. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3186. bool is_dupack = false;
  3187. u32 prior_in_flight;
  3188. u32 prior_fackets;
  3189. int prior_packets;
  3190. int prior_sacked = tp->sacked_out;
  3191. int pkts_acked = 0;
  3192. int newly_acked_sacked = 0;
  3193. int frto_cwnd = 0;
  3194. /* If the ack is older than previous acks
  3195. * then we can probably ignore it.
  3196. */
  3197. if (before(ack, prior_snd_una))
  3198. goto old_ack;
  3199. /* If the ack includes data we haven't sent yet, discard
  3200. * this segment (RFC793 Section 3.9).
  3201. */
  3202. if (after(ack, tp->snd_nxt))
  3203. goto invalid_ack;
  3204. if (after(ack, prior_snd_una))
  3205. flag |= FLAG_SND_UNA_ADVANCED;
  3206. if (sysctl_tcp_abc) {
  3207. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3208. tp->bytes_acked += ack - prior_snd_una;
  3209. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3210. /* we assume just one segment left network */
  3211. tp->bytes_acked += min(ack - prior_snd_una,
  3212. tp->mss_cache);
  3213. }
  3214. prior_fackets = tp->fackets_out;
  3215. prior_in_flight = tcp_packets_in_flight(tp);
  3216. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3217. /* Window is constant, pure forward advance.
  3218. * No more checks are required.
  3219. * Note, we use the fact that SND.UNA>=SND.WL2.
  3220. */
  3221. tcp_update_wl(tp, ack_seq);
  3222. tp->snd_una = ack;
  3223. flag |= FLAG_WIN_UPDATE;
  3224. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3225. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3226. } else {
  3227. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3228. flag |= FLAG_DATA;
  3229. else
  3230. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3231. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3232. if (TCP_SKB_CB(skb)->sacked)
  3233. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3234. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3235. flag |= FLAG_ECE;
  3236. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3237. }
  3238. /* We passed data and got it acked, remove any soft error
  3239. * log. Something worked...
  3240. */
  3241. sk->sk_err_soft = 0;
  3242. icsk->icsk_probes_out = 0;
  3243. tp->rcv_tstamp = tcp_time_stamp;
  3244. prior_packets = tp->packets_out;
  3245. if (!prior_packets)
  3246. goto no_queue;
  3247. /* See if we can take anything off of the retransmit queue. */
  3248. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3249. pkts_acked = prior_packets - tp->packets_out;
  3250. newly_acked_sacked = (prior_packets - prior_sacked) -
  3251. (tp->packets_out - tp->sacked_out);
  3252. if (tp->frto_counter)
  3253. frto_cwnd = tcp_process_frto(sk, flag);
  3254. /* Guarantee sacktag reordering detection against wrap-arounds */
  3255. if (before(tp->frto_highmark, tp->snd_una))
  3256. tp->frto_highmark = 0;
  3257. if (tcp_ack_is_dubious(sk, flag)) {
  3258. /* Advance CWND, if state allows this. */
  3259. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3260. tcp_may_raise_cwnd(sk, flag))
  3261. tcp_cong_avoid(sk, ack, prior_in_flight);
  3262. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3263. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3264. is_dupack, flag);
  3265. } else {
  3266. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3267. tcp_cong_avoid(sk, ack, prior_in_flight);
  3268. }
  3269. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3270. dst_confirm(__sk_dst_get(sk));
  3271. return 1;
  3272. no_queue:
  3273. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3274. if (flag & FLAG_DSACKING_ACK)
  3275. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3276. is_dupack, flag);
  3277. /* If this ack opens up a zero window, clear backoff. It was
  3278. * being used to time the probes, and is probably far higher than
  3279. * it needs to be for normal retransmission.
  3280. */
  3281. if (tcp_send_head(sk))
  3282. tcp_ack_probe(sk);
  3283. return 1;
  3284. invalid_ack:
  3285. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3286. return -1;
  3287. old_ack:
  3288. /* If data was SACKed, tag it and see if we should send more data.
  3289. * If data was DSACKed, see if we can undo a cwnd reduction.
  3290. */
  3291. if (TCP_SKB_CB(skb)->sacked) {
  3292. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3293. newly_acked_sacked = tp->sacked_out - prior_sacked;
  3294. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3295. is_dupack, flag);
  3296. }
  3297. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3298. return 0;
  3299. }
  3300. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3301. * But, this can also be called on packets in the established flow when
  3302. * the fast version below fails.
  3303. */
  3304. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3305. const u8 **hvpp, int estab)
  3306. {
  3307. const unsigned char *ptr;
  3308. const struct tcphdr *th = tcp_hdr(skb);
  3309. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3310. ptr = (const unsigned char *)(th + 1);
  3311. opt_rx->saw_tstamp = 0;
  3312. while (length > 0) {
  3313. int opcode = *ptr++;
  3314. int opsize;
  3315. switch (opcode) {
  3316. case TCPOPT_EOL:
  3317. return;
  3318. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3319. length--;
  3320. continue;
  3321. default:
  3322. opsize = *ptr++;
  3323. if (opsize < 2) /* "silly options" */
  3324. return;
  3325. if (opsize > length)
  3326. return; /* don't parse partial options */
  3327. switch (opcode) {
  3328. case TCPOPT_MSS:
  3329. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3330. u16 in_mss = get_unaligned_be16(ptr);
  3331. if (in_mss) {
  3332. if (opt_rx->user_mss &&
  3333. opt_rx->user_mss < in_mss)
  3334. in_mss = opt_rx->user_mss;
  3335. opt_rx->mss_clamp = in_mss;
  3336. }
  3337. }
  3338. break;
  3339. case TCPOPT_WINDOW:
  3340. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3341. !estab && sysctl_tcp_window_scaling) {
  3342. __u8 snd_wscale = *(__u8 *)ptr;
  3343. opt_rx->wscale_ok = 1;
  3344. if (snd_wscale > 14) {
  3345. if (net_ratelimit())
  3346. printk(KERN_INFO "tcp_parse_options: Illegal window "
  3347. "scaling value %d >14 received.\n",
  3348. snd_wscale);
  3349. snd_wscale = 14;
  3350. }
  3351. opt_rx->snd_wscale = snd_wscale;
  3352. }
  3353. break;
  3354. case TCPOPT_TIMESTAMP:
  3355. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3356. ((estab && opt_rx->tstamp_ok) ||
  3357. (!estab && sysctl_tcp_timestamps))) {
  3358. opt_rx->saw_tstamp = 1;
  3359. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3360. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3361. }
  3362. break;
  3363. case TCPOPT_SACK_PERM:
  3364. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3365. !estab && sysctl_tcp_sack) {
  3366. opt_rx->sack_ok = TCP_SACK_SEEN;
  3367. tcp_sack_reset(opt_rx);
  3368. }
  3369. break;
  3370. case TCPOPT_SACK:
  3371. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3372. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3373. opt_rx->sack_ok) {
  3374. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3375. }
  3376. break;
  3377. #ifdef CONFIG_TCP_MD5SIG
  3378. case TCPOPT_MD5SIG:
  3379. /*
  3380. * The MD5 Hash has already been
  3381. * checked (see tcp_v{4,6}_do_rcv()).
  3382. */
  3383. break;
  3384. #endif
  3385. case TCPOPT_COOKIE:
  3386. /* This option is variable length.
  3387. */
  3388. switch (opsize) {
  3389. case TCPOLEN_COOKIE_BASE:
  3390. /* not yet implemented */
  3391. break;
  3392. case TCPOLEN_COOKIE_PAIR:
  3393. /* not yet implemented */
  3394. break;
  3395. case TCPOLEN_COOKIE_MIN+0:
  3396. case TCPOLEN_COOKIE_MIN+2:
  3397. case TCPOLEN_COOKIE_MIN+4:
  3398. case TCPOLEN_COOKIE_MIN+6:
  3399. case TCPOLEN_COOKIE_MAX:
  3400. /* 16-bit multiple */
  3401. opt_rx->cookie_plus = opsize;
  3402. *hvpp = ptr;
  3403. break;
  3404. default:
  3405. /* ignore option */
  3406. break;
  3407. }
  3408. break;
  3409. }
  3410. ptr += opsize-2;
  3411. length -= opsize;
  3412. }
  3413. }
  3414. }
  3415. EXPORT_SYMBOL(tcp_parse_options);
  3416. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3417. {
  3418. const __be32 *ptr = (const __be32 *)(th + 1);
  3419. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3420. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3421. tp->rx_opt.saw_tstamp = 1;
  3422. ++ptr;
  3423. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3424. ++ptr;
  3425. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3426. return 1;
  3427. }
  3428. return 0;
  3429. }
  3430. /* Fast parse options. This hopes to only see timestamps.
  3431. * If it is wrong it falls back on tcp_parse_options().
  3432. */
  3433. static int tcp_fast_parse_options(const struct sk_buff *skb,
  3434. const struct tcphdr *th,
  3435. struct tcp_sock *tp, const u8 **hvpp)
  3436. {
  3437. /* In the spirit of fast parsing, compare doff directly to constant
  3438. * values. Because equality is used, short doff can be ignored here.
  3439. */
  3440. if (th->doff == (sizeof(*th) / 4)) {
  3441. tp->rx_opt.saw_tstamp = 0;
  3442. return 0;
  3443. } else if (tp->rx_opt.tstamp_ok &&
  3444. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3445. if (tcp_parse_aligned_timestamp(tp, th))
  3446. return 1;
  3447. }
  3448. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3449. return 1;
  3450. }
  3451. #ifdef CONFIG_TCP_MD5SIG
  3452. /*
  3453. * Parse MD5 Signature option
  3454. */
  3455. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3456. {
  3457. int length = (th->doff << 2) - sizeof(*th);
  3458. const u8 *ptr = (const u8 *)(th + 1);
  3459. /* If the TCP option is too short, we can short cut */
  3460. if (length < TCPOLEN_MD5SIG)
  3461. return NULL;
  3462. while (length > 0) {
  3463. int opcode = *ptr++;
  3464. int opsize;
  3465. switch(opcode) {
  3466. case TCPOPT_EOL:
  3467. return NULL;
  3468. case TCPOPT_NOP:
  3469. length--;
  3470. continue;
  3471. default:
  3472. opsize = *ptr++;
  3473. if (opsize < 2 || opsize > length)
  3474. return NULL;
  3475. if (opcode == TCPOPT_MD5SIG)
  3476. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3477. }
  3478. ptr += opsize - 2;
  3479. length -= opsize;
  3480. }
  3481. return NULL;
  3482. }
  3483. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3484. #endif
  3485. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3486. {
  3487. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3488. tp->rx_opt.ts_recent_stamp = get_seconds();
  3489. }
  3490. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3491. {
  3492. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3493. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3494. * extra check below makes sure this can only happen
  3495. * for pure ACK frames. -DaveM
  3496. *
  3497. * Not only, also it occurs for expired timestamps.
  3498. */
  3499. if (tcp_paws_check(&tp->rx_opt, 0))
  3500. tcp_store_ts_recent(tp);
  3501. }
  3502. }
  3503. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3504. *
  3505. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3506. * it can pass through stack. So, the following predicate verifies that
  3507. * this segment is not used for anything but congestion avoidance or
  3508. * fast retransmit. Moreover, we even are able to eliminate most of such
  3509. * second order effects, if we apply some small "replay" window (~RTO)
  3510. * to timestamp space.
  3511. *
  3512. * All these measures still do not guarantee that we reject wrapped ACKs
  3513. * on networks with high bandwidth, when sequence space is recycled fastly,
  3514. * but it guarantees that such events will be very rare and do not affect
  3515. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3516. * buggy extension.
  3517. *
  3518. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3519. * states that events when retransmit arrives after original data are rare.
  3520. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3521. * the biggest problem on large power networks even with minor reordering.
  3522. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3523. * up to bandwidth of 18Gigabit/sec. 8) ]
  3524. */
  3525. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3526. {
  3527. const struct tcp_sock *tp = tcp_sk(sk);
  3528. const struct tcphdr *th = tcp_hdr(skb);
  3529. u32 seq = TCP_SKB_CB(skb)->seq;
  3530. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3531. return (/* 1. Pure ACK with correct sequence number. */
  3532. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3533. /* 2. ... and duplicate ACK. */
  3534. ack == tp->snd_una &&
  3535. /* 3. ... and does not update window. */
  3536. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3537. /* 4. ... and sits in replay window. */
  3538. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3539. }
  3540. static inline int tcp_paws_discard(const struct sock *sk,
  3541. const struct sk_buff *skb)
  3542. {
  3543. const struct tcp_sock *tp = tcp_sk(sk);
  3544. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3545. !tcp_disordered_ack(sk, skb);
  3546. }
  3547. /* Check segment sequence number for validity.
  3548. *
  3549. * Segment controls are considered valid, if the segment
  3550. * fits to the window after truncation to the window. Acceptability
  3551. * of data (and SYN, FIN, of course) is checked separately.
  3552. * See tcp_data_queue(), for example.
  3553. *
  3554. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3555. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3556. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3557. * (borrowed from freebsd)
  3558. */
  3559. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3560. {
  3561. return !before(end_seq, tp->rcv_wup) &&
  3562. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3563. }
  3564. /* When we get a reset we do this. */
  3565. static void tcp_reset(struct sock *sk)
  3566. {
  3567. /* We want the right error as BSD sees it (and indeed as we do). */
  3568. switch (sk->sk_state) {
  3569. case TCP_SYN_SENT:
  3570. sk->sk_err = ECONNREFUSED;
  3571. break;
  3572. case TCP_CLOSE_WAIT:
  3573. sk->sk_err = EPIPE;
  3574. break;
  3575. case TCP_CLOSE:
  3576. return;
  3577. default:
  3578. sk->sk_err = ECONNRESET;
  3579. }
  3580. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3581. smp_wmb();
  3582. if (!sock_flag(sk, SOCK_DEAD))
  3583. sk->sk_error_report(sk);
  3584. tcp_done(sk);
  3585. }
  3586. /*
  3587. * Process the FIN bit. This now behaves as it is supposed to work
  3588. * and the FIN takes effect when it is validly part of sequence
  3589. * space. Not before when we get holes.
  3590. *
  3591. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3592. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3593. * TIME-WAIT)
  3594. *
  3595. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3596. * close and we go into CLOSING (and later onto TIME-WAIT)
  3597. *
  3598. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3599. */
  3600. static void tcp_fin(struct sock *sk)
  3601. {
  3602. struct tcp_sock *tp = tcp_sk(sk);
  3603. inet_csk_schedule_ack(sk);
  3604. sk->sk_shutdown |= RCV_SHUTDOWN;
  3605. sock_set_flag(sk, SOCK_DONE);
  3606. switch (sk->sk_state) {
  3607. case TCP_SYN_RECV:
  3608. case TCP_ESTABLISHED:
  3609. /* Move to CLOSE_WAIT */
  3610. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3611. inet_csk(sk)->icsk_ack.pingpong = 1;
  3612. break;
  3613. case TCP_CLOSE_WAIT:
  3614. case TCP_CLOSING:
  3615. /* Received a retransmission of the FIN, do
  3616. * nothing.
  3617. */
  3618. break;
  3619. case TCP_LAST_ACK:
  3620. /* RFC793: Remain in the LAST-ACK state. */
  3621. break;
  3622. case TCP_FIN_WAIT1:
  3623. /* This case occurs when a simultaneous close
  3624. * happens, we must ack the received FIN and
  3625. * enter the CLOSING state.
  3626. */
  3627. tcp_send_ack(sk);
  3628. tcp_set_state(sk, TCP_CLOSING);
  3629. break;
  3630. case TCP_FIN_WAIT2:
  3631. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3632. tcp_send_ack(sk);
  3633. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3634. break;
  3635. default:
  3636. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3637. * cases we should never reach this piece of code.
  3638. */
  3639. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3640. __func__, sk->sk_state);
  3641. break;
  3642. }
  3643. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3644. * Probably, we should reset in this case. For now drop them.
  3645. */
  3646. __skb_queue_purge(&tp->out_of_order_queue);
  3647. if (tcp_is_sack(tp))
  3648. tcp_sack_reset(&tp->rx_opt);
  3649. sk_mem_reclaim(sk);
  3650. if (!sock_flag(sk, SOCK_DEAD)) {
  3651. sk->sk_state_change(sk);
  3652. /* Do not send POLL_HUP for half duplex close. */
  3653. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3654. sk->sk_state == TCP_CLOSE)
  3655. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3656. else
  3657. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3658. }
  3659. }
  3660. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3661. u32 end_seq)
  3662. {
  3663. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3664. if (before(seq, sp->start_seq))
  3665. sp->start_seq = seq;
  3666. if (after(end_seq, sp->end_seq))
  3667. sp->end_seq = end_seq;
  3668. return 1;
  3669. }
  3670. return 0;
  3671. }
  3672. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3673. {
  3674. struct tcp_sock *tp = tcp_sk(sk);
  3675. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3676. int mib_idx;
  3677. if (before(seq, tp->rcv_nxt))
  3678. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3679. else
  3680. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3681. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3682. tp->rx_opt.dsack = 1;
  3683. tp->duplicate_sack[0].start_seq = seq;
  3684. tp->duplicate_sack[0].end_seq = end_seq;
  3685. }
  3686. }
  3687. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3688. {
  3689. struct tcp_sock *tp = tcp_sk(sk);
  3690. if (!tp->rx_opt.dsack)
  3691. tcp_dsack_set(sk, seq, end_seq);
  3692. else
  3693. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3694. }
  3695. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3696. {
  3697. struct tcp_sock *tp = tcp_sk(sk);
  3698. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3699. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3700. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3701. tcp_enter_quickack_mode(sk);
  3702. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3703. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3704. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3705. end_seq = tp->rcv_nxt;
  3706. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3707. }
  3708. }
  3709. tcp_send_ack(sk);
  3710. }
  3711. /* These routines update the SACK block as out-of-order packets arrive or
  3712. * in-order packets close up the sequence space.
  3713. */
  3714. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3715. {
  3716. int this_sack;
  3717. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3718. struct tcp_sack_block *swalk = sp + 1;
  3719. /* See if the recent change to the first SACK eats into
  3720. * or hits the sequence space of other SACK blocks, if so coalesce.
  3721. */
  3722. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3723. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3724. int i;
  3725. /* Zap SWALK, by moving every further SACK up by one slot.
  3726. * Decrease num_sacks.
  3727. */
  3728. tp->rx_opt.num_sacks--;
  3729. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3730. sp[i] = sp[i + 1];
  3731. continue;
  3732. }
  3733. this_sack++, swalk++;
  3734. }
  3735. }
  3736. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3737. {
  3738. struct tcp_sock *tp = tcp_sk(sk);
  3739. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3740. int cur_sacks = tp->rx_opt.num_sacks;
  3741. int this_sack;
  3742. if (!cur_sacks)
  3743. goto new_sack;
  3744. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3745. if (tcp_sack_extend(sp, seq, end_seq)) {
  3746. /* Rotate this_sack to the first one. */
  3747. for (; this_sack > 0; this_sack--, sp--)
  3748. swap(*sp, *(sp - 1));
  3749. if (cur_sacks > 1)
  3750. tcp_sack_maybe_coalesce(tp);
  3751. return;
  3752. }
  3753. }
  3754. /* Could not find an adjacent existing SACK, build a new one,
  3755. * put it at the front, and shift everyone else down. We
  3756. * always know there is at least one SACK present already here.
  3757. *
  3758. * If the sack array is full, forget about the last one.
  3759. */
  3760. if (this_sack >= TCP_NUM_SACKS) {
  3761. this_sack--;
  3762. tp->rx_opt.num_sacks--;
  3763. sp--;
  3764. }
  3765. for (; this_sack > 0; this_sack--, sp--)
  3766. *sp = *(sp - 1);
  3767. new_sack:
  3768. /* Build the new head SACK, and we're done. */
  3769. sp->start_seq = seq;
  3770. sp->end_seq = end_seq;
  3771. tp->rx_opt.num_sacks++;
  3772. }
  3773. /* RCV.NXT advances, some SACKs should be eaten. */
  3774. static void tcp_sack_remove(struct tcp_sock *tp)
  3775. {
  3776. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3777. int num_sacks = tp->rx_opt.num_sacks;
  3778. int this_sack;
  3779. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3780. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3781. tp->rx_opt.num_sacks = 0;
  3782. return;
  3783. }
  3784. for (this_sack = 0; this_sack < num_sacks;) {
  3785. /* Check if the start of the sack is covered by RCV.NXT. */
  3786. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3787. int i;
  3788. /* RCV.NXT must cover all the block! */
  3789. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3790. /* Zap this SACK, by moving forward any other SACKS. */
  3791. for (i=this_sack+1; i < num_sacks; i++)
  3792. tp->selective_acks[i-1] = tp->selective_acks[i];
  3793. num_sacks--;
  3794. continue;
  3795. }
  3796. this_sack++;
  3797. sp++;
  3798. }
  3799. tp->rx_opt.num_sacks = num_sacks;
  3800. }
  3801. /* This one checks to see if we can put data from the
  3802. * out_of_order queue into the receive_queue.
  3803. */
  3804. static void tcp_ofo_queue(struct sock *sk)
  3805. {
  3806. struct tcp_sock *tp = tcp_sk(sk);
  3807. __u32 dsack_high = tp->rcv_nxt;
  3808. struct sk_buff *skb;
  3809. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3810. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3811. break;
  3812. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3813. __u32 dsack = dsack_high;
  3814. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3815. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3816. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3817. }
  3818. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3819. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3820. __skb_unlink(skb, &tp->out_of_order_queue);
  3821. __kfree_skb(skb);
  3822. continue;
  3823. }
  3824. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3825. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3826. TCP_SKB_CB(skb)->end_seq);
  3827. __skb_unlink(skb, &tp->out_of_order_queue);
  3828. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3829. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3830. if (tcp_hdr(skb)->fin)
  3831. tcp_fin(sk);
  3832. }
  3833. }
  3834. static int tcp_prune_ofo_queue(struct sock *sk);
  3835. static int tcp_prune_queue(struct sock *sk);
  3836. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3837. {
  3838. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3839. !sk_rmem_schedule(sk, size)) {
  3840. if (tcp_prune_queue(sk) < 0)
  3841. return -1;
  3842. if (!sk_rmem_schedule(sk, size)) {
  3843. if (!tcp_prune_ofo_queue(sk))
  3844. return -1;
  3845. if (!sk_rmem_schedule(sk, size))
  3846. return -1;
  3847. }
  3848. }
  3849. return 0;
  3850. }
  3851. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3852. {
  3853. const struct tcphdr *th = tcp_hdr(skb);
  3854. struct tcp_sock *tp = tcp_sk(sk);
  3855. int eaten = -1;
  3856. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3857. goto drop;
  3858. skb_dst_drop(skb);
  3859. __skb_pull(skb, th->doff * 4);
  3860. TCP_ECN_accept_cwr(tp, skb);
  3861. tp->rx_opt.dsack = 0;
  3862. /* Queue data for delivery to the user.
  3863. * Packets in sequence go to the receive queue.
  3864. * Out of sequence packets to the out_of_order_queue.
  3865. */
  3866. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3867. if (tcp_receive_window(tp) == 0)
  3868. goto out_of_window;
  3869. /* Ok. In sequence. In window. */
  3870. if (tp->ucopy.task == current &&
  3871. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3872. sock_owned_by_user(sk) && !tp->urg_data) {
  3873. int chunk = min_t(unsigned int, skb->len,
  3874. tp->ucopy.len);
  3875. __set_current_state(TASK_RUNNING);
  3876. local_bh_enable();
  3877. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3878. tp->ucopy.len -= chunk;
  3879. tp->copied_seq += chunk;
  3880. eaten = (chunk == skb->len);
  3881. tcp_rcv_space_adjust(sk);
  3882. }
  3883. local_bh_disable();
  3884. }
  3885. if (eaten <= 0) {
  3886. queue_and_out:
  3887. if (eaten < 0 &&
  3888. tcp_try_rmem_schedule(sk, skb->truesize))
  3889. goto drop;
  3890. skb_set_owner_r(skb, sk);
  3891. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3892. }
  3893. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3894. if (skb->len)
  3895. tcp_event_data_recv(sk, skb);
  3896. if (th->fin)
  3897. tcp_fin(sk);
  3898. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3899. tcp_ofo_queue(sk);
  3900. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3901. * gap in queue is filled.
  3902. */
  3903. if (skb_queue_empty(&tp->out_of_order_queue))
  3904. inet_csk(sk)->icsk_ack.pingpong = 0;
  3905. }
  3906. if (tp->rx_opt.num_sacks)
  3907. tcp_sack_remove(tp);
  3908. tcp_fast_path_check(sk);
  3909. if (eaten > 0)
  3910. __kfree_skb(skb);
  3911. else if (!sock_flag(sk, SOCK_DEAD))
  3912. sk->sk_data_ready(sk, 0);
  3913. return;
  3914. }
  3915. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3916. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3917. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3918. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3919. out_of_window:
  3920. tcp_enter_quickack_mode(sk);
  3921. inet_csk_schedule_ack(sk);
  3922. drop:
  3923. __kfree_skb(skb);
  3924. return;
  3925. }
  3926. /* Out of window. F.e. zero window probe. */
  3927. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3928. goto out_of_window;
  3929. tcp_enter_quickack_mode(sk);
  3930. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3931. /* Partial packet, seq < rcv_next < end_seq */
  3932. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3933. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3934. TCP_SKB_CB(skb)->end_seq);
  3935. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3936. /* If window is closed, drop tail of packet. But after
  3937. * remembering D-SACK for its head made in previous line.
  3938. */
  3939. if (!tcp_receive_window(tp))
  3940. goto out_of_window;
  3941. goto queue_and_out;
  3942. }
  3943. TCP_ECN_check_ce(tp, skb);
  3944. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3945. goto drop;
  3946. /* Disable header prediction. */
  3947. tp->pred_flags = 0;
  3948. inet_csk_schedule_ack(sk);
  3949. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3950. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3951. skb_set_owner_r(skb, sk);
  3952. if (!skb_peek(&tp->out_of_order_queue)) {
  3953. /* Initial out of order segment, build 1 SACK. */
  3954. if (tcp_is_sack(tp)) {
  3955. tp->rx_opt.num_sacks = 1;
  3956. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3957. tp->selective_acks[0].end_seq =
  3958. TCP_SKB_CB(skb)->end_seq;
  3959. }
  3960. __skb_queue_head(&tp->out_of_order_queue, skb);
  3961. } else {
  3962. struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3963. u32 seq = TCP_SKB_CB(skb)->seq;
  3964. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3965. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3966. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3967. if (!tp->rx_opt.num_sacks ||
  3968. tp->selective_acks[0].end_seq != seq)
  3969. goto add_sack;
  3970. /* Common case: data arrive in order after hole. */
  3971. tp->selective_acks[0].end_seq = end_seq;
  3972. return;
  3973. }
  3974. /* Find place to insert this segment. */
  3975. while (1) {
  3976. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3977. break;
  3978. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3979. skb1 = NULL;
  3980. break;
  3981. }
  3982. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3983. }
  3984. /* Do skb overlap to previous one? */
  3985. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3986. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3987. /* All the bits are present. Drop. */
  3988. __kfree_skb(skb);
  3989. tcp_dsack_set(sk, seq, end_seq);
  3990. goto add_sack;
  3991. }
  3992. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3993. /* Partial overlap. */
  3994. tcp_dsack_set(sk, seq,
  3995. TCP_SKB_CB(skb1)->end_seq);
  3996. } else {
  3997. if (skb_queue_is_first(&tp->out_of_order_queue,
  3998. skb1))
  3999. skb1 = NULL;
  4000. else
  4001. skb1 = skb_queue_prev(
  4002. &tp->out_of_order_queue,
  4003. skb1);
  4004. }
  4005. }
  4006. if (!skb1)
  4007. __skb_queue_head(&tp->out_of_order_queue, skb);
  4008. else
  4009. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4010. /* And clean segments covered by new one as whole. */
  4011. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  4012. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4013. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4014. break;
  4015. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4016. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4017. end_seq);
  4018. break;
  4019. }
  4020. __skb_unlink(skb1, &tp->out_of_order_queue);
  4021. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4022. TCP_SKB_CB(skb1)->end_seq);
  4023. __kfree_skb(skb1);
  4024. }
  4025. add_sack:
  4026. if (tcp_is_sack(tp))
  4027. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4028. }
  4029. }
  4030. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4031. struct sk_buff_head *list)
  4032. {
  4033. struct sk_buff *next = NULL;
  4034. if (!skb_queue_is_last(list, skb))
  4035. next = skb_queue_next(list, skb);
  4036. __skb_unlink(skb, list);
  4037. __kfree_skb(skb);
  4038. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4039. return next;
  4040. }
  4041. /* Collapse contiguous sequence of skbs head..tail with
  4042. * sequence numbers start..end.
  4043. *
  4044. * If tail is NULL, this means until the end of the list.
  4045. *
  4046. * Segments with FIN/SYN are not collapsed (only because this
  4047. * simplifies code)
  4048. */
  4049. static void
  4050. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4051. struct sk_buff *head, struct sk_buff *tail,
  4052. u32 start, u32 end)
  4053. {
  4054. struct sk_buff *skb, *n;
  4055. bool end_of_skbs;
  4056. /* First, check that queue is collapsible and find
  4057. * the point where collapsing can be useful. */
  4058. skb = head;
  4059. restart:
  4060. end_of_skbs = true;
  4061. skb_queue_walk_from_safe(list, skb, n) {
  4062. if (skb == tail)
  4063. break;
  4064. /* No new bits? It is possible on ofo queue. */
  4065. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4066. skb = tcp_collapse_one(sk, skb, list);
  4067. if (!skb)
  4068. break;
  4069. goto restart;
  4070. }
  4071. /* The first skb to collapse is:
  4072. * - not SYN/FIN and
  4073. * - bloated or contains data before "start" or
  4074. * overlaps to the next one.
  4075. */
  4076. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4077. (tcp_win_from_space(skb->truesize) > skb->len ||
  4078. before(TCP_SKB_CB(skb)->seq, start))) {
  4079. end_of_skbs = false;
  4080. break;
  4081. }
  4082. if (!skb_queue_is_last(list, skb)) {
  4083. struct sk_buff *next = skb_queue_next(list, skb);
  4084. if (next != tail &&
  4085. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4086. end_of_skbs = false;
  4087. break;
  4088. }
  4089. }
  4090. /* Decided to skip this, advance start seq. */
  4091. start = TCP_SKB_CB(skb)->end_seq;
  4092. }
  4093. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4094. return;
  4095. while (before(start, end)) {
  4096. struct sk_buff *nskb;
  4097. unsigned int header = skb_headroom(skb);
  4098. int copy = SKB_MAX_ORDER(header, 0);
  4099. /* Too big header? This can happen with IPv6. */
  4100. if (copy < 0)
  4101. return;
  4102. if (end - start < copy)
  4103. copy = end - start;
  4104. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4105. if (!nskb)
  4106. return;
  4107. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4108. skb_set_network_header(nskb, (skb_network_header(skb) -
  4109. skb->head));
  4110. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4111. skb->head));
  4112. skb_reserve(nskb, header);
  4113. memcpy(nskb->head, skb->head, header);
  4114. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4115. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4116. __skb_queue_before(list, skb, nskb);
  4117. skb_set_owner_r(nskb, sk);
  4118. /* Copy data, releasing collapsed skbs. */
  4119. while (copy > 0) {
  4120. int offset = start - TCP_SKB_CB(skb)->seq;
  4121. int size = TCP_SKB_CB(skb)->end_seq - start;
  4122. BUG_ON(offset < 0);
  4123. if (size > 0) {
  4124. size = min(copy, size);
  4125. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4126. BUG();
  4127. TCP_SKB_CB(nskb)->end_seq += size;
  4128. copy -= size;
  4129. start += size;
  4130. }
  4131. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4132. skb = tcp_collapse_one(sk, skb, list);
  4133. if (!skb ||
  4134. skb == tail ||
  4135. tcp_hdr(skb)->syn ||
  4136. tcp_hdr(skb)->fin)
  4137. return;
  4138. }
  4139. }
  4140. }
  4141. }
  4142. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4143. * and tcp_collapse() them until all the queue is collapsed.
  4144. */
  4145. static void tcp_collapse_ofo_queue(struct sock *sk)
  4146. {
  4147. struct tcp_sock *tp = tcp_sk(sk);
  4148. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4149. struct sk_buff *head;
  4150. u32 start, end;
  4151. if (skb == NULL)
  4152. return;
  4153. start = TCP_SKB_CB(skb)->seq;
  4154. end = TCP_SKB_CB(skb)->end_seq;
  4155. head = skb;
  4156. for (;;) {
  4157. struct sk_buff *next = NULL;
  4158. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4159. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4160. skb = next;
  4161. /* Segment is terminated when we see gap or when
  4162. * we are at the end of all the queue. */
  4163. if (!skb ||
  4164. after(TCP_SKB_CB(skb)->seq, end) ||
  4165. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4166. tcp_collapse(sk, &tp->out_of_order_queue,
  4167. head, skb, start, end);
  4168. head = skb;
  4169. if (!skb)
  4170. break;
  4171. /* Start new segment */
  4172. start = TCP_SKB_CB(skb)->seq;
  4173. end = TCP_SKB_CB(skb)->end_seq;
  4174. } else {
  4175. if (before(TCP_SKB_CB(skb)->seq, start))
  4176. start = TCP_SKB_CB(skb)->seq;
  4177. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4178. end = TCP_SKB_CB(skb)->end_seq;
  4179. }
  4180. }
  4181. }
  4182. /*
  4183. * Purge the out-of-order queue.
  4184. * Return true if queue was pruned.
  4185. */
  4186. static int tcp_prune_ofo_queue(struct sock *sk)
  4187. {
  4188. struct tcp_sock *tp = tcp_sk(sk);
  4189. int res = 0;
  4190. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4191. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4192. __skb_queue_purge(&tp->out_of_order_queue);
  4193. /* Reset SACK state. A conforming SACK implementation will
  4194. * do the same at a timeout based retransmit. When a connection
  4195. * is in a sad state like this, we care only about integrity
  4196. * of the connection not performance.
  4197. */
  4198. if (tp->rx_opt.sack_ok)
  4199. tcp_sack_reset(&tp->rx_opt);
  4200. sk_mem_reclaim(sk);
  4201. res = 1;
  4202. }
  4203. return res;
  4204. }
  4205. /* Reduce allocated memory if we can, trying to get
  4206. * the socket within its memory limits again.
  4207. *
  4208. * Return less than zero if we should start dropping frames
  4209. * until the socket owning process reads some of the data
  4210. * to stabilize the situation.
  4211. */
  4212. static int tcp_prune_queue(struct sock *sk)
  4213. {
  4214. struct tcp_sock *tp = tcp_sk(sk);
  4215. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4216. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4217. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4218. tcp_clamp_window(sk);
  4219. else if (sk_under_memory_pressure(sk))
  4220. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4221. tcp_collapse_ofo_queue(sk);
  4222. if (!skb_queue_empty(&sk->sk_receive_queue))
  4223. tcp_collapse(sk, &sk->sk_receive_queue,
  4224. skb_peek(&sk->sk_receive_queue),
  4225. NULL,
  4226. tp->copied_seq, tp->rcv_nxt);
  4227. sk_mem_reclaim(sk);
  4228. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4229. return 0;
  4230. /* Collapsing did not help, destructive actions follow.
  4231. * This must not ever occur. */
  4232. tcp_prune_ofo_queue(sk);
  4233. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4234. return 0;
  4235. /* If we are really being abused, tell the caller to silently
  4236. * drop receive data on the floor. It will get retransmitted
  4237. * and hopefully then we'll have sufficient space.
  4238. */
  4239. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4240. /* Massive buffer overcommit. */
  4241. tp->pred_flags = 0;
  4242. return -1;
  4243. }
  4244. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4245. * As additional protections, we do not touch cwnd in retransmission phases,
  4246. * and if application hit its sndbuf limit recently.
  4247. */
  4248. void tcp_cwnd_application_limited(struct sock *sk)
  4249. {
  4250. struct tcp_sock *tp = tcp_sk(sk);
  4251. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4252. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4253. /* Limited by application or receiver window. */
  4254. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4255. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4256. if (win_used < tp->snd_cwnd) {
  4257. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4258. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4259. }
  4260. tp->snd_cwnd_used = 0;
  4261. }
  4262. tp->snd_cwnd_stamp = tcp_time_stamp;
  4263. }
  4264. static int tcp_should_expand_sndbuf(const struct sock *sk)
  4265. {
  4266. const struct tcp_sock *tp = tcp_sk(sk);
  4267. /* If the user specified a specific send buffer setting, do
  4268. * not modify it.
  4269. */
  4270. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4271. return 0;
  4272. /* If we are under global TCP memory pressure, do not expand. */
  4273. if (sk_under_memory_pressure(sk))
  4274. return 0;
  4275. /* If we are under soft global TCP memory pressure, do not expand. */
  4276. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4277. return 0;
  4278. /* If we filled the congestion window, do not expand. */
  4279. if (tp->packets_out >= tp->snd_cwnd)
  4280. return 0;
  4281. return 1;
  4282. }
  4283. /* When incoming ACK allowed to free some skb from write_queue,
  4284. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4285. * on the exit from tcp input handler.
  4286. *
  4287. * PROBLEM: sndbuf expansion does not work well with largesend.
  4288. */
  4289. static void tcp_new_space(struct sock *sk)
  4290. {
  4291. struct tcp_sock *tp = tcp_sk(sk);
  4292. if (tcp_should_expand_sndbuf(sk)) {
  4293. int sndmem = SKB_TRUESIZE(max_t(u32,
  4294. tp->rx_opt.mss_clamp,
  4295. tp->mss_cache) +
  4296. MAX_TCP_HEADER);
  4297. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4298. tp->reordering + 1);
  4299. sndmem *= 2 * demanded;
  4300. if (sndmem > sk->sk_sndbuf)
  4301. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4302. tp->snd_cwnd_stamp = tcp_time_stamp;
  4303. }
  4304. sk->sk_write_space(sk);
  4305. }
  4306. static void tcp_check_space(struct sock *sk)
  4307. {
  4308. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4309. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4310. if (sk->sk_socket &&
  4311. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4312. tcp_new_space(sk);
  4313. }
  4314. }
  4315. static inline void tcp_data_snd_check(struct sock *sk)
  4316. {
  4317. tcp_push_pending_frames(sk);
  4318. tcp_check_space(sk);
  4319. }
  4320. /*
  4321. * Check if sending an ack is needed.
  4322. */
  4323. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4324. {
  4325. struct tcp_sock *tp = tcp_sk(sk);
  4326. /* More than one full frame received... */
  4327. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4328. /* ... and right edge of window advances far enough.
  4329. * (tcp_recvmsg() will send ACK otherwise). Or...
  4330. */
  4331. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4332. /* We ACK each frame or... */
  4333. tcp_in_quickack_mode(sk) ||
  4334. /* We have out of order data. */
  4335. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4336. /* Then ack it now */
  4337. tcp_send_ack(sk);
  4338. } else {
  4339. /* Else, send delayed ack. */
  4340. tcp_send_delayed_ack(sk);
  4341. }
  4342. }
  4343. static inline void tcp_ack_snd_check(struct sock *sk)
  4344. {
  4345. if (!inet_csk_ack_scheduled(sk)) {
  4346. /* We sent a data segment already. */
  4347. return;
  4348. }
  4349. __tcp_ack_snd_check(sk, 1);
  4350. }
  4351. /*
  4352. * This routine is only called when we have urgent data
  4353. * signaled. Its the 'slow' part of tcp_urg. It could be
  4354. * moved inline now as tcp_urg is only called from one
  4355. * place. We handle URGent data wrong. We have to - as
  4356. * BSD still doesn't use the correction from RFC961.
  4357. * For 1003.1g we should support a new option TCP_STDURG to permit
  4358. * either form (or just set the sysctl tcp_stdurg).
  4359. */
  4360. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4361. {
  4362. struct tcp_sock *tp = tcp_sk(sk);
  4363. u32 ptr = ntohs(th->urg_ptr);
  4364. if (ptr && !sysctl_tcp_stdurg)
  4365. ptr--;
  4366. ptr += ntohl(th->seq);
  4367. /* Ignore urgent data that we've already seen and read. */
  4368. if (after(tp->copied_seq, ptr))
  4369. return;
  4370. /* Do not replay urg ptr.
  4371. *
  4372. * NOTE: interesting situation not covered by specs.
  4373. * Misbehaving sender may send urg ptr, pointing to segment,
  4374. * which we already have in ofo queue. We are not able to fetch
  4375. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4376. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4377. * situations. But it is worth to think about possibility of some
  4378. * DoSes using some hypothetical application level deadlock.
  4379. */
  4380. if (before(ptr, tp->rcv_nxt))
  4381. return;
  4382. /* Do we already have a newer (or duplicate) urgent pointer? */
  4383. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4384. return;
  4385. /* Tell the world about our new urgent pointer. */
  4386. sk_send_sigurg(sk);
  4387. /* We may be adding urgent data when the last byte read was
  4388. * urgent. To do this requires some care. We cannot just ignore
  4389. * tp->copied_seq since we would read the last urgent byte again
  4390. * as data, nor can we alter copied_seq until this data arrives
  4391. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4392. *
  4393. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4394. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4395. * and expect that both A and B disappear from stream. This is _wrong_.
  4396. * Though this happens in BSD with high probability, this is occasional.
  4397. * Any application relying on this is buggy. Note also, that fix "works"
  4398. * only in this artificial test. Insert some normal data between A and B and we will
  4399. * decline of BSD again. Verdict: it is better to remove to trap
  4400. * buggy users.
  4401. */
  4402. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4403. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4404. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4405. tp->copied_seq++;
  4406. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4407. __skb_unlink(skb, &sk->sk_receive_queue);
  4408. __kfree_skb(skb);
  4409. }
  4410. }
  4411. tp->urg_data = TCP_URG_NOTYET;
  4412. tp->urg_seq = ptr;
  4413. /* Disable header prediction. */
  4414. tp->pred_flags = 0;
  4415. }
  4416. /* This is the 'fast' part of urgent handling. */
  4417. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4418. {
  4419. struct tcp_sock *tp = tcp_sk(sk);
  4420. /* Check if we get a new urgent pointer - normally not. */
  4421. if (th->urg)
  4422. tcp_check_urg(sk, th);
  4423. /* Do we wait for any urgent data? - normally not... */
  4424. if (tp->urg_data == TCP_URG_NOTYET) {
  4425. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4426. th->syn;
  4427. /* Is the urgent pointer pointing into this packet? */
  4428. if (ptr < skb->len) {
  4429. u8 tmp;
  4430. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4431. BUG();
  4432. tp->urg_data = TCP_URG_VALID | tmp;
  4433. if (!sock_flag(sk, SOCK_DEAD))
  4434. sk->sk_data_ready(sk, 0);
  4435. }
  4436. }
  4437. }
  4438. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4439. {
  4440. struct tcp_sock *tp = tcp_sk(sk);
  4441. int chunk = skb->len - hlen;
  4442. int err;
  4443. local_bh_enable();
  4444. if (skb_csum_unnecessary(skb))
  4445. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4446. else
  4447. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4448. tp->ucopy.iov);
  4449. if (!err) {
  4450. tp->ucopy.len -= chunk;
  4451. tp->copied_seq += chunk;
  4452. tcp_rcv_space_adjust(sk);
  4453. }
  4454. local_bh_disable();
  4455. return err;
  4456. }
  4457. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4458. struct sk_buff *skb)
  4459. {
  4460. __sum16 result;
  4461. if (sock_owned_by_user(sk)) {
  4462. local_bh_enable();
  4463. result = __tcp_checksum_complete(skb);
  4464. local_bh_disable();
  4465. } else {
  4466. result = __tcp_checksum_complete(skb);
  4467. }
  4468. return result;
  4469. }
  4470. static inline int tcp_checksum_complete_user(struct sock *sk,
  4471. struct sk_buff *skb)
  4472. {
  4473. return !skb_csum_unnecessary(skb) &&
  4474. __tcp_checksum_complete_user(sk, skb);
  4475. }
  4476. #ifdef CONFIG_NET_DMA
  4477. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4478. int hlen)
  4479. {
  4480. struct tcp_sock *tp = tcp_sk(sk);
  4481. int chunk = skb->len - hlen;
  4482. int dma_cookie;
  4483. int copied_early = 0;
  4484. if (tp->ucopy.wakeup)
  4485. return 0;
  4486. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4487. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  4488. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4489. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4490. skb, hlen,
  4491. tp->ucopy.iov, chunk,
  4492. tp->ucopy.pinned_list);
  4493. if (dma_cookie < 0)
  4494. goto out;
  4495. tp->ucopy.dma_cookie = dma_cookie;
  4496. copied_early = 1;
  4497. tp->ucopy.len -= chunk;
  4498. tp->copied_seq += chunk;
  4499. tcp_rcv_space_adjust(sk);
  4500. if ((tp->ucopy.len == 0) ||
  4501. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4502. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4503. tp->ucopy.wakeup = 1;
  4504. sk->sk_data_ready(sk, 0);
  4505. }
  4506. } else if (chunk > 0) {
  4507. tp->ucopy.wakeup = 1;
  4508. sk->sk_data_ready(sk, 0);
  4509. }
  4510. out:
  4511. return copied_early;
  4512. }
  4513. #endif /* CONFIG_NET_DMA */
  4514. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4515. * play significant role here.
  4516. */
  4517. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4518. const struct tcphdr *th, int syn_inerr)
  4519. {
  4520. const u8 *hash_location;
  4521. struct tcp_sock *tp = tcp_sk(sk);
  4522. /* RFC1323: H1. Apply PAWS check first. */
  4523. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4524. tp->rx_opt.saw_tstamp &&
  4525. tcp_paws_discard(sk, skb)) {
  4526. if (!th->rst) {
  4527. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4528. tcp_send_dupack(sk, skb);
  4529. goto discard;
  4530. }
  4531. /* Reset is accepted even if it did not pass PAWS. */
  4532. }
  4533. /* Step 1: check sequence number */
  4534. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4535. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4536. * (RST) segments are validated by checking their SEQ-fields."
  4537. * And page 69: "If an incoming segment is not acceptable,
  4538. * an acknowledgment should be sent in reply (unless the RST
  4539. * bit is set, if so drop the segment and return)".
  4540. */
  4541. if (!th->rst)
  4542. tcp_send_dupack(sk, skb);
  4543. goto discard;
  4544. }
  4545. /* Step 2: check RST bit */
  4546. if (th->rst) {
  4547. tcp_reset(sk);
  4548. goto discard;
  4549. }
  4550. /* ts_recent update must be made after we are sure that the packet
  4551. * is in window.
  4552. */
  4553. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4554. /* step 3: check security and precedence [ignored] */
  4555. /* step 4: Check for a SYN in window. */
  4556. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4557. if (syn_inerr)
  4558. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4559. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4560. tcp_reset(sk);
  4561. return -1;
  4562. }
  4563. return 1;
  4564. discard:
  4565. __kfree_skb(skb);
  4566. return 0;
  4567. }
  4568. /*
  4569. * TCP receive function for the ESTABLISHED state.
  4570. *
  4571. * It is split into a fast path and a slow path. The fast path is
  4572. * disabled when:
  4573. * - A zero window was announced from us - zero window probing
  4574. * is only handled properly in the slow path.
  4575. * - Out of order segments arrived.
  4576. * - Urgent data is expected.
  4577. * - There is no buffer space left
  4578. * - Unexpected TCP flags/window values/header lengths are received
  4579. * (detected by checking the TCP header against pred_flags)
  4580. * - Data is sent in both directions. Fast path only supports pure senders
  4581. * or pure receivers (this means either the sequence number or the ack
  4582. * value must stay constant)
  4583. * - Unexpected TCP option.
  4584. *
  4585. * When these conditions are not satisfied it drops into a standard
  4586. * receive procedure patterned after RFC793 to handle all cases.
  4587. * The first three cases are guaranteed by proper pred_flags setting,
  4588. * the rest is checked inline. Fast processing is turned on in
  4589. * tcp_data_queue when everything is OK.
  4590. */
  4591. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4592. const struct tcphdr *th, unsigned int len)
  4593. {
  4594. struct tcp_sock *tp = tcp_sk(sk);
  4595. int res;
  4596. /*
  4597. * Header prediction.
  4598. * The code loosely follows the one in the famous
  4599. * "30 instruction TCP receive" Van Jacobson mail.
  4600. *
  4601. * Van's trick is to deposit buffers into socket queue
  4602. * on a device interrupt, to call tcp_recv function
  4603. * on the receive process context and checksum and copy
  4604. * the buffer to user space. smart...
  4605. *
  4606. * Our current scheme is not silly either but we take the
  4607. * extra cost of the net_bh soft interrupt processing...
  4608. * We do checksum and copy also but from device to kernel.
  4609. */
  4610. tp->rx_opt.saw_tstamp = 0;
  4611. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4612. * if header_prediction is to be made
  4613. * 'S' will always be tp->tcp_header_len >> 2
  4614. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4615. * turn it off (when there are holes in the receive
  4616. * space for instance)
  4617. * PSH flag is ignored.
  4618. */
  4619. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4620. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4621. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4622. int tcp_header_len = tp->tcp_header_len;
  4623. /* Timestamp header prediction: tcp_header_len
  4624. * is automatically equal to th->doff*4 due to pred_flags
  4625. * match.
  4626. */
  4627. /* Check timestamp */
  4628. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4629. /* No? Slow path! */
  4630. if (!tcp_parse_aligned_timestamp(tp, th))
  4631. goto slow_path;
  4632. /* If PAWS failed, check it more carefully in slow path */
  4633. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4634. goto slow_path;
  4635. /* DO NOT update ts_recent here, if checksum fails
  4636. * and timestamp was corrupted part, it will result
  4637. * in a hung connection since we will drop all
  4638. * future packets due to the PAWS test.
  4639. */
  4640. }
  4641. if (len <= tcp_header_len) {
  4642. /* Bulk data transfer: sender */
  4643. if (len == tcp_header_len) {
  4644. /* Predicted packet is in window by definition.
  4645. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4646. * Hence, check seq<=rcv_wup reduces to:
  4647. */
  4648. if (tcp_header_len ==
  4649. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4650. tp->rcv_nxt == tp->rcv_wup)
  4651. tcp_store_ts_recent(tp);
  4652. /* We know that such packets are checksummed
  4653. * on entry.
  4654. */
  4655. tcp_ack(sk, skb, 0);
  4656. __kfree_skb(skb);
  4657. tcp_data_snd_check(sk);
  4658. return 0;
  4659. } else { /* Header too small */
  4660. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4661. goto discard;
  4662. }
  4663. } else {
  4664. int eaten = 0;
  4665. int copied_early = 0;
  4666. if (tp->copied_seq == tp->rcv_nxt &&
  4667. len - tcp_header_len <= tp->ucopy.len) {
  4668. #ifdef CONFIG_NET_DMA
  4669. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4670. copied_early = 1;
  4671. eaten = 1;
  4672. }
  4673. #endif
  4674. if (tp->ucopy.task == current &&
  4675. sock_owned_by_user(sk) && !copied_early) {
  4676. __set_current_state(TASK_RUNNING);
  4677. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4678. eaten = 1;
  4679. }
  4680. if (eaten) {
  4681. /* Predicted packet is in window by definition.
  4682. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4683. * Hence, check seq<=rcv_wup reduces to:
  4684. */
  4685. if (tcp_header_len ==
  4686. (sizeof(struct tcphdr) +
  4687. TCPOLEN_TSTAMP_ALIGNED) &&
  4688. tp->rcv_nxt == tp->rcv_wup)
  4689. tcp_store_ts_recent(tp);
  4690. tcp_rcv_rtt_measure_ts(sk, skb);
  4691. __skb_pull(skb, tcp_header_len);
  4692. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4693. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4694. }
  4695. if (copied_early)
  4696. tcp_cleanup_rbuf(sk, skb->len);
  4697. }
  4698. if (!eaten) {
  4699. if (tcp_checksum_complete_user(sk, skb))
  4700. goto csum_error;
  4701. /* Predicted packet is in window by definition.
  4702. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4703. * Hence, check seq<=rcv_wup reduces to:
  4704. */
  4705. if (tcp_header_len ==
  4706. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4707. tp->rcv_nxt == tp->rcv_wup)
  4708. tcp_store_ts_recent(tp);
  4709. tcp_rcv_rtt_measure_ts(sk, skb);
  4710. if ((int)skb->truesize > sk->sk_forward_alloc)
  4711. goto step5;
  4712. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4713. /* Bulk data transfer: receiver */
  4714. __skb_pull(skb, tcp_header_len);
  4715. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4716. skb_set_owner_r(skb, sk);
  4717. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4718. }
  4719. tcp_event_data_recv(sk, skb);
  4720. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4721. /* Well, only one small jumplet in fast path... */
  4722. tcp_ack(sk, skb, FLAG_DATA);
  4723. tcp_data_snd_check(sk);
  4724. if (!inet_csk_ack_scheduled(sk))
  4725. goto no_ack;
  4726. }
  4727. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4728. __tcp_ack_snd_check(sk, 0);
  4729. no_ack:
  4730. #ifdef CONFIG_NET_DMA
  4731. if (copied_early)
  4732. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4733. else
  4734. #endif
  4735. if (eaten)
  4736. __kfree_skb(skb);
  4737. else
  4738. sk->sk_data_ready(sk, 0);
  4739. return 0;
  4740. }
  4741. }
  4742. slow_path:
  4743. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4744. goto csum_error;
  4745. /*
  4746. * Standard slow path.
  4747. */
  4748. res = tcp_validate_incoming(sk, skb, th, 1);
  4749. if (res <= 0)
  4750. return -res;
  4751. step5:
  4752. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4753. goto discard;
  4754. tcp_rcv_rtt_measure_ts(sk, skb);
  4755. /* Process urgent data. */
  4756. tcp_urg(sk, skb, th);
  4757. /* step 7: process the segment text */
  4758. tcp_data_queue(sk, skb);
  4759. tcp_data_snd_check(sk);
  4760. tcp_ack_snd_check(sk);
  4761. return 0;
  4762. csum_error:
  4763. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4764. discard:
  4765. __kfree_skb(skb);
  4766. return 0;
  4767. }
  4768. EXPORT_SYMBOL(tcp_rcv_established);
  4769. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4770. const struct tcphdr *th, unsigned int len)
  4771. {
  4772. const u8 *hash_location;
  4773. struct inet_connection_sock *icsk = inet_csk(sk);
  4774. struct tcp_sock *tp = tcp_sk(sk);
  4775. struct tcp_cookie_values *cvp = tp->cookie_values;
  4776. int saved_clamp = tp->rx_opt.mss_clamp;
  4777. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4778. if (th->ack) {
  4779. /* rfc793:
  4780. * "If the state is SYN-SENT then
  4781. * first check the ACK bit
  4782. * If the ACK bit is set
  4783. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4784. * a reset (unless the RST bit is set, if so drop
  4785. * the segment and return)"
  4786. *
  4787. * We do not send data with SYN, so that RFC-correct
  4788. * test reduces to:
  4789. */
  4790. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4791. goto reset_and_undo;
  4792. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4793. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4794. tcp_time_stamp)) {
  4795. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4796. goto reset_and_undo;
  4797. }
  4798. /* Now ACK is acceptable.
  4799. *
  4800. * "If the RST bit is set
  4801. * If the ACK was acceptable then signal the user "error:
  4802. * connection reset", drop the segment, enter CLOSED state,
  4803. * delete TCB, and return."
  4804. */
  4805. if (th->rst) {
  4806. tcp_reset(sk);
  4807. goto discard;
  4808. }
  4809. /* rfc793:
  4810. * "fifth, if neither of the SYN or RST bits is set then
  4811. * drop the segment and return."
  4812. *
  4813. * See note below!
  4814. * --ANK(990513)
  4815. */
  4816. if (!th->syn)
  4817. goto discard_and_undo;
  4818. /* rfc793:
  4819. * "If the SYN bit is on ...
  4820. * are acceptable then ...
  4821. * (our SYN has been ACKed), change the connection
  4822. * state to ESTABLISHED..."
  4823. */
  4824. TCP_ECN_rcv_synack(tp, th);
  4825. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4826. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4827. /* Ok.. it's good. Set up sequence numbers and
  4828. * move to established.
  4829. */
  4830. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4831. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4832. /* RFC1323: The window in SYN & SYN/ACK segments is
  4833. * never scaled.
  4834. */
  4835. tp->snd_wnd = ntohs(th->window);
  4836. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4837. if (!tp->rx_opt.wscale_ok) {
  4838. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4839. tp->window_clamp = min(tp->window_clamp, 65535U);
  4840. }
  4841. if (tp->rx_opt.saw_tstamp) {
  4842. tp->rx_opt.tstamp_ok = 1;
  4843. tp->tcp_header_len =
  4844. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4845. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4846. tcp_store_ts_recent(tp);
  4847. } else {
  4848. tp->tcp_header_len = sizeof(struct tcphdr);
  4849. }
  4850. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4851. tcp_enable_fack(tp);
  4852. tcp_mtup_init(sk);
  4853. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4854. tcp_initialize_rcv_mss(sk);
  4855. /* Remember, tcp_poll() does not lock socket!
  4856. * Change state from SYN-SENT only after copied_seq
  4857. * is initialized. */
  4858. tp->copied_seq = tp->rcv_nxt;
  4859. if (cvp != NULL &&
  4860. cvp->cookie_pair_size > 0 &&
  4861. tp->rx_opt.cookie_plus > 0) {
  4862. int cookie_size = tp->rx_opt.cookie_plus
  4863. - TCPOLEN_COOKIE_BASE;
  4864. int cookie_pair_size = cookie_size
  4865. + cvp->cookie_desired;
  4866. /* A cookie extension option was sent and returned.
  4867. * Note that each incoming SYNACK replaces the
  4868. * Responder cookie. The initial exchange is most
  4869. * fragile, as protection against spoofing relies
  4870. * entirely upon the sequence and timestamp (above).
  4871. * This replacement strategy allows the correct pair to
  4872. * pass through, while any others will be filtered via
  4873. * Responder verification later.
  4874. */
  4875. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4876. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4877. hash_location, cookie_size);
  4878. cvp->cookie_pair_size = cookie_pair_size;
  4879. }
  4880. }
  4881. smp_mb();
  4882. tcp_set_state(sk, TCP_ESTABLISHED);
  4883. security_inet_conn_established(sk, skb);
  4884. /* Make sure socket is routed, for correct metrics. */
  4885. icsk->icsk_af_ops->rebuild_header(sk);
  4886. tcp_init_metrics(sk);
  4887. tcp_init_congestion_control(sk);
  4888. /* Prevent spurious tcp_cwnd_restart() on first data
  4889. * packet.
  4890. */
  4891. tp->lsndtime = tcp_time_stamp;
  4892. tcp_init_buffer_space(sk);
  4893. if (sock_flag(sk, SOCK_KEEPOPEN))
  4894. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4895. if (!tp->rx_opt.snd_wscale)
  4896. __tcp_fast_path_on(tp, tp->snd_wnd);
  4897. else
  4898. tp->pred_flags = 0;
  4899. if (!sock_flag(sk, SOCK_DEAD)) {
  4900. sk->sk_state_change(sk);
  4901. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4902. }
  4903. if (sk->sk_write_pending ||
  4904. icsk->icsk_accept_queue.rskq_defer_accept ||
  4905. icsk->icsk_ack.pingpong) {
  4906. /* Save one ACK. Data will be ready after
  4907. * several ticks, if write_pending is set.
  4908. *
  4909. * It may be deleted, but with this feature tcpdumps
  4910. * look so _wonderfully_ clever, that I was not able
  4911. * to stand against the temptation 8) --ANK
  4912. */
  4913. inet_csk_schedule_ack(sk);
  4914. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4915. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4916. tcp_incr_quickack(sk);
  4917. tcp_enter_quickack_mode(sk);
  4918. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4919. TCP_DELACK_MAX, TCP_RTO_MAX);
  4920. discard:
  4921. __kfree_skb(skb);
  4922. return 0;
  4923. } else {
  4924. tcp_send_ack(sk);
  4925. }
  4926. return -1;
  4927. }
  4928. /* No ACK in the segment */
  4929. if (th->rst) {
  4930. /* rfc793:
  4931. * "If the RST bit is set
  4932. *
  4933. * Otherwise (no ACK) drop the segment and return."
  4934. */
  4935. goto discard_and_undo;
  4936. }
  4937. /* PAWS check. */
  4938. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4939. tcp_paws_reject(&tp->rx_opt, 0))
  4940. goto discard_and_undo;
  4941. if (th->syn) {
  4942. /* We see SYN without ACK. It is attempt of
  4943. * simultaneous connect with crossed SYNs.
  4944. * Particularly, it can be connect to self.
  4945. */
  4946. tcp_set_state(sk, TCP_SYN_RECV);
  4947. if (tp->rx_opt.saw_tstamp) {
  4948. tp->rx_opt.tstamp_ok = 1;
  4949. tcp_store_ts_recent(tp);
  4950. tp->tcp_header_len =
  4951. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4952. } else {
  4953. tp->tcp_header_len = sizeof(struct tcphdr);
  4954. }
  4955. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4956. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4957. /* RFC1323: The window in SYN & SYN/ACK segments is
  4958. * never scaled.
  4959. */
  4960. tp->snd_wnd = ntohs(th->window);
  4961. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4962. tp->max_window = tp->snd_wnd;
  4963. TCP_ECN_rcv_syn(tp, th);
  4964. tcp_mtup_init(sk);
  4965. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4966. tcp_initialize_rcv_mss(sk);
  4967. tcp_send_synack(sk);
  4968. #if 0
  4969. /* Note, we could accept data and URG from this segment.
  4970. * There are no obstacles to make this.
  4971. *
  4972. * However, if we ignore data in ACKless segments sometimes,
  4973. * we have no reasons to accept it sometimes.
  4974. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4975. * is not flawless. So, discard packet for sanity.
  4976. * Uncomment this return to process the data.
  4977. */
  4978. return -1;
  4979. #else
  4980. goto discard;
  4981. #endif
  4982. }
  4983. /* "fifth, if neither of the SYN or RST bits is set then
  4984. * drop the segment and return."
  4985. */
  4986. discard_and_undo:
  4987. tcp_clear_options(&tp->rx_opt);
  4988. tp->rx_opt.mss_clamp = saved_clamp;
  4989. goto discard;
  4990. reset_and_undo:
  4991. tcp_clear_options(&tp->rx_opt);
  4992. tp->rx_opt.mss_clamp = saved_clamp;
  4993. return 1;
  4994. }
  4995. /*
  4996. * This function implements the receiving procedure of RFC 793 for
  4997. * all states except ESTABLISHED and TIME_WAIT.
  4998. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4999. * address independent.
  5000. */
  5001. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5002. const struct tcphdr *th, unsigned int len)
  5003. {
  5004. struct tcp_sock *tp = tcp_sk(sk);
  5005. struct inet_connection_sock *icsk = inet_csk(sk);
  5006. int queued = 0;
  5007. int res;
  5008. tp->rx_opt.saw_tstamp = 0;
  5009. switch (sk->sk_state) {
  5010. case TCP_CLOSE:
  5011. goto discard;
  5012. case TCP_LISTEN:
  5013. if (th->ack)
  5014. return 1;
  5015. if (th->rst)
  5016. goto discard;
  5017. if (th->syn) {
  5018. if (th->fin)
  5019. goto discard;
  5020. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5021. return 1;
  5022. /* Now we have several options: In theory there is
  5023. * nothing else in the frame. KA9Q has an option to
  5024. * send data with the syn, BSD accepts data with the
  5025. * syn up to the [to be] advertised window and
  5026. * Solaris 2.1 gives you a protocol error. For now
  5027. * we just ignore it, that fits the spec precisely
  5028. * and avoids incompatibilities. It would be nice in
  5029. * future to drop through and process the data.
  5030. *
  5031. * Now that TTCP is starting to be used we ought to
  5032. * queue this data.
  5033. * But, this leaves one open to an easy denial of
  5034. * service attack, and SYN cookies can't defend
  5035. * against this problem. So, we drop the data
  5036. * in the interest of security over speed unless
  5037. * it's still in use.
  5038. */
  5039. kfree_skb(skb);
  5040. return 0;
  5041. }
  5042. goto discard;
  5043. case TCP_SYN_SENT:
  5044. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5045. if (queued >= 0)
  5046. return queued;
  5047. /* Do step6 onward by hand. */
  5048. tcp_urg(sk, skb, th);
  5049. __kfree_skb(skb);
  5050. tcp_data_snd_check(sk);
  5051. return 0;
  5052. }
  5053. res = tcp_validate_incoming(sk, skb, th, 0);
  5054. if (res <= 0)
  5055. return -res;
  5056. /* step 5: check the ACK field */
  5057. if (th->ack) {
  5058. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5059. switch (sk->sk_state) {
  5060. case TCP_SYN_RECV:
  5061. if (acceptable) {
  5062. tp->copied_seq = tp->rcv_nxt;
  5063. smp_mb();
  5064. tcp_set_state(sk, TCP_ESTABLISHED);
  5065. sk->sk_state_change(sk);
  5066. /* Note, that this wakeup is only for marginal
  5067. * crossed SYN case. Passively open sockets
  5068. * are not waked up, because sk->sk_sleep ==
  5069. * NULL and sk->sk_socket == NULL.
  5070. */
  5071. if (sk->sk_socket)
  5072. sk_wake_async(sk,
  5073. SOCK_WAKE_IO, POLL_OUT);
  5074. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5075. tp->snd_wnd = ntohs(th->window) <<
  5076. tp->rx_opt.snd_wscale;
  5077. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5078. if (tp->rx_opt.tstamp_ok)
  5079. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5080. /* Make sure socket is routed, for
  5081. * correct metrics.
  5082. */
  5083. icsk->icsk_af_ops->rebuild_header(sk);
  5084. tcp_init_metrics(sk);
  5085. tcp_init_congestion_control(sk);
  5086. /* Prevent spurious tcp_cwnd_restart() on
  5087. * first data packet.
  5088. */
  5089. tp->lsndtime = tcp_time_stamp;
  5090. tcp_mtup_init(sk);
  5091. tcp_initialize_rcv_mss(sk);
  5092. tcp_init_buffer_space(sk);
  5093. tcp_fast_path_on(tp);
  5094. } else {
  5095. return 1;
  5096. }
  5097. break;
  5098. case TCP_FIN_WAIT1:
  5099. if (tp->snd_una == tp->write_seq) {
  5100. tcp_set_state(sk, TCP_FIN_WAIT2);
  5101. sk->sk_shutdown |= SEND_SHUTDOWN;
  5102. dst_confirm(__sk_dst_get(sk));
  5103. if (!sock_flag(sk, SOCK_DEAD))
  5104. /* Wake up lingering close() */
  5105. sk->sk_state_change(sk);
  5106. else {
  5107. int tmo;
  5108. if (tp->linger2 < 0 ||
  5109. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5110. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5111. tcp_done(sk);
  5112. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5113. return 1;
  5114. }
  5115. tmo = tcp_fin_time(sk);
  5116. if (tmo > TCP_TIMEWAIT_LEN) {
  5117. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5118. } else if (th->fin || sock_owned_by_user(sk)) {
  5119. /* Bad case. We could lose such FIN otherwise.
  5120. * It is not a big problem, but it looks confusing
  5121. * and not so rare event. We still can lose it now,
  5122. * if it spins in bh_lock_sock(), but it is really
  5123. * marginal case.
  5124. */
  5125. inet_csk_reset_keepalive_timer(sk, tmo);
  5126. } else {
  5127. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5128. goto discard;
  5129. }
  5130. }
  5131. }
  5132. break;
  5133. case TCP_CLOSING:
  5134. if (tp->snd_una == tp->write_seq) {
  5135. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5136. goto discard;
  5137. }
  5138. break;
  5139. case TCP_LAST_ACK:
  5140. if (tp->snd_una == tp->write_seq) {
  5141. tcp_update_metrics(sk);
  5142. tcp_done(sk);
  5143. goto discard;
  5144. }
  5145. break;
  5146. }
  5147. } else
  5148. goto discard;
  5149. /* step 6: check the URG bit */
  5150. tcp_urg(sk, skb, th);
  5151. /* step 7: process the segment text */
  5152. switch (sk->sk_state) {
  5153. case TCP_CLOSE_WAIT:
  5154. case TCP_CLOSING:
  5155. case TCP_LAST_ACK:
  5156. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5157. break;
  5158. case TCP_FIN_WAIT1:
  5159. case TCP_FIN_WAIT2:
  5160. /* RFC 793 says to queue data in these states,
  5161. * RFC 1122 says we MUST send a reset.
  5162. * BSD 4.4 also does reset.
  5163. */
  5164. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5165. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5166. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5167. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5168. tcp_reset(sk);
  5169. return 1;
  5170. }
  5171. }
  5172. /* Fall through */
  5173. case TCP_ESTABLISHED:
  5174. tcp_data_queue(sk, skb);
  5175. queued = 1;
  5176. break;
  5177. }
  5178. /* tcp_data could move socket to TIME-WAIT */
  5179. if (sk->sk_state != TCP_CLOSE) {
  5180. tcp_data_snd_check(sk);
  5181. tcp_ack_snd_check(sk);
  5182. }
  5183. if (!queued) {
  5184. discard:
  5185. __kfree_skb(skb);
  5186. }
  5187. return 0;
  5188. }
  5189. EXPORT_SYMBOL(tcp_rcv_state_process);