sch_fq.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793
  1. /*
  2. * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
  3. *
  4. * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. *
  11. * Meant to be mostly used for localy generated traffic :
  12. * Fast classification depends on skb->sk being set before reaching us.
  13. * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  14. * All packets belonging to a socket are considered as a 'flow'.
  15. *
  16. * Flows are dynamically allocated and stored in a hash table of RB trees
  17. * They are also part of one Round Robin 'queues' (new or old flows)
  18. *
  19. * Burst avoidance (aka pacing) capability :
  20. *
  21. * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  22. * bunch of packets, and this packet scheduler adds delay between
  23. * packets to respect rate limitation.
  24. *
  25. * enqueue() :
  26. * - lookup one RB tree (out of 1024 or more) to find the flow.
  27. * If non existent flow, create it, add it to the tree.
  28. * Add skb to the per flow list of skb (fifo).
  29. * - Use a special fifo for high prio packets
  30. *
  31. * dequeue() : serves flows in Round Robin
  32. * Note : When a flow becomes empty, we do not immediately remove it from
  33. * rb trees, for performance reasons (its expected to send additional packets,
  34. * or SLAB cache will reuse socket for another flow)
  35. */
  36. #include <linux/module.h>
  37. #include <linux/types.h>
  38. #include <linux/kernel.h>
  39. #include <linux/jiffies.h>
  40. #include <linux/string.h>
  41. #include <linux/in.h>
  42. #include <linux/errno.h>
  43. #include <linux/init.h>
  44. #include <linux/skbuff.h>
  45. #include <linux/slab.h>
  46. #include <linux/rbtree.h>
  47. #include <linux/hash.h>
  48. #include <linux/prefetch.h>
  49. #include <net/netlink.h>
  50. #include <net/pkt_sched.h>
  51. #include <net/sock.h>
  52. #include <net/tcp_states.h>
  53. /*
  54. * Per flow structure, dynamically allocated
  55. */
  56. struct fq_flow {
  57. struct sk_buff *head; /* list of skbs for this flow : first skb */
  58. union {
  59. struct sk_buff *tail; /* last skb in the list */
  60. unsigned long age; /* jiffies when flow was emptied, for gc */
  61. };
  62. struct rb_node fq_node; /* anchor in fq_root[] trees */
  63. struct sock *sk;
  64. int qlen; /* number of packets in flow queue */
  65. int credit;
  66. u32 socket_hash; /* sk_hash */
  67. struct fq_flow *next; /* next pointer in RR lists, or &detached */
  68. struct rb_node rate_node; /* anchor in q->delayed tree */
  69. u64 time_next_packet;
  70. };
  71. struct fq_flow_head {
  72. struct fq_flow *first;
  73. struct fq_flow *last;
  74. };
  75. struct fq_sched_data {
  76. struct fq_flow_head new_flows;
  77. struct fq_flow_head old_flows;
  78. struct rb_root delayed; /* for rate limited flows */
  79. u64 time_next_delayed_flow;
  80. struct fq_flow internal; /* for non classified or high prio packets */
  81. u32 quantum;
  82. u32 initial_quantum;
  83. u32 flow_default_rate;/* rate per flow : bytes per second */
  84. u32 flow_max_rate; /* optional max rate per flow */
  85. u32 flow_plimit; /* max packets per flow */
  86. struct rb_root *fq_root;
  87. u8 rate_enable;
  88. u8 fq_trees_log;
  89. u32 flows;
  90. u32 inactive_flows;
  91. u32 throttled_flows;
  92. u64 stat_gc_flows;
  93. u64 stat_internal_packets;
  94. u64 stat_tcp_retrans;
  95. u64 stat_throttled;
  96. u64 stat_flows_plimit;
  97. u64 stat_pkts_too_long;
  98. u64 stat_allocation_errors;
  99. struct qdisc_watchdog watchdog;
  100. };
  101. /* special value to mark a detached flow (not on old/new list) */
  102. static struct fq_flow detached, throttled;
  103. static void fq_flow_set_detached(struct fq_flow *f)
  104. {
  105. f->next = &detached;
  106. }
  107. static bool fq_flow_is_detached(const struct fq_flow *f)
  108. {
  109. return f->next == &detached;
  110. }
  111. static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
  112. {
  113. struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
  114. while (*p) {
  115. struct fq_flow *aux;
  116. parent = *p;
  117. aux = container_of(parent, struct fq_flow, rate_node);
  118. if (f->time_next_packet >= aux->time_next_packet)
  119. p = &parent->rb_right;
  120. else
  121. p = &parent->rb_left;
  122. }
  123. rb_link_node(&f->rate_node, parent, p);
  124. rb_insert_color(&f->rate_node, &q->delayed);
  125. q->throttled_flows++;
  126. q->stat_throttled++;
  127. f->next = &throttled;
  128. if (q->time_next_delayed_flow > f->time_next_packet)
  129. q->time_next_delayed_flow = f->time_next_packet;
  130. }
  131. static struct kmem_cache *fq_flow_cachep __read_mostly;
  132. static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
  133. {
  134. if (head->first)
  135. head->last->next = flow;
  136. else
  137. head->first = flow;
  138. head->last = flow;
  139. flow->next = NULL;
  140. }
  141. /* limit number of collected flows per round */
  142. #define FQ_GC_MAX 8
  143. #define FQ_GC_AGE (3*HZ)
  144. static bool fq_gc_candidate(const struct fq_flow *f)
  145. {
  146. return fq_flow_is_detached(f) &&
  147. time_after(jiffies, f->age + FQ_GC_AGE);
  148. }
  149. static void fq_gc(struct fq_sched_data *q,
  150. struct rb_root *root,
  151. struct sock *sk)
  152. {
  153. struct fq_flow *f, *tofree[FQ_GC_MAX];
  154. struct rb_node **p, *parent;
  155. int fcnt = 0;
  156. p = &root->rb_node;
  157. parent = NULL;
  158. while (*p) {
  159. parent = *p;
  160. f = container_of(parent, struct fq_flow, fq_node);
  161. if (f->sk == sk)
  162. break;
  163. if (fq_gc_candidate(f)) {
  164. tofree[fcnt++] = f;
  165. if (fcnt == FQ_GC_MAX)
  166. break;
  167. }
  168. if (f->sk > sk)
  169. p = &parent->rb_right;
  170. else
  171. p = &parent->rb_left;
  172. }
  173. q->flows -= fcnt;
  174. q->inactive_flows -= fcnt;
  175. q->stat_gc_flows += fcnt;
  176. while (fcnt) {
  177. struct fq_flow *f = tofree[--fcnt];
  178. rb_erase(&f->fq_node, root);
  179. kmem_cache_free(fq_flow_cachep, f);
  180. }
  181. }
  182. static const u8 prio2band[TC_PRIO_MAX + 1] = {
  183. 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
  184. };
  185. static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
  186. {
  187. struct rb_node **p, *parent;
  188. struct sock *sk = skb->sk;
  189. struct rb_root *root;
  190. struct fq_flow *f;
  191. int band;
  192. /* warning: no starvation prevention... */
  193. band = prio2band[skb->priority & TC_PRIO_MAX];
  194. if (unlikely(band == 0))
  195. return &q->internal;
  196. if (unlikely(!sk)) {
  197. /* By forcing low order bit to 1, we make sure to not
  198. * collide with a local flow (socket pointers are word aligned)
  199. */
  200. sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
  201. }
  202. root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
  203. if (q->flows >= (2U << q->fq_trees_log) &&
  204. q->inactive_flows > q->flows/2)
  205. fq_gc(q, root, sk);
  206. p = &root->rb_node;
  207. parent = NULL;
  208. while (*p) {
  209. parent = *p;
  210. f = container_of(parent, struct fq_flow, fq_node);
  211. if (f->sk == sk) {
  212. /* socket might have been reallocated, so check
  213. * if its sk_hash is the same.
  214. * It not, we need to refill credit with
  215. * initial quantum
  216. */
  217. if (unlikely(skb->sk &&
  218. f->socket_hash != sk->sk_hash)) {
  219. f->credit = q->initial_quantum;
  220. f->socket_hash = sk->sk_hash;
  221. }
  222. return f;
  223. }
  224. if (f->sk > sk)
  225. p = &parent->rb_right;
  226. else
  227. p = &parent->rb_left;
  228. }
  229. f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
  230. if (unlikely(!f)) {
  231. q->stat_allocation_errors++;
  232. return &q->internal;
  233. }
  234. fq_flow_set_detached(f);
  235. f->sk = sk;
  236. if (skb->sk)
  237. f->socket_hash = sk->sk_hash;
  238. f->credit = q->initial_quantum;
  239. rb_link_node(&f->fq_node, parent, p);
  240. rb_insert_color(&f->fq_node, root);
  241. q->flows++;
  242. q->inactive_flows++;
  243. return f;
  244. }
  245. /* remove one skb from head of flow queue */
  246. static struct sk_buff *fq_dequeue_head(struct fq_flow *flow)
  247. {
  248. struct sk_buff *skb = flow->head;
  249. if (skb) {
  250. flow->head = skb->next;
  251. skb->next = NULL;
  252. flow->qlen--;
  253. }
  254. return skb;
  255. }
  256. /* We might add in the future detection of retransmits
  257. * For the time being, just return false
  258. */
  259. static bool skb_is_retransmit(struct sk_buff *skb)
  260. {
  261. return false;
  262. }
  263. /* add skb to flow queue
  264. * flow queue is a linked list, kind of FIFO, except for TCP retransmits
  265. * We special case tcp retransmits to be transmitted before other packets.
  266. * We rely on fact that TCP retransmits are unlikely, so we do not waste
  267. * a separate queue or a pointer.
  268. * head-> [retrans pkt 1]
  269. * [retrans pkt 2]
  270. * [ normal pkt 1]
  271. * [ normal pkt 2]
  272. * [ normal pkt 3]
  273. * tail-> [ normal pkt 4]
  274. */
  275. static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
  276. {
  277. struct sk_buff *prev, *head = flow->head;
  278. skb->next = NULL;
  279. if (!head) {
  280. flow->head = skb;
  281. flow->tail = skb;
  282. return;
  283. }
  284. if (likely(!skb_is_retransmit(skb))) {
  285. flow->tail->next = skb;
  286. flow->tail = skb;
  287. return;
  288. }
  289. /* This skb is a tcp retransmit,
  290. * find the last retrans packet in the queue
  291. */
  292. prev = NULL;
  293. while (skb_is_retransmit(head)) {
  294. prev = head;
  295. head = head->next;
  296. if (!head)
  297. break;
  298. }
  299. if (!prev) { /* no rtx packet in queue, become the new head */
  300. skb->next = flow->head;
  301. flow->head = skb;
  302. } else {
  303. if (prev == flow->tail)
  304. flow->tail = skb;
  305. else
  306. skb->next = prev->next;
  307. prev->next = skb;
  308. }
  309. }
  310. static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
  311. {
  312. struct fq_sched_data *q = qdisc_priv(sch);
  313. struct fq_flow *f;
  314. if (unlikely(sch->q.qlen >= sch->limit))
  315. return qdisc_drop(skb, sch);
  316. f = fq_classify(skb, q);
  317. if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
  318. q->stat_flows_plimit++;
  319. return qdisc_drop(skb, sch);
  320. }
  321. f->qlen++;
  322. flow_queue_add(f, skb);
  323. if (skb_is_retransmit(skb))
  324. q->stat_tcp_retrans++;
  325. sch->qstats.backlog += qdisc_pkt_len(skb);
  326. if (fq_flow_is_detached(f)) {
  327. fq_flow_add_tail(&q->new_flows, f);
  328. if (q->quantum > f->credit)
  329. f->credit = q->quantum;
  330. q->inactive_flows--;
  331. qdisc_unthrottled(sch);
  332. }
  333. if (unlikely(f == &q->internal)) {
  334. q->stat_internal_packets++;
  335. qdisc_unthrottled(sch);
  336. }
  337. sch->q.qlen++;
  338. return NET_XMIT_SUCCESS;
  339. }
  340. static void fq_check_throttled(struct fq_sched_data *q, u64 now)
  341. {
  342. struct rb_node *p;
  343. if (q->time_next_delayed_flow > now)
  344. return;
  345. q->time_next_delayed_flow = ~0ULL;
  346. while ((p = rb_first(&q->delayed)) != NULL) {
  347. struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
  348. if (f->time_next_packet > now) {
  349. q->time_next_delayed_flow = f->time_next_packet;
  350. break;
  351. }
  352. rb_erase(p, &q->delayed);
  353. q->throttled_flows--;
  354. fq_flow_add_tail(&q->old_flows, f);
  355. }
  356. }
  357. static struct sk_buff *fq_dequeue(struct Qdisc *sch)
  358. {
  359. struct fq_sched_data *q = qdisc_priv(sch);
  360. u64 now = ktime_to_ns(ktime_get());
  361. struct fq_flow_head *head;
  362. struct sk_buff *skb;
  363. struct fq_flow *f;
  364. skb = fq_dequeue_head(&q->internal);
  365. if (skb)
  366. goto out;
  367. fq_check_throttled(q, now);
  368. begin:
  369. head = &q->new_flows;
  370. if (!head->first) {
  371. head = &q->old_flows;
  372. if (!head->first) {
  373. if (q->time_next_delayed_flow != ~0ULL)
  374. qdisc_watchdog_schedule_ns(&q->watchdog,
  375. q->time_next_delayed_flow);
  376. return NULL;
  377. }
  378. }
  379. f = head->first;
  380. if (f->credit <= 0) {
  381. f->credit += q->quantum;
  382. head->first = f->next;
  383. fq_flow_add_tail(&q->old_flows, f);
  384. goto begin;
  385. }
  386. if (unlikely(f->head && now < f->time_next_packet)) {
  387. head->first = f->next;
  388. fq_flow_set_throttled(q, f);
  389. goto begin;
  390. }
  391. skb = fq_dequeue_head(f);
  392. if (!skb) {
  393. head->first = f->next;
  394. /* force a pass through old_flows to prevent starvation */
  395. if ((head == &q->new_flows) && q->old_flows.first) {
  396. fq_flow_add_tail(&q->old_flows, f);
  397. } else {
  398. fq_flow_set_detached(f);
  399. f->age = jiffies;
  400. q->inactive_flows++;
  401. }
  402. goto begin;
  403. }
  404. prefetch(&skb->end);
  405. f->time_next_packet = now;
  406. f->credit -= qdisc_pkt_len(skb);
  407. if (f->credit <= 0 &&
  408. q->rate_enable &&
  409. skb->sk && skb->sk->sk_state != TCP_TIME_WAIT) {
  410. u32 rate = skb->sk->sk_pacing_rate ?: q->flow_default_rate;
  411. rate = min(rate, q->flow_max_rate);
  412. if (rate) {
  413. u64 len = (u64)qdisc_pkt_len(skb) * NSEC_PER_SEC;
  414. do_div(len, rate);
  415. /* Since socket rate can change later,
  416. * clamp the delay to 125 ms.
  417. * TODO: maybe segment the too big skb, as in commit
  418. * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
  419. */
  420. if (unlikely(len > 125 * NSEC_PER_MSEC)) {
  421. len = 125 * NSEC_PER_MSEC;
  422. q->stat_pkts_too_long++;
  423. }
  424. f->time_next_packet = now + len;
  425. }
  426. }
  427. out:
  428. sch->qstats.backlog -= qdisc_pkt_len(skb);
  429. qdisc_bstats_update(sch, skb);
  430. sch->q.qlen--;
  431. qdisc_unthrottled(sch);
  432. return skb;
  433. }
  434. static void fq_reset(struct Qdisc *sch)
  435. {
  436. struct sk_buff *skb;
  437. while ((skb = fq_dequeue(sch)) != NULL)
  438. kfree_skb(skb);
  439. }
  440. static void fq_rehash(struct fq_sched_data *q,
  441. struct rb_root *old_array, u32 old_log,
  442. struct rb_root *new_array, u32 new_log)
  443. {
  444. struct rb_node *op, **np, *parent;
  445. struct rb_root *oroot, *nroot;
  446. struct fq_flow *of, *nf;
  447. int fcnt = 0;
  448. u32 idx;
  449. for (idx = 0; idx < (1U << old_log); idx++) {
  450. oroot = &old_array[idx];
  451. while ((op = rb_first(oroot)) != NULL) {
  452. rb_erase(op, oroot);
  453. of = container_of(op, struct fq_flow, fq_node);
  454. if (fq_gc_candidate(of)) {
  455. fcnt++;
  456. kmem_cache_free(fq_flow_cachep, of);
  457. continue;
  458. }
  459. nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
  460. np = &nroot->rb_node;
  461. parent = NULL;
  462. while (*np) {
  463. parent = *np;
  464. nf = container_of(parent, struct fq_flow, fq_node);
  465. BUG_ON(nf->sk == of->sk);
  466. if (nf->sk > of->sk)
  467. np = &parent->rb_right;
  468. else
  469. np = &parent->rb_left;
  470. }
  471. rb_link_node(&of->fq_node, parent, np);
  472. rb_insert_color(&of->fq_node, nroot);
  473. }
  474. }
  475. q->flows -= fcnt;
  476. q->inactive_flows -= fcnt;
  477. q->stat_gc_flows += fcnt;
  478. }
  479. static int fq_resize(struct fq_sched_data *q, u32 log)
  480. {
  481. struct rb_root *array;
  482. u32 idx;
  483. if (q->fq_root && log == q->fq_trees_log)
  484. return 0;
  485. array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
  486. if (!array)
  487. return -ENOMEM;
  488. for (idx = 0; idx < (1U << log); idx++)
  489. array[idx] = RB_ROOT;
  490. if (q->fq_root) {
  491. fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
  492. kfree(q->fq_root);
  493. }
  494. q->fq_root = array;
  495. q->fq_trees_log = log;
  496. return 0;
  497. }
  498. static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
  499. [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
  500. [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
  501. [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
  502. [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
  503. [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
  504. [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
  505. [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
  506. [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
  507. };
  508. static int fq_change(struct Qdisc *sch, struct nlattr *opt)
  509. {
  510. struct fq_sched_data *q = qdisc_priv(sch);
  511. struct nlattr *tb[TCA_FQ_MAX + 1];
  512. int err, drop_count = 0;
  513. u32 fq_log;
  514. if (!opt)
  515. return -EINVAL;
  516. err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
  517. if (err < 0)
  518. return err;
  519. sch_tree_lock(sch);
  520. fq_log = q->fq_trees_log;
  521. if (tb[TCA_FQ_BUCKETS_LOG]) {
  522. u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
  523. if (nval >= 1 && nval <= ilog2(256*1024))
  524. fq_log = nval;
  525. else
  526. err = -EINVAL;
  527. }
  528. if (tb[TCA_FQ_PLIMIT])
  529. sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
  530. if (tb[TCA_FQ_FLOW_PLIMIT])
  531. q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
  532. if (tb[TCA_FQ_QUANTUM])
  533. q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
  534. if (tb[TCA_FQ_INITIAL_QUANTUM])
  535. q->quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
  536. if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
  537. q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
  538. if (tb[TCA_FQ_FLOW_MAX_RATE])
  539. q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
  540. if (tb[TCA_FQ_RATE_ENABLE]) {
  541. u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
  542. if (enable <= 1)
  543. q->rate_enable = enable;
  544. else
  545. err = -EINVAL;
  546. }
  547. if (!err)
  548. err = fq_resize(q, fq_log);
  549. while (sch->q.qlen > sch->limit) {
  550. struct sk_buff *skb = fq_dequeue(sch);
  551. kfree_skb(skb);
  552. drop_count++;
  553. }
  554. qdisc_tree_decrease_qlen(sch, drop_count);
  555. sch_tree_unlock(sch);
  556. return err;
  557. }
  558. static void fq_destroy(struct Qdisc *sch)
  559. {
  560. struct fq_sched_data *q = qdisc_priv(sch);
  561. struct rb_root *root;
  562. struct rb_node *p;
  563. unsigned int idx;
  564. if (q->fq_root) {
  565. for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
  566. root = &q->fq_root[idx];
  567. while ((p = rb_first(root)) != NULL) {
  568. rb_erase(p, root);
  569. kmem_cache_free(fq_flow_cachep,
  570. container_of(p, struct fq_flow, fq_node));
  571. }
  572. }
  573. kfree(q->fq_root);
  574. }
  575. qdisc_watchdog_cancel(&q->watchdog);
  576. }
  577. static int fq_init(struct Qdisc *sch, struct nlattr *opt)
  578. {
  579. struct fq_sched_data *q = qdisc_priv(sch);
  580. int err;
  581. sch->limit = 10000;
  582. q->flow_plimit = 100;
  583. q->quantum = 2 * psched_mtu(qdisc_dev(sch));
  584. q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
  585. q->flow_default_rate = 0;
  586. q->flow_max_rate = ~0U;
  587. q->rate_enable = 1;
  588. q->new_flows.first = NULL;
  589. q->old_flows.first = NULL;
  590. q->delayed = RB_ROOT;
  591. q->fq_root = NULL;
  592. q->fq_trees_log = ilog2(1024);
  593. qdisc_watchdog_init(&q->watchdog, sch);
  594. if (opt)
  595. err = fq_change(sch, opt);
  596. else
  597. err = fq_resize(q, q->fq_trees_log);
  598. return err;
  599. }
  600. static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
  601. {
  602. struct fq_sched_data *q = qdisc_priv(sch);
  603. struct nlattr *opts;
  604. opts = nla_nest_start(skb, TCA_OPTIONS);
  605. if (opts == NULL)
  606. goto nla_put_failure;
  607. if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
  608. nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
  609. nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
  610. nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
  611. nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
  612. nla_put_u32(skb, TCA_FQ_FLOW_DEFAULT_RATE, q->flow_default_rate) ||
  613. nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
  614. nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
  615. goto nla_put_failure;
  616. nla_nest_end(skb, opts);
  617. return skb->len;
  618. nla_put_failure:
  619. return -1;
  620. }
  621. static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
  622. {
  623. struct fq_sched_data *q = qdisc_priv(sch);
  624. u64 now = ktime_to_ns(ktime_get());
  625. struct tc_fq_qd_stats st = {
  626. .gc_flows = q->stat_gc_flows,
  627. .highprio_packets = q->stat_internal_packets,
  628. .tcp_retrans = q->stat_tcp_retrans,
  629. .throttled = q->stat_throttled,
  630. .flows_plimit = q->stat_flows_plimit,
  631. .pkts_too_long = q->stat_pkts_too_long,
  632. .allocation_errors = q->stat_allocation_errors,
  633. .flows = q->flows,
  634. .inactive_flows = q->inactive_flows,
  635. .throttled_flows = q->throttled_flows,
  636. .time_next_delayed_flow = q->time_next_delayed_flow - now,
  637. };
  638. return gnet_stats_copy_app(d, &st, sizeof(st));
  639. }
  640. static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
  641. .id = "fq",
  642. .priv_size = sizeof(struct fq_sched_data),
  643. .enqueue = fq_enqueue,
  644. .dequeue = fq_dequeue,
  645. .peek = qdisc_peek_dequeued,
  646. .init = fq_init,
  647. .reset = fq_reset,
  648. .destroy = fq_destroy,
  649. .change = fq_change,
  650. .dump = fq_dump,
  651. .dump_stats = fq_dump_stats,
  652. .owner = THIS_MODULE,
  653. };
  654. static int __init fq_module_init(void)
  655. {
  656. int ret;
  657. fq_flow_cachep = kmem_cache_create("fq_flow_cache",
  658. sizeof(struct fq_flow),
  659. 0, 0, NULL);
  660. if (!fq_flow_cachep)
  661. return -ENOMEM;
  662. ret = register_qdisc(&fq_qdisc_ops);
  663. if (ret)
  664. kmem_cache_destroy(fq_flow_cachep);
  665. return ret;
  666. }
  667. static void __exit fq_module_exit(void)
  668. {
  669. unregister_qdisc(&fq_qdisc_ops);
  670. kmem_cache_destroy(fq_flow_cachep);
  671. }
  672. module_init(fq_module_init)
  673. module_exit(fq_module_exit)
  674. MODULE_AUTHOR("Eric Dumazet");
  675. MODULE_LICENSE("GPL");