i915_gem.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  41. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  42. unsigned alignment,
  43. bool map_and_fenceable);
  44. static int i915_gem_phys_pwrite(struct drm_device *dev,
  45. struct drm_i915_gem_object *obj,
  46. struct drm_i915_gem_pwrite *args,
  47. struct drm_file *file);
  48. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  49. struct drm_i915_gem_object *obj);
  50. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  51. struct drm_i915_fence_reg *fence,
  52. bool enable);
  53. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  54. struct shrink_control *sc);
  55. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  56. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  57. {
  58. if (obj->tiling_mode)
  59. i915_gem_release_mmap(obj);
  60. /* As we do not have an associated fence register, we will force
  61. * a tiling change if we ever need to acquire one.
  62. */
  63. obj->fence_dirty = false;
  64. obj->fence_reg = I915_FENCE_REG_NONE;
  65. }
  66. /* some bookkeeping */
  67. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  68. size_t size)
  69. {
  70. dev_priv->mm.object_count++;
  71. dev_priv->mm.object_memory += size;
  72. }
  73. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  74. size_t size)
  75. {
  76. dev_priv->mm.object_count--;
  77. dev_priv->mm.object_memory -= size;
  78. }
  79. static int
  80. i915_gem_wait_for_error(struct drm_device *dev)
  81. {
  82. struct drm_i915_private *dev_priv = dev->dev_private;
  83. struct completion *x = &dev_priv->error_completion;
  84. unsigned long flags;
  85. int ret;
  86. if (!atomic_read(&dev_priv->mm.wedged))
  87. return 0;
  88. ret = wait_for_completion_interruptible(x);
  89. if (ret)
  90. return ret;
  91. if (atomic_read(&dev_priv->mm.wedged)) {
  92. /* GPU is hung, bump the completion count to account for
  93. * the token we just consumed so that we never hit zero and
  94. * end up waiting upon a subsequent completion event that
  95. * will never happen.
  96. */
  97. spin_lock_irqsave(&x->wait.lock, flags);
  98. x->done++;
  99. spin_unlock_irqrestore(&x->wait.lock, flags);
  100. }
  101. return 0;
  102. }
  103. int i915_mutex_lock_interruptible(struct drm_device *dev)
  104. {
  105. int ret;
  106. ret = i915_gem_wait_for_error(dev);
  107. if (ret)
  108. return ret;
  109. ret = mutex_lock_interruptible(&dev->struct_mutex);
  110. if (ret)
  111. return ret;
  112. WARN_ON(i915_verify_lists(dev));
  113. return 0;
  114. }
  115. static inline bool
  116. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  117. {
  118. return !obj->active;
  119. }
  120. int
  121. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  122. struct drm_file *file)
  123. {
  124. struct drm_i915_gem_init *args = data;
  125. if (drm_core_check_feature(dev, DRIVER_MODESET))
  126. return -ENODEV;
  127. if (args->gtt_start >= args->gtt_end ||
  128. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  129. return -EINVAL;
  130. /* GEM with user mode setting was never supported on ilk and later. */
  131. if (INTEL_INFO(dev)->gen >= 5)
  132. return -ENODEV;
  133. mutex_lock(&dev->struct_mutex);
  134. i915_gem_init_global_gtt(dev, args->gtt_start,
  135. args->gtt_end, args->gtt_end);
  136. mutex_unlock(&dev->struct_mutex);
  137. return 0;
  138. }
  139. int
  140. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  141. struct drm_file *file)
  142. {
  143. struct drm_i915_private *dev_priv = dev->dev_private;
  144. struct drm_i915_gem_get_aperture *args = data;
  145. struct drm_i915_gem_object *obj;
  146. size_t pinned;
  147. pinned = 0;
  148. mutex_lock(&dev->struct_mutex);
  149. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
  150. if (obj->pin_count)
  151. pinned += obj->gtt_space->size;
  152. mutex_unlock(&dev->struct_mutex);
  153. args->aper_size = dev_priv->mm.gtt_total;
  154. args->aper_available_size = args->aper_size - pinned;
  155. return 0;
  156. }
  157. static int
  158. i915_gem_create(struct drm_file *file,
  159. struct drm_device *dev,
  160. uint64_t size,
  161. uint32_t *handle_p)
  162. {
  163. struct drm_i915_gem_object *obj;
  164. int ret;
  165. u32 handle;
  166. size = roundup(size, PAGE_SIZE);
  167. if (size == 0)
  168. return -EINVAL;
  169. /* Allocate the new object */
  170. obj = i915_gem_alloc_object(dev, size);
  171. if (obj == NULL)
  172. return -ENOMEM;
  173. ret = drm_gem_handle_create(file, &obj->base, &handle);
  174. if (ret) {
  175. drm_gem_object_release(&obj->base);
  176. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  177. kfree(obj);
  178. return ret;
  179. }
  180. /* drop reference from allocate - handle holds it now */
  181. drm_gem_object_unreference(&obj->base);
  182. trace_i915_gem_object_create(obj);
  183. *handle_p = handle;
  184. return 0;
  185. }
  186. int
  187. i915_gem_dumb_create(struct drm_file *file,
  188. struct drm_device *dev,
  189. struct drm_mode_create_dumb *args)
  190. {
  191. /* have to work out size/pitch and return them */
  192. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  193. args->size = args->pitch * args->height;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. int i915_gem_dumb_destroy(struct drm_file *file,
  198. struct drm_device *dev,
  199. uint32_t handle)
  200. {
  201. return drm_gem_handle_delete(file, handle);
  202. }
  203. /**
  204. * Creates a new mm object and returns a handle to it.
  205. */
  206. int
  207. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  208. struct drm_file *file)
  209. {
  210. struct drm_i915_gem_create *args = data;
  211. return i915_gem_create(file, dev,
  212. args->size, &args->handle);
  213. }
  214. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  215. {
  216. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  217. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  218. obj->tiling_mode != I915_TILING_NONE;
  219. }
  220. static inline int
  221. __copy_to_user_swizzled(char __user *cpu_vaddr,
  222. const char *gpu_vaddr, int gpu_offset,
  223. int length)
  224. {
  225. int ret, cpu_offset = 0;
  226. while (length > 0) {
  227. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  228. int this_length = min(cacheline_end - gpu_offset, length);
  229. int swizzled_gpu_offset = gpu_offset ^ 64;
  230. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  231. gpu_vaddr + swizzled_gpu_offset,
  232. this_length);
  233. if (ret)
  234. return ret + length;
  235. cpu_offset += this_length;
  236. gpu_offset += this_length;
  237. length -= this_length;
  238. }
  239. return 0;
  240. }
  241. static inline int
  242. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  243. const char __user *cpu_vaddr,
  244. int length)
  245. {
  246. int ret, cpu_offset = 0;
  247. while (length > 0) {
  248. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  249. int this_length = min(cacheline_end - gpu_offset, length);
  250. int swizzled_gpu_offset = gpu_offset ^ 64;
  251. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  252. cpu_vaddr + cpu_offset,
  253. this_length);
  254. if (ret)
  255. return ret + length;
  256. cpu_offset += this_length;
  257. gpu_offset += this_length;
  258. length -= this_length;
  259. }
  260. return 0;
  261. }
  262. /* Per-page copy function for the shmem pread fastpath.
  263. * Flushes invalid cachelines before reading the target if
  264. * needs_clflush is set. */
  265. static int
  266. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  267. char __user *user_data,
  268. bool page_do_bit17_swizzling, bool needs_clflush)
  269. {
  270. char *vaddr;
  271. int ret;
  272. if (unlikely(page_do_bit17_swizzling))
  273. return -EINVAL;
  274. vaddr = kmap_atomic(page);
  275. if (needs_clflush)
  276. drm_clflush_virt_range(vaddr + shmem_page_offset,
  277. page_length);
  278. ret = __copy_to_user_inatomic(user_data,
  279. vaddr + shmem_page_offset,
  280. page_length);
  281. kunmap_atomic(vaddr);
  282. return ret;
  283. }
  284. static void
  285. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  286. bool swizzled)
  287. {
  288. if (unlikely(swizzled)) {
  289. unsigned long start = (unsigned long) addr;
  290. unsigned long end = (unsigned long) addr + length;
  291. /* For swizzling simply ensure that we always flush both
  292. * channels. Lame, but simple and it works. Swizzled
  293. * pwrite/pread is far from a hotpath - current userspace
  294. * doesn't use it at all. */
  295. start = round_down(start, 128);
  296. end = round_up(end, 128);
  297. drm_clflush_virt_range((void *)start, end - start);
  298. } else {
  299. drm_clflush_virt_range(addr, length);
  300. }
  301. }
  302. /* Only difference to the fast-path function is that this can handle bit17
  303. * and uses non-atomic copy and kmap functions. */
  304. static int
  305. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  306. char __user *user_data,
  307. bool page_do_bit17_swizzling, bool needs_clflush)
  308. {
  309. char *vaddr;
  310. int ret;
  311. vaddr = kmap(page);
  312. if (needs_clflush)
  313. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  314. page_length,
  315. page_do_bit17_swizzling);
  316. if (page_do_bit17_swizzling)
  317. ret = __copy_to_user_swizzled(user_data,
  318. vaddr, shmem_page_offset,
  319. page_length);
  320. else
  321. ret = __copy_to_user(user_data,
  322. vaddr + shmem_page_offset,
  323. page_length);
  324. kunmap(page);
  325. return ret;
  326. }
  327. static int
  328. i915_gem_shmem_pread(struct drm_device *dev,
  329. struct drm_i915_gem_object *obj,
  330. struct drm_i915_gem_pread *args,
  331. struct drm_file *file)
  332. {
  333. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  334. char __user *user_data;
  335. ssize_t remain;
  336. loff_t offset;
  337. int shmem_page_offset, page_length, ret = 0;
  338. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  339. int hit_slowpath = 0;
  340. int prefaulted = 0;
  341. int needs_clflush = 0;
  342. int release_page;
  343. user_data = (char __user *) (uintptr_t) args->data_ptr;
  344. remain = args->size;
  345. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  346. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  347. /* If we're not in the cpu read domain, set ourself into the gtt
  348. * read domain and manually flush cachelines (if required). This
  349. * optimizes for the case when the gpu will dirty the data
  350. * anyway again before the next pread happens. */
  351. if (obj->cache_level == I915_CACHE_NONE)
  352. needs_clflush = 1;
  353. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  354. if (ret)
  355. return ret;
  356. }
  357. offset = args->offset;
  358. while (remain > 0) {
  359. struct page *page;
  360. /* Operation in this page
  361. *
  362. * shmem_page_offset = offset within page in shmem file
  363. * page_length = bytes to copy for this page
  364. */
  365. shmem_page_offset = offset_in_page(offset);
  366. page_length = remain;
  367. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  368. page_length = PAGE_SIZE - shmem_page_offset;
  369. if (obj->pages) {
  370. page = obj->pages[offset >> PAGE_SHIFT];
  371. release_page = 0;
  372. } else {
  373. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  374. if (IS_ERR(page)) {
  375. ret = PTR_ERR(page);
  376. goto out;
  377. }
  378. release_page = 1;
  379. }
  380. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  381. (page_to_phys(page) & (1 << 17)) != 0;
  382. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  383. user_data, page_do_bit17_swizzling,
  384. needs_clflush);
  385. if (ret == 0)
  386. goto next_page;
  387. hit_slowpath = 1;
  388. page_cache_get(page);
  389. mutex_unlock(&dev->struct_mutex);
  390. if (!prefaulted) {
  391. ret = fault_in_multipages_writeable(user_data, remain);
  392. /* Userspace is tricking us, but we've already clobbered
  393. * its pages with the prefault and promised to write the
  394. * data up to the first fault. Hence ignore any errors
  395. * and just continue. */
  396. (void)ret;
  397. prefaulted = 1;
  398. }
  399. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  400. user_data, page_do_bit17_swizzling,
  401. needs_clflush);
  402. mutex_lock(&dev->struct_mutex);
  403. page_cache_release(page);
  404. next_page:
  405. mark_page_accessed(page);
  406. if (release_page)
  407. page_cache_release(page);
  408. if (ret) {
  409. ret = -EFAULT;
  410. goto out;
  411. }
  412. remain -= page_length;
  413. user_data += page_length;
  414. offset += page_length;
  415. }
  416. out:
  417. if (hit_slowpath) {
  418. /* Fixup: Kill any reinstated backing storage pages */
  419. if (obj->madv == __I915_MADV_PURGED)
  420. i915_gem_object_truncate(obj);
  421. }
  422. return ret;
  423. }
  424. /**
  425. * Reads data from the object referenced by handle.
  426. *
  427. * On error, the contents of *data are undefined.
  428. */
  429. int
  430. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  431. struct drm_file *file)
  432. {
  433. struct drm_i915_gem_pread *args = data;
  434. struct drm_i915_gem_object *obj;
  435. int ret = 0;
  436. if (args->size == 0)
  437. return 0;
  438. if (!access_ok(VERIFY_WRITE,
  439. (char __user *)(uintptr_t)args->data_ptr,
  440. args->size))
  441. return -EFAULT;
  442. ret = i915_mutex_lock_interruptible(dev);
  443. if (ret)
  444. return ret;
  445. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  446. if (&obj->base == NULL) {
  447. ret = -ENOENT;
  448. goto unlock;
  449. }
  450. /* Bounds check source. */
  451. if (args->offset > obj->base.size ||
  452. args->size > obj->base.size - args->offset) {
  453. ret = -EINVAL;
  454. goto out;
  455. }
  456. /* prime objects have no backing filp to GEM pread/pwrite
  457. * pages from.
  458. */
  459. if (!obj->base.filp) {
  460. ret = -EINVAL;
  461. goto out;
  462. }
  463. trace_i915_gem_object_pread(obj, args->offset, args->size);
  464. ret = i915_gem_shmem_pread(dev, obj, args, file);
  465. out:
  466. drm_gem_object_unreference(&obj->base);
  467. unlock:
  468. mutex_unlock(&dev->struct_mutex);
  469. return ret;
  470. }
  471. /* This is the fast write path which cannot handle
  472. * page faults in the source data
  473. */
  474. static inline int
  475. fast_user_write(struct io_mapping *mapping,
  476. loff_t page_base, int page_offset,
  477. char __user *user_data,
  478. int length)
  479. {
  480. void __iomem *vaddr_atomic;
  481. void *vaddr;
  482. unsigned long unwritten;
  483. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  484. /* We can use the cpu mem copy function because this is X86. */
  485. vaddr = (void __force*)vaddr_atomic + page_offset;
  486. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  487. user_data, length);
  488. io_mapping_unmap_atomic(vaddr_atomic);
  489. return unwritten;
  490. }
  491. /**
  492. * This is the fast pwrite path, where we copy the data directly from the
  493. * user into the GTT, uncached.
  494. */
  495. static int
  496. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  497. struct drm_i915_gem_object *obj,
  498. struct drm_i915_gem_pwrite *args,
  499. struct drm_file *file)
  500. {
  501. drm_i915_private_t *dev_priv = dev->dev_private;
  502. ssize_t remain;
  503. loff_t offset, page_base;
  504. char __user *user_data;
  505. int page_offset, page_length, ret;
  506. ret = i915_gem_object_pin(obj, 0, true);
  507. if (ret)
  508. goto out;
  509. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  510. if (ret)
  511. goto out_unpin;
  512. ret = i915_gem_object_put_fence(obj);
  513. if (ret)
  514. goto out_unpin;
  515. user_data = (char __user *) (uintptr_t) args->data_ptr;
  516. remain = args->size;
  517. offset = obj->gtt_offset + args->offset;
  518. while (remain > 0) {
  519. /* Operation in this page
  520. *
  521. * page_base = page offset within aperture
  522. * page_offset = offset within page
  523. * page_length = bytes to copy for this page
  524. */
  525. page_base = offset & PAGE_MASK;
  526. page_offset = offset_in_page(offset);
  527. page_length = remain;
  528. if ((page_offset + remain) > PAGE_SIZE)
  529. page_length = PAGE_SIZE - page_offset;
  530. /* If we get a fault while copying data, then (presumably) our
  531. * source page isn't available. Return the error and we'll
  532. * retry in the slow path.
  533. */
  534. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  535. page_offset, user_data, page_length)) {
  536. ret = -EFAULT;
  537. goto out_unpin;
  538. }
  539. remain -= page_length;
  540. user_data += page_length;
  541. offset += page_length;
  542. }
  543. out_unpin:
  544. i915_gem_object_unpin(obj);
  545. out:
  546. return ret;
  547. }
  548. /* Per-page copy function for the shmem pwrite fastpath.
  549. * Flushes invalid cachelines before writing to the target if
  550. * needs_clflush_before is set and flushes out any written cachelines after
  551. * writing if needs_clflush is set. */
  552. static int
  553. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  554. char __user *user_data,
  555. bool page_do_bit17_swizzling,
  556. bool needs_clflush_before,
  557. bool needs_clflush_after)
  558. {
  559. char *vaddr;
  560. int ret;
  561. if (unlikely(page_do_bit17_swizzling))
  562. return -EINVAL;
  563. vaddr = kmap_atomic(page);
  564. if (needs_clflush_before)
  565. drm_clflush_virt_range(vaddr + shmem_page_offset,
  566. page_length);
  567. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  568. user_data,
  569. page_length);
  570. if (needs_clflush_after)
  571. drm_clflush_virt_range(vaddr + shmem_page_offset,
  572. page_length);
  573. kunmap_atomic(vaddr);
  574. return ret;
  575. }
  576. /* Only difference to the fast-path function is that this can handle bit17
  577. * and uses non-atomic copy and kmap functions. */
  578. static int
  579. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  580. char __user *user_data,
  581. bool page_do_bit17_swizzling,
  582. bool needs_clflush_before,
  583. bool needs_clflush_after)
  584. {
  585. char *vaddr;
  586. int ret;
  587. vaddr = kmap(page);
  588. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  589. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  590. page_length,
  591. page_do_bit17_swizzling);
  592. if (page_do_bit17_swizzling)
  593. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  594. user_data,
  595. page_length);
  596. else
  597. ret = __copy_from_user(vaddr + shmem_page_offset,
  598. user_data,
  599. page_length);
  600. if (needs_clflush_after)
  601. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  602. page_length,
  603. page_do_bit17_swizzling);
  604. kunmap(page);
  605. return ret;
  606. }
  607. static int
  608. i915_gem_shmem_pwrite(struct drm_device *dev,
  609. struct drm_i915_gem_object *obj,
  610. struct drm_i915_gem_pwrite *args,
  611. struct drm_file *file)
  612. {
  613. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  614. ssize_t remain;
  615. loff_t offset;
  616. char __user *user_data;
  617. int shmem_page_offset, page_length, ret = 0;
  618. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  619. int hit_slowpath = 0;
  620. int needs_clflush_after = 0;
  621. int needs_clflush_before = 0;
  622. int release_page;
  623. user_data = (char __user *) (uintptr_t) args->data_ptr;
  624. remain = args->size;
  625. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  626. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  627. /* If we're not in the cpu write domain, set ourself into the gtt
  628. * write domain and manually flush cachelines (if required). This
  629. * optimizes for the case when the gpu will use the data
  630. * right away and we therefore have to clflush anyway. */
  631. if (obj->cache_level == I915_CACHE_NONE)
  632. needs_clflush_after = 1;
  633. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  634. if (ret)
  635. return ret;
  636. }
  637. /* Same trick applies for invalidate partially written cachelines before
  638. * writing. */
  639. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  640. && obj->cache_level == I915_CACHE_NONE)
  641. needs_clflush_before = 1;
  642. offset = args->offset;
  643. obj->dirty = 1;
  644. while (remain > 0) {
  645. struct page *page;
  646. int partial_cacheline_write;
  647. /* Operation in this page
  648. *
  649. * shmem_page_offset = offset within page in shmem file
  650. * page_length = bytes to copy for this page
  651. */
  652. shmem_page_offset = offset_in_page(offset);
  653. page_length = remain;
  654. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  655. page_length = PAGE_SIZE - shmem_page_offset;
  656. /* If we don't overwrite a cacheline completely we need to be
  657. * careful to have up-to-date data by first clflushing. Don't
  658. * overcomplicate things and flush the entire patch. */
  659. partial_cacheline_write = needs_clflush_before &&
  660. ((shmem_page_offset | page_length)
  661. & (boot_cpu_data.x86_clflush_size - 1));
  662. if (obj->pages) {
  663. page = obj->pages[offset >> PAGE_SHIFT];
  664. release_page = 0;
  665. } else {
  666. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  667. if (IS_ERR(page)) {
  668. ret = PTR_ERR(page);
  669. goto out;
  670. }
  671. release_page = 1;
  672. }
  673. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  674. (page_to_phys(page) & (1 << 17)) != 0;
  675. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  676. user_data, page_do_bit17_swizzling,
  677. partial_cacheline_write,
  678. needs_clflush_after);
  679. if (ret == 0)
  680. goto next_page;
  681. hit_slowpath = 1;
  682. page_cache_get(page);
  683. mutex_unlock(&dev->struct_mutex);
  684. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  685. user_data, page_do_bit17_swizzling,
  686. partial_cacheline_write,
  687. needs_clflush_after);
  688. mutex_lock(&dev->struct_mutex);
  689. page_cache_release(page);
  690. next_page:
  691. set_page_dirty(page);
  692. mark_page_accessed(page);
  693. if (release_page)
  694. page_cache_release(page);
  695. if (ret) {
  696. ret = -EFAULT;
  697. goto out;
  698. }
  699. remain -= page_length;
  700. user_data += page_length;
  701. offset += page_length;
  702. }
  703. out:
  704. if (hit_slowpath) {
  705. /* Fixup: Kill any reinstated backing storage pages */
  706. if (obj->madv == __I915_MADV_PURGED)
  707. i915_gem_object_truncate(obj);
  708. /* and flush dirty cachelines in case the object isn't in the cpu write
  709. * domain anymore. */
  710. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  711. i915_gem_clflush_object(obj);
  712. intel_gtt_chipset_flush();
  713. }
  714. }
  715. if (needs_clflush_after)
  716. intel_gtt_chipset_flush();
  717. return ret;
  718. }
  719. /**
  720. * Writes data to the object referenced by handle.
  721. *
  722. * On error, the contents of the buffer that were to be modified are undefined.
  723. */
  724. int
  725. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  726. struct drm_file *file)
  727. {
  728. struct drm_i915_gem_pwrite *args = data;
  729. struct drm_i915_gem_object *obj;
  730. int ret;
  731. if (args->size == 0)
  732. return 0;
  733. if (!access_ok(VERIFY_READ,
  734. (char __user *)(uintptr_t)args->data_ptr,
  735. args->size))
  736. return -EFAULT;
  737. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  738. args->size);
  739. if (ret)
  740. return -EFAULT;
  741. ret = i915_mutex_lock_interruptible(dev);
  742. if (ret)
  743. return ret;
  744. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  745. if (&obj->base == NULL) {
  746. ret = -ENOENT;
  747. goto unlock;
  748. }
  749. /* Bounds check destination. */
  750. if (args->offset > obj->base.size ||
  751. args->size > obj->base.size - args->offset) {
  752. ret = -EINVAL;
  753. goto out;
  754. }
  755. /* prime objects have no backing filp to GEM pread/pwrite
  756. * pages from.
  757. */
  758. if (!obj->base.filp) {
  759. ret = -EINVAL;
  760. goto out;
  761. }
  762. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  763. ret = -EFAULT;
  764. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  765. * it would end up going through the fenced access, and we'll get
  766. * different detiling behavior between reading and writing.
  767. * pread/pwrite currently are reading and writing from the CPU
  768. * perspective, requiring manual detiling by the client.
  769. */
  770. if (obj->phys_obj) {
  771. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  772. goto out;
  773. }
  774. if (obj->gtt_space &&
  775. obj->cache_level == I915_CACHE_NONE &&
  776. obj->tiling_mode == I915_TILING_NONE &&
  777. obj->map_and_fenceable &&
  778. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  779. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  780. /* Note that the gtt paths might fail with non-page-backed user
  781. * pointers (e.g. gtt mappings when moving data between
  782. * textures). Fallback to the shmem path in that case. */
  783. }
  784. if (ret == -EFAULT)
  785. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  786. out:
  787. drm_gem_object_unreference(&obj->base);
  788. unlock:
  789. mutex_unlock(&dev->struct_mutex);
  790. return ret;
  791. }
  792. /**
  793. * Called when user space prepares to use an object with the CPU, either
  794. * through the mmap ioctl's mapping or a GTT mapping.
  795. */
  796. int
  797. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  798. struct drm_file *file)
  799. {
  800. struct drm_i915_gem_set_domain *args = data;
  801. struct drm_i915_gem_object *obj;
  802. uint32_t read_domains = args->read_domains;
  803. uint32_t write_domain = args->write_domain;
  804. int ret;
  805. /* Only handle setting domains to types used by the CPU. */
  806. if (write_domain & I915_GEM_GPU_DOMAINS)
  807. return -EINVAL;
  808. if (read_domains & I915_GEM_GPU_DOMAINS)
  809. return -EINVAL;
  810. /* Having something in the write domain implies it's in the read
  811. * domain, and only that read domain. Enforce that in the request.
  812. */
  813. if (write_domain != 0 && read_domains != write_domain)
  814. return -EINVAL;
  815. ret = i915_mutex_lock_interruptible(dev);
  816. if (ret)
  817. return ret;
  818. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  819. if (&obj->base == NULL) {
  820. ret = -ENOENT;
  821. goto unlock;
  822. }
  823. if (read_domains & I915_GEM_DOMAIN_GTT) {
  824. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  825. /* Silently promote "you're not bound, there was nothing to do"
  826. * to success, since the client was just asking us to
  827. * make sure everything was done.
  828. */
  829. if (ret == -EINVAL)
  830. ret = 0;
  831. } else {
  832. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  833. }
  834. drm_gem_object_unreference(&obj->base);
  835. unlock:
  836. mutex_unlock(&dev->struct_mutex);
  837. return ret;
  838. }
  839. /**
  840. * Called when user space has done writes to this buffer
  841. */
  842. int
  843. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  844. struct drm_file *file)
  845. {
  846. struct drm_i915_gem_sw_finish *args = data;
  847. struct drm_i915_gem_object *obj;
  848. int ret = 0;
  849. ret = i915_mutex_lock_interruptible(dev);
  850. if (ret)
  851. return ret;
  852. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  853. if (&obj->base == NULL) {
  854. ret = -ENOENT;
  855. goto unlock;
  856. }
  857. /* Pinned buffers may be scanout, so flush the cache */
  858. if (obj->pin_count)
  859. i915_gem_object_flush_cpu_write_domain(obj);
  860. drm_gem_object_unreference(&obj->base);
  861. unlock:
  862. mutex_unlock(&dev->struct_mutex);
  863. return ret;
  864. }
  865. /**
  866. * Maps the contents of an object, returning the address it is mapped
  867. * into.
  868. *
  869. * While the mapping holds a reference on the contents of the object, it doesn't
  870. * imply a ref on the object itself.
  871. */
  872. int
  873. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  874. struct drm_file *file)
  875. {
  876. struct drm_i915_gem_mmap *args = data;
  877. struct drm_gem_object *obj;
  878. unsigned long addr;
  879. obj = drm_gem_object_lookup(dev, file, args->handle);
  880. if (obj == NULL)
  881. return -ENOENT;
  882. /* prime objects have no backing filp to GEM mmap
  883. * pages from.
  884. */
  885. if (!obj->filp) {
  886. drm_gem_object_unreference_unlocked(obj);
  887. return -EINVAL;
  888. }
  889. addr = vm_mmap(obj->filp, 0, args->size,
  890. PROT_READ | PROT_WRITE, MAP_SHARED,
  891. args->offset);
  892. drm_gem_object_unreference_unlocked(obj);
  893. if (IS_ERR((void *)addr))
  894. return addr;
  895. args->addr_ptr = (uint64_t) addr;
  896. return 0;
  897. }
  898. /**
  899. * i915_gem_fault - fault a page into the GTT
  900. * vma: VMA in question
  901. * vmf: fault info
  902. *
  903. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  904. * from userspace. The fault handler takes care of binding the object to
  905. * the GTT (if needed), allocating and programming a fence register (again,
  906. * only if needed based on whether the old reg is still valid or the object
  907. * is tiled) and inserting a new PTE into the faulting process.
  908. *
  909. * Note that the faulting process may involve evicting existing objects
  910. * from the GTT and/or fence registers to make room. So performance may
  911. * suffer if the GTT working set is large or there are few fence registers
  912. * left.
  913. */
  914. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  915. {
  916. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  917. struct drm_device *dev = obj->base.dev;
  918. drm_i915_private_t *dev_priv = dev->dev_private;
  919. pgoff_t page_offset;
  920. unsigned long pfn;
  921. int ret = 0;
  922. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  923. /* We don't use vmf->pgoff since that has the fake offset */
  924. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  925. PAGE_SHIFT;
  926. ret = i915_mutex_lock_interruptible(dev);
  927. if (ret)
  928. goto out;
  929. trace_i915_gem_object_fault(obj, page_offset, true, write);
  930. /* Now bind it into the GTT if needed */
  931. if (!obj->map_and_fenceable) {
  932. ret = i915_gem_object_unbind(obj);
  933. if (ret)
  934. goto unlock;
  935. }
  936. if (!obj->gtt_space) {
  937. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  938. if (ret)
  939. goto unlock;
  940. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  941. if (ret)
  942. goto unlock;
  943. }
  944. if (!obj->has_global_gtt_mapping)
  945. i915_gem_gtt_bind_object(obj, obj->cache_level);
  946. ret = i915_gem_object_get_fence(obj);
  947. if (ret)
  948. goto unlock;
  949. if (i915_gem_object_is_inactive(obj))
  950. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  951. obj->fault_mappable = true;
  952. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  953. page_offset;
  954. /* Finally, remap it using the new GTT offset */
  955. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  956. unlock:
  957. mutex_unlock(&dev->struct_mutex);
  958. out:
  959. switch (ret) {
  960. case -EIO:
  961. case -EAGAIN:
  962. /* Give the error handler a chance to run and move the
  963. * objects off the GPU active list. Next time we service the
  964. * fault, we should be able to transition the page into the
  965. * GTT without touching the GPU (and so avoid further
  966. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  967. * with coherency, just lost writes.
  968. */
  969. set_need_resched();
  970. case 0:
  971. case -ERESTARTSYS:
  972. case -EINTR:
  973. return VM_FAULT_NOPAGE;
  974. case -ENOMEM:
  975. return VM_FAULT_OOM;
  976. default:
  977. return VM_FAULT_SIGBUS;
  978. }
  979. }
  980. /**
  981. * i915_gem_release_mmap - remove physical page mappings
  982. * @obj: obj in question
  983. *
  984. * Preserve the reservation of the mmapping with the DRM core code, but
  985. * relinquish ownership of the pages back to the system.
  986. *
  987. * It is vital that we remove the page mapping if we have mapped a tiled
  988. * object through the GTT and then lose the fence register due to
  989. * resource pressure. Similarly if the object has been moved out of the
  990. * aperture, than pages mapped into userspace must be revoked. Removing the
  991. * mapping will then trigger a page fault on the next user access, allowing
  992. * fixup by i915_gem_fault().
  993. */
  994. void
  995. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  996. {
  997. if (!obj->fault_mappable)
  998. return;
  999. if (obj->base.dev->dev_mapping)
  1000. unmap_mapping_range(obj->base.dev->dev_mapping,
  1001. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1002. obj->base.size, 1);
  1003. obj->fault_mappable = false;
  1004. }
  1005. static uint32_t
  1006. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1007. {
  1008. uint32_t gtt_size;
  1009. if (INTEL_INFO(dev)->gen >= 4 ||
  1010. tiling_mode == I915_TILING_NONE)
  1011. return size;
  1012. /* Previous chips need a power-of-two fence region when tiling */
  1013. if (INTEL_INFO(dev)->gen == 3)
  1014. gtt_size = 1024*1024;
  1015. else
  1016. gtt_size = 512*1024;
  1017. while (gtt_size < size)
  1018. gtt_size <<= 1;
  1019. return gtt_size;
  1020. }
  1021. /**
  1022. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1023. * @obj: object to check
  1024. *
  1025. * Return the required GTT alignment for an object, taking into account
  1026. * potential fence register mapping.
  1027. */
  1028. static uint32_t
  1029. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1030. uint32_t size,
  1031. int tiling_mode)
  1032. {
  1033. /*
  1034. * Minimum alignment is 4k (GTT page size), but might be greater
  1035. * if a fence register is needed for the object.
  1036. */
  1037. if (INTEL_INFO(dev)->gen >= 4 ||
  1038. tiling_mode == I915_TILING_NONE)
  1039. return 4096;
  1040. /*
  1041. * Previous chips need to be aligned to the size of the smallest
  1042. * fence register that can contain the object.
  1043. */
  1044. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1045. }
  1046. /**
  1047. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1048. * unfenced object
  1049. * @dev: the device
  1050. * @size: size of the object
  1051. * @tiling_mode: tiling mode of the object
  1052. *
  1053. * Return the required GTT alignment for an object, only taking into account
  1054. * unfenced tiled surface requirements.
  1055. */
  1056. uint32_t
  1057. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1058. uint32_t size,
  1059. int tiling_mode)
  1060. {
  1061. /*
  1062. * Minimum alignment is 4k (GTT page size) for sane hw.
  1063. */
  1064. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1065. tiling_mode == I915_TILING_NONE)
  1066. return 4096;
  1067. /* Previous hardware however needs to be aligned to a power-of-two
  1068. * tile height. The simplest method for determining this is to reuse
  1069. * the power-of-tile object size.
  1070. */
  1071. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1072. }
  1073. int
  1074. i915_gem_mmap_gtt(struct drm_file *file,
  1075. struct drm_device *dev,
  1076. uint32_t handle,
  1077. uint64_t *offset)
  1078. {
  1079. struct drm_i915_private *dev_priv = dev->dev_private;
  1080. struct drm_i915_gem_object *obj;
  1081. int ret;
  1082. ret = i915_mutex_lock_interruptible(dev);
  1083. if (ret)
  1084. return ret;
  1085. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1086. if (&obj->base == NULL) {
  1087. ret = -ENOENT;
  1088. goto unlock;
  1089. }
  1090. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1091. ret = -E2BIG;
  1092. goto out;
  1093. }
  1094. if (obj->madv != I915_MADV_WILLNEED) {
  1095. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1096. ret = -EINVAL;
  1097. goto out;
  1098. }
  1099. if (!obj->base.map_list.map) {
  1100. ret = drm_gem_create_mmap_offset(&obj->base);
  1101. if (ret)
  1102. goto out;
  1103. }
  1104. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1105. out:
  1106. drm_gem_object_unreference(&obj->base);
  1107. unlock:
  1108. mutex_unlock(&dev->struct_mutex);
  1109. return ret;
  1110. }
  1111. /**
  1112. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1113. * @dev: DRM device
  1114. * @data: GTT mapping ioctl data
  1115. * @file: GEM object info
  1116. *
  1117. * Simply returns the fake offset to userspace so it can mmap it.
  1118. * The mmap call will end up in drm_gem_mmap(), which will set things
  1119. * up so we can get faults in the handler above.
  1120. *
  1121. * The fault handler will take care of binding the object into the GTT
  1122. * (since it may have been evicted to make room for something), allocating
  1123. * a fence register, and mapping the appropriate aperture address into
  1124. * userspace.
  1125. */
  1126. int
  1127. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1128. struct drm_file *file)
  1129. {
  1130. struct drm_i915_gem_mmap_gtt *args = data;
  1131. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1132. }
  1133. int
  1134. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1135. gfp_t gfpmask)
  1136. {
  1137. int page_count, i;
  1138. struct address_space *mapping;
  1139. struct inode *inode;
  1140. struct page *page;
  1141. if (obj->pages || obj->sg_table)
  1142. return 0;
  1143. /* Get the list of pages out of our struct file. They'll be pinned
  1144. * at this point until we release them.
  1145. */
  1146. page_count = obj->base.size / PAGE_SIZE;
  1147. BUG_ON(obj->pages != NULL);
  1148. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1149. if (obj->pages == NULL)
  1150. return -ENOMEM;
  1151. inode = obj->base.filp->f_path.dentry->d_inode;
  1152. mapping = inode->i_mapping;
  1153. gfpmask |= mapping_gfp_mask(mapping);
  1154. for (i = 0; i < page_count; i++) {
  1155. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1156. if (IS_ERR(page))
  1157. goto err_pages;
  1158. obj->pages[i] = page;
  1159. }
  1160. if (i915_gem_object_needs_bit17_swizzle(obj))
  1161. i915_gem_object_do_bit_17_swizzle(obj);
  1162. return 0;
  1163. err_pages:
  1164. while (i--)
  1165. page_cache_release(obj->pages[i]);
  1166. drm_free_large(obj->pages);
  1167. obj->pages = NULL;
  1168. return PTR_ERR(page);
  1169. }
  1170. static void
  1171. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1172. {
  1173. int page_count = obj->base.size / PAGE_SIZE;
  1174. int i;
  1175. if (!obj->pages)
  1176. return;
  1177. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1178. if (i915_gem_object_needs_bit17_swizzle(obj))
  1179. i915_gem_object_save_bit_17_swizzle(obj);
  1180. if (obj->madv == I915_MADV_DONTNEED)
  1181. obj->dirty = 0;
  1182. for (i = 0; i < page_count; i++) {
  1183. if (obj->dirty)
  1184. set_page_dirty(obj->pages[i]);
  1185. if (obj->madv == I915_MADV_WILLNEED)
  1186. mark_page_accessed(obj->pages[i]);
  1187. page_cache_release(obj->pages[i]);
  1188. }
  1189. obj->dirty = 0;
  1190. drm_free_large(obj->pages);
  1191. obj->pages = NULL;
  1192. }
  1193. void
  1194. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1195. struct intel_ring_buffer *ring,
  1196. u32 seqno)
  1197. {
  1198. struct drm_device *dev = obj->base.dev;
  1199. struct drm_i915_private *dev_priv = dev->dev_private;
  1200. BUG_ON(ring == NULL);
  1201. obj->ring = ring;
  1202. /* Add a reference if we're newly entering the active list. */
  1203. if (!obj->active) {
  1204. drm_gem_object_reference(&obj->base);
  1205. obj->active = 1;
  1206. }
  1207. /* Move from whatever list we were on to the tail of execution. */
  1208. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1209. list_move_tail(&obj->ring_list, &ring->active_list);
  1210. obj->last_rendering_seqno = seqno;
  1211. if (obj->fenced_gpu_access) {
  1212. obj->last_fenced_seqno = seqno;
  1213. /* Bump MRU to take account of the delayed flush */
  1214. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1215. struct drm_i915_fence_reg *reg;
  1216. reg = &dev_priv->fence_regs[obj->fence_reg];
  1217. list_move_tail(&reg->lru_list,
  1218. &dev_priv->mm.fence_list);
  1219. }
  1220. }
  1221. }
  1222. static void
  1223. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1224. {
  1225. list_del_init(&obj->ring_list);
  1226. obj->last_rendering_seqno = 0;
  1227. obj->last_fenced_seqno = 0;
  1228. }
  1229. static void
  1230. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1231. {
  1232. struct drm_device *dev = obj->base.dev;
  1233. drm_i915_private_t *dev_priv = dev->dev_private;
  1234. BUG_ON(!obj->active);
  1235. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1236. i915_gem_object_move_off_active(obj);
  1237. }
  1238. static void
  1239. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1240. {
  1241. struct drm_device *dev = obj->base.dev;
  1242. struct drm_i915_private *dev_priv = dev->dev_private;
  1243. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1244. BUG_ON(!list_empty(&obj->gpu_write_list));
  1245. BUG_ON(!obj->active);
  1246. obj->ring = NULL;
  1247. i915_gem_object_move_off_active(obj);
  1248. obj->fenced_gpu_access = false;
  1249. obj->active = 0;
  1250. obj->pending_gpu_write = false;
  1251. drm_gem_object_unreference(&obj->base);
  1252. WARN_ON(i915_verify_lists(dev));
  1253. }
  1254. /* Immediately discard the backing storage */
  1255. static void
  1256. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1257. {
  1258. struct inode *inode;
  1259. /* Our goal here is to return as much of the memory as
  1260. * is possible back to the system as we are called from OOM.
  1261. * To do this we must instruct the shmfs to drop all of its
  1262. * backing pages, *now*.
  1263. */
  1264. inode = obj->base.filp->f_path.dentry->d_inode;
  1265. shmem_truncate_range(inode, 0, (loff_t)-1);
  1266. if (obj->base.map_list.map)
  1267. drm_gem_free_mmap_offset(&obj->base);
  1268. obj->madv = __I915_MADV_PURGED;
  1269. }
  1270. static inline int
  1271. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1272. {
  1273. return obj->madv == I915_MADV_DONTNEED;
  1274. }
  1275. static void
  1276. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1277. uint32_t flush_domains)
  1278. {
  1279. struct drm_i915_gem_object *obj, *next;
  1280. list_for_each_entry_safe(obj, next,
  1281. &ring->gpu_write_list,
  1282. gpu_write_list) {
  1283. if (obj->base.write_domain & flush_domains) {
  1284. uint32_t old_write_domain = obj->base.write_domain;
  1285. obj->base.write_domain = 0;
  1286. list_del_init(&obj->gpu_write_list);
  1287. i915_gem_object_move_to_active(obj, ring,
  1288. i915_gem_next_request_seqno(ring));
  1289. trace_i915_gem_object_change_domain(obj,
  1290. obj->base.read_domains,
  1291. old_write_domain);
  1292. }
  1293. }
  1294. }
  1295. static u32
  1296. i915_gem_get_seqno(struct drm_device *dev)
  1297. {
  1298. drm_i915_private_t *dev_priv = dev->dev_private;
  1299. u32 seqno = dev_priv->next_seqno;
  1300. /* reserve 0 for non-seqno */
  1301. if (++dev_priv->next_seqno == 0)
  1302. dev_priv->next_seqno = 1;
  1303. return seqno;
  1304. }
  1305. u32
  1306. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1307. {
  1308. if (ring->outstanding_lazy_request == 0)
  1309. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1310. return ring->outstanding_lazy_request;
  1311. }
  1312. int
  1313. i915_add_request(struct intel_ring_buffer *ring,
  1314. struct drm_file *file,
  1315. struct drm_i915_gem_request *request)
  1316. {
  1317. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1318. uint32_t seqno;
  1319. u32 request_ring_position;
  1320. int was_empty;
  1321. int ret;
  1322. /*
  1323. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1324. * after having emitted the batchbuffer command. Hence we need to fix
  1325. * things up similar to emitting the lazy request. The difference here
  1326. * is that the flush _must_ happen before the next request, no matter
  1327. * what.
  1328. */
  1329. if (ring->gpu_caches_dirty) {
  1330. ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
  1331. if (ret)
  1332. return ret;
  1333. ring->gpu_caches_dirty = false;
  1334. }
  1335. BUG_ON(request == NULL);
  1336. seqno = i915_gem_next_request_seqno(ring);
  1337. /* Record the position of the start of the request so that
  1338. * should we detect the updated seqno part-way through the
  1339. * GPU processing the request, we never over-estimate the
  1340. * position of the head.
  1341. */
  1342. request_ring_position = intel_ring_get_tail(ring);
  1343. ret = ring->add_request(ring, &seqno);
  1344. if (ret)
  1345. return ret;
  1346. trace_i915_gem_request_add(ring, seqno);
  1347. request->seqno = seqno;
  1348. request->ring = ring;
  1349. request->tail = request_ring_position;
  1350. request->emitted_jiffies = jiffies;
  1351. was_empty = list_empty(&ring->request_list);
  1352. list_add_tail(&request->list, &ring->request_list);
  1353. if (file) {
  1354. struct drm_i915_file_private *file_priv = file->driver_priv;
  1355. spin_lock(&file_priv->mm.lock);
  1356. request->file_priv = file_priv;
  1357. list_add_tail(&request->client_list,
  1358. &file_priv->mm.request_list);
  1359. spin_unlock(&file_priv->mm.lock);
  1360. }
  1361. ring->outstanding_lazy_request = 0;
  1362. if (!dev_priv->mm.suspended) {
  1363. if (i915_enable_hangcheck) {
  1364. mod_timer(&dev_priv->hangcheck_timer,
  1365. jiffies +
  1366. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1367. }
  1368. if (was_empty)
  1369. queue_delayed_work(dev_priv->wq,
  1370. &dev_priv->mm.retire_work, HZ);
  1371. }
  1372. WARN_ON(!list_empty(&ring->gpu_write_list));
  1373. return 0;
  1374. }
  1375. static inline void
  1376. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1377. {
  1378. struct drm_i915_file_private *file_priv = request->file_priv;
  1379. if (!file_priv)
  1380. return;
  1381. spin_lock(&file_priv->mm.lock);
  1382. if (request->file_priv) {
  1383. list_del(&request->client_list);
  1384. request->file_priv = NULL;
  1385. }
  1386. spin_unlock(&file_priv->mm.lock);
  1387. }
  1388. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1389. struct intel_ring_buffer *ring)
  1390. {
  1391. while (!list_empty(&ring->request_list)) {
  1392. struct drm_i915_gem_request *request;
  1393. request = list_first_entry(&ring->request_list,
  1394. struct drm_i915_gem_request,
  1395. list);
  1396. list_del(&request->list);
  1397. i915_gem_request_remove_from_client(request);
  1398. kfree(request);
  1399. }
  1400. while (!list_empty(&ring->active_list)) {
  1401. struct drm_i915_gem_object *obj;
  1402. obj = list_first_entry(&ring->active_list,
  1403. struct drm_i915_gem_object,
  1404. ring_list);
  1405. obj->base.write_domain = 0;
  1406. list_del_init(&obj->gpu_write_list);
  1407. i915_gem_object_move_to_inactive(obj);
  1408. }
  1409. }
  1410. static void i915_gem_reset_fences(struct drm_device *dev)
  1411. {
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. int i;
  1414. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1415. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1416. i915_gem_write_fence(dev, i, NULL);
  1417. if (reg->obj)
  1418. i915_gem_object_fence_lost(reg->obj);
  1419. reg->pin_count = 0;
  1420. reg->obj = NULL;
  1421. INIT_LIST_HEAD(&reg->lru_list);
  1422. }
  1423. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1424. }
  1425. void i915_gem_reset(struct drm_device *dev)
  1426. {
  1427. struct drm_i915_private *dev_priv = dev->dev_private;
  1428. struct drm_i915_gem_object *obj;
  1429. struct intel_ring_buffer *ring;
  1430. int i;
  1431. for_each_ring(ring, dev_priv, i)
  1432. i915_gem_reset_ring_lists(dev_priv, ring);
  1433. /* Remove anything from the flushing lists. The GPU cache is likely
  1434. * to be lost on reset along with the data, so simply move the
  1435. * lost bo to the inactive list.
  1436. */
  1437. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1438. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1439. struct drm_i915_gem_object,
  1440. mm_list);
  1441. obj->base.write_domain = 0;
  1442. list_del_init(&obj->gpu_write_list);
  1443. i915_gem_object_move_to_inactive(obj);
  1444. }
  1445. /* Move everything out of the GPU domains to ensure we do any
  1446. * necessary invalidation upon reuse.
  1447. */
  1448. list_for_each_entry(obj,
  1449. &dev_priv->mm.inactive_list,
  1450. mm_list)
  1451. {
  1452. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1453. }
  1454. /* The fence registers are invalidated so clear them out */
  1455. i915_gem_reset_fences(dev);
  1456. }
  1457. /**
  1458. * This function clears the request list as sequence numbers are passed.
  1459. */
  1460. void
  1461. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1462. {
  1463. uint32_t seqno;
  1464. int i;
  1465. if (list_empty(&ring->request_list))
  1466. return;
  1467. WARN_ON(i915_verify_lists(ring->dev));
  1468. seqno = ring->get_seqno(ring);
  1469. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1470. if (seqno >= ring->sync_seqno[i])
  1471. ring->sync_seqno[i] = 0;
  1472. while (!list_empty(&ring->request_list)) {
  1473. struct drm_i915_gem_request *request;
  1474. request = list_first_entry(&ring->request_list,
  1475. struct drm_i915_gem_request,
  1476. list);
  1477. if (!i915_seqno_passed(seqno, request->seqno))
  1478. break;
  1479. trace_i915_gem_request_retire(ring, request->seqno);
  1480. /* We know the GPU must have read the request to have
  1481. * sent us the seqno + interrupt, so use the position
  1482. * of tail of the request to update the last known position
  1483. * of the GPU head.
  1484. */
  1485. ring->last_retired_head = request->tail;
  1486. list_del(&request->list);
  1487. i915_gem_request_remove_from_client(request);
  1488. kfree(request);
  1489. }
  1490. /* Move any buffers on the active list that are no longer referenced
  1491. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1492. */
  1493. while (!list_empty(&ring->active_list)) {
  1494. struct drm_i915_gem_object *obj;
  1495. obj = list_first_entry(&ring->active_list,
  1496. struct drm_i915_gem_object,
  1497. ring_list);
  1498. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1499. break;
  1500. if (obj->base.write_domain != 0)
  1501. i915_gem_object_move_to_flushing(obj);
  1502. else
  1503. i915_gem_object_move_to_inactive(obj);
  1504. }
  1505. if (unlikely(ring->trace_irq_seqno &&
  1506. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1507. ring->irq_put(ring);
  1508. ring->trace_irq_seqno = 0;
  1509. }
  1510. WARN_ON(i915_verify_lists(ring->dev));
  1511. }
  1512. void
  1513. i915_gem_retire_requests(struct drm_device *dev)
  1514. {
  1515. drm_i915_private_t *dev_priv = dev->dev_private;
  1516. struct intel_ring_buffer *ring;
  1517. int i;
  1518. for_each_ring(ring, dev_priv, i)
  1519. i915_gem_retire_requests_ring(ring);
  1520. }
  1521. static void
  1522. i915_gem_retire_work_handler(struct work_struct *work)
  1523. {
  1524. drm_i915_private_t *dev_priv;
  1525. struct drm_device *dev;
  1526. struct intel_ring_buffer *ring;
  1527. bool idle;
  1528. int i;
  1529. dev_priv = container_of(work, drm_i915_private_t,
  1530. mm.retire_work.work);
  1531. dev = dev_priv->dev;
  1532. /* Come back later if the device is busy... */
  1533. if (!mutex_trylock(&dev->struct_mutex)) {
  1534. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1535. return;
  1536. }
  1537. i915_gem_retire_requests(dev);
  1538. /* Send a periodic flush down the ring so we don't hold onto GEM
  1539. * objects indefinitely.
  1540. */
  1541. idle = true;
  1542. for_each_ring(ring, dev_priv, i) {
  1543. if (ring->gpu_caches_dirty) {
  1544. struct drm_i915_gem_request *request;
  1545. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1546. if (request == NULL ||
  1547. i915_add_request(ring, NULL, request))
  1548. kfree(request);
  1549. }
  1550. idle &= list_empty(&ring->request_list);
  1551. }
  1552. if (!dev_priv->mm.suspended && !idle)
  1553. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1554. mutex_unlock(&dev->struct_mutex);
  1555. }
  1556. static int
  1557. i915_gem_check_wedge(struct drm_i915_private *dev_priv)
  1558. {
  1559. BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
  1560. if (atomic_read(&dev_priv->mm.wedged)) {
  1561. struct completion *x = &dev_priv->error_completion;
  1562. bool recovery_complete;
  1563. unsigned long flags;
  1564. /* Give the error handler a chance to run. */
  1565. spin_lock_irqsave(&x->wait.lock, flags);
  1566. recovery_complete = x->done > 0;
  1567. spin_unlock_irqrestore(&x->wait.lock, flags);
  1568. return recovery_complete ? -EIO : -EAGAIN;
  1569. }
  1570. return 0;
  1571. }
  1572. /*
  1573. * Compare seqno against outstanding lazy request. Emit a request if they are
  1574. * equal.
  1575. */
  1576. static int
  1577. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  1578. {
  1579. int ret = 0;
  1580. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  1581. if (seqno == ring->outstanding_lazy_request) {
  1582. struct drm_i915_gem_request *request;
  1583. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1584. if (request == NULL)
  1585. return -ENOMEM;
  1586. ret = i915_add_request(ring, NULL, request);
  1587. if (ret) {
  1588. kfree(request);
  1589. return ret;
  1590. }
  1591. BUG_ON(seqno != request->seqno);
  1592. }
  1593. return ret;
  1594. }
  1595. /**
  1596. * __wait_seqno - wait until execution of seqno has finished
  1597. * @ring: the ring expected to report seqno
  1598. * @seqno: duh!
  1599. * @interruptible: do an interruptible wait (normally yes)
  1600. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  1601. *
  1602. * Returns 0 if the seqno was found within the alloted time. Else returns the
  1603. * errno with remaining time filled in timeout argument.
  1604. */
  1605. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  1606. bool interruptible, struct timespec *timeout)
  1607. {
  1608. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1609. struct timespec before, now, wait_time={1,0};
  1610. unsigned long timeout_jiffies;
  1611. long end;
  1612. bool wait_forever = true;
  1613. if (i915_seqno_passed(ring->get_seqno(ring), seqno))
  1614. return 0;
  1615. trace_i915_gem_request_wait_begin(ring, seqno);
  1616. if (timeout != NULL) {
  1617. wait_time = *timeout;
  1618. wait_forever = false;
  1619. }
  1620. timeout_jiffies = timespec_to_jiffies(&wait_time);
  1621. if (WARN_ON(!ring->irq_get(ring)))
  1622. return -ENODEV;
  1623. /* Record current time in case interrupted by signal, or wedged * */
  1624. getrawmonotonic(&before);
  1625. #define EXIT_COND \
  1626. (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
  1627. atomic_read(&dev_priv->mm.wedged))
  1628. do {
  1629. if (interruptible)
  1630. end = wait_event_interruptible_timeout(ring->irq_queue,
  1631. EXIT_COND,
  1632. timeout_jiffies);
  1633. else
  1634. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  1635. timeout_jiffies);
  1636. if (atomic_read(&dev_priv->mm.wedged))
  1637. end = -EAGAIN;
  1638. } while (end == 0 && wait_forever);
  1639. getrawmonotonic(&now);
  1640. ring->irq_put(ring);
  1641. trace_i915_gem_request_wait_end(ring, seqno);
  1642. #undef EXIT_COND
  1643. if (timeout) {
  1644. struct timespec sleep_time = timespec_sub(now, before);
  1645. *timeout = timespec_sub(*timeout, sleep_time);
  1646. }
  1647. switch (end) {
  1648. case -EAGAIN: /* Wedged */
  1649. case -ERESTARTSYS: /* Signal */
  1650. return (int)end;
  1651. case 0: /* Timeout */
  1652. if (timeout)
  1653. set_normalized_timespec(timeout, 0, 0);
  1654. return -ETIME;
  1655. default: /* Completed */
  1656. WARN_ON(end < 0); /* We're not aware of other errors */
  1657. return 0;
  1658. }
  1659. }
  1660. /**
  1661. * Waits for a sequence number to be signaled, and cleans up the
  1662. * request and object lists appropriately for that event.
  1663. */
  1664. int
  1665. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  1666. {
  1667. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1668. int ret = 0;
  1669. BUG_ON(seqno == 0);
  1670. ret = i915_gem_check_wedge(dev_priv);
  1671. if (ret)
  1672. return ret;
  1673. ret = i915_gem_check_olr(ring, seqno);
  1674. if (ret)
  1675. return ret;
  1676. ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
  1677. return ret;
  1678. }
  1679. /**
  1680. * Ensures that all rendering to the object has completed and the object is
  1681. * safe to unbind from the GTT or access from the CPU.
  1682. */
  1683. int
  1684. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1685. {
  1686. int ret;
  1687. /* This function only exists to support waiting for existing rendering,
  1688. * not for emitting required flushes.
  1689. */
  1690. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1691. /* If there is rendering queued on the buffer being evicted, wait for
  1692. * it.
  1693. */
  1694. if (obj->active) {
  1695. ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
  1696. if (ret)
  1697. return ret;
  1698. i915_gem_retire_requests_ring(obj->ring);
  1699. }
  1700. return 0;
  1701. }
  1702. /**
  1703. * Ensures that an object will eventually get non-busy by flushing any required
  1704. * write domains, emitting any outstanding lazy request and retiring and
  1705. * completed requests.
  1706. */
  1707. static int
  1708. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1709. {
  1710. int ret;
  1711. if (obj->active) {
  1712. ret = i915_gem_object_flush_gpu_write_domain(obj);
  1713. if (ret)
  1714. return ret;
  1715. ret = i915_gem_check_olr(obj->ring,
  1716. obj->last_rendering_seqno);
  1717. if (ret)
  1718. return ret;
  1719. i915_gem_retire_requests_ring(obj->ring);
  1720. }
  1721. return 0;
  1722. }
  1723. /**
  1724. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1725. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1726. *
  1727. * Returns 0 if successful, else an error is returned with the remaining time in
  1728. * the timeout parameter.
  1729. * -ETIME: object is still busy after timeout
  1730. * -ERESTARTSYS: signal interrupted the wait
  1731. * -ENONENT: object doesn't exist
  1732. * Also possible, but rare:
  1733. * -EAGAIN: GPU wedged
  1734. * -ENOMEM: damn
  1735. * -ENODEV: Internal IRQ fail
  1736. * -E?: The add request failed
  1737. *
  1738. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1739. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1740. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1741. * without holding struct_mutex the object may become re-busied before this
  1742. * function completes. A similar but shorter * race condition exists in the busy
  1743. * ioctl
  1744. */
  1745. int
  1746. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1747. {
  1748. struct drm_i915_gem_wait *args = data;
  1749. struct drm_i915_gem_object *obj;
  1750. struct intel_ring_buffer *ring = NULL;
  1751. struct timespec timeout_stack, *timeout = NULL;
  1752. u32 seqno = 0;
  1753. int ret = 0;
  1754. if (args->timeout_ns >= 0) {
  1755. timeout_stack = ns_to_timespec(args->timeout_ns);
  1756. timeout = &timeout_stack;
  1757. }
  1758. ret = i915_mutex_lock_interruptible(dev);
  1759. if (ret)
  1760. return ret;
  1761. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1762. if (&obj->base == NULL) {
  1763. mutex_unlock(&dev->struct_mutex);
  1764. return -ENOENT;
  1765. }
  1766. /* Need to make sure the object gets inactive eventually. */
  1767. ret = i915_gem_object_flush_active(obj);
  1768. if (ret)
  1769. goto out;
  1770. if (obj->active) {
  1771. seqno = obj->last_rendering_seqno;
  1772. ring = obj->ring;
  1773. }
  1774. if (seqno == 0)
  1775. goto out;
  1776. /* Do this after OLR check to make sure we make forward progress polling
  1777. * on this IOCTL with a 0 timeout (like busy ioctl)
  1778. */
  1779. if (!args->timeout_ns) {
  1780. ret = -ETIME;
  1781. goto out;
  1782. }
  1783. drm_gem_object_unreference(&obj->base);
  1784. mutex_unlock(&dev->struct_mutex);
  1785. ret = __wait_seqno(ring, seqno, true, timeout);
  1786. if (timeout) {
  1787. WARN_ON(!timespec_valid(timeout));
  1788. args->timeout_ns = timespec_to_ns(timeout);
  1789. }
  1790. return ret;
  1791. out:
  1792. drm_gem_object_unreference(&obj->base);
  1793. mutex_unlock(&dev->struct_mutex);
  1794. return ret;
  1795. }
  1796. /**
  1797. * i915_gem_object_sync - sync an object to a ring.
  1798. *
  1799. * @obj: object which may be in use on another ring.
  1800. * @to: ring we wish to use the object on. May be NULL.
  1801. *
  1802. * This code is meant to abstract object synchronization with the GPU.
  1803. * Calling with NULL implies synchronizing the object with the CPU
  1804. * rather than a particular GPU ring.
  1805. *
  1806. * Returns 0 if successful, else propagates up the lower layer error.
  1807. */
  1808. int
  1809. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1810. struct intel_ring_buffer *to)
  1811. {
  1812. struct intel_ring_buffer *from = obj->ring;
  1813. u32 seqno;
  1814. int ret, idx;
  1815. if (from == NULL || to == from)
  1816. return 0;
  1817. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1818. return i915_gem_object_wait_rendering(obj);
  1819. idx = intel_ring_sync_index(from, to);
  1820. seqno = obj->last_rendering_seqno;
  1821. if (seqno <= from->sync_seqno[idx])
  1822. return 0;
  1823. ret = i915_gem_check_olr(obj->ring, seqno);
  1824. if (ret)
  1825. return ret;
  1826. ret = to->sync_to(to, from, seqno);
  1827. if (!ret)
  1828. from->sync_seqno[idx] = seqno;
  1829. return ret;
  1830. }
  1831. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1832. {
  1833. u32 old_write_domain, old_read_domains;
  1834. /* Act a barrier for all accesses through the GTT */
  1835. mb();
  1836. /* Force a pagefault for domain tracking on next user access */
  1837. i915_gem_release_mmap(obj);
  1838. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1839. return;
  1840. old_read_domains = obj->base.read_domains;
  1841. old_write_domain = obj->base.write_domain;
  1842. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1843. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1844. trace_i915_gem_object_change_domain(obj,
  1845. old_read_domains,
  1846. old_write_domain);
  1847. }
  1848. /**
  1849. * Unbinds an object from the GTT aperture.
  1850. */
  1851. int
  1852. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1853. {
  1854. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1855. int ret = 0;
  1856. if (obj->gtt_space == NULL)
  1857. return 0;
  1858. if (obj->pin_count)
  1859. return -EBUSY;
  1860. ret = i915_gem_object_finish_gpu(obj);
  1861. if (ret)
  1862. return ret;
  1863. /* Continue on if we fail due to EIO, the GPU is hung so we
  1864. * should be safe and we need to cleanup or else we might
  1865. * cause memory corruption through use-after-free.
  1866. */
  1867. i915_gem_object_finish_gtt(obj);
  1868. /* Move the object to the CPU domain to ensure that
  1869. * any possible CPU writes while it's not in the GTT
  1870. * are flushed when we go to remap it.
  1871. */
  1872. if (ret == 0)
  1873. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1874. if (ret == -ERESTARTSYS)
  1875. return ret;
  1876. if (ret) {
  1877. /* In the event of a disaster, abandon all caches and
  1878. * hope for the best.
  1879. */
  1880. i915_gem_clflush_object(obj);
  1881. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1882. }
  1883. /* release the fence reg _after_ flushing */
  1884. ret = i915_gem_object_put_fence(obj);
  1885. if (ret)
  1886. return ret;
  1887. trace_i915_gem_object_unbind(obj);
  1888. if (obj->has_global_gtt_mapping)
  1889. i915_gem_gtt_unbind_object(obj);
  1890. if (obj->has_aliasing_ppgtt_mapping) {
  1891. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1892. obj->has_aliasing_ppgtt_mapping = 0;
  1893. }
  1894. i915_gem_gtt_finish_object(obj);
  1895. i915_gem_object_put_pages_gtt(obj);
  1896. list_del_init(&obj->gtt_list);
  1897. list_del_init(&obj->mm_list);
  1898. /* Avoid an unnecessary call to unbind on rebind. */
  1899. obj->map_and_fenceable = true;
  1900. drm_mm_put_block(obj->gtt_space);
  1901. obj->gtt_space = NULL;
  1902. obj->gtt_offset = 0;
  1903. if (i915_gem_object_is_purgeable(obj))
  1904. i915_gem_object_truncate(obj);
  1905. return ret;
  1906. }
  1907. int
  1908. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1909. uint32_t invalidate_domains,
  1910. uint32_t flush_domains)
  1911. {
  1912. int ret;
  1913. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1914. return 0;
  1915. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1916. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1917. if (ret)
  1918. return ret;
  1919. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1920. i915_gem_process_flushing_list(ring, flush_domains);
  1921. return 0;
  1922. }
  1923. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1924. {
  1925. int ret;
  1926. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1927. return 0;
  1928. if (!list_empty(&ring->gpu_write_list)) {
  1929. ret = i915_gem_flush_ring(ring,
  1930. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1931. if (ret)
  1932. return ret;
  1933. }
  1934. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  1935. }
  1936. int i915_gpu_idle(struct drm_device *dev)
  1937. {
  1938. drm_i915_private_t *dev_priv = dev->dev_private;
  1939. struct intel_ring_buffer *ring;
  1940. int ret, i;
  1941. /* Flush everything onto the inactive list. */
  1942. for_each_ring(ring, dev_priv, i) {
  1943. ret = i915_ring_idle(ring);
  1944. if (ret)
  1945. return ret;
  1946. /* Is the device fubar? */
  1947. if (WARN_ON(!list_empty(&ring->gpu_write_list)))
  1948. return -EBUSY;
  1949. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  1950. if (ret)
  1951. return ret;
  1952. }
  1953. return 0;
  1954. }
  1955. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  1956. struct drm_i915_gem_object *obj)
  1957. {
  1958. drm_i915_private_t *dev_priv = dev->dev_private;
  1959. uint64_t val;
  1960. if (obj) {
  1961. u32 size = obj->gtt_space->size;
  1962. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1963. 0xfffff000) << 32;
  1964. val |= obj->gtt_offset & 0xfffff000;
  1965. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1966. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1967. if (obj->tiling_mode == I915_TILING_Y)
  1968. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1969. val |= I965_FENCE_REG_VALID;
  1970. } else
  1971. val = 0;
  1972. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  1973. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  1974. }
  1975. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  1976. struct drm_i915_gem_object *obj)
  1977. {
  1978. drm_i915_private_t *dev_priv = dev->dev_private;
  1979. uint64_t val;
  1980. if (obj) {
  1981. u32 size = obj->gtt_space->size;
  1982. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1983. 0xfffff000) << 32;
  1984. val |= obj->gtt_offset & 0xfffff000;
  1985. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1986. if (obj->tiling_mode == I915_TILING_Y)
  1987. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1988. val |= I965_FENCE_REG_VALID;
  1989. } else
  1990. val = 0;
  1991. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  1992. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  1993. }
  1994. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  1995. struct drm_i915_gem_object *obj)
  1996. {
  1997. drm_i915_private_t *dev_priv = dev->dev_private;
  1998. u32 val;
  1999. if (obj) {
  2000. u32 size = obj->gtt_space->size;
  2001. int pitch_val;
  2002. int tile_width;
  2003. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2004. (size & -size) != size ||
  2005. (obj->gtt_offset & (size - 1)),
  2006. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2007. obj->gtt_offset, obj->map_and_fenceable, size);
  2008. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2009. tile_width = 128;
  2010. else
  2011. tile_width = 512;
  2012. /* Note: pitch better be a power of two tile widths */
  2013. pitch_val = obj->stride / tile_width;
  2014. pitch_val = ffs(pitch_val) - 1;
  2015. val = obj->gtt_offset;
  2016. if (obj->tiling_mode == I915_TILING_Y)
  2017. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2018. val |= I915_FENCE_SIZE_BITS(size);
  2019. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2020. val |= I830_FENCE_REG_VALID;
  2021. } else
  2022. val = 0;
  2023. if (reg < 8)
  2024. reg = FENCE_REG_830_0 + reg * 4;
  2025. else
  2026. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2027. I915_WRITE(reg, val);
  2028. POSTING_READ(reg);
  2029. }
  2030. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2031. struct drm_i915_gem_object *obj)
  2032. {
  2033. drm_i915_private_t *dev_priv = dev->dev_private;
  2034. uint32_t val;
  2035. if (obj) {
  2036. u32 size = obj->gtt_space->size;
  2037. uint32_t pitch_val;
  2038. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2039. (size & -size) != size ||
  2040. (obj->gtt_offset & (size - 1)),
  2041. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2042. obj->gtt_offset, size);
  2043. pitch_val = obj->stride / 128;
  2044. pitch_val = ffs(pitch_val) - 1;
  2045. val = obj->gtt_offset;
  2046. if (obj->tiling_mode == I915_TILING_Y)
  2047. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2048. val |= I830_FENCE_SIZE_BITS(size);
  2049. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2050. val |= I830_FENCE_REG_VALID;
  2051. } else
  2052. val = 0;
  2053. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2054. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2055. }
  2056. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2057. struct drm_i915_gem_object *obj)
  2058. {
  2059. switch (INTEL_INFO(dev)->gen) {
  2060. case 7:
  2061. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2062. case 5:
  2063. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2064. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2065. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2066. default: break;
  2067. }
  2068. }
  2069. static inline int fence_number(struct drm_i915_private *dev_priv,
  2070. struct drm_i915_fence_reg *fence)
  2071. {
  2072. return fence - dev_priv->fence_regs;
  2073. }
  2074. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2075. struct drm_i915_fence_reg *fence,
  2076. bool enable)
  2077. {
  2078. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2079. int reg = fence_number(dev_priv, fence);
  2080. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2081. if (enable) {
  2082. obj->fence_reg = reg;
  2083. fence->obj = obj;
  2084. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2085. } else {
  2086. obj->fence_reg = I915_FENCE_REG_NONE;
  2087. fence->obj = NULL;
  2088. list_del_init(&fence->lru_list);
  2089. }
  2090. }
  2091. static int
  2092. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2093. {
  2094. int ret;
  2095. if (obj->fenced_gpu_access) {
  2096. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2097. ret = i915_gem_flush_ring(obj->ring,
  2098. 0, obj->base.write_domain);
  2099. if (ret)
  2100. return ret;
  2101. }
  2102. obj->fenced_gpu_access = false;
  2103. }
  2104. if (obj->last_fenced_seqno) {
  2105. ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2106. if (ret)
  2107. return ret;
  2108. obj->last_fenced_seqno = 0;
  2109. }
  2110. /* Ensure that all CPU reads are completed before installing a fence
  2111. * and all writes before removing the fence.
  2112. */
  2113. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2114. mb();
  2115. return 0;
  2116. }
  2117. int
  2118. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2119. {
  2120. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2121. int ret;
  2122. ret = i915_gem_object_flush_fence(obj);
  2123. if (ret)
  2124. return ret;
  2125. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2126. return 0;
  2127. i915_gem_object_update_fence(obj,
  2128. &dev_priv->fence_regs[obj->fence_reg],
  2129. false);
  2130. i915_gem_object_fence_lost(obj);
  2131. return 0;
  2132. }
  2133. static struct drm_i915_fence_reg *
  2134. i915_find_fence_reg(struct drm_device *dev)
  2135. {
  2136. struct drm_i915_private *dev_priv = dev->dev_private;
  2137. struct drm_i915_fence_reg *reg, *avail;
  2138. int i;
  2139. /* First try to find a free reg */
  2140. avail = NULL;
  2141. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2142. reg = &dev_priv->fence_regs[i];
  2143. if (!reg->obj)
  2144. return reg;
  2145. if (!reg->pin_count)
  2146. avail = reg;
  2147. }
  2148. if (avail == NULL)
  2149. return NULL;
  2150. /* None available, try to steal one or wait for a user to finish */
  2151. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2152. if (reg->pin_count)
  2153. continue;
  2154. return reg;
  2155. }
  2156. return NULL;
  2157. }
  2158. /**
  2159. * i915_gem_object_get_fence - set up fencing for an object
  2160. * @obj: object to map through a fence reg
  2161. *
  2162. * When mapping objects through the GTT, userspace wants to be able to write
  2163. * to them without having to worry about swizzling if the object is tiled.
  2164. * This function walks the fence regs looking for a free one for @obj,
  2165. * stealing one if it can't find any.
  2166. *
  2167. * It then sets up the reg based on the object's properties: address, pitch
  2168. * and tiling format.
  2169. *
  2170. * For an untiled surface, this removes any existing fence.
  2171. */
  2172. int
  2173. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2174. {
  2175. struct drm_device *dev = obj->base.dev;
  2176. struct drm_i915_private *dev_priv = dev->dev_private;
  2177. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2178. struct drm_i915_fence_reg *reg;
  2179. int ret;
  2180. /* Have we updated the tiling parameters upon the object and so
  2181. * will need to serialise the write to the associated fence register?
  2182. */
  2183. if (obj->fence_dirty) {
  2184. ret = i915_gem_object_flush_fence(obj);
  2185. if (ret)
  2186. return ret;
  2187. }
  2188. /* Just update our place in the LRU if our fence is getting reused. */
  2189. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2190. reg = &dev_priv->fence_regs[obj->fence_reg];
  2191. if (!obj->fence_dirty) {
  2192. list_move_tail(&reg->lru_list,
  2193. &dev_priv->mm.fence_list);
  2194. return 0;
  2195. }
  2196. } else if (enable) {
  2197. reg = i915_find_fence_reg(dev);
  2198. if (reg == NULL)
  2199. return -EDEADLK;
  2200. if (reg->obj) {
  2201. struct drm_i915_gem_object *old = reg->obj;
  2202. ret = i915_gem_object_flush_fence(old);
  2203. if (ret)
  2204. return ret;
  2205. i915_gem_object_fence_lost(old);
  2206. }
  2207. } else
  2208. return 0;
  2209. i915_gem_object_update_fence(obj, reg, enable);
  2210. obj->fence_dirty = false;
  2211. return 0;
  2212. }
  2213. /**
  2214. * Finds free space in the GTT aperture and binds the object there.
  2215. */
  2216. static int
  2217. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2218. unsigned alignment,
  2219. bool map_and_fenceable)
  2220. {
  2221. struct drm_device *dev = obj->base.dev;
  2222. drm_i915_private_t *dev_priv = dev->dev_private;
  2223. struct drm_mm_node *free_space;
  2224. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2225. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2226. bool mappable, fenceable;
  2227. int ret;
  2228. if (obj->madv != I915_MADV_WILLNEED) {
  2229. DRM_ERROR("Attempting to bind a purgeable object\n");
  2230. return -EINVAL;
  2231. }
  2232. fence_size = i915_gem_get_gtt_size(dev,
  2233. obj->base.size,
  2234. obj->tiling_mode);
  2235. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2236. obj->base.size,
  2237. obj->tiling_mode);
  2238. unfenced_alignment =
  2239. i915_gem_get_unfenced_gtt_alignment(dev,
  2240. obj->base.size,
  2241. obj->tiling_mode);
  2242. if (alignment == 0)
  2243. alignment = map_and_fenceable ? fence_alignment :
  2244. unfenced_alignment;
  2245. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2246. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2247. return -EINVAL;
  2248. }
  2249. size = map_and_fenceable ? fence_size : obj->base.size;
  2250. /* If the object is bigger than the entire aperture, reject it early
  2251. * before evicting everything in a vain attempt to find space.
  2252. */
  2253. if (obj->base.size >
  2254. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2255. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2256. return -E2BIG;
  2257. }
  2258. search_free:
  2259. if (map_and_fenceable)
  2260. free_space =
  2261. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2262. size, alignment, 0,
  2263. dev_priv->mm.gtt_mappable_end,
  2264. 0);
  2265. else
  2266. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2267. size, alignment, 0);
  2268. if (free_space != NULL) {
  2269. if (map_and_fenceable)
  2270. obj->gtt_space =
  2271. drm_mm_get_block_range_generic(free_space,
  2272. size, alignment, 0,
  2273. dev_priv->mm.gtt_mappable_end,
  2274. 0);
  2275. else
  2276. obj->gtt_space =
  2277. drm_mm_get_block(free_space, size, alignment);
  2278. }
  2279. if (obj->gtt_space == NULL) {
  2280. /* If the gtt is empty and we're still having trouble
  2281. * fitting our object in, we're out of memory.
  2282. */
  2283. ret = i915_gem_evict_something(dev, size, alignment,
  2284. map_and_fenceable);
  2285. if (ret)
  2286. return ret;
  2287. goto search_free;
  2288. }
  2289. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2290. if (ret) {
  2291. drm_mm_put_block(obj->gtt_space);
  2292. obj->gtt_space = NULL;
  2293. if (ret == -ENOMEM) {
  2294. /* first try to reclaim some memory by clearing the GTT */
  2295. ret = i915_gem_evict_everything(dev, false);
  2296. if (ret) {
  2297. /* now try to shrink everyone else */
  2298. if (gfpmask) {
  2299. gfpmask = 0;
  2300. goto search_free;
  2301. }
  2302. return -ENOMEM;
  2303. }
  2304. goto search_free;
  2305. }
  2306. return ret;
  2307. }
  2308. ret = i915_gem_gtt_prepare_object(obj);
  2309. if (ret) {
  2310. i915_gem_object_put_pages_gtt(obj);
  2311. drm_mm_put_block(obj->gtt_space);
  2312. obj->gtt_space = NULL;
  2313. if (i915_gem_evict_everything(dev, false))
  2314. return ret;
  2315. goto search_free;
  2316. }
  2317. if (!dev_priv->mm.aliasing_ppgtt)
  2318. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2319. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2320. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2321. /* Assert that the object is not currently in any GPU domain. As it
  2322. * wasn't in the GTT, there shouldn't be any way it could have been in
  2323. * a GPU cache
  2324. */
  2325. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2326. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2327. obj->gtt_offset = obj->gtt_space->start;
  2328. fenceable =
  2329. obj->gtt_space->size == fence_size &&
  2330. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2331. mappable =
  2332. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2333. obj->map_and_fenceable = mappable && fenceable;
  2334. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2335. return 0;
  2336. }
  2337. void
  2338. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2339. {
  2340. /* If we don't have a page list set up, then we're not pinned
  2341. * to GPU, and we can ignore the cache flush because it'll happen
  2342. * again at bind time.
  2343. */
  2344. if (obj->pages == NULL)
  2345. return;
  2346. /* If the GPU is snooping the contents of the CPU cache,
  2347. * we do not need to manually clear the CPU cache lines. However,
  2348. * the caches are only snooped when the render cache is
  2349. * flushed/invalidated. As we always have to emit invalidations
  2350. * and flushes when moving into and out of the RENDER domain, correct
  2351. * snooping behaviour occurs naturally as the result of our domain
  2352. * tracking.
  2353. */
  2354. if (obj->cache_level != I915_CACHE_NONE)
  2355. return;
  2356. trace_i915_gem_object_clflush(obj);
  2357. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2358. }
  2359. /** Flushes any GPU write domain for the object if it's dirty. */
  2360. static int
  2361. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2362. {
  2363. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2364. return 0;
  2365. /* Queue the GPU write cache flushing we need. */
  2366. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2367. }
  2368. /** Flushes the GTT write domain for the object if it's dirty. */
  2369. static void
  2370. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2371. {
  2372. uint32_t old_write_domain;
  2373. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2374. return;
  2375. /* No actual flushing is required for the GTT write domain. Writes
  2376. * to it immediately go to main memory as far as we know, so there's
  2377. * no chipset flush. It also doesn't land in render cache.
  2378. *
  2379. * However, we do have to enforce the order so that all writes through
  2380. * the GTT land before any writes to the device, such as updates to
  2381. * the GATT itself.
  2382. */
  2383. wmb();
  2384. old_write_domain = obj->base.write_domain;
  2385. obj->base.write_domain = 0;
  2386. trace_i915_gem_object_change_domain(obj,
  2387. obj->base.read_domains,
  2388. old_write_domain);
  2389. }
  2390. /** Flushes the CPU write domain for the object if it's dirty. */
  2391. static void
  2392. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2393. {
  2394. uint32_t old_write_domain;
  2395. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2396. return;
  2397. i915_gem_clflush_object(obj);
  2398. intel_gtt_chipset_flush();
  2399. old_write_domain = obj->base.write_domain;
  2400. obj->base.write_domain = 0;
  2401. trace_i915_gem_object_change_domain(obj,
  2402. obj->base.read_domains,
  2403. old_write_domain);
  2404. }
  2405. /**
  2406. * Moves a single object to the GTT read, and possibly write domain.
  2407. *
  2408. * This function returns when the move is complete, including waiting on
  2409. * flushes to occur.
  2410. */
  2411. int
  2412. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2413. {
  2414. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2415. uint32_t old_write_domain, old_read_domains;
  2416. int ret;
  2417. /* Not valid to be called on unbound objects. */
  2418. if (obj->gtt_space == NULL)
  2419. return -EINVAL;
  2420. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2421. return 0;
  2422. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2423. if (ret)
  2424. return ret;
  2425. if (obj->pending_gpu_write || write) {
  2426. ret = i915_gem_object_wait_rendering(obj);
  2427. if (ret)
  2428. return ret;
  2429. }
  2430. i915_gem_object_flush_cpu_write_domain(obj);
  2431. old_write_domain = obj->base.write_domain;
  2432. old_read_domains = obj->base.read_domains;
  2433. /* It should now be out of any other write domains, and we can update
  2434. * the domain values for our changes.
  2435. */
  2436. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2437. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2438. if (write) {
  2439. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2440. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2441. obj->dirty = 1;
  2442. }
  2443. trace_i915_gem_object_change_domain(obj,
  2444. old_read_domains,
  2445. old_write_domain);
  2446. /* And bump the LRU for this access */
  2447. if (i915_gem_object_is_inactive(obj))
  2448. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2449. return 0;
  2450. }
  2451. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2452. enum i915_cache_level cache_level)
  2453. {
  2454. struct drm_device *dev = obj->base.dev;
  2455. drm_i915_private_t *dev_priv = dev->dev_private;
  2456. int ret;
  2457. if (obj->cache_level == cache_level)
  2458. return 0;
  2459. if (obj->pin_count) {
  2460. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2461. return -EBUSY;
  2462. }
  2463. if (obj->gtt_space) {
  2464. ret = i915_gem_object_finish_gpu(obj);
  2465. if (ret)
  2466. return ret;
  2467. i915_gem_object_finish_gtt(obj);
  2468. /* Before SandyBridge, you could not use tiling or fence
  2469. * registers with snooped memory, so relinquish any fences
  2470. * currently pointing to our region in the aperture.
  2471. */
  2472. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2473. ret = i915_gem_object_put_fence(obj);
  2474. if (ret)
  2475. return ret;
  2476. }
  2477. if (obj->has_global_gtt_mapping)
  2478. i915_gem_gtt_bind_object(obj, cache_level);
  2479. if (obj->has_aliasing_ppgtt_mapping)
  2480. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2481. obj, cache_level);
  2482. }
  2483. if (cache_level == I915_CACHE_NONE) {
  2484. u32 old_read_domains, old_write_domain;
  2485. /* If we're coming from LLC cached, then we haven't
  2486. * actually been tracking whether the data is in the
  2487. * CPU cache or not, since we only allow one bit set
  2488. * in obj->write_domain and have been skipping the clflushes.
  2489. * Just set it to the CPU cache for now.
  2490. */
  2491. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2492. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2493. old_read_domains = obj->base.read_domains;
  2494. old_write_domain = obj->base.write_domain;
  2495. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2496. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2497. trace_i915_gem_object_change_domain(obj,
  2498. old_read_domains,
  2499. old_write_domain);
  2500. }
  2501. obj->cache_level = cache_level;
  2502. return 0;
  2503. }
  2504. /*
  2505. * Prepare buffer for display plane (scanout, cursors, etc).
  2506. * Can be called from an uninterruptible phase (modesetting) and allows
  2507. * any flushes to be pipelined (for pageflips).
  2508. */
  2509. int
  2510. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2511. u32 alignment,
  2512. struct intel_ring_buffer *pipelined)
  2513. {
  2514. u32 old_read_domains, old_write_domain;
  2515. int ret;
  2516. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2517. if (ret)
  2518. return ret;
  2519. if (pipelined != obj->ring) {
  2520. ret = i915_gem_object_sync(obj, pipelined);
  2521. if (ret)
  2522. return ret;
  2523. }
  2524. /* The display engine is not coherent with the LLC cache on gen6. As
  2525. * a result, we make sure that the pinning that is about to occur is
  2526. * done with uncached PTEs. This is lowest common denominator for all
  2527. * chipsets.
  2528. *
  2529. * However for gen6+, we could do better by using the GFDT bit instead
  2530. * of uncaching, which would allow us to flush all the LLC-cached data
  2531. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2532. */
  2533. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2534. if (ret)
  2535. return ret;
  2536. /* As the user may map the buffer once pinned in the display plane
  2537. * (e.g. libkms for the bootup splash), we have to ensure that we
  2538. * always use map_and_fenceable for all scanout buffers.
  2539. */
  2540. ret = i915_gem_object_pin(obj, alignment, true);
  2541. if (ret)
  2542. return ret;
  2543. i915_gem_object_flush_cpu_write_domain(obj);
  2544. old_write_domain = obj->base.write_domain;
  2545. old_read_domains = obj->base.read_domains;
  2546. /* It should now be out of any other write domains, and we can update
  2547. * the domain values for our changes.
  2548. */
  2549. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2550. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2551. trace_i915_gem_object_change_domain(obj,
  2552. old_read_domains,
  2553. old_write_domain);
  2554. return 0;
  2555. }
  2556. int
  2557. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2558. {
  2559. int ret;
  2560. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2561. return 0;
  2562. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2563. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2564. if (ret)
  2565. return ret;
  2566. }
  2567. ret = i915_gem_object_wait_rendering(obj);
  2568. if (ret)
  2569. return ret;
  2570. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2571. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2572. return 0;
  2573. }
  2574. /**
  2575. * Moves a single object to the CPU read, and possibly write domain.
  2576. *
  2577. * This function returns when the move is complete, including waiting on
  2578. * flushes to occur.
  2579. */
  2580. int
  2581. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2582. {
  2583. uint32_t old_write_domain, old_read_domains;
  2584. int ret;
  2585. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2586. return 0;
  2587. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2588. if (ret)
  2589. return ret;
  2590. if (write || obj->pending_gpu_write) {
  2591. ret = i915_gem_object_wait_rendering(obj);
  2592. if (ret)
  2593. return ret;
  2594. }
  2595. i915_gem_object_flush_gtt_write_domain(obj);
  2596. old_write_domain = obj->base.write_domain;
  2597. old_read_domains = obj->base.read_domains;
  2598. /* Flush the CPU cache if it's still invalid. */
  2599. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2600. i915_gem_clflush_object(obj);
  2601. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2602. }
  2603. /* It should now be out of any other write domains, and we can update
  2604. * the domain values for our changes.
  2605. */
  2606. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2607. /* If we're writing through the CPU, then the GPU read domains will
  2608. * need to be invalidated at next use.
  2609. */
  2610. if (write) {
  2611. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2612. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2613. }
  2614. trace_i915_gem_object_change_domain(obj,
  2615. old_read_domains,
  2616. old_write_domain);
  2617. return 0;
  2618. }
  2619. /* Throttle our rendering by waiting until the ring has completed our requests
  2620. * emitted over 20 msec ago.
  2621. *
  2622. * Note that if we were to use the current jiffies each time around the loop,
  2623. * we wouldn't escape the function with any frames outstanding if the time to
  2624. * render a frame was over 20ms.
  2625. *
  2626. * This should get us reasonable parallelism between CPU and GPU but also
  2627. * relatively low latency when blocking on a particular request to finish.
  2628. */
  2629. static int
  2630. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2631. {
  2632. struct drm_i915_private *dev_priv = dev->dev_private;
  2633. struct drm_i915_file_private *file_priv = file->driver_priv;
  2634. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2635. struct drm_i915_gem_request *request;
  2636. struct intel_ring_buffer *ring = NULL;
  2637. u32 seqno = 0;
  2638. int ret;
  2639. if (atomic_read(&dev_priv->mm.wedged))
  2640. return -EIO;
  2641. spin_lock(&file_priv->mm.lock);
  2642. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2643. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2644. break;
  2645. ring = request->ring;
  2646. seqno = request->seqno;
  2647. }
  2648. spin_unlock(&file_priv->mm.lock);
  2649. if (seqno == 0)
  2650. return 0;
  2651. ret = __wait_seqno(ring, seqno, true, NULL);
  2652. if (ret == 0)
  2653. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2654. return ret;
  2655. }
  2656. int
  2657. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2658. uint32_t alignment,
  2659. bool map_and_fenceable)
  2660. {
  2661. int ret;
  2662. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2663. if (obj->gtt_space != NULL) {
  2664. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2665. (map_and_fenceable && !obj->map_and_fenceable)) {
  2666. WARN(obj->pin_count,
  2667. "bo is already pinned with incorrect alignment:"
  2668. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2669. " obj->map_and_fenceable=%d\n",
  2670. obj->gtt_offset, alignment,
  2671. map_and_fenceable,
  2672. obj->map_and_fenceable);
  2673. ret = i915_gem_object_unbind(obj);
  2674. if (ret)
  2675. return ret;
  2676. }
  2677. }
  2678. if (obj->gtt_space == NULL) {
  2679. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2680. map_and_fenceable);
  2681. if (ret)
  2682. return ret;
  2683. }
  2684. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2685. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2686. obj->pin_count++;
  2687. obj->pin_mappable |= map_and_fenceable;
  2688. return 0;
  2689. }
  2690. void
  2691. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2692. {
  2693. BUG_ON(obj->pin_count == 0);
  2694. BUG_ON(obj->gtt_space == NULL);
  2695. if (--obj->pin_count == 0)
  2696. obj->pin_mappable = false;
  2697. }
  2698. int
  2699. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2700. struct drm_file *file)
  2701. {
  2702. struct drm_i915_gem_pin *args = data;
  2703. struct drm_i915_gem_object *obj;
  2704. int ret;
  2705. ret = i915_mutex_lock_interruptible(dev);
  2706. if (ret)
  2707. return ret;
  2708. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2709. if (&obj->base == NULL) {
  2710. ret = -ENOENT;
  2711. goto unlock;
  2712. }
  2713. if (obj->madv != I915_MADV_WILLNEED) {
  2714. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2715. ret = -EINVAL;
  2716. goto out;
  2717. }
  2718. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2719. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2720. args->handle);
  2721. ret = -EINVAL;
  2722. goto out;
  2723. }
  2724. obj->user_pin_count++;
  2725. obj->pin_filp = file;
  2726. if (obj->user_pin_count == 1) {
  2727. ret = i915_gem_object_pin(obj, args->alignment, true);
  2728. if (ret)
  2729. goto out;
  2730. }
  2731. /* XXX - flush the CPU caches for pinned objects
  2732. * as the X server doesn't manage domains yet
  2733. */
  2734. i915_gem_object_flush_cpu_write_domain(obj);
  2735. args->offset = obj->gtt_offset;
  2736. out:
  2737. drm_gem_object_unreference(&obj->base);
  2738. unlock:
  2739. mutex_unlock(&dev->struct_mutex);
  2740. return ret;
  2741. }
  2742. int
  2743. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2744. struct drm_file *file)
  2745. {
  2746. struct drm_i915_gem_pin *args = data;
  2747. struct drm_i915_gem_object *obj;
  2748. int ret;
  2749. ret = i915_mutex_lock_interruptible(dev);
  2750. if (ret)
  2751. return ret;
  2752. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2753. if (&obj->base == NULL) {
  2754. ret = -ENOENT;
  2755. goto unlock;
  2756. }
  2757. if (obj->pin_filp != file) {
  2758. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2759. args->handle);
  2760. ret = -EINVAL;
  2761. goto out;
  2762. }
  2763. obj->user_pin_count--;
  2764. if (obj->user_pin_count == 0) {
  2765. obj->pin_filp = NULL;
  2766. i915_gem_object_unpin(obj);
  2767. }
  2768. out:
  2769. drm_gem_object_unreference(&obj->base);
  2770. unlock:
  2771. mutex_unlock(&dev->struct_mutex);
  2772. return ret;
  2773. }
  2774. int
  2775. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2776. struct drm_file *file)
  2777. {
  2778. struct drm_i915_gem_busy *args = data;
  2779. struct drm_i915_gem_object *obj;
  2780. int ret;
  2781. ret = i915_mutex_lock_interruptible(dev);
  2782. if (ret)
  2783. return ret;
  2784. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2785. if (&obj->base == NULL) {
  2786. ret = -ENOENT;
  2787. goto unlock;
  2788. }
  2789. /* Count all active objects as busy, even if they are currently not used
  2790. * by the gpu. Users of this interface expect objects to eventually
  2791. * become non-busy without any further actions, therefore emit any
  2792. * necessary flushes here.
  2793. */
  2794. ret = i915_gem_object_flush_active(obj);
  2795. args->busy = obj->active;
  2796. drm_gem_object_unreference(&obj->base);
  2797. unlock:
  2798. mutex_unlock(&dev->struct_mutex);
  2799. return ret;
  2800. }
  2801. int
  2802. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2803. struct drm_file *file_priv)
  2804. {
  2805. return i915_gem_ring_throttle(dev, file_priv);
  2806. }
  2807. int
  2808. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2809. struct drm_file *file_priv)
  2810. {
  2811. struct drm_i915_gem_madvise *args = data;
  2812. struct drm_i915_gem_object *obj;
  2813. int ret;
  2814. switch (args->madv) {
  2815. case I915_MADV_DONTNEED:
  2816. case I915_MADV_WILLNEED:
  2817. break;
  2818. default:
  2819. return -EINVAL;
  2820. }
  2821. ret = i915_mutex_lock_interruptible(dev);
  2822. if (ret)
  2823. return ret;
  2824. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2825. if (&obj->base == NULL) {
  2826. ret = -ENOENT;
  2827. goto unlock;
  2828. }
  2829. if (obj->pin_count) {
  2830. ret = -EINVAL;
  2831. goto out;
  2832. }
  2833. if (obj->madv != __I915_MADV_PURGED)
  2834. obj->madv = args->madv;
  2835. /* if the object is no longer bound, discard its backing storage */
  2836. if (i915_gem_object_is_purgeable(obj) &&
  2837. obj->gtt_space == NULL)
  2838. i915_gem_object_truncate(obj);
  2839. args->retained = obj->madv != __I915_MADV_PURGED;
  2840. out:
  2841. drm_gem_object_unreference(&obj->base);
  2842. unlock:
  2843. mutex_unlock(&dev->struct_mutex);
  2844. return ret;
  2845. }
  2846. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2847. size_t size)
  2848. {
  2849. struct drm_i915_private *dev_priv = dev->dev_private;
  2850. struct drm_i915_gem_object *obj;
  2851. struct address_space *mapping;
  2852. u32 mask;
  2853. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2854. if (obj == NULL)
  2855. return NULL;
  2856. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2857. kfree(obj);
  2858. return NULL;
  2859. }
  2860. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  2861. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  2862. /* 965gm cannot relocate objects above 4GiB. */
  2863. mask &= ~__GFP_HIGHMEM;
  2864. mask |= __GFP_DMA32;
  2865. }
  2866. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2867. mapping_set_gfp_mask(mapping, mask);
  2868. i915_gem_info_add_obj(dev_priv, size);
  2869. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2870. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2871. if (HAS_LLC(dev)) {
  2872. /* On some devices, we can have the GPU use the LLC (the CPU
  2873. * cache) for about a 10% performance improvement
  2874. * compared to uncached. Graphics requests other than
  2875. * display scanout are coherent with the CPU in
  2876. * accessing this cache. This means in this mode we
  2877. * don't need to clflush on the CPU side, and on the
  2878. * GPU side we only need to flush internal caches to
  2879. * get data visible to the CPU.
  2880. *
  2881. * However, we maintain the display planes as UC, and so
  2882. * need to rebind when first used as such.
  2883. */
  2884. obj->cache_level = I915_CACHE_LLC;
  2885. } else
  2886. obj->cache_level = I915_CACHE_NONE;
  2887. obj->base.driver_private = NULL;
  2888. obj->fence_reg = I915_FENCE_REG_NONE;
  2889. INIT_LIST_HEAD(&obj->mm_list);
  2890. INIT_LIST_HEAD(&obj->gtt_list);
  2891. INIT_LIST_HEAD(&obj->ring_list);
  2892. INIT_LIST_HEAD(&obj->exec_list);
  2893. INIT_LIST_HEAD(&obj->gpu_write_list);
  2894. obj->madv = I915_MADV_WILLNEED;
  2895. /* Avoid an unnecessary call to unbind on the first bind. */
  2896. obj->map_and_fenceable = true;
  2897. return obj;
  2898. }
  2899. int i915_gem_init_object(struct drm_gem_object *obj)
  2900. {
  2901. BUG();
  2902. return 0;
  2903. }
  2904. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2905. {
  2906. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2907. struct drm_device *dev = obj->base.dev;
  2908. drm_i915_private_t *dev_priv = dev->dev_private;
  2909. trace_i915_gem_object_destroy(obj);
  2910. if (gem_obj->import_attach)
  2911. drm_prime_gem_destroy(gem_obj, obj->sg_table);
  2912. if (obj->phys_obj)
  2913. i915_gem_detach_phys_object(dev, obj);
  2914. obj->pin_count = 0;
  2915. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  2916. bool was_interruptible;
  2917. was_interruptible = dev_priv->mm.interruptible;
  2918. dev_priv->mm.interruptible = false;
  2919. WARN_ON(i915_gem_object_unbind(obj));
  2920. dev_priv->mm.interruptible = was_interruptible;
  2921. }
  2922. if (obj->base.map_list.map)
  2923. drm_gem_free_mmap_offset(&obj->base);
  2924. drm_gem_object_release(&obj->base);
  2925. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2926. kfree(obj->bit_17);
  2927. kfree(obj);
  2928. }
  2929. int
  2930. i915_gem_idle(struct drm_device *dev)
  2931. {
  2932. drm_i915_private_t *dev_priv = dev->dev_private;
  2933. int ret;
  2934. mutex_lock(&dev->struct_mutex);
  2935. if (dev_priv->mm.suspended) {
  2936. mutex_unlock(&dev->struct_mutex);
  2937. return 0;
  2938. }
  2939. ret = i915_gpu_idle(dev);
  2940. if (ret) {
  2941. mutex_unlock(&dev->struct_mutex);
  2942. return ret;
  2943. }
  2944. i915_gem_retire_requests(dev);
  2945. /* Under UMS, be paranoid and evict. */
  2946. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2947. i915_gem_evict_everything(dev, false);
  2948. i915_gem_reset_fences(dev);
  2949. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2950. * We need to replace this with a semaphore, or something.
  2951. * And not confound mm.suspended!
  2952. */
  2953. dev_priv->mm.suspended = 1;
  2954. del_timer_sync(&dev_priv->hangcheck_timer);
  2955. i915_kernel_lost_context(dev);
  2956. i915_gem_cleanup_ringbuffer(dev);
  2957. mutex_unlock(&dev->struct_mutex);
  2958. /* Cancel the retire work handler, which should be idle now. */
  2959. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2960. return 0;
  2961. }
  2962. void i915_gem_l3_remap(struct drm_device *dev)
  2963. {
  2964. drm_i915_private_t *dev_priv = dev->dev_private;
  2965. u32 misccpctl;
  2966. int i;
  2967. if (!IS_IVYBRIDGE(dev))
  2968. return;
  2969. if (!dev_priv->mm.l3_remap_info)
  2970. return;
  2971. misccpctl = I915_READ(GEN7_MISCCPCTL);
  2972. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  2973. POSTING_READ(GEN7_MISCCPCTL);
  2974. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  2975. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  2976. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  2977. DRM_DEBUG("0x%x was already programmed to %x\n",
  2978. GEN7_L3LOG_BASE + i, remap);
  2979. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  2980. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  2981. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  2982. }
  2983. /* Make sure all the writes land before disabling dop clock gating */
  2984. POSTING_READ(GEN7_L3LOG_BASE);
  2985. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  2986. }
  2987. void i915_gem_init_swizzling(struct drm_device *dev)
  2988. {
  2989. drm_i915_private_t *dev_priv = dev->dev_private;
  2990. if (INTEL_INFO(dev)->gen < 5 ||
  2991. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2992. return;
  2993. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2994. DISP_TILE_SURFACE_SWIZZLING);
  2995. if (IS_GEN5(dev))
  2996. return;
  2997. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2998. if (IS_GEN6(dev))
  2999. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3000. else
  3001. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3002. }
  3003. void i915_gem_init_ppgtt(struct drm_device *dev)
  3004. {
  3005. drm_i915_private_t *dev_priv = dev->dev_private;
  3006. uint32_t pd_offset;
  3007. struct intel_ring_buffer *ring;
  3008. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3009. uint32_t __iomem *pd_addr;
  3010. uint32_t pd_entry;
  3011. int i;
  3012. if (!dev_priv->mm.aliasing_ppgtt)
  3013. return;
  3014. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3015. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3016. dma_addr_t pt_addr;
  3017. if (dev_priv->mm.gtt->needs_dmar)
  3018. pt_addr = ppgtt->pt_dma_addr[i];
  3019. else
  3020. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3021. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3022. pd_entry |= GEN6_PDE_VALID;
  3023. writel(pd_entry, pd_addr + i);
  3024. }
  3025. readl(pd_addr);
  3026. pd_offset = ppgtt->pd_offset;
  3027. pd_offset /= 64; /* in cachelines, */
  3028. pd_offset <<= 16;
  3029. if (INTEL_INFO(dev)->gen == 6) {
  3030. uint32_t ecochk, gab_ctl, ecobits;
  3031. ecobits = I915_READ(GAC_ECO_BITS);
  3032. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3033. gab_ctl = I915_READ(GAB_CTL);
  3034. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3035. ecochk = I915_READ(GAM_ECOCHK);
  3036. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3037. ECOCHK_PPGTT_CACHE64B);
  3038. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3039. } else if (INTEL_INFO(dev)->gen >= 7) {
  3040. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3041. /* GFX_MODE is per-ring on gen7+ */
  3042. }
  3043. for_each_ring(ring, dev_priv, i) {
  3044. if (INTEL_INFO(dev)->gen >= 7)
  3045. I915_WRITE(RING_MODE_GEN7(ring),
  3046. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3047. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3048. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3049. }
  3050. }
  3051. int
  3052. i915_gem_init_hw(struct drm_device *dev)
  3053. {
  3054. drm_i915_private_t *dev_priv = dev->dev_private;
  3055. int ret;
  3056. if (!intel_enable_gtt())
  3057. return -EIO;
  3058. i915_gem_l3_remap(dev);
  3059. i915_gem_init_swizzling(dev);
  3060. ret = intel_init_render_ring_buffer(dev);
  3061. if (ret)
  3062. return ret;
  3063. if (HAS_BSD(dev)) {
  3064. ret = intel_init_bsd_ring_buffer(dev);
  3065. if (ret)
  3066. goto cleanup_render_ring;
  3067. }
  3068. if (HAS_BLT(dev)) {
  3069. ret = intel_init_blt_ring_buffer(dev);
  3070. if (ret)
  3071. goto cleanup_bsd_ring;
  3072. }
  3073. dev_priv->next_seqno = 1;
  3074. /*
  3075. * XXX: There was some w/a described somewhere suggesting loading
  3076. * contexts before PPGTT.
  3077. */
  3078. i915_gem_context_init(dev);
  3079. i915_gem_init_ppgtt(dev);
  3080. return 0;
  3081. cleanup_bsd_ring:
  3082. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3083. cleanup_render_ring:
  3084. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3085. return ret;
  3086. }
  3087. static bool
  3088. intel_enable_ppgtt(struct drm_device *dev)
  3089. {
  3090. if (i915_enable_ppgtt >= 0)
  3091. return i915_enable_ppgtt;
  3092. #ifdef CONFIG_INTEL_IOMMU
  3093. /* Disable ppgtt on SNB if VT-d is on. */
  3094. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3095. return false;
  3096. #endif
  3097. return true;
  3098. }
  3099. int i915_gem_init(struct drm_device *dev)
  3100. {
  3101. struct drm_i915_private *dev_priv = dev->dev_private;
  3102. unsigned long gtt_size, mappable_size;
  3103. int ret;
  3104. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3105. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3106. mutex_lock(&dev->struct_mutex);
  3107. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3108. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3109. * aperture accordingly when using aliasing ppgtt. */
  3110. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3111. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3112. ret = i915_gem_init_aliasing_ppgtt(dev);
  3113. if (ret) {
  3114. mutex_unlock(&dev->struct_mutex);
  3115. return ret;
  3116. }
  3117. } else {
  3118. /* Let GEM Manage all of the aperture.
  3119. *
  3120. * However, leave one page at the end still bound to the scratch
  3121. * page. There are a number of places where the hardware
  3122. * apparently prefetches past the end of the object, and we've
  3123. * seen multiple hangs with the GPU head pointer stuck in a
  3124. * batchbuffer bound at the last page of the aperture. One page
  3125. * should be enough to keep any prefetching inside of the
  3126. * aperture.
  3127. */
  3128. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3129. gtt_size);
  3130. }
  3131. ret = i915_gem_init_hw(dev);
  3132. mutex_unlock(&dev->struct_mutex);
  3133. if (ret) {
  3134. i915_gem_cleanup_aliasing_ppgtt(dev);
  3135. return ret;
  3136. }
  3137. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3138. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3139. dev_priv->dri1.allow_batchbuffer = 1;
  3140. return 0;
  3141. }
  3142. void
  3143. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3144. {
  3145. drm_i915_private_t *dev_priv = dev->dev_private;
  3146. struct intel_ring_buffer *ring;
  3147. int i;
  3148. for_each_ring(ring, dev_priv, i)
  3149. intel_cleanup_ring_buffer(ring);
  3150. }
  3151. int
  3152. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3153. struct drm_file *file_priv)
  3154. {
  3155. drm_i915_private_t *dev_priv = dev->dev_private;
  3156. int ret;
  3157. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3158. return 0;
  3159. if (atomic_read(&dev_priv->mm.wedged)) {
  3160. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3161. atomic_set(&dev_priv->mm.wedged, 0);
  3162. }
  3163. mutex_lock(&dev->struct_mutex);
  3164. dev_priv->mm.suspended = 0;
  3165. ret = i915_gem_init_hw(dev);
  3166. if (ret != 0) {
  3167. mutex_unlock(&dev->struct_mutex);
  3168. return ret;
  3169. }
  3170. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3171. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3172. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3173. mutex_unlock(&dev->struct_mutex);
  3174. ret = drm_irq_install(dev);
  3175. if (ret)
  3176. goto cleanup_ringbuffer;
  3177. return 0;
  3178. cleanup_ringbuffer:
  3179. mutex_lock(&dev->struct_mutex);
  3180. i915_gem_cleanup_ringbuffer(dev);
  3181. dev_priv->mm.suspended = 1;
  3182. mutex_unlock(&dev->struct_mutex);
  3183. return ret;
  3184. }
  3185. int
  3186. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3187. struct drm_file *file_priv)
  3188. {
  3189. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3190. return 0;
  3191. drm_irq_uninstall(dev);
  3192. return i915_gem_idle(dev);
  3193. }
  3194. void
  3195. i915_gem_lastclose(struct drm_device *dev)
  3196. {
  3197. int ret;
  3198. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3199. return;
  3200. ret = i915_gem_idle(dev);
  3201. if (ret)
  3202. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3203. }
  3204. static void
  3205. init_ring_lists(struct intel_ring_buffer *ring)
  3206. {
  3207. INIT_LIST_HEAD(&ring->active_list);
  3208. INIT_LIST_HEAD(&ring->request_list);
  3209. INIT_LIST_HEAD(&ring->gpu_write_list);
  3210. }
  3211. void
  3212. i915_gem_load(struct drm_device *dev)
  3213. {
  3214. int i;
  3215. drm_i915_private_t *dev_priv = dev->dev_private;
  3216. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3217. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3218. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3219. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3220. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3221. for (i = 0; i < I915_NUM_RINGS; i++)
  3222. init_ring_lists(&dev_priv->ring[i]);
  3223. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3224. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3225. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3226. i915_gem_retire_work_handler);
  3227. init_completion(&dev_priv->error_completion);
  3228. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3229. if (IS_GEN3(dev)) {
  3230. I915_WRITE(MI_ARB_STATE,
  3231. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3232. }
  3233. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3234. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3235. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3236. dev_priv->fence_reg_start = 3;
  3237. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3238. dev_priv->num_fence_regs = 16;
  3239. else
  3240. dev_priv->num_fence_regs = 8;
  3241. /* Initialize fence registers to zero */
  3242. i915_gem_reset_fences(dev);
  3243. i915_gem_detect_bit_6_swizzle(dev);
  3244. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3245. dev_priv->mm.interruptible = true;
  3246. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3247. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3248. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3249. }
  3250. /*
  3251. * Create a physically contiguous memory object for this object
  3252. * e.g. for cursor + overlay regs
  3253. */
  3254. static int i915_gem_init_phys_object(struct drm_device *dev,
  3255. int id, int size, int align)
  3256. {
  3257. drm_i915_private_t *dev_priv = dev->dev_private;
  3258. struct drm_i915_gem_phys_object *phys_obj;
  3259. int ret;
  3260. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3261. return 0;
  3262. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3263. if (!phys_obj)
  3264. return -ENOMEM;
  3265. phys_obj->id = id;
  3266. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3267. if (!phys_obj->handle) {
  3268. ret = -ENOMEM;
  3269. goto kfree_obj;
  3270. }
  3271. #ifdef CONFIG_X86
  3272. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3273. #endif
  3274. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3275. return 0;
  3276. kfree_obj:
  3277. kfree(phys_obj);
  3278. return ret;
  3279. }
  3280. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3281. {
  3282. drm_i915_private_t *dev_priv = dev->dev_private;
  3283. struct drm_i915_gem_phys_object *phys_obj;
  3284. if (!dev_priv->mm.phys_objs[id - 1])
  3285. return;
  3286. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3287. if (phys_obj->cur_obj) {
  3288. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3289. }
  3290. #ifdef CONFIG_X86
  3291. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3292. #endif
  3293. drm_pci_free(dev, phys_obj->handle);
  3294. kfree(phys_obj);
  3295. dev_priv->mm.phys_objs[id - 1] = NULL;
  3296. }
  3297. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3298. {
  3299. int i;
  3300. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3301. i915_gem_free_phys_object(dev, i);
  3302. }
  3303. void i915_gem_detach_phys_object(struct drm_device *dev,
  3304. struct drm_i915_gem_object *obj)
  3305. {
  3306. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3307. char *vaddr;
  3308. int i;
  3309. int page_count;
  3310. if (!obj->phys_obj)
  3311. return;
  3312. vaddr = obj->phys_obj->handle->vaddr;
  3313. page_count = obj->base.size / PAGE_SIZE;
  3314. for (i = 0; i < page_count; i++) {
  3315. struct page *page = shmem_read_mapping_page(mapping, i);
  3316. if (!IS_ERR(page)) {
  3317. char *dst = kmap_atomic(page);
  3318. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3319. kunmap_atomic(dst);
  3320. drm_clflush_pages(&page, 1);
  3321. set_page_dirty(page);
  3322. mark_page_accessed(page);
  3323. page_cache_release(page);
  3324. }
  3325. }
  3326. intel_gtt_chipset_flush();
  3327. obj->phys_obj->cur_obj = NULL;
  3328. obj->phys_obj = NULL;
  3329. }
  3330. int
  3331. i915_gem_attach_phys_object(struct drm_device *dev,
  3332. struct drm_i915_gem_object *obj,
  3333. int id,
  3334. int align)
  3335. {
  3336. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3337. drm_i915_private_t *dev_priv = dev->dev_private;
  3338. int ret = 0;
  3339. int page_count;
  3340. int i;
  3341. if (id > I915_MAX_PHYS_OBJECT)
  3342. return -EINVAL;
  3343. if (obj->phys_obj) {
  3344. if (obj->phys_obj->id == id)
  3345. return 0;
  3346. i915_gem_detach_phys_object(dev, obj);
  3347. }
  3348. /* create a new object */
  3349. if (!dev_priv->mm.phys_objs[id - 1]) {
  3350. ret = i915_gem_init_phys_object(dev, id,
  3351. obj->base.size, align);
  3352. if (ret) {
  3353. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3354. id, obj->base.size);
  3355. return ret;
  3356. }
  3357. }
  3358. /* bind to the object */
  3359. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3360. obj->phys_obj->cur_obj = obj;
  3361. page_count = obj->base.size / PAGE_SIZE;
  3362. for (i = 0; i < page_count; i++) {
  3363. struct page *page;
  3364. char *dst, *src;
  3365. page = shmem_read_mapping_page(mapping, i);
  3366. if (IS_ERR(page))
  3367. return PTR_ERR(page);
  3368. src = kmap_atomic(page);
  3369. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3370. memcpy(dst, src, PAGE_SIZE);
  3371. kunmap_atomic(src);
  3372. mark_page_accessed(page);
  3373. page_cache_release(page);
  3374. }
  3375. return 0;
  3376. }
  3377. static int
  3378. i915_gem_phys_pwrite(struct drm_device *dev,
  3379. struct drm_i915_gem_object *obj,
  3380. struct drm_i915_gem_pwrite *args,
  3381. struct drm_file *file_priv)
  3382. {
  3383. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3384. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3385. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3386. unsigned long unwritten;
  3387. /* The physical object once assigned is fixed for the lifetime
  3388. * of the obj, so we can safely drop the lock and continue
  3389. * to access vaddr.
  3390. */
  3391. mutex_unlock(&dev->struct_mutex);
  3392. unwritten = copy_from_user(vaddr, user_data, args->size);
  3393. mutex_lock(&dev->struct_mutex);
  3394. if (unwritten)
  3395. return -EFAULT;
  3396. }
  3397. intel_gtt_chipset_flush();
  3398. return 0;
  3399. }
  3400. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3401. {
  3402. struct drm_i915_file_private *file_priv = file->driver_priv;
  3403. /* Clean up our request list when the client is going away, so that
  3404. * later retire_requests won't dereference our soon-to-be-gone
  3405. * file_priv.
  3406. */
  3407. spin_lock(&file_priv->mm.lock);
  3408. while (!list_empty(&file_priv->mm.request_list)) {
  3409. struct drm_i915_gem_request *request;
  3410. request = list_first_entry(&file_priv->mm.request_list,
  3411. struct drm_i915_gem_request,
  3412. client_list);
  3413. list_del(&request->client_list);
  3414. request->file_priv = NULL;
  3415. }
  3416. spin_unlock(&file_priv->mm.lock);
  3417. }
  3418. static int
  3419. i915_gpu_is_active(struct drm_device *dev)
  3420. {
  3421. drm_i915_private_t *dev_priv = dev->dev_private;
  3422. int lists_empty;
  3423. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3424. list_empty(&dev_priv->mm.active_list);
  3425. return !lists_empty;
  3426. }
  3427. static int
  3428. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3429. {
  3430. struct drm_i915_private *dev_priv =
  3431. container_of(shrinker,
  3432. struct drm_i915_private,
  3433. mm.inactive_shrinker);
  3434. struct drm_device *dev = dev_priv->dev;
  3435. struct drm_i915_gem_object *obj, *next;
  3436. int nr_to_scan = sc->nr_to_scan;
  3437. int cnt;
  3438. if (!mutex_trylock(&dev->struct_mutex))
  3439. return 0;
  3440. /* "fast-path" to count number of available objects */
  3441. if (nr_to_scan == 0) {
  3442. cnt = 0;
  3443. list_for_each_entry(obj,
  3444. &dev_priv->mm.inactive_list,
  3445. mm_list)
  3446. cnt++;
  3447. mutex_unlock(&dev->struct_mutex);
  3448. return cnt / 100 * sysctl_vfs_cache_pressure;
  3449. }
  3450. rescan:
  3451. /* first scan for clean buffers */
  3452. i915_gem_retire_requests(dev);
  3453. list_for_each_entry_safe(obj, next,
  3454. &dev_priv->mm.inactive_list,
  3455. mm_list) {
  3456. if (i915_gem_object_is_purgeable(obj)) {
  3457. if (i915_gem_object_unbind(obj) == 0 &&
  3458. --nr_to_scan == 0)
  3459. break;
  3460. }
  3461. }
  3462. /* second pass, evict/count anything still on the inactive list */
  3463. cnt = 0;
  3464. list_for_each_entry_safe(obj, next,
  3465. &dev_priv->mm.inactive_list,
  3466. mm_list) {
  3467. if (nr_to_scan &&
  3468. i915_gem_object_unbind(obj) == 0)
  3469. nr_to_scan--;
  3470. else
  3471. cnt++;
  3472. }
  3473. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3474. /*
  3475. * We are desperate for pages, so as a last resort, wait
  3476. * for the GPU to finish and discard whatever we can.
  3477. * This has a dramatic impact to reduce the number of
  3478. * OOM-killer events whilst running the GPU aggressively.
  3479. */
  3480. if (i915_gpu_idle(dev) == 0)
  3481. goto rescan;
  3482. }
  3483. mutex_unlock(&dev->struct_mutex);
  3484. return cnt / 100 * sysctl_vfs_cache_pressure;
  3485. }