db8500-prcmu.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/regulator/db8500-prcmu.h>
  32. #include <linux/regulator/machine.h>
  33. #include <asm/hardware/gic.h>
  34. #include <mach/hardware.h>
  35. #include <mach/irqs.h>
  36. #include <mach/db8500-regs.h>
  37. #include <mach/id.h>
  38. #include "dbx500-prcmu-regs.h"
  39. /* Offset for the firmware version within the TCPM */
  40. #define PRCMU_FW_VERSION_OFFSET 0xA4
  41. /* Index of different voltages to be used when accessing AVSData */
  42. #define PRCM_AVS_BASE 0x2FC
  43. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  44. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  45. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  46. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  47. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  48. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  49. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  50. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  51. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  52. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  53. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  54. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  55. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  56. #define PRCM_AVS_VOLTAGE 0
  57. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  58. #define PRCM_AVS_ISSLOWSTARTUP 6
  59. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  60. #define PRCM_AVS_ISMODEENABLE 7
  61. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  62. #define PRCM_BOOT_STATUS 0xFFF
  63. #define PRCM_ROMCODE_A2P 0xFFE
  64. #define PRCM_ROMCODE_P2A 0xFFD
  65. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  66. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  67. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  68. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  69. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  70. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  71. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  72. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  73. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  74. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  75. /* Req Mailboxes */
  76. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  77. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  78. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  79. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  80. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  81. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  82. /* Ack Mailboxes */
  83. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  84. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  85. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  86. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  87. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  88. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  89. /* Mailbox 0 headers */
  90. #define MB0H_POWER_STATE_TRANS 0
  91. #define MB0H_CONFIG_WAKEUPS_EXE 1
  92. #define MB0H_READ_WAKEUP_ACK 3
  93. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  94. #define MB0H_WAKEUP_EXE 2
  95. #define MB0H_WAKEUP_SLEEP 5
  96. /* Mailbox 0 REQs */
  97. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  98. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  99. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  100. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  101. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  102. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  103. /* Mailbox 0 ACKs */
  104. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  105. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  106. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  107. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  108. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  109. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  110. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  111. /* Mailbox 1 headers */
  112. #define MB1H_ARM_APE_OPP 0x0
  113. #define MB1H_RESET_MODEM 0x2
  114. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  115. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  116. #define MB1H_RELEASE_USB_WAKEUP 0x5
  117. #define MB1H_PLL_ON_OFF 0x6
  118. /* Mailbox 1 Requests */
  119. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  120. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  121. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  122. #define PLL_SOC0_OFF 0x1
  123. #define PLL_SOC0_ON 0x2
  124. #define PLL_SOC1_OFF 0x4
  125. #define PLL_SOC1_ON 0x8
  126. /* Mailbox 1 ACKs */
  127. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  128. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  129. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  130. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  131. /* Mailbox 2 headers */
  132. #define MB2H_DPS 0x0
  133. #define MB2H_AUTO_PWR 0x1
  134. /* Mailbox 2 REQs */
  135. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  136. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  137. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  138. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  139. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  140. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  141. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  142. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  143. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  144. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  145. /* Mailbox 2 ACKs */
  146. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  147. #define HWACC_PWR_ST_OK 0xFE
  148. /* Mailbox 3 headers */
  149. #define MB3H_ANC 0x0
  150. #define MB3H_SIDETONE 0x1
  151. #define MB3H_SYSCLK 0xE
  152. /* Mailbox 3 Requests */
  153. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  154. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  155. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  156. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  158. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  159. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  160. /* Mailbox 4 headers */
  161. #define MB4H_DDR_INIT 0x0
  162. #define MB4H_MEM_ST 0x1
  163. #define MB4H_HOTDOG 0x12
  164. #define MB4H_HOTMON 0x13
  165. #define MB4H_HOT_PERIOD 0x14
  166. #define MB4H_A9WDOG_CONF 0x16
  167. #define MB4H_A9WDOG_EN 0x17
  168. #define MB4H_A9WDOG_DIS 0x18
  169. #define MB4H_A9WDOG_LOAD 0x19
  170. #define MB4H_A9WDOG_KICK 0x20
  171. /* Mailbox 4 Requests */
  172. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  173. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  174. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  175. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  177. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  178. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  179. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  180. #define HOTMON_CONFIG_LOW BIT(0)
  181. #define HOTMON_CONFIG_HIGH BIT(1)
  182. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  183. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  184. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  185. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  186. #define A9WDOG_AUTO_OFF_EN BIT(7)
  187. #define A9WDOG_AUTO_OFF_DIS 0
  188. #define A9WDOG_ID_MASK 0xf
  189. /* Mailbox 5 Requests */
  190. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  191. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  192. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  193. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  194. #define PRCMU_I2C_WRITE(slave) \
  195. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  196. #define PRCMU_I2C_READ(slave) \
  197. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  198. #define PRCMU_I2C_STOP_EN BIT(3)
  199. /* Mailbox 5 ACKs */
  200. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  201. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  202. #define I2C_WR_OK 0x1
  203. #define I2C_RD_OK 0x2
  204. #define NUM_MB 8
  205. #define MBOX_BIT BIT
  206. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  207. /*
  208. * Wakeups/IRQs
  209. */
  210. #define WAKEUP_BIT_RTC BIT(0)
  211. #define WAKEUP_BIT_RTT0 BIT(1)
  212. #define WAKEUP_BIT_RTT1 BIT(2)
  213. #define WAKEUP_BIT_HSI0 BIT(3)
  214. #define WAKEUP_BIT_HSI1 BIT(4)
  215. #define WAKEUP_BIT_CA_WAKE BIT(5)
  216. #define WAKEUP_BIT_USB BIT(6)
  217. #define WAKEUP_BIT_ABB BIT(7)
  218. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  219. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  220. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  221. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  222. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  223. #define WAKEUP_BIT_ANC_OK BIT(13)
  224. #define WAKEUP_BIT_SW_ERROR BIT(14)
  225. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  226. #define WAKEUP_BIT_ARM BIT(17)
  227. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  228. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  229. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  230. #define WAKEUP_BIT_GPIO0 BIT(23)
  231. #define WAKEUP_BIT_GPIO1 BIT(24)
  232. #define WAKEUP_BIT_GPIO2 BIT(25)
  233. #define WAKEUP_BIT_GPIO3 BIT(26)
  234. #define WAKEUP_BIT_GPIO4 BIT(27)
  235. #define WAKEUP_BIT_GPIO5 BIT(28)
  236. #define WAKEUP_BIT_GPIO6 BIT(29)
  237. #define WAKEUP_BIT_GPIO7 BIT(30)
  238. #define WAKEUP_BIT_GPIO8 BIT(31)
  239. static struct {
  240. bool valid;
  241. struct prcmu_fw_version version;
  242. } fw_info;
  243. /*
  244. * This vector maps irq numbers to the bits in the bit field used in
  245. * communication with the PRCMU firmware.
  246. *
  247. * The reason for having this is to keep the irq numbers contiguous even though
  248. * the bits in the bit field are not. (The bits also have a tendency to move
  249. * around, to further complicate matters.)
  250. */
  251. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  252. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  253. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  254. IRQ_ENTRY(RTC),
  255. IRQ_ENTRY(RTT0),
  256. IRQ_ENTRY(RTT1),
  257. IRQ_ENTRY(HSI0),
  258. IRQ_ENTRY(HSI1),
  259. IRQ_ENTRY(CA_WAKE),
  260. IRQ_ENTRY(USB),
  261. IRQ_ENTRY(ABB),
  262. IRQ_ENTRY(ABB_FIFO),
  263. IRQ_ENTRY(CA_SLEEP),
  264. IRQ_ENTRY(ARM),
  265. IRQ_ENTRY(HOTMON_LOW),
  266. IRQ_ENTRY(HOTMON_HIGH),
  267. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  268. IRQ_ENTRY(GPIO0),
  269. IRQ_ENTRY(GPIO1),
  270. IRQ_ENTRY(GPIO2),
  271. IRQ_ENTRY(GPIO3),
  272. IRQ_ENTRY(GPIO4),
  273. IRQ_ENTRY(GPIO5),
  274. IRQ_ENTRY(GPIO6),
  275. IRQ_ENTRY(GPIO7),
  276. IRQ_ENTRY(GPIO8)
  277. };
  278. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  279. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  280. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  281. WAKEUP_ENTRY(RTC),
  282. WAKEUP_ENTRY(RTT0),
  283. WAKEUP_ENTRY(RTT1),
  284. WAKEUP_ENTRY(HSI0),
  285. WAKEUP_ENTRY(HSI1),
  286. WAKEUP_ENTRY(USB),
  287. WAKEUP_ENTRY(ABB),
  288. WAKEUP_ENTRY(ABB_FIFO),
  289. WAKEUP_ENTRY(ARM)
  290. };
  291. /*
  292. * mb0_transfer - state needed for mailbox 0 communication.
  293. * @lock: The transaction lock.
  294. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  295. * the request data.
  296. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  297. * @req: Request data that need to persist between requests.
  298. */
  299. static struct {
  300. spinlock_t lock;
  301. spinlock_t dbb_irqs_lock;
  302. struct work_struct mask_work;
  303. struct mutex ac_wake_lock;
  304. struct completion ac_wake_work;
  305. struct {
  306. u32 dbb_irqs;
  307. u32 dbb_wakeups;
  308. u32 abb_events;
  309. } req;
  310. } mb0_transfer;
  311. /*
  312. * mb1_transfer - state needed for mailbox 1 communication.
  313. * @lock: The transaction lock.
  314. * @work: The transaction completion structure.
  315. * @ape_opp: The current APE OPP.
  316. * @ack: Reply ("acknowledge") data.
  317. */
  318. static struct {
  319. struct mutex lock;
  320. struct completion work;
  321. u8 ape_opp;
  322. struct {
  323. u8 header;
  324. u8 arm_opp;
  325. u8 ape_opp;
  326. u8 ape_voltage_status;
  327. } ack;
  328. } mb1_transfer;
  329. /*
  330. * mb2_transfer - state needed for mailbox 2 communication.
  331. * @lock: The transaction lock.
  332. * @work: The transaction completion structure.
  333. * @auto_pm_lock: The autonomous power management configuration lock.
  334. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  335. * @req: Request data that need to persist between requests.
  336. * @ack: Reply ("acknowledge") data.
  337. */
  338. static struct {
  339. struct mutex lock;
  340. struct completion work;
  341. spinlock_t auto_pm_lock;
  342. bool auto_pm_enabled;
  343. struct {
  344. u8 status;
  345. } ack;
  346. } mb2_transfer;
  347. /*
  348. * mb3_transfer - state needed for mailbox 3 communication.
  349. * @lock: The request lock.
  350. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  351. * @sysclk_work: Work structure used for sysclk requests.
  352. */
  353. static struct {
  354. spinlock_t lock;
  355. struct mutex sysclk_lock;
  356. struct completion sysclk_work;
  357. } mb3_transfer;
  358. /*
  359. * mb4_transfer - state needed for mailbox 4 communication.
  360. * @lock: The transaction lock.
  361. * @work: The transaction completion structure.
  362. */
  363. static struct {
  364. struct mutex lock;
  365. struct completion work;
  366. } mb4_transfer;
  367. /*
  368. * mb5_transfer - state needed for mailbox 5 communication.
  369. * @lock: The transaction lock.
  370. * @work: The transaction completion structure.
  371. * @ack: Reply ("acknowledge") data.
  372. */
  373. static struct {
  374. struct mutex lock;
  375. struct completion work;
  376. struct {
  377. u8 status;
  378. u8 value;
  379. } ack;
  380. } mb5_transfer;
  381. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  382. /* Spinlocks */
  383. static DEFINE_SPINLOCK(prcmu_lock);
  384. static DEFINE_SPINLOCK(clkout_lock);
  385. /* Global var to runtime determine TCDM base for v2 or v1 */
  386. static __iomem void *tcdm_base;
  387. struct clk_mgt {
  388. void __iomem *reg;
  389. u32 pllsw;
  390. int branch;
  391. bool clk38div;
  392. };
  393. enum {
  394. PLL_RAW,
  395. PLL_FIX,
  396. PLL_DIV
  397. };
  398. static DEFINE_SPINLOCK(clk_mgt_lock);
  399. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  400. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  401. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  402. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  403. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  404. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  405. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  406. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  407. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  408. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  409. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  410. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  411. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  412. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  415. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  416. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  419. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  420. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  423. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  424. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  425. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  427. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  430. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  431. };
  432. struct dsiclk {
  433. u32 divsel_mask;
  434. u32 divsel_shift;
  435. u32 divsel;
  436. };
  437. static struct dsiclk dsiclk[2] = {
  438. {
  439. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  440. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  441. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  442. },
  443. {
  444. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  445. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  446. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  447. }
  448. };
  449. struct dsiescclk {
  450. u32 en;
  451. u32 div_mask;
  452. u32 div_shift;
  453. };
  454. static struct dsiescclk dsiescclk[3] = {
  455. {
  456. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  457. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  458. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  459. },
  460. {
  461. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  462. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  463. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  464. },
  465. {
  466. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  467. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  468. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  469. }
  470. };
  471. static struct regulator *hwacc_regulator[NUM_HW_ACC];
  472. static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
  473. static bool hwacc_enabled[NUM_HW_ACC];
  474. static bool hwacc_ret_enabled[NUM_HW_ACC];
  475. static const char *hwacc_regulator_name[NUM_HW_ACC] = {
  476. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
  477. [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
  478. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
  479. [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
  480. [HW_ACC_SGA] = "hwacc-sga",
  481. [HW_ACC_B2R2] = "hwacc-b2r2",
  482. [HW_ACC_MCDE] = "hwacc-mcde",
  483. [HW_ACC_ESRAM1] = "hwacc-esram1",
  484. [HW_ACC_ESRAM2] = "hwacc-esram2",
  485. [HW_ACC_ESRAM3] = "hwacc-esram3",
  486. [HW_ACC_ESRAM4] = "hwacc-esram4",
  487. };
  488. static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
  489. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
  490. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
  491. [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
  492. [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
  493. [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
  494. [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
  495. };
  496. /*
  497. * Used by MCDE to setup all necessary PRCMU registers
  498. */
  499. #define PRCMU_RESET_DSIPLL 0x00004000
  500. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  501. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  502. #define PRCMU_CLK_PLL_SW_SHIFT 5
  503. #define PRCMU_CLK_38 (1 << 9)
  504. #define PRCMU_CLK_38_SRC (1 << 10)
  505. #define PRCMU_CLK_38_DIV (1 << 11)
  506. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  507. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  508. /* DPI 50000000 Hz */
  509. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  510. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  511. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  512. /* D=101, N=1, R=4, SELDIV2=0 */
  513. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  514. #define PRCMU_ENABLE_PLLDSI 0x00000001
  515. #define PRCMU_DISABLE_PLLDSI 0x00000000
  516. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  517. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  518. /* ESC clk, div0=1, div1=1, div2=3 */
  519. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  520. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  521. #define PRCMU_DSI_RESET_SW 0x00000007
  522. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  523. int db8500_prcmu_enable_dsipll(void)
  524. {
  525. int i;
  526. /* Clear DSIPLL_RESETN */
  527. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  528. /* Unclamp DSIPLL in/out */
  529. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  530. /* Set DSI PLL FREQ */
  531. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  532. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  533. /* Enable Escape clocks */
  534. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  535. /* Start DSI PLL */
  536. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  537. /* Reset DSI PLL */
  538. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  539. for (i = 0; i < 10; i++) {
  540. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  541. == PRCMU_PLLDSI_LOCKP_LOCKED)
  542. break;
  543. udelay(100);
  544. }
  545. /* Set DSIPLL_RESETN */
  546. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  547. return 0;
  548. }
  549. int db8500_prcmu_disable_dsipll(void)
  550. {
  551. /* Disable dsi pll */
  552. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  553. /* Disable escapeclock */
  554. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  555. return 0;
  556. }
  557. int db8500_prcmu_set_display_clocks(void)
  558. {
  559. unsigned long flags;
  560. spin_lock_irqsave(&clk_mgt_lock, flags);
  561. /* Grab the HW semaphore. */
  562. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  563. cpu_relax();
  564. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  565. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  566. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  567. /* Release the HW semaphore. */
  568. writel(0, PRCM_SEM);
  569. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  570. return 0;
  571. }
  572. u32 db8500_prcmu_read(unsigned int reg)
  573. {
  574. return readl(_PRCMU_BASE + reg);
  575. }
  576. void db8500_prcmu_write(unsigned int reg, u32 value)
  577. {
  578. unsigned long flags;
  579. spin_lock_irqsave(&prcmu_lock, flags);
  580. writel(value, (_PRCMU_BASE + reg));
  581. spin_unlock_irqrestore(&prcmu_lock, flags);
  582. }
  583. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  584. {
  585. u32 val;
  586. unsigned long flags;
  587. spin_lock_irqsave(&prcmu_lock, flags);
  588. val = readl(_PRCMU_BASE + reg);
  589. val = ((val & ~mask) | (value & mask));
  590. writel(val, (_PRCMU_BASE + reg));
  591. spin_unlock_irqrestore(&prcmu_lock, flags);
  592. }
  593. struct prcmu_fw_version *prcmu_get_fw_version(void)
  594. {
  595. return fw_info.valid ? &fw_info.version : NULL;
  596. }
  597. bool prcmu_has_arm_maxopp(void)
  598. {
  599. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  600. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  601. }
  602. /**
  603. * prcmu_get_boot_status - PRCMU boot status checking
  604. * Returns: the current PRCMU boot status
  605. */
  606. int prcmu_get_boot_status(void)
  607. {
  608. return readb(tcdm_base + PRCM_BOOT_STATUS);
  609. }
  610. /**
  611. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  612. * @val: Value to be set, i.e. transition requested
  613. * Returns: 0 on success, -EINVAL on invalid argument
  614. *
  615. * This function is used to run the following power state sequences -
  616. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  617. */
  618. int prcmu_set_rc_a2p(enum romcode_write val)
  619. {
  620. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  621. return -EINVAL;
  622. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  623. return 0;
  624. }
  625. /**
  626. * prcmu_get_rc_p2a - This function is used to get power state sequences
  627. * Returns: the power transition that has last happened
  628. *
  629. * This function can return the following transitions-
  630. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  631. */
  632. enum romcode_read prcmu_get_rc_p2a(void)
  633. {
  634. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  635. }
  636. /**
  637. * prcmu_get_current_mode - Return the current XP70 power mode
  638. * Returns: Returns the current AP(ARM) power mode: init,
  639. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  640. */
  641. enum ap_pwrst prcmu_get_xp70_current_state(void)
  642. {
  643. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  644. }
  645. /**
  646. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  647. * @clkout: The CLKOUT number (0 or 1).
  648. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  649. * @div: The divider to be applied.
  650. *
  651. * Configures one of the programmable clock outputs (CLKOUTs).
  652. * @div should be in the range [1,63] to request a configuration, or 0 to
  653. * inform that the configuration is no longer requested.
  654. */
  655. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  656. {
  657. static int requests[2];
  658. int r = 0;
  659. unsigned long flags;
  660. u32 val;
  661. u32 bits;
  662. u32 mask;
  663. u32 div_mask;
  664. BUG_ON(clkout > 1);
  665. BUG_ON(div > 63);
  666. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  667. if (!div && !requests[clkout])
  668. return -EINVAL;
  669. switch (clkout) {
  670. case 0:
  671. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  672. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  673. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  674. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  675. break;
  676. case 1:
  677. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  678. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  679. PRCM_CLKOCR_CLK1TYPE);
  680. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  681. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  682. break;
  683. }
  684. bits &= mask;
  685. spin_lock_irqsave(&clkout_lock, flags);
  686. val = readl(PRCM_CLKOCR);
  687. if (val & div_mask) {
  688. if (div) {
  689. if ((val & mask) != bits) {
  690. r = -EBUSY;
  691. goto unlock_and_return;
  692. }
  693. } else {
  694. if ((val & mask & ~div_mask) != bits) {
  695. r = -EINVAL;
  696. goto unlock_and_return;
  697. }
  698. }
  699. }
  700. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  701. requests[clkout] += (div ? 1 : -1);
  702. unlock_and_return:
  703. spin_unlock_irqrestore(&clkout_lock, flags);
  704. return r;
  705. }
  706. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  707. {
  708. unsigned long flags;
  709. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  710. spin_lock_irqsave(&mb0_transfer.lock, flags);
  711. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  712. cpu_relax();
  713. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  714. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  715. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  716. writeb((keep_ulp_clk ? 1 : 0),
  717. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  718. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  719. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  720. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  721. return 0;
  722. }
  723. u8 db8500_prcmu_get_power_state_result(void)
  724. {
  725. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  726. }
  727. /* This function decouple the gic from the prcmu */
  728. int db8500_prcmu_gic_decouple(void)
  729. {
  730. u32 val = readl(PRCM_A9_MASK_REQ);
  731. /* Set bit 0 register value to 1 */
  732. writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
  733. PRCM_A9_MASK_REQ);
  734. /* Make sure the register is updated */
  735. readl(PRCM_A9_MASK_REQ);
  736. /* Wait a few cycles for the gic mask completion */
  737. udelay(1);
  738. return 0;
  739. }
  740. /* This function recouple the gic with the prcmu */
  741. int db8500_prcmu_gic_recouple(void)
  742. {
  743. u32 val = readl(PRCM_A9_MASK_REQ);
  744. /* Set bit 0 register value to 0 */
  745. writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
  746. return 0;
  747. }
  748. #define PRCMU_GIC_NUMBER_REGS 5
  749. /*
  750. * This function checks if there are pending irq on the gic. It only
  751. * makes sense if the gic has been decoupled before with the
  752. * db8500_prcmu_gic_decouple function. Disabling an interrupt only
  753. * disables the forwarding of the interrupt to any CPU interface. It
  754. * does not prevent the interrupt from changing state, for example
  755. * becoming pending, or active and pending if it is already
  756. * active. Hence, we have to check the interrupt is pending *and* is
  757. * active.
  758. */
  759. bool db8500_prcmu_gic_pending_irq(void)
  760. {
  761. u32 pr; /* Pending register */
  762. u32 er; /* Enable register */
  763. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  764. int i;
  765. /* 5 registers. STI & PPI not skipped */
  766. for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
  767. pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
  768. er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
  769. if (pr & er)
  770. return true; /* There is a pending interrupt */
  771. }
  772. return false;
  773. }
  774. /* This function should only be called while mb0_transfer.lock is held. */
  775. static void config_wakeups(void)
  776. {
  777. const u8 header[2] = {
  778. MB0H_CONFIG_WAKEUPS_EXE,
  779. MB0H_CONFIG_WAKEUPS_SLEEP
  780. };
  781. static u32 last_dbb_events;
  782. static u32 last_abb_events;
  783. u32 dbb_events;
  784. u32 abb_events;
  785. unsigned int i;
  786. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  787. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  788. abb_events = mb0_transfer.req.abb_events;
  789. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  790. return;
  791. for (i = 0; i < 2; i++) {
  792. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  793. cpu_relax();
  794. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  795. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  796. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  797. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  798. }
  799. last_dbb_events = dbb_events;
  800. last_abb_events = abb_events;
  801. }
  802. void db8500_prcmu_enable_wakeups(u32 wakeups)
  803. {
  804. unsigned long flags;
  805. u32 bits;
  806. int i;
  807. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  808. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  809. if (wakeups & BIT(i))
  810. bits |= prcmu_wakeup_bit[i];
  811. }
  812. spin_lock_irqsave(&mb0_transfer.lock, flags);
  813. mb0_transfer.req.dbb_wakeups = bits;
  814. config_wakeups();
  815. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  816. }
  817. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  818. {
  819. unsigned long flags;
  820. spin_lock_irqsave(&mb0_transfer.lock, flags);
  821. mb0_transfer.req.abb_events = abb_events;
  822. config_wakeups();
  823. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  824. }
  825. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  826. {
  827. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  828. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  829. else
  830. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  831. }
  832. /**
  833. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  834. * @opp: The new ARM operating point to which transition is to be made
  835. * Returns: 0 on success, non-zero on failure
  836. *
  837. * This function sets the the operating point of the ARM.
  838. */
  839. int db8500_prcmu_set_arm_opp(u8 opp)
  840. {
  841. int r;
  842. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  843. return -EINVAL;
  844. r = 0;
  845. mutex_lock(&mb1_transfer.lock);
  846. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  847. cpu_relax();
  848. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  849. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  850. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  851. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  852. wait_for_completion(&mb1_transfer.work);
  853. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  854. (mb1_transfer.ack.arm_opp != opp))
  855. r = -EIO;
  856. mutex_unlock(&mb1_transfer.lock);
  857. return r;
  858. }
  859. /**
  860. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  861. *
  862. * Returns: the current ARM OPP
  863. */
  864. int db8500_prcmu_get_arm_opp(void)
  865. {
  866. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  867. }
  868. /**
  869. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  870. *
  871. * Returns: the current DDR OPP
  872. */
  873. int db8500_prcmu_get_ddr_opp(void)
  874. {
  875. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  876. }
  877. /**
  878. * db8500_set_ddr_opp - set the appropriate DDR OPP
  879. * @opp: The new DDR operating point to which transition is to be made
  880. * Returns: 0 on success, non-zero on failure
  881. *
  882. * This function sets the operating point of the DDR.
  883. */
  884. int db8500_prcmu_set_ddr_opp(u8 opp)
  885. {
  886. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  887. return -EINVAL;
  888. /* Changing the DDR OPP can hang the hardware pre-v21 */
  889. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  890. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  891. return 0;
  892. }
  893. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  894. static void request_even_slower_clocks(bool enable)
  895. {
  896. void __iomem *clock_reg[] = {
  897. PRCM_ACLK_MGT,
  898. PRCM_DMACLK_MGT
  899. };
  900. unsigned long flags;
  901. unsigned int i;
  902. spin_lock_irqsave(&clk_mgt_lock, flags);
  903. /* Grab the HW semaphore. */
  904. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  905. cpu_relax();
  906. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  907. u32 val;
  908. u32 div;
  909. val = readl(clock_reg[i]);
  910. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  911. if (enable) {
  912. if ((div <= 1) || (div > 15)) {
  913. pr_err("prcmu: Bad clock divider %d in %s\n",
  914. div, __func__);
  915. goto unlock_and_return;
  916. }
  917. div <<= 1;
  918. } else {
  919. if (div <= 2)
  920. goto unlock_and_return;
  921. div >>= 1;
  922. }
  923. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  924. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  925. writel(val, clock_reg[i]);
  926. }
  927. unlock_and_return:
  928. /* Release the HW semaphore. */
  929. writel(0, PRCM_SEM);
  930. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  931. }
  932. /**
  933. * db8500_set_ape_opp - set the appropriate APE OPP
  934. * @opp: The new APE operating point to which transition is to be made
  935. * Returns: 0 on success, non-zero on failure
  936. *
  937. * This function sets the operating point of the APE.
  938. */
  939. int db8500_prcmu_set_ape_opp(u8 opp)
  940. {
  941. int r = 0;
  942. if (opp == mb1_transfer.ape_opp)
  943. return 0;
  944. mutex_lock(&mb1_transfer.lock);
  945. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  946. request_even_slower_clocks(false);
  947. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  948. goto skip_message;
  949. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  950. cpu_relax();
  951. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  952. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  953. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  954. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  955. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  956. wait_for_completion(&mb1_transfer.work);
  957. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  958. (mb1_transfer.ack.ape_opp != opp))
  959. r = -EIO;
  960. skip_message:
  961. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  962. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  963. request_even_slower_clocks(true);
  964. if (!r)
  965. mb1_transfer.ape_opp = opp;
  966. mutex_unlock(&mb1_transfer.lock);
  967. return r;
  968. }
  969. /**
  970. * db8500_prcmu_get_ape_opp - get the current APE OPP
  971. *
  972. * Returns: the current APE OPP
  973. */
  974. int db8500_prcmu_get_ape_opp(void)
  975. {
  976. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  977. }
  978. /**
  979. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  980. * @enable: true to request the higher voltage, false to drop a request.
  981. *
  982. * Calls to this function to enable and disable requests must be balanced.
  983. */
  984. int prcmu_request_ape_opp_100_voltage(bool enable)
  985. {
  986. int r = 0;
  987. u8 header;
  988. static unsigned int requests;
  989. mutex_lock(&mb1_transfer.lock);
  990. if (enable) {
  991. if (0 != requests++)
  992. goto unlock_and_return;
  993. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  994. } else {
  995. if (requests == 0) {
  996. r = -EIO;
  997. goto unlock_and_return;
  998. } else if (1 != requests--) {
  999. goto unlock_and_return;
  1000. }
  1001. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  1002. }
  1003. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1004. cpu_relax();
  1005. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1006. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1007. wait_for_completion(&mb1_transfer.work);
  1008. if ((mb1_transfer.ack.header != header) ||
  1009. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1010. r = -EIO;
  1011. unlock_and_return:
  1012. mutex_unlock(&mb1_transfer.lock);
  1013. return r;
  1014. }
  1015. /**
  1016. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  1017. *
  1018. * This function releases the power state requirements of a USB wakeup.
  1019. */
  1020. int prcmu_release_usb_wakeup_state(void)
  1021. {
  1022. int r = 0;
  1023. mutex_lock(&mb1_transfer.lock);
  1024. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1025. cpu_relax();
  1026. writeb(MB1H_RELEASE_USB_WAKEUP,
  1027. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1028. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1029. wait_for_completion(&mb1_transfer.work);
  1030. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  1031. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1032. r = -EIO;
  1033. mutex_unlock(&mb1_transfer.lock);
  1034. return r;
  1035. }
  1036. static int request_pll(u8 clock, bool enable)
  1037. {
  1038. int r = 0;
  1039. if (clock == PRCMU_PLLSOC0)
  1040. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  1041. else if (clock == PRCMU_PLLSOC1)
  1042. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  1043. else
  1044. return -EINVAL;
  1045. mutex_lock(&mb1_transfer.lock);
  1046. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1047. cpu_relax();
  1048. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1049. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1050. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1051. wait_for_completion(&mb1_transfer.work);
  1052. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1053. r = -EIO;
  1054. mutex_unlock(&mb1_transfer.lock);
  1055. return r;
  1056. }
  1057. /**
  1058. * prcmu_set_hwacc - set the power state of a h/w accelerator
  1059. * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
  1060. * @state: The new power state (enum hw_acc_state).
  1061. *
  1062. * This function sets the power state of a hardware accelerator.
  1063. * This function should not be called from interrupt context.
  1064. *
  1065. * NOTE! Deprecated, to be removed when all users switched over to use the
  1066. * regulator framework API.
  1067. */
  1068. int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
  1069. {
  1070. int r = 0;
  1071. bool ram_retention = false;
  1072. bool enable, enable_ret;
  1073. /* check argument */
  1074. BUG_ON(hwacc_dev >= NUM_HW_ACC);
  1075. /* get state of switches */
  1076. enable = hwacc_enabled[hwacc_dev];
  1077. enable_ret = hwacc_ret_enabled[hwacc_dev];
  1078. /* set flag if retention is possible */
  1079. switch (hwacc_dev) {
  1080. case HW_ACC_SVAMMDSP:
  1081. case HW_ACC_SIAMMDSP:
  1082. case HW_ACC_ESRAM1:
  1083. case HW_ACC_ESRAM2:
  1084. case HW_ACC_ESRAM3:
  1085. case HW_ACC_ESRAM4:
  1086. ram_retention = true;
  1087. break;
  1088. }
  1089. /* check argument */
  1090. BUG_ON(state > HW_ON);
  1091. BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
  1092. /* modify enable flags */
  1093. switch (state) {
  1094. case HW_OFF:
  1095. enable_ret = false;
  1096. enable = false;
  1097. break;
  1098. case HW_ON:
  1099. enable = true;
  1100. break;
  1101. case HW_OFF_RAMRET:
  1102. enable_ret = true;
  1103. enable = false;
  1104. break;
  1105. }
  1106. /* get regulator (lazy) */
  1107. if (hwacc_regulator[hwacc_dev] == NULL) {
  1108. hwacc_regulator[hwacc_dev] = regulator_get(NULL,
  1109. hwacc_regulator_name[hwacc_dev]);
  1110. if (IS_ERR(hwacc_regulator[hwacc_dev])) {
  1111. pr_err("prcmu: failed to get supply %s\n",
  1112. hwacc_regulator_name[hwacc_dev]);
  1113. r = PTR_ERR(hwacc_regulator[hwacc_dev]);
  1114. goto out;
  1115. }
  1116. }
  1117. if (ram_retention) {
  1118. if (hwacc_ret_regulator[hwacc_dev] == NULL) {
  1119. hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
  1120. hwacc_ret_regulator_name[hwacc_dev]);
  1121. if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
  1122. pr_err("prcmu: failed to get supply %s\n",
  1123. hwacc_ret_regulator_name[hwacc_dev]);
  1124. r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
  1125. goto out;
  1126. }
  1127. }
  1128. }
  1129. /* set regulators */
  1130. if (ram_retention) {
  1131. if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
  1132. r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
  1133. if (r < 0) {
  1134. pr_err("prcmu_set_hwacc: ret enable failed\n");
  1135. goto out;
  1136. }
  1137. hwacc_ret_enabled[hwacc_dev] = true;
  1138. }
  1139. }
  1140. if (enable && !hwacc_enabled[hwacc_dev]) {
  1141. r = regulator_enable(hwacc_regulator[hwacc_dev]);
  1142. if (r < 0) {
  1143. pr_err("prcmu_set_hwacc: enable failed\n");
  1144. goto out;
  1145. }
  1146. hwacc_enabled[hwacc_dev] = true;
  1147. }
  1148. if (!enable && hwacc_enabled[hwacc_dev]) {
  1149. r = regulator_disable(hwacc_regulator[hwacc_dev]);
  1150. if (r < 0) {
  1151. pr_err("prcmu_set_hwacc: disable failed\n");
  1152. goto out;
  1153. }
  1154. hwacc_enabled[hwacc_dev] = false;
  1155. }
  1156. if (ram_retention) {
  1157. if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
  1158. r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
  1159. if (r < 0) {
  1160. pr_err("prcmu_set_hwacc: ret disable failed\n");
  1161. goto out;
  1162. }
  1163. hwacc_ret_enabled[hwacc_dev] = false;
  1164. }
  1165. }
  1166. out:
  1167. return r;
  1168. }
  1169. EXPORT_SYMBOL(prcmu_set_hwacc);
  1170. /**
  1171. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1172. * @epod_id: The EPOD to set
  1173. * @epod_state: The new EPOD state
  1174. *
  1175. * This function sets the state of a EPOD (power domain). It may not be called
  1176. * from interrupt context.
  1177. */
  1178. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1179. {
  1180. int r = 0;
  1181. bool ram_retention = false;
  1182. int i;
  1183. /* check argument */
  1184. BUG_ON(epod_id >= NUM_EPOD_ID);
  1185. /* set flag if retention is possible */
  1186. switch (epod_id) {
  1187. case EPOD_ID_SVAMMDSP:
  1188. case EPOD_ID_SIAMMDSP:
  1189. case EPOD_ID_ESRAM12:
  1190. case EPOD_ID_ESRAM34:
  1191. ram_retention = true;
  1192. break;
  1193. }
  1194. /* check argument */
  1195. BUG_ON(epod_state > EPOD_STATE_ON);
  1196. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1197. /* get lock */
  1198. mutex_lock(&mb2_transfer.lock);
  1199. /* wait for mailbox */
  1200. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1201. cpu_relax();
  1202. /* fill in mailbox */
  1203. for (i = 0; i < NUM_EPOD_ID; i++)
  1204. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1205. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1206. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1207. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1208. /*
  1209. * The current firmware version does not handle errors correctly,
  1210. * and we cannot recover if there is an error.
  1211. * This is expected to change when the firmware is updated.
  1212. */
  1213. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1214. msecs_to_jiffies(20000))) {
  1215. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1216. __func__);
  1217. r = -EIO;
  1218. goto unlock_and_return;
  1219. }
  1220. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1221. r = -EIO;
  1222. unlock_and_return:
  1223. mutex_unlock(&mb2_transfer.lock);
  1224. return r;
  1225. }
  1226. /**
  1227. * prcmu_configure_auto_pm - Configure autonomous power management.
  1228. * @sleep: Configuration for ApSleep.
  1229. * @idle: Configuration for ApIdle.
  1230. */
  1231. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1232. struct prcmu_auto_pm_config *idle)
  1233. {
  1234. u32 sleep_cfg;
  1235. u32 idle_cfg;
  1236. unsigned long flags;
  1237. BUG_ON((sleep == NULL) || (idle == NULL));
  1238. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1239. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1240. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1241. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1242. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1243. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1244. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1245. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1246. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1247. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1248. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1249. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1250. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1251. /*
  1252. * The autonomous power management configuration is done through
  1253. * fields in mailbox 2, but these fields are only used as shared
  1254. * variables - i.e. there is no need to send a message.
  1255. */
  1256. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1257. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1258. mb2_transfer.auto_pm_enabled =
  1259. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1260. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1261. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1262. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1263. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1264. }
  1265. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1266. bool prcmu_is_auto_pm_enabled(void)
  1267. {
  1268. return mb2_transfer.auto_pm_enabled;
  1269. }
  1270. static int request_sysclk(bool enable)
  1271. {
  1272. int r;
  1273. unsigned long flags;
  1274. r = 0;
  1275. mutex_lock(&mb3_transfer.sysclk_lock);
  1276. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1277. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1278. cpu_relax();
  1279. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1280. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1281. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1282. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1283. /*
  1284. * The firmware only sends an ACK if we want to enable the
  1285. * SysClk, and it succeeds.
  1286. */
  1287. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1288. msecs_to_jiffies(20000))) {
  1289. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1290. __func__);
  1291. r = -EIO;
  1292. }
  1293. mutex_unlock(&mb3_transfer.sysclk_lock);
  1294. return r;
  1295. }
  1296. static int request_timclk(bool enable)
  1297. {
  1298. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1299. if (!enable)
  1300. val |= PRCM_TCR_STOP_TIMERS;
  1301. writel(val, PRCM_TCR);
  1302. return 0;
  1303. }
  1304. static int request_clock(u8 clock, bool enable)
  1305. {
  1306. u32 val;
  1307. unsigned long flags;
  1308. spin_lock_irqsave(&clk_mgt_lock, flags);
  1309. /* Grab the HW semaphore. */
  1310. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1311. cpu_relax();
  1312. val = readl(clk_mgt[clock].reg);
  1313. if (enable) {
  1314. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1315. } else {
  1316. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1317. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1318. }
  1319. writel(val, clk_mgt[clock].reg);
  1320. /* Release the HW semaphore. */
  1321. writel(0, PRCM_SEM);
  1322. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1323. return 0;
  1324. }
  1325. static int request_sga_clock(u8 clock, bool enable)
  1326. {
  1327. u32 val;
  1328. int ret;
  1329. if (enable) {
  1330. val = readl(PRCM_CGATING_BYPASS);
  1331. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1332. }
  1333. ret = request_clock(clock, enable);
  1334. if (!ret && !enable) {
  1335. val = readl(PRCM_CGATING_BYPASS);
  1336. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1337. }
  1338. return ret;
  1339. }
  1340. static inline bool plldsi_locked(void)
  1341. {
  1342. return (readl(PRCM_PLLDSI_LOCKP) &
  1343. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1344. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1345. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1346. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1347. }
  1348. static int request_plldsi(bool enable)
  1349. {
  1350. int r = 0;
  1351. u32 val;
  1352. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1353. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1354. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1355. val = readl(PRCM_PLLDSI_ENABLE);
  1356. if (enable)
  1357. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1358. else
  1359. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1360. writel(val, PRCM_PLLDSI_ENABLE);
  1361. if (enable) {
  1362. unsigned int i;
  1363. bool locked = plldsi_locked();
  1364. for (i = 10; !locked && (i > 0); --i) {
  1365. udelay(100);
  1366. locked = plldsi_locked();
  1367. }
  1368. if (locked) {
  1369. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1370. PRCM_APE_RESETN_SET);
  1371. } else {
  1372. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1373. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1374. PRCM_MMIP_LS_CLAMP_SET);
  1375. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1376. writel(val, PRCM_PLLDSI_ENABLE);
  1377. r = -EAGAIN;
  1378. }
  1379. } else {
  1380. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1381. }
  1382. return r;
  1383. }
  1384. static int request_dsiclk(u8 n, bool enable)
  1385. {
  1386. u32 val;
  1387. val = readl(PRCM_DSI_PLLOUT_SEL);
  1388. val &= ~dsiclk[n].divsel_mask;
  1389. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1390. dsiclk[n].divsel_shift);
  1391. writel(val, PRCM_DSI_PLLOUT_SEL);
  1392. return 0;
  1393. }
  1394. static int request_dsiescclk(u8 n, bool enable)
  1395. {
  1396. u32 val;
  1397. val = readl(PRCM_DSITVCLK_DIV);
  1398. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1399. writel(val, PRCM_DSITVCLK_DIV);
  1400. return 0;
  1401. }
  1402. /**
  1403. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1404. * @clock: The clock for which the request is made.
  1405. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1406. *
  1407. * This function should only be used by the clock implementation.
  1408. * Do not use it from any other place!
  1409. */
  1410. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1411. {
  1412. if (clock == PRCMU_SGACLK)
  1413. return request_sga_clock(clock, enable);
  1414. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1415. return request_clock(clock, enable);
  1416. else if (clock == PRCMU_TIMCLK)
  1417. return request_timclk(enable);
  1418. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1419. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1420. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1421. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1422. else if (clock == PRCMU_PLLDSI)
  1423. return request_plldsi(enable);
  1424. else if (clock == PRCMU_SYSCLK)
  1425. return request_sysclk(enable);
  1426. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1427. return request_pll(clock, enable);
  1428. else
  1429. return -EINVAL;
  1430. }
  1431. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1432. int branch)
  1433. {
  1434. u64 rate;
  1435. u32 val;
  1436. u32 d;
  1437. u32 div = 1;
  1438. val = readl(reg);
  1439. rate = src_rate;
  1440. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1441. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1442. if (d > 1)
  1443. div *= d;
  1444. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1445. if (d > 1)
  1446. div *= d;
  1447. if (val & PRCM_PLL_FREQ_SELDIV2)
  1448. div *= 2;
  1449. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1450. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1451. ((reg == PRCM_PLLSOC0_FREQ) ||
  1452. (reg == PRCM_PLLDDR_FREQ))))
  1453. div *= 2;
  1454. (void)do_div(rate, div);
  1455. return (unsigned long)rate;
  1456. }
  1457. #define ROOT_CLOCK_RATE 38400000
  1458. static unsigned long clock_rate(u8 clock)
  1459. {
  1460. u32 val;
  1461. u32 pllsw;
  1462. unsigned long rate = ROOT_CLOCK_RATE;
  1463. val = readl(clk_mgt[clock].reg);
  1464. if (val & PRCM_CLK_MGT_CLK38) {
  1465. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1466. rate /= 2;
  1467. return rate;
  1468. }
  1469. val |= clk_mgt[clock].pllsw;
  1470. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1471. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1472. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1473. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1474. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1475. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1476. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1477. else
  1478. return 0;
  1479. if ((clock == PRCMU_SGACLK) &&
  1480. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1481. u64 r = (rate * 10);
  1482. (void)do_div(r, 25);
  1483. return (unsigned long)r;
  1484. }
  1485. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1486. if (val)
  1487. return rate / val;
  1488. else
  1489. return 0;
  1490. }
  1491. static unsigned long dsiclk_rate(u8 n)
  1492. {
  1493. u32 divsel;
  1494. u32 div = 1;
  1495. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1496. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1497. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1498. divsel = dsiclk[n].divsel;
  1499. switch (divsel) {
  1500. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1501. div *= 2;
  1502. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1503. div *= 2;
  1504. case PRCM_DSI_PLLOUT_SEL_PHI:
  1505. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1506. PLL_RAW) / div;
  1507. default:
  1508. return 0;
  1509. }
  1510. }
  1511. static unsigned long dsiescclk_rate(u8 n)
  1512. {
  1513. u32 div;
  1514. div = readl(PRCM_DSITVCLK_DIV);
  1515. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1516. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1517. }
  1518. unsigned long prcmu_clock_rate(u8 clock)
  1519. {
  1520. if (clock < PRCMU_NUM_REG_CLOCKS)
  1521. return clock_rate(clock);
  1522. else if (clock == PRCMU_TIMCLK)
  1523. return ROOT_CLOCK_RATE / 16;
  1524. else if (clock == PRCMU_SYSCLK)
  1525. return ROOT_CLOCK_RATE;
  1526. else if (clock == PRCMU_PLLSOC0)
  1527. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1528. else if (clock == PRCMU_PLLSOC1)
  1529. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1530. else if (clock == PRCMU_PLLDDR)
  1531. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1532. else if (clock == PRCMU_PLLDSI)
  1533. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1534. PLL_RAW);
  1535. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1536. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1537. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1538. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1539. else
  1540. return 0;
  1541. }
  1542. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1543. {
  1544. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1545. return ROOT_CLOCK_RATE;
  1546. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1547. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1548. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1549. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1550. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1551. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1552. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1553. else
  1554. return 0;
  1555. }
  1556. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1557. {
  1558. u32 div;
  1559. div = (src_rate / rate);
  1560. if (div == 0)
  1561. return 1;
  1562. if (rate < (src_rate / div))
  1563. div++;
  1564. return div;
  1565. }
  1566. static long round_clock_rate(u8 clock, unsigned long rate)
  1567. {
  1568. u32 val;
  1569. u32 div;
  1570. unsigned long src_rate;
  1571. long rounded_rate;
  1572. val = readl(clk_mgt[clock].reg);
  1573. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1574. clk_mgt[clock].branch);
  1575. div = clock_divider(src_rate, rate);
  1576. if (val & PRCM_CLK_MGT_CLK38) {
  1577. if (clk_mgt[clock].clk38div) {
  1578. if (div > 2)
  1579. div = 2;
  1580. } else {
  1581. div = 1;
  1582. }
  1583. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1584. u64 r = (src_rate * 10);
  1585. (void)do_div(r, 25);
  1586. if (r <= rate)
  1587. return (unsigned long)r;
  1588. }
  1589. rounded_rate = (src_rate / min(div, (u32)31));
  1590. return rounded_rate;
  1591. }
  1592. #define MIN_PLL_VCO_RATE 600000000ULL
  1593. #define MAX_PLL_VCO_RATE 1680640000ULL
  1594. static long round_plldsi_rate(unsigned long rate)
  1595. {
  1596. long rounded_rate = 0;
  1597. unsigned long src_rate;
  1598. unsigned long rem;
  1599. u32 r;
  1600. src_rate = clock_rate(PRCMU_HDMICLK);
  1601. rem = rate;
  1602. for (r = 7; (rem > 0) && (r > 0); r--) {
  1603. u64 d;
  1604. d = (r * rate);
  1605. (void)do_div(d, src_rate);
  1606. if (d < 6)
  1607. d = 6;
  1608. else if (d > 255)
  1609. d = 255;
  1610. d *= src_rate;
  1611. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1612. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1613. continue;
  1614. (void)do_div(d, r);
  1615. if (rate < d) {
  1616. if (rounded_rate == 0)
  1617. rounded_rate = (long)d;
  1618. break;
  1619. }
  1620. if ((rate - d) < rem) {
  1621. rem = (rate - d);
  1622. rounded_rate = (long)d;
  1623. }
  1624. }
  1625. return rounded_rate;
  1626. }
  1627. static long round_dsiclk_rate(unsigned long rate)
  1628. {
  1629. u32 div;
  1630. unsigned long src_rate;
  1631. long rounded_rate;
  1632. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1633. PLL_RAW);
  1634. div = clock_divider(src_rate, rate);
  1635. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1636. return rounded_rate;
  1637. }
  1638. static long round_dsiescclk_rate(unsigned long rate)
  1639. {
  1640. u32 div;
  1641. unsigned long src_rate;
  1642. long rounded_rate;
  1643. src_rate = clock_rate(PRCMU_TVCLK);
  1644. div = clock_divider(src_rate, rate);
  1645. rounded_rate = (src_rate / min(div, (u32)255));
  1646. return rounded_rate;
  1647. }
  1648. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1649. {
  1650. if (clock < PRCMU_NUM_REG_CLOCKS)
  1651. return round_clock_rate(clock, rate);
  1652. else if (clock == PRCMU_PLLDSI)
  1653. return round_plldsi_rate(rate);
  1654. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1655. return round_dsiclk_rate(rate);
  1656. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1657. return round_dsiescclk_rate(rate);
  1658. else
  1659. return (long)prcmu_clock_rate(clock);
  1660. }
  1661. static void set_clock_rate(u8 clock, unsigned long rate)
  1662. {
  1663. u32 val;
  1664. u32 div;
  1665. unsigned long src_rate;
  1666. unsigned long flags;
  1667. spin_lock_irqsave(&clk_mgt_lock, flags);
  1668. /* Grab the HW semaphore. */
  1669. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1670. cpu_relax();
  1671. val = readl(clk_mgt[clock].reg);
  1672. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1673. clk_mgt[clock].branch);
  1674. div = clock_divider(src_rate, rate);
  1675. if (val & PRCM_CLK_MGT_CLK38) {
  1676. if (clk_mgt[clock].clk38div) {
  1677. if (div > 1)
  1678. val |= PRCM_CLK_MGT_CLK38DIV;
  1679. else
  1680. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1681. }
  1682. } else if (clock == PRCMU_SGACLK) {
  1683. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1684. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1685. if (div == 3) {
  1686. u64 r = (src_rate * 10);
  1687. (void)do_div(r, 25);
  1688. if (r <= rate) {
  1689. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1690. div = 0;
  1691. }
  1692. }
  1693. val |= min(div, (u32)31);
  1694. } else {
  1695. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1696. val |= min(div, (u32)31);
  1697. }
  1698. writel(val, clk_mgt[clock].reg);
  1699. /* Release the HW semaphore. */
  1700. writel(0, PRCM_SEM);
  1701. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1702. }
  1703. static int set_plldsi_rate(unsigned long rate)
  1704. {
  1705. unsigned long src_rate;
  1706. unsigned long rem;
  1707. u32 pll_freq = 0;
  1708. u32 r;
  1709. src_rate = clock_rate(PRCMU_HDMICLK);
  1710. rem = rate;
  1711. for (r = 7; (rem > 0) && (r > 0); r--) {
  1712. u64 d;
  1713. u64 hwrate;
  1714. d = (r * rate);
  1715. (void)do_div(d, src_rate);
  1716. if (d < 6)
  1717. d = 6;
  1718. else if (d > 255)
  1719. d = 255;
  1720. hwrate = (d * src_rate);
  1721. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1722. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1723. continue;
  1724. (void)do_div(hwrate, r);
  1725. if (rate < hwrate) {
  1726. if (pll_freq == 0)
  1727. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1728. (r << PRCM_PLL_FREQ_R_SHIFT));
  1729. break;
  1730. }
  1731. if ((rate - hwrate) < rem) {
  1732. rem = (rate - hwrate);
  1733. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1734. (r << PRCM_PLL_FREQ_R_SHIFT));
  1735. }
  1736. }
  1737. if (pll_freq == 0)
  1738. return -EINVAL;
  1739. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1740. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1741. return 0;
  1742. }
  1743. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1744. {
  1745. u32 val;
  1746. u32 div;
  1747. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1748. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1749. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1750. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1751. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1752. val = readl(PRCM_DSI_PLLOUT_SEL);
  1753. val &= ~dsiclk[n].divsel_mask;
  1754. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1755. writel(val, PRCM_DSI_PLLOUT_SEL);
  1756. }
  1757. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1758. {
  1759. u32 val;
  1760. u32 div;
  1761. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1762. val = readl(PRCM_DSITVCLK_DIV);
  1763. val &= ~dsiescclk[n].div_mask;
  1764. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1765. writel(val, PRCM_DSITVCLK_DIV);
  1766. }
  1767. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1768. {
  1769. if (clock < PRCMU_NUM_REG_CLOCKS)
  1770. set_clock_rate(clock, rate);
  1771. else if (clock == PRCMU_PLLDSI)
  1772. return set_plldsi_rate(rate);
  1773. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1774. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1775. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1776. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1777. return 0;
  1778. }
  1779. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1780. {
  1781. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1782. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1783. return -EINVAL;
  1784. mutex_lock(&mb4_transfer.lock);
  1785. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1786. cpu_relax();
  1787. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1788. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1789. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1790. writeb(DDR_PWR_STATE_ON,
  1791. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1792. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1793. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1794. wait_for_completion(&mb4_transfer.work);
  1795. mutex_unlock(&mb4_transfer.lock);
  1796. return 0;
  1797. }
  1798. int db8500_prcmu_config_hotdog(u8 threshold)
  1799. {
  1800. mutex_lock(&mb4_transfer.lock);
  1801. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1802. cpu_relax();
  1803. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1804. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1805. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1806. wait_for_completion(&mb4_transfer.work);
  1807. mutex_unlock(&mb4_transfer.lock);
  1808. return 0;
  1809. }
  1810. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1811. {
  1812. mutex_lock(&mb4_transfer.lock);
  1813. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1814. cpu_relax();
  1815. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1816. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1817. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1818. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1819. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1820. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1821. wait_for_completion(&mb4_transfer.work);
  1822. mutex_unlock(&mb4_transfer.lock);
  1823. return 0;
  1824. }
  1825. static int config_hot_period(u16 val)
  1826. {
  1827. mutex_lock(&mb4_transfer.lock);
  1828. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1829. cpu_relax();
  1830. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1831. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1832. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1833. wait_for_completion(&mb4_transfer.work);
  1834. mutex_unlock(&mb4_transfer.lock);
  1835. return 0;
  1836. }
  1837. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1838. {
  1839. if (cycles32k == 0xFFFF)
  1840. return -EINVAL;
  1841. return config_hot_period(cycles32k);
  1842. }
  1843. int db8500_prcmu_stop_temp_sense(void)
  1844. {
  1845. return config_hot_period(0xFFFF);
  1846. }
  1847. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1848. {
  1849. mutex_lock(&mb4_transfer.lock);
  1850. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1851. cpu_relax();
  1852. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1853. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1854. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1855. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1856. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1857. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1858. wait_for_completion(&mb4_transfer.work);
  1859. mutex_unlock(&mb4_transfer.lock);
  1860. return 0;
  1861. }
  1862. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1863. {
  1864. BUG_ON(num == 0 || num > 0xf);
  1865. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1866. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1867. A9WDOG_AUTO_OFF_DIS);
  1868. }
  1869. int db8500_prcmu_enable_a9wdog(u8 id)
  1870. {
  1871. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1872. }
  1873. int db8500_prcmu_disable_a9wdog(u8 id)
  1874. {
  1875. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1876. }
  1877. int db8500_prcmu_kick_a9wdog(u8 id)
  1878. {
  1879. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1880. }
  1881. /*
  1882. * timeout is 28 bit, in ms.
  1883. */
  1884. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1885. {
  1886. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1887. (id & A9WDOG_ID_MASK) |
  1888. /*
  1889. * Put the lowest 28 bits of timeout at
  1890. * offset 4. Four first bits are used for id.
  1891. */
  1892. (u8)((timeout << 4) & 0xf0),
  1893. (u8)((timeout >> 4) & 0xff),
  1894. (u8)((timeout >> 12) & 0xff),
  1895. (u8)((timeout >> 20) & 0xff));
  1896. }
  1897. /**
  1898. * prcmu_abb_read() - Read register value(s) from the ABB.
  1899. * @slave: The I2C slave address.
  1900. * @reg: The (start) register address.
  1901. * @value: The read out value(s).
  1902. * @size: The number of registers to read.
  1903. *
  1904. * Reads register value(s) from the ABB.
  1905. * @size has to be 1 for the current firmware version.
  1906. */
  1907. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1908. {
  1909. int r;
  1910. if (size != 1)
  1911. return -EINVAL;
  1912. mutex_lock(&mb5_transfer.lock);
  1913. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1914. cpu_relax();
  1915. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1916. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1917. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1918. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1919. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1920. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1921. msecs_to_jiffies(20000))) {
  1922. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1923. __func__);
  1924. r = -EIO;
  1925. } else {
  1926. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1927. }
  1928. if (!r)
  1929. *value = mb5_transfer.ack.value;
  1930. mutex_unlock(&mb5_transfer.lock);
  1931. return r;
  1932. }
  1933. /**
  1934. * prcmu_abb_write() - Write register value(s) to the ABB.
  1935. * @slave: The I2C slave address.
  1936. * @reg: The (start) register address.
  1937. * @value: The value(s) to write.
  1938. * @size: The number of registers to write.
  1939. *
  1940. * Reads register value(s) from the ABB.
  1941. * @size has to be 1 for the current firmware version.
  1942. */
  1943. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1944. {
  1945. int r;
  1946. if (size != 1)
  1947. return -EINVAL;
  1948. mutex_lock(&mb5_transfer.lock);
  1949. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1950. cpu_relax();
  1951. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1952. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1953. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1954. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1955. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1956. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1957. msecs_to_jiffies(20000))) {
  1958. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1959. __func__);
  1960. r = -EIO;
  1961. } else {
  1962. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1963. }
  1964. mutex_unlock(&mb5_transfer.lock);
  1965. return r;
  1966. }
  1967. /**
  1968. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1969. */
  1970. void prcmu_ac_wake_req(void)
  1971. {
  1972. u32 val;
  1973. u32 status;
  1974. mutex_lock(&mb0_transfer.ac_wake_lock);
  1975. val = readl(PRCM_HOSTACCESS_REQ);
  1976. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1977. goto unlock_and_return;
  1978. atomic_set(&ac_wake_req_state, 1);
  1979. retry:
  1980. writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
  1981. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1982. msecs_to_jiffies(5000))) {
  1983. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1984. __func__);
  1985. goto unlock_and_return;
  1986. }
  1987. /*
  1988. * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
  1989. * As a workaround, we wait, and then check that the modem is indeed
  1990. * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
  1991. * register, which may not be the whole truth).
  1992. */
  1993. udelay(400);
  1994. status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
  1995. if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
  1996. PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
  1997. pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
  1998. __func__, status);
  1999. udelay(1200);
  2000. writel(val, PRCM_HOSTACCESS_REQ);
  2001. if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2002. msecs_to_jiffies(5000)))
  2003. goto retry;
  2004. pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
  2005. __func__);
  2006. }
  2007. unlock_and_return:
  2008. mutex_unlock(&mb0_transfer.ac_wake_lock);
  2009. }
  2010. /**
  2011. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  2012. */
  2013. void prcmu_ac_sleep_req()
  2014. {
  2015. u32 val;
  2016. mutex_lock(&mb0_transfer.ac_wake_lock);
  2017. val = readl(PRCM_HOSTACCESS_REQ);
  2018. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  2019. goto unlock_and_return;
  2020. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  2021. PRCM_HOSTACCESS_REQ);
  2022. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2023. msecs_to_jiffies(5000))) {
  2024. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  2025. __func__);
  2026. }
  2027. atomic_set(&ac_wake_req_state, 0);
  2028. unlock_and_return:
  2029. mutex_unlock(&mb0_transfer.ac_wake_lock);
  2030. }
  2031. bool db8500_prcmu_is_ac_wake_requested(void)
  2032. {
  2033. return (atomic_read(&ac_wake_req_state) != 0);
  2034. }
  2035. /**
  2036. * db8500_prcmu_system_reset - System reset
  2037. *
  2038. * Saves the reset reason code and then sets the APE_SOFTRST register which
  2039. * fires interrupt to fw
  2040. */
  2041. void db8500_prcmu_system_reset(u16 reset_code)
  2042. {
  2043. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  2044. writel(1, PRCM_APE_SOFTRST);
  2045. }
  2046. /**
  2047. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2048. *
  2049. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2050. * last restart.
  2051. */
  2052. u16 db8500_prcmu_get_reset_code(void)
  2053. {
  2054. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2055. }
  2056. /**
  2057. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2058. */
  2059. void db8500_prcmu_modem_reset(void)
  2060. {
  2061. mutex_lock(&mb1_transfer.lock);
  2062. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2063. cpu_relax();
  2064. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2065. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2066. wait_for_completion(&mb1_transfer.work);
  2067. /*
  2068. * No need to check return from PRCMU as modem should go in reset state
  2069. * This state is already managed by upper layer
  2070. */
  2071. mutex_unlock(&mb1_transfer.lock);
  2072. }
  2073. static void ack_dbb_wakeup(void)
  2074. {
  2075. unsigned long flags;
  2076. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2077. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2078. cpu_relax();
  2079. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2080. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2081. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2082. }
  2083. static inline void print_unknown_header_warning(u8 n, u8 header)
  2084. {
  2085. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2086. header, n);
  2087. }
  2088. static bool read_mailbox_0(void)
  2089. {
  2090. bool r;
  2091. u32 ev;
  2092. unsigned int n;
  2093. u8 header;
  2094. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2095. switch (header) {
  2096. case MB0H_WAKEUP_EXE:
  2097. case MB0H_WAKEUP_SLEEP:
  2098. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2099. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2100. else
  2101. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2102. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2103. complete(&mb0_transfer.ac_wake_work);
  2104. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2105. complete(&mb3_transfer.sysclk_work);
  2106. ev &= mb0_transfer.req.dbb_irqs;
  2107. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2108. if (ev & prcmu_irq_bit[n])
  2109. generic_handle_irq(IRQ_PRCMU_BASE + n);
  2110. }
  2111. r = true;
  2112. break;
  2113. default:
  2114. print_unknown_header_warning(0, header);
  2115. r = false;
  2116. break;
  2117. }
  2118. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2119. return r;
  2120. }
  2121. static bool read_mailbox_1(void)
  2122. {
  2123. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2124. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2125. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2126. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2127. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2128. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2129. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2130. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2131. complete(&mb1_transfer.work);
  2132. return false;
  2133. }
  2134. static bool read_mailbox_2(void)
  2135. {
  2136. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2137. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2138. complete(&mb2_transfer.work);
  2139. return false;
  2140. }
  2141. static bool read_mailbox_3(void)
  2142. {
  2143. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2144. return false;
  2145. }
  2146. static bool read_mailbox_4(void)
  2147. {
  2148. u8 header;
  2149. bool do_complete = true;
  2150. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2151. switch (header) {
  2152. case MB4H_MEM_ST:
  2153. case MB4H_HOTDOG:
  2154. case MB4H_HOTMON:
  2155. case MB4H_HOT_PERIOD:
  2156. case MB4H_A9WDOG_CONF:
  2157. case MB4H_A9WDOG_EN:
  2158. case MB4H_A9WDOG_DIS:
  2159. case MB4H_A9WDOG_LOAD:
  2160. case MB4H_A9WDOG_KICK:
  2161. break;
  2162. default:
  2163. print_unknown_header_warning(4, header);
  2164. do_complete = false;
  2165. break;
  2166. }
  2167. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2168. if (do_complete)
  2169. complete(&mb4_transfer.work);
  2170. return false;
  2171. }
  2172. static bool read_mailbox_5(void)
  2173. {
  2174. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2175. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2176. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2177. complete(&mb5_transfer.work);
  2178. return false;
  2179. }
  2180. static bool read_mailbox_6(void)
  2181. {
  2182. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2183. return false;
  2184. }
  2185. static bool read_mailbox_7(void)
  2186. {
  2187. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2188. return false;
  2189. }
  2190. static bool (* const read_mailbox[NUM_MB])(void) = {
  2191. read_mailbox_0,
  2192. read_mailbox_1,
  2193. read_mailbox_2,
  2194. read_mailbox_3,
  2195. read_mailbox_4,
  2196. read_mailbox_5,
  2197. read_mailbox_6,
  2198. read_mailbox_7
  2199. };
  2200. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2201. {
  2202. u32 bits;
  2203. u8 n;
  2204. irqreturn_t r;
  2205. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2206. if (unlikely(!bits))
  2207. return IRQ_NONE;
  2208. r = IRQ_HANDLED;
  2209. for (n = 0; bits; n++) {
  2210. if (bits & MBOX_BIT(n)) {
  2211. bits -= MBOX_BIT(n);
  2212. if (read_mailbox[n]())
  2213. r = IRQ_WAKE_THREAD;
  2214. }
  2215. }
  2216. return r;
  2217. }
  2218. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2219. {
  2220. ack_dbb_wakeup();
  2221. return IRQ_HANDLED;
  2222. }
  2223. static void prcmu_mask_work(struct work_struct *work)
  2224. {
  2225. unsigned long flags;
  2226. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2227. config_wakeups();
  2228. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2229. }
  2230. static void prcmu_irq_mask(struct irq_data *d)
  2231. {
  2232. unsigned long flags;
  2233. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2234. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2235. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2236. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2237. schedule_work(&mb0_transfer.mask_work);
  2238. }
  2239. static void prcmu_irq_unmask(struct irq_data *d)
  2240. {
  2241. unsigned long flags;
  2242. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2243. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2244. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2245. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2246. schedule_work(&mb0_transfer.mask_work);
  2247. }
  2248. static void noop(struct irq_data *d)
  2249. {
  2250. }
  2251. static struct irq_chip prcmu_irq_chip = {
  2252. .name = "prcmu",
  2253. .irq_disable = prcmu_irq_mask,
  2254. .irq_ack = noop,
  2255. .irq_mask = prcmu_irq_mask,
  2256. .irq_unmask = prcmu_irq_unmask,
  2257. };
  2258. static char *fw_project_name(u8 project)
  2259. {
  2260. switch (project) {
  2261. case PRCMU_FW_PROJECT_U8500:
  2262. return "U8500";
  2263. case PRCMU_FW_PROJECT_U8500_C2:
  2264. return "U8500 C2";
  2265. case PRCMU_FW_PROJECT_U9500:
  2266. return "U9500";
  2267. case PRCMU_FW_PROJECT_U9500_C2:
  2268. return "U9500 C2";
  2269. default:
  2270. return "Unknown";
  2271. }
  2272. }
  2273. void __init db8500_prcmu_early_init(void)
  2274. {
  2275. unsigned int i;
  2276. if (cpu_is_u8500v2()) {
  2277. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  2278. if (tcpm_base != NULL) {
  2279. u32 version;
  2280. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  2281. fw_info.version.project = version & 0xFF;
  2282. fw_info.version.api_version = (version >> 8) & 0xFF;
  2283. fw_info.version.func_version = (version >> 16) & 0xFF;
  2284. fw_info.version.errata = (version >> 24) & 0xFF;
  2285. fw_info.valid = true;
  2286. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  2287. fw_project_name(fw_info.version.project),
  2288. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  2289. (version >> 24) & 0xFF);
  2290. iounmap(tcpm_base);
  2291. }
  2292. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  2293. } else {
  2294. pr_err("prcmu: Unsupported chip version\n");
  2295. BUG();
  2296. }
  2297. spin_lock_init(&mb0_transfer.lock);
  2298. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2299. mutex_init(&mb0_transfer.ac_wake_lock);
  2300. init_completion(&mb0_transfer.ac_wake_work);
  2301. mutex_init(&mb1_transfer.lock);
  2302. init_completion(&mb1_transfer.work);
  2303. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2304. mutex_init(&mb2_transfer.lock);
  2305. init_completion(&mb2_transfer.work);
  2306. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2307. spin_lock_init(&mb3_transfer.lock);
  2308. mutex_init(&mb3_transfer.sysclk_lock);
  2309. init_completion(&mb3_transfer.sysclk_work);
  2310. mutex_init(&mb4_transfer.lock);
  2311. init_completion(&mb4_transfer.work);
  2312. mutex_init(&mb5_transfer.lock);
  2313. init_completion(&mb5_transfer.work);
  2314. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2315. /* Initalize irqs. */
  2316. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
  2317. unsigned int irq;
  2318. irq = IRQ_PRCMU_BASE + i;
  2319. irq_set_chip_and_handler(irq, &prcmu_irq_chip,
  2320. handle_simple_irq);
  2321. set_irq_flags(irq, IRQF_VALID);
  2322. }
  2323. }
  2324. static void __init init_prcm_registers(void)
  2325. {
  2326. u32 val;
  2327. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2328. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2329. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2330. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2331. }
  2332. /*
  2333. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2334. */
  2335. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2336. REGULATOR_SUPPLY("v-ape", NULL),
  2337. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2338. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2339. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2340. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2341. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2342. REGULATOR_SUPPLY("vcore", "sdi0"),
  2343. REGULATOR_SUPPLY("vcore", "sdi1"),
  2344. REGULATOR_SUPPLY("vcore", "sdi2"),
  2345. REGULATOR_SUPPLY("vcore", "sdi3"),
  2346. REGULATOR_SUPPLY("vcore", "sdi4"),
  2347. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2348. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2349. /* "v-uart" changed to "vcore" in the mainline kernel */
  2350. REGULATOR_SUPPLY("vcore", "uart0"),
  2351. REGULATOR_SUPPLY("vcore", "uart1"),
  2352. REGULATOR_SUPPLY("vcore", "uart2"),
  2353. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2354. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2355. };
  2356. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2357. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2358. /* AV8100 regulator */
  2359. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2360. };
  2361. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2362. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2363. REGULATOR_SUPPLY("vsupply", "mcde"),
  2364. };
  2365. /* SVA MMDSP regulator switch */
  2366. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2367. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2368. };
  2369. /* SVA pipe regulator switch */
  2370. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2371. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2372. };
  2373. /* SIA MMDSP regulator switch */
  2374. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2375. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2376. };
  2377. /* SIA pipe regulator switch */
  2378. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2379. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2380. };
  2381. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2382. REGULATOR_SUPPLY("v-mali", NULL),
  2383. };
  2384. /* ESRAM1 and 2 regulator switch */
  2385. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2386. REGULATOR_SUPPLY("esram12", "cm_control"),
  2387. };
  2388. /* ESRAM3 and 4 regulator switch */
  2389. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2390. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2391. REGULATOR_SUPPLY("esram34", "cm_control"),
  2392. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2393. };
  2394. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2395. [DB8500_REGULATOR_VAPE] = {
  2396. .constraints = {
  2397. .name = "db8500-vape",
  2398. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2399. },
  2400. .consumer_supplies = db8500_vape_consumers,
  2401. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2402. },
  2403. [DB8500_REGULATOR_VARM] = {
  2404. .constraints = {
  2405. .name = "db8500-varm",
  2406. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2407. },
  2408. },
  2409. [DB8500_REGULATOR_VMODEM] = {
  2410. .constraints = {
  2411. .name = "db8500-vmodem",
  2412. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2413. },
  2414. },
  2415. [DB8500_REGULATOR_VPLL] = {
  2416. .constraints = {
  2417. .name = "db8500-vpll",
  2418. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2419. },
  2420. },
  2421. [DB8500_REGULATOR_VSMPS1] = {
  2422. .constraints = {
  2423. .name = "db8500-vsmps1",
  2424. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2425. },
  2426. },
  2427. [DB8500_REGULATOR_VSMPS2] = {
  2428. .constraints = {
  2429. .name = "db8500-vsmps2",
  2430. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2431. },
  2432. .consumer_supplies = db8500_vsmps2_consumers,
  2433. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2434. },
  2435. [DB8500_REGULATOR_VSMPS3] = {
  2436. .constraints = {
  2437. .name = "db8500-vsmps3",
  2438. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2439. },
  2440. },
  2441. [DB8500_REGULATOR_VRF1] = {
  2442. .constraints = {
  2443. .name = "db8500-vrf1",
  2444. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2445. },
  2446. },
  2447. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2448. /* dependency to u8500-vape is handled outside regulator framework */
  2449. .constraints = {
  2450. .name = "db8500-sva-mmdsp",
  2451. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2452. },
  2453. .consumer_supplies = db8500_svammdsp_consumers,
  2454. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2455. },
  2456. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2457. .constraints = {
  2458. /* "ret" means "retention" */
  2459. .name = "db8500-sva-mmdsp-ret",
  2460. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2461. },
  2462. },
  2463. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2464. /* dependency to u8500-vape is handled outside regulator framework */
  2465. .constraints = {
  2466. .name = "db8500-sva-pipe",
  2467. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2468. },
  2469. .consumer_supplies = db8500_svapipe_consumers,
  2470. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2471. },
  2472. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2473. /* dependency to u8500-vape is handled outside regulator framework */
  2474. .constraints = {
  2475. .name = "db8500-sia-mmdsp",
  2476. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2477. },
  2478. .consumer_supplies = db8500_siammdsp_consumers,
  2479. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2480. },
  2481. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2482. .constraints = {
  2483. .name = "db8500-sia-mmdsp-ret",
  2484. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2485. },
  2486. },
  2487. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2488. /* dependency to u8500-vape is handled outside regulator framework */
  2489. .constraints = {
  2490. .name = "db8500-sia-pipe",
  2491. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2492. },
  2493. .consumer_supplies = db8500_siapipe_consumers,
  2494. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2495. },
  2496. [DB8500_REGULATOR_SWITCH_SGA] = {
  2497. .supply_regulator = "db8500-vape",
  2498. .constraints = {
  2499. .name = "db8500-sga",
  2500. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2501. },
  2502. .consumer_supplies = db8500_sga_consumers,
  2503. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2504. },
  2505. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2506. .supply_regulator = "db8500-vape",
  2507. .constraints = {
  2508. .name = "db8500-b2r2-mcde",
  2509. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2510. },
  2511. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2512. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2513. },
  2514. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2515. /*
  2516. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2517. * no need to hold Vape
  2518. */
  2519. .constraints = {
  2520. .name = "db8500-esram12",
  2521. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2522. },
  2523. .consumer_supplies = db8500_esram12_consumers,
  2524. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2525. },
  2526. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2527. .constraints = {
  2528. .name = "db8500-esram12-ret",
  2529. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2530. },
  2531. },
  2532. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2533. /*
  2534. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2535. * no need to hold Vape
  2536. */
  2537. .constraints = {
  2538. .name = "db8500-esram34",
  2539. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2540. },
  2541. .consumer_supplies = db8500_esram34_consumers,
  2542. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2543. },
  2544. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2545. .constraints = {
  2546. .name = "db8500-esram34-ret",
  2547. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2548. },
  2549. },
  2550. };
  2551. static struct mfd_cell db8500_prcmu_devs[] = {
  2552. {
  2553. .name = "db8500-prcmu-regulators",
  2554. .platform_data = &db8500_regulators,
  2555. .pdata_size = sizeof(db8500_regulators),
  2556. },
  2557. {
  2558. .name = "cpufreq-u8500",
  2559. },
  2560. };
  2561. /**
  2562. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2563. *
  2564. */
  2565. static int __init db8500_prcmu_probe(struct platform_device *pdev)
  2566. {
  2567. int err = 0;
  2568. if (ux500_is_svp())
  2569. return -ENODEV;
  2570. init_prcm_registers();
  2571. /* Clean up the mailbox interrupts after pre-kernel code. */
  2572. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2573. err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
  2574. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2575. if (err < 0) {
  2576. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2577. err = -EBUSY;
  2578. goto no_irq_return;
  2579. }
  2580. if (cpu_is_u8500v20_or_later())
  2581. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2582. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2583. ARRAY_SIZE(db8500_prcmu_devs), NULL,
  2584. 0);
  2585. if (err)
  2586. pr_err("prcmu: Failed to add subdevices\n");
  2587. else
  2588. pr_info("DB8500 PRCMU initialized\n");
  2589. no_irq_return:
  2590. return err;
  2591. }
  2592. static struct platform_driver db8500_prcmu_driver = {
  2593. .driver = {
  2594. .name = "db8500-prcmu",
  2595. .owner = THIS_MODULE,
  2596. },
  2597. };
  2598. static int __init db8500_prcmu_init(void)
  2599. {
  2600. return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
  2601. }
  2602. arch_initcall(db8500_prcmu_init);
  2603. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2604. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2605. MODULE_LICENSE("GPL v2");