posix-timers.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060
  1. /*
  2. * linux/kernel/posix-timers.c
  3. *
  4. *
  5. * 2002-10-15 Posix Clocks & timers
  6. * by George Anzinger george@mvista.com
  7. *
  8. * Copyright (C) 2002 2003 by MontaVista Software.
  9. *
  10. * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11. * Copyright (C) 2004 Boris Hu
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or (at
  16. * your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful, but
  19. * WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * General Public License for more details.
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  27. */
  28. /* These are all the functions necessary to implement
  29. * POSIX clocks & timers
  30. */
  31. #include <linux/mm.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/slab.h>
  34. #include <linux/time.h>
  35. #include <linux/mutex.h>
  36. #include <asm/uaccess.h>
  37. #include <linux/list.h>
  38. #include <linux/init.h>
  39. #include <linux/compiler.h>
  40. #include <linux/idr.h>
  41. #include <linux/posix-timers.h>
  42. #include <linux/syscalls.h>
  43. #include <linux/wait.h>
  44. #include <linux/workqueue.h>
  45. #include <linux/module.h>
  46. /*
  47. * Management arrays for POSIX timers. Timers are kept in slab memory
  48. * Timer ids are allocated by an external routine that keeps track of the
  49. * id and the timer. The external interface is:
  50. *
  51. * void *idr_find(struct idr *idp, int id); to find timer_id <id>
  52. * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
  53. * related it to <ptr>
  54. * void idr_remove(struct idr *idp, int id); to release <id>
  55. * void idr_init(struct idr *idp); to initialize <idp>
  56. * which we supply.
  57. * The idr_get_new *may* call slab for more memory so it must not be
  58. * called under a spin lock. Likewise idr_remore may release memory
  59. * (but it may be ok to do this under a lock...).
  60. * idr_find is just a memory look up and is quite fast. A -1 return
  61. * indicates that the requested id does not exist.
  62. */
  63. /*
  64. * Lets keep our timers in a slab cache :-)
  65. */
  66. static struct kmem_cache *posix_timers_cache;
  67. static struct idr posix_timers_id;
  68. static DEFINE_SPINLOCK(idr_lock);
  69. /*
  70. * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  71. * SIGEV values. Here we put out an error if this assumption fails.
  72. */
  73. #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  74. ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  75. #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  76. #endif
  77. /*
  78. * parisc wants ENOTSUP instead of EOPNOTSUPP
  79. */
  80. #ifndef ENOTSUP
  81. # define ENANOSLEEP_NOTSUP EOPNOTSUPP
  82. #else
  83. # define ENANOSLEEP_NOTSUP ENOTSUP
  84. #endif
  85. /*
  86. * The timer ID is turned into a timer address by idr_find().
  87. * Verifying a valid ID consists of:
  88. *
  89. * a) checking that idr_find() returns other than -1.
  90. * b) checking that the timer id matches the one in the timer itself.
  91. * c) that the timer owner is in the callers thread group.
  92. */
  93. /*
  94. * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  95. * to implement others. This structure defines the various
  96. * clocks and allows the possibility of adding others. We
  97. * provide an interface to add clocks to the table and expect
  98. * the "arch" code to add at least one clock that is high
  99. * resolution. Here we define the standard CLOCK_REALTIME as a
  100. * 1/HZ resolution clock.
  101. *
  102. * RESOLUTION: Clock resolution is used to round up timer and interval
  103. * times, NOT to report clock times, which are reported with as
  104. * much resolution as the system can muster. In some cases this
  105. * resolution may depend on the underlying clock hardware and
  106. * may not be quantifiable until run time, and only then is the
  107. * necessary code is written. The standard says we should say
  108. * something about this issue in the documentation...
  109. *
  110. * FUNCTIONS: The CLOCKs structure defines possible functions to handle
  111. * various clock functions. For clocks that use the standard
  112. * system timer code these entries should be NULL. This will
  113. * allow dispatch without the overhead of indirect function
  114. * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
  115. * must supply functions here, even if the function just returns
  116. * ENOSYS. The standard POSIX timer management code assumes the
  117. * following: 1.) The k_itimer struct (sched.h) is used for the
  118. * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
  119. * fields are not modified by timer code.
  120. *
  121. * At this time all functions EXCEPT clock_nanosleep can be
  122. * redirected by the CLOCKS structure. Clock_nanosleep is in
  123. * there, but the code ignores it.
  124. *
  125. * Permissions: It is assumed that the clock_settime() function defined
  126. * for each clock will take care of permission checks. Some
  127. * clocks may be set able by any user (i.e. local process
  128. * clocks) others not. Currently the only set able clock we
  129. * have is CLOCK_REALTIME and its high res counter part, both of
  130. * which we beg off on and pass to do_sys_settimeofday().
  131. */
  132. static struct k_clock posix_clocks[MAX_CLOCKS];
  133. /*
  134. * These ones are defined below.
  135. */
  136. static int common_nsleep(const clockid_t, int flags, struct timespec *t,
  137. struct timespec __user *rmtp);
  138. static void common_timer_get(struct k_itimer *, struct itimerspec *);
  139. static int common_timer_set(struct k_itimer *, int,
  140. struct itimerspec *, struct itimerspec *);
  141. static int common_timer_del(struct k_itimer *timer);
  142. static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
  143. static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
  144. #define lock_timer(tid, flags) \
  145. ({ struct k_itimer *__timr; \
  146. __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
  147. __timr; \
  148. })
  149. static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
  150. {
  151. spin_unlock_irqrestore(&timr->it_lock, flags);
  152. }
  153. /*
  154. * Call the k_clock hook function if non-null, or the default function.
  155. */
  156. #define CLOCK_DISPATCH(clock, call, arglist) \
  157. ((clock) < 0 ? posix_cpu_##call arglist : \
  158. (posix_clocks[clock].call != NULL \
  159. ? (*posix_clocks[clock].call) arglist : common_##call arglist))
  160. /*
  161. * Default clock hook functions when the struct k_clock passed
  162. * to register_posix_clock leaves a function pointer null.
  163. *
  164. * The function common_CALL is the default implementation for
  165. * the function pointer CALL in struct k_clock.
  166. */
  167. static inline int common_clock_getres(const clockid_t which_clock,
  168. struct timespec *tp)
  169. {
  170. tp->tv_sec = 0;
  171. tp->tv_nsec = posix_clocks[which_clock].res;
  172. return 0;
  173. }
  174. /*
  175. * Get real time for posix timers
  176. */
  177. static int common_clock_get(clockid_t which_clock, struct timespec *tp)
  178. {
  179. ktime_get_real_ts(tp);
  180. return 0;
  181. }
  182. static inline int common_clock_set(const clockid_t which_clock,
  183. const struct timespec *tp)
  184. {
  185. return do_sys_settimeofday(tp, NULL);
  186. }
  187. static int common_timer_create(struct k_itimer *new_timer)
  188. {
  189. hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
  190. return 0;
  191. }
  192. static int no_timer_create(struct k_itimer *new_timer)
  193. {
  194. return -EOPNOTSUPP;
  195. }
  196. static int no_nsleep(const clockid_t which_clock, int flags,
  197. struct timespec *tsave, struct timespec __user *rmtp)
  198. {
  199. return -EOPNOTSUPP;
  200. }
  201. /*
  202. * Return nonzero if we know a priori this clockid_t value is bogus.
  203. */
  204. static inline int invalid_clockid(const clockid_t which_clock)
  205. {
  206. if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
  207. return 0;
  208. if ((unsigned) which_clock >= MAX_CLOCKS)
  209. return 1;
  210. if (posix_clocks[which_clock].clock_getres != NULL)
  211. return 0;
  212. if (posix_clocks[which_clock].res != 0)
  213. return 0;
  214. return 1;
  215. }
  216. /*
  217. * Get monotonic time for posix timers
  218. */
  219. static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
  220. {
  221. ktime_get_ts(tp);
  222. return 0;
  223. }
  224. /*
  225. * Get monotonic time for posix timers
  226. */
  227. static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
  228. {
  229. getrawmonotonic(tp);
  230. return 0;
  231. }
  232. static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
  233. {
  234. *tp = current_kernel_time();
  235. return 0;
  236. }
  237. static int posix_get_monotonic_coarse(clockid_t which_clock,
  238. struct timespec *tp)
  239. {
  240. *tp = get_monotonic_coarse();
  241. return 0;
  242. }
  243. static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
  244. {
  245. *tp = ktime_to_timespec(KTIME_LOW_RES);
  246. return 0;
  247. }
  248. /*
  249. * Initialize everything, well, just everything in Posix clocks/timers ;)
  250. */
  251. static __init int init_posix_timers(void)
  252. {
  253. struct k_clock clock_realtime = {
  254. .clock_getres = hrtimer_get_res,
  255. };
  256. struct k_clock clock_monotonic = {
  257. .clock_getres = hrtimer_get_res,
  258. .clock_get = posix_ktime_get_ts,
  259. .clock_set = do_posix_clock_nosettime,
  260. };
  261. struct k_clock clock_monotonic_raw = {
  262. .clock_getres = hrtimer_get_res,
  263. .clock_get = posix_get_monotonic_raw,
  264. .clock_set = do_posix_clock_nosettime,
  265. .timer_create = no_timer_create,
  266. .nsleep = no_nsleep,
  267. };
  268. struct k_clock clock_realtime_coarse = {
  269. .clock_getres = posix_get_coarse_res,
  270. .clock_get = posix_get_realtime_coarse,
  271. .clock_set = do_posix_clock_nosettime,
  272. .timer_create = no_timer_create,
  273. .nsleep = no_nsleep,
  274. };
  275. struct k_clock clock_monotonic_coarse = {
  276. .clock_getres = posix_get_coarse_res,
  277. .clock_get = posix_get_monotonic_coarse,
  278. .clock_set = do_posix_clock_nosettime,
  279. .timer_create = no_timer_create,
  280. .nsleep = no_nsleep,
  281. };
  282. register_posix_clock(CLOCK_REALTIME, &clock_realtime);
  283. register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
  284. register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
  285. register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
  286. register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
  287. posix_timers_cache = kmem_cache_create("posix_timers_cache",
  288. sizeof (struct k_itimer), 0, SLAB_PANIC,
  289. NULL);
  290. idr_init(&posix_timers_id);
  291. return 0;
  292. }
  293. __initcall(init_posix_timers);
  294. static void schedule_next_timer(struct k_itimer *timr)
  295. {
  296. struct hrtimer *timer = &timr->it.real.timer;
  297. if (timr->it.real.interval.tv64 == 0)
  298. return;
  299. timr->it_overrun += (unsigned int) hrtimer_forward(timer,
  300. timer->base->get_time(),
  301. timr->it.real.interval);
  302. timr->it_overrun_last = timr->it_overrun;
  303. timr->it_overrun = -1;
  304. ++timr->it_requeue_pending;
  305. hrtimer_restart(timer);
  306. }
  307. /*
  308. * This function is exported for use by the signal deliver code. It is
  309. * called just prior to the info block being released and passes that
  310. * block to us. It's function is to update the overrun entry AND to
  311. * restart the timer. It should only be called if the timer is to be
  312. * restarted (i.e. we have flagged this in the sys_private entry of the
  313. * info block).
  314. *
  315. * To protect aginst the timer going away while the interrupt is queued,
  316. * we require that the it_requeue_pending flag be set.
  317. */
  318. void do_schedule_next_timer(struct siginfo *info)
  319. {
  320. struct k_itimer *timr;
  321. unsigned long flags;
  322. timr = lock_timer(info->si_tid, &flags);
  323. if (timr && timr->it_requeue_pending == info->si_sys_private) {
  324. if (timr->it_clock < 0)
  325. posix_cpu_timer_schedule(timr);
  326. else
  327. schedule_next_timer(timr);
  328. info->si_overrun += timr->it_overrun_last;
  329. }
  330. if (timr)
  331. unlock_timer(timr, flags);
  332. }
  333. int posix_timer_event(struct k_itimer *timr, int si_private)
  334. {
  335. struct task_struct *task;
  336. int shared, ret = -1;
  337. /*
  338. * FIXME: if ->sigq is queued we can race with
  339. * dequeue_signal()->do_schedule_next_timer().
  340. *
  341. * If dequeue_signal() sees the "right" value of
  342. * si_sys_private it calls do_schedule_next_timer().
  343. * We re-queue ->sigq and drop ->it_lock().
  344. * do_schedule_next_timer() locks the timer
  345. * and re-schedules it while ->sigq is pending.
  346. * Not really bad, but not that we want.
  347. */
  348. timr->sigq->info.si_sys_private = si_private;
  349. rcu_read_lock();
  350. task = pid_task(timr->it_pid, PIDTYPE_PID);
  351. if (task) {
  352. shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
  353. ret = send_sigqueue(timr->sigq, task, shared);
  354. }
  355. rcu_read_unlock();
  356. /* If we failed to send the signal the timer stops. */
  357. return ret > 0;
  358. }
  359. EXPORT_SYMBOL_GPL(posix_timer_event);
  360. /*
  361. * This function gets called when a POSIX.1b interval timer expires. It
  362. * is used as a callback from the kernel internal timer. The
  363. * run_timer_list code ALWAYS calls with interrupts on.
  364. * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
  365. */
  366. static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
  367. {
  368. struct k_itimer *timr;
  369. unsigned long flags;
  370. int si_private = 0;
  371. enum hrtimer_restart ret = HRTIMER_NORESTART;
  372. timr = container_of(timer, struct k_itimer, it.real.timer);
  373. spin_lock_irqsave(&timr->it_lock, flags);
  374. if (timr->it.real.interval.tv64 != 0)
  375. si_private = ++timr->it_requeue_pending;
  376. if (posix_timer_event(timr, si_private)) {
  377. /*
  378. * signal was not sent because of sig_ignor
  379. * we will not get a call back to restart it AND
  380. * it should be restarted.
  381. */
  382. if (timr->it.real.interval.tv64 != 0) {
  383. ktime_t now = hrtimer_cb_get_time(timer);
  384. /*
  385. * FIXME: What we really want, is to stop this
  386. * timer completely and restart it in case the
  387. * SIG_IGN is removed. This is a non trivial
  388. * change which involves sighand locking
  389. * (sigh !), which we don't want to do late in
  390. * the release cycle.
  391. *
  392. * For now we just let timers with an interval
  393. * less than a jiffie expire every jiffie to
  394. * avoid softirq starvation in case of SIG_IGN
  395. * and a very small interval, which would put
  396. * the timer right back on the softirq pending
  397. * list. By moving now ahead of time we trick
  398. * hrtimer_forward() to expire the timer
  399. * later, while we still maintain the overrun
  400. * accuracy, but have some inconsistency in
  401. * the timer_gettime() case. This is at least
  402. * better than a starved softirq. A more
  403. * complex fix which solves also another related
  404. * inconsistency is already in the pipeline.
  405. */
  406. #ifdef CONFIG_HIGH_RES_TIMERS
  407. {
  408. ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
  409. if (timr->it.real.interval.tv64 < kj.tv64)
  410. now = ktime_add(now, kj);
  411. }
  412. #endif
  413. timr->it_overrun += (unsigned int)
  414. hrtimer_forward(timer, now,
  415. timr->it.real.interval);
  416. ret = HRTIMER_RESTART;
  417. ++timr->it_requeue_pending;
  418. }
  419. }
  420. unlock_timer(timr, flags);
  421. return ret;
  422. }
  423. static struct pid *good_sigevent(sigevent_t * event)
  424. {
  425. struct task_struct *rtn = current->group_leader;
  426. if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
  427. (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
  428. !same_thread_group(rtn, current) ||
  429. (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
  430. return NULL;
  431. if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
  432. ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
  433. return NULL;
  434. return task_pid(rtn);
  435. }
  436. void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
  437. {
  438. if ((unsigned) clock_id >= MAX_CLOCKS) {
  439. printk("POSIX clock register failed for clock_id %d\n",
  440. clock_id);
  441. return;
  442. }
  443. posix_clocks[clock_id] = *new_clock;
  444. }
  445. EXPORT_SYMBOL_GPL(register_posix_clock);
  446. static struct k_itimer * alloc_posix_timer(void)
  447. {
  448. struct k_itimer *tmr;
  449. tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
  450. if (!tmr)
  451. return tmr;
  452. if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
  453. kmem_cache_free(posix_timers_cache, tmr);
  454. return NULL;
  455. }
  456. memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
  457. return tmr;
  458. }
  459. #define IT_ID_SET 1
  460. #define IT_ID_NOT_SET 0
  461. static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
  462. {
  463. if (it_id_set) {
  464. unsigned long flags;
  465. spin_lock_irqsave(&idr_lock, flags);
  466. idr_remove(&posix_timers_id, tmr->it_id);
  467. spin_unlock_irqrestore(&idr_lock, flags);
  468. }
  469. put_pid(tmr->it_pid);
  470. sigqueue_free(tmr->sigq);
  471. kmem_cache_free(posix_timers_cache, tmr);
  472. }
  473. static struct k_clock *clockid_to_kclock(const clockid_t id)
  474. {
  475. if (id < 0)
  476. return &clock_posix_cpu;
  477. if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
  478. return NULL;
  479. return &posix_clocks[id];
  480. }
  481. /* Create a POSIX.1b interval timer. */
  482. SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
  483. struct sigevent __user *, timer_event_spec,
  484. timer_t __user *, created_timer_id)
  485. {
  486. struct k_itimer *new_timer;
  487. int error, new_timer_id;
  488. sigevent_t event;
  489. int it_id_set = IT_ID_NOT_SET;
  490. if (invalid_clockid(which_clock))
  491. return -EINVAL;
  492. new_timer = alloc_posix_timer();
  493. if (unlikely(!new_timer))
  494. return -EAGAIN;
  495. spin_lock_init(&new_timer->it_lock);
  496. retry:
  497. if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
  498. error = -EAGAIN;
  499. goto out;
  500. }
  501. spin_lock_irq(&idr_lock);
  502. error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
  503. spin_unlock_irq(&idr_lock);
  504. if (error) {
  505. if (error == -EAGAIN)
  506. goto retry;
  507. /*
  508. * Weird looking, but we return EAGAIN if the IDR is
  509. * full (proper POSIX return value for this)
  510. */
  511. error = -EAGAIN;
  512. goto out;
  513. }
  514. it_id_set = IT_ID_SET;
  515. new_timer->it_id = (timer_t) new_timer_id;
  516. new_timer->it_clock = which_clock;
  517. new_timer->it_overrun = -1;
  518. if (timer_event_spec) {
  519. if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
  520. error = -EFAULT;
  521. goto out;
  522. }
  523. rcu_read_lock();
  524. new_timer->it_pid = get_pid(good_sigevent(&event));
  525. rcu_read_unlock();
  526. if (!new_timer->it_pid) {
  527. error = -EINVAL;
  528. goto out;
  529. }
  530. } else {
  531. event.sigev_notify = SIGEV_SIGNAL;
  532. event.sigev_signo = SIGALRM;
  533. event.sigev_value.sival_int = new_timer->it_id;
  534. new_timer->it_pid = get_pid(task_tgid(current));
  535. }
  536. new_timer->it_sigev_notify = event.sigev_notify;
  537. new_timer->sigq->info.si_signo = event.sigev_signo;
  538. new_timer->sigq->info.si_value = event.sigev_value;
  539. new_timer->sigq->info.si_tid = new_timer->it_id;
  540. new_timer->sigq->info.si_code = SI_TIMER;
  541. if (copy_to_user(created_timer_id,
  542. &new_timer_id, sizeof (new_timer_id))) {
  543. error = -EFAULT;
  544. goto out;
  545. }
  546. error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
  547. if (error)
  548. goto out;
  549. spin_lock_irq(&current->sighand->siglock);
  550. new_timer->it_signal = current->signal;
  551. list_add(&new_timer->list, &current->signal->posix_timers);
  552. spin_unlock_irq(&current->sighand->siglock);
  553. return 0;
  554. /*
  555. * In the case of the timer belonging to another task, after
  556. * the task is unlocked, the timer is owned by the other task
  557. * and may cease to exist at any time. Don't use or modify
  558. * new_timer after the unlock call.
  559. */
  560. out:
  561. release_posix_timer(new_timer, it_id_set);
  562. return error;
  563. }
  564. /*
  565. * Locking issues: We need to protect the result of the id look up until
  566. * we get the timer locked down so it is not deleted under us. The
  567. * removal is done under the idr spinlock so we use that here to bridge
  568. * the find to the timer lock. To avoid a dead lock, the timer id MUST
  569. * be release with out holding the timer lock.
  570. */
  571. static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
  572. {
  573. struct k_itimer *timr;
  574. /*
  575. * Watch out here. We do a irqsave on the idr_lock and pass the
  576. * flags part over to the timer lock. Must not let interrupts in
  577. * while we are moving the lock.
  578. */
  579. spin_lock_irqsave(&idr_lock, *flags);
  580. timr = idr_find(&posix_timers_id, (int)timer_id);
  581. if (timr) {
  582. spin_lock(&timr->it_lock);
  583. if (timr->it_signal == current->signal) {
  584. spin_unlock(&idr_lock);
  585. return timr;
  586. }
  587. spin_unlock(&timr->it_lock);
  588. }
  589. spin_unlock_irqrestore(&idr_lock, *flags);
  590. return NULL;
  591. }
  592. /*
  593. * Get the time remaining on a POSIX.1b interval timer. This function
  594. * is ALWAYS called with spin_lock_irq on the timer, thus it must not
  595. * mess with irq.
  596. *
  597. * We have a couple of messes to clean up here. First there is the case
  598. * of a timer that has a requeue pending. These timers should appear to
  599. * be in the timer list with an expiry as if we were to requeue them
  600. * now.
  601. *
  602. * The second issue is the SIGEV_NONE timer which may be active but is
  603. * not really ever put in the timer list (to save system resources).
  604. * This timer may be expired, and if so, we will do it here. Otherwise
  605. * it is the same as a requeue pending timer WRT to what we should
  606. * report.
  607. */
  608. static void
  609. common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
  610. {
  611. ktime_t now, remaining, iv;
  612. struct hrtimer *timer = &timr->it.real.timer;
  613. memset(cur_setting, 0, sizeof(struct itimerspec));
  614. iv = timr->it.real.interval;
  615. /* interval timer ? */
  616. if (iv.tv64)
  617. cur_setting->it_interval = ktime_to_timespec(iv);
  618. else if (!hrtimer_active(timer) &&
  619. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  620. return;
  621. now = timer->base->get_time();
  622. /*
  623. * When a requeue is pending or this is a SIGEV_NONE
  624. * timer move the expiry time forward by intervals, so
  625. * expiry is > now.
  626. */
  627. if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
  628. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
  629. timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
  630. remaining = ktime_sub(hrtimer_get_expires(timer), now);
  631. /* Return 0 only, when the timer is expired and not pending */
  632. if (remaining.tv64 <= 0) {
  633. /*
  634. * A single shot SIGEV_NONE timer must return 0, when
  635. * it is expired !
  636. */
  637. if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  638. cur_setting->it_value.tv_nsec = 1;
  639. } else
  640. cur_setting->it_value = ktime_to_timespec(remaining);
  641. }
  642. /* Get the time remaining on a POSIX.1b interval timer. */
  643. SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
  644. struct itimerspec __user *, setting)
  645. {
  646. struct k_itimer *timr;
  647. struct itimerspec cur_setting;
  648. unsigned long flags;
  649. timr = lock_timer(timer_id, &flags);
  650. if (!timr)
  651. return -EINVAL;
  652. CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
  653. unlock_timer(timr, flags);
  654. if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
  655. return -EFAULT;
  656. return 0;
  657. }
  658. /*
  659. * Get the number of overruns of a POSIX.1b interval timer. This is to
  660. * be the overrun of the timer last delivered. At the same time we are
  661. * accumulating overruns on the next timer. The overrun is frozen when
  662. * the signal is delivered, either at the notify time (if the info block
  663. * is not queued) or at the actual delivery time (as we are informed by
  664. * the call back to do_schedule_next_timer(). So all we need to do is
  665. * to pick up the frozen overrun.
  666. */
  667. SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
  668. {
  669. struct k_itimer *timr;
  670. int overrun;
  671. unsigned long flags;
  672. timr = lock_timer(timer_id, &flags);
  673. if (!timr)
  674. return -EINVAL;
  675. overrun = timr->it_overrun_last;
  676. unlock_timer(timr, flags);
  677. return overrun;
  678. }
  679. /* Set a POSIX.1b interval timer. */
  680. /* timr->it_lock is taken. */
  681. static int
  682. common_timer_set(struct k_itimer *timr, int flags,
  683. struct itimerspec *new_setting, struct itimerspec *old_setting)
  684. {
  685. struct hrtimer *timer = &timr->it.real.timer;
  686. enum hrtimer_mode mode;
  687. if (old_setting)
  688. common_timer_get(timr, old_setting);
  689. /* disable the timer */
  690. timr->it.real.interval.tv64 = 0;
  691. /*
  692. * careful here. If smp we could be in the "fire" routine which will
  693. * be spinning as we hold the lock. But this is ONLY an SMP issue.
  694. */
  695. if (hrtimer_try_to_cancel(timer) < 0)
  696. return TIMER_RETRY;
  697. timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
  698. ~REQUEUE_PENDING;
  699. timr->it_overrun_last = 0;
  700. /* switch off the timer when it_value is zero */
  701. if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
  702. return 0;
  703. mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
  704. hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
  705. timr->it.real.timer.function = posix_timer_fn;
  706. hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
  707. /* Convert interval */
  708. timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
  709. /* SIGEV_NONE timers are not queued ! See common_timer_get */
  710. if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
  711. /* Setup correct expiry time for relative timers */
  712. if (mode == HRTIMER_MODE_REL) {
  713. hrtimer_add_expires(timer, timer->base->get_time());
  714. }
  715. return 0;
  716. }
  717. hrtimer_start_expires(timer, mode);
  718. return 0;
  719. }
  720. /* Set a POSIX.1b interval timer */
  721. SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
  722. const struct itimerspec __user *, new_setting,
  723. struct itimerspec __user *, old_setting)
  724. {
  725. struct k_itimer *timr;
  726. struct itimerspec new_spec, old_spec;
  727. int error = 0;
  728. unsigned long flag;
  729. struct itimerspec *rtn = old_setting ? &old_spec : NULL;
  730. if (!new_setting)
  731. return -EINVAL;
  732. if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
  733. return -EFAULT;
  734. if (!timespec_valid(&new_spec.it_interval) ||
  735. !timespec_valid(&new_spec.it_value))
  736. return -EINVAL;
  737. retry:
  738. timr = lock_timer(timer_id, &flag);
  739. if (!timr)
  740. return -EINVAL;
  741. error = CLOCK_DISPATCH(timr->it_clock, timer_set,
  742. (timr, flags, &new_spec, rtn));
  743. unlock_timer(timr, flag);
  744. if (error == TIMER_RETRY) {
  745. rtn = NULL; // We already got the old time...
  746. goto retry;
  747. }
  748. if (old_setting && !error &&
  749. copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
  750. error = -EFAULT;
  751. return error;
  752. }
  753. static inline int common_timer_del(struct k_itimer *timer)
  754. {
  755. timer->it.real.interval.tv64 = 0;
  756. if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
  757. return TIMER_RETRY;
  758. return 0;
  759. }
  760. static inline int timer_delete_hook(struct k_itimer *timer)
  761. {
  762. return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
  763. }
  764. /* Delete a POSIX.1b interval timer. */
  765. SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
  766. {
  767. struct k_itimer *timer;
  768. unsigned long flags;
  769. retry_delete:
  770. timer = lock_timer(timer_id, &flags);
  771. if (!timer)
  772. return -EINVAL;
  773. if (timer_delete_hook(timer) == TIMER_RETRY) {
  774. unlock_timer(timer, flags);
  775. goto retry_delete;
  776. }
  777. spin_lock(&current->sighand->siglock);
  778. list_del(&timer->list);
  779. spin_unlock(&current->sighand->siglock);
  780. /*
  781. * This keeps any tasks waiting on the spin lock from thinking
  782. * they got something (see the lock code above).
  783. */
  784. timer->it_signal = NULL;
  785. unlock_timer(timer, flags);
  786. release_posix_timer(timer, IT_ID_SET);
  787. return 0;
  788. }
  789. /*
  790. * return timer owned by the process, used by exit_itimers
  791. */
  792. static void itimer_delete(struct k_itimer *timer)
  793. {
  794. unsigned long flags;
  795. retry_delete:
  796. spin_lock_irqsave(&timer->it_lock, flags);
  797. if (timer_delete_hook(timer) == TIMER_RETRY) {
  798. unlock_timer(timer, flags);
  799. goto retry_delete;
  800. }
  801. list_del(&timer->list);
  802. /*
  803. * This keeps any tasks waiting on the spin lock from thinking
  804. * they got something (see the lock code above).
  805. */
  806. timer->it_signal = NULL;
  807. unlock_timer(timer, flags);
  808. release_posix_timer(timer, IT_ID_SET);
  809. }
  810. /*
  811. * This is called by do_exit or de_thread, only when there are no more
  812. * references to the shared signal_struct.
  813. */
  814. void exit_itimers(struct signal_struct *sig)
  815. {
  816. struct k_itimer *tmr;
  817. while (!list_empty(&sig->posix_timers)) {
  818. tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
  819. itimer_delete(tmr);
  820. }
  821. }
  822. /* Not available / possible... functions */
  823. int do_posix_clock_nosettime(const clockid_t clockid, const struct timespec *tp)
  824. {
  825. return -EINVAL;
  826. }
  827. EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
  828. int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
  829. struct timespec *t, struct timespec __user *r)
  830. {
  831. return -ENANOSLEEP_NOTSUP;
  832. }
  833. EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
  834. SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
  835. const struct timespec __user *, tp)
  836. {
  837. struct timespec new_tp;
  838. if (invalid_clockid(which_clock))
  839. return -EINVAL;
  840. if (copy_from_user(&new_tp, tp, sizeof (*tp)))
  841. return -EFAULT;
  842. return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
  843. }
  844. SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
  845. struct timespec __user *,tp)
  846. {
  847. struct timespec kernel_tp;
  848. int error;
  849. if (invalid_clockid(which_clock))
  850. return -EINVAL;
  851. error = CLOCK_DISPATCH(which_clock, clock_get,
  852. (which_clock, &kernel_tp));
  853. if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
  854. error = -EFAULT;
  855. return error;
  856. }
  857. SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
  858. struct timespec __user *, tp)
  859. {
  860. struct timespec rtn_tp;
  861. int error;
  862. if (invalid_clockid(which_clock))
  863. return -EINVAL;
  864. error = CLOCK_DISPATCH(which_clock, clock_getres,
  865. (which_clock, &rtn_tp));
  866. if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
  867. error = -EFAULT;
  868. }
  869. return error;
  870. }
  871. /*
  872. * nanosleep for monotonic and realtime clocks
  873. */
  874. static int common_nsleep(const clockid_t which_clock, int flags,
  875. struct timespec *tsave, struct timespec __user *rmtp)
  876. {
  877. return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
  878. HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
  879. which_clock);
  880. }
  881. SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
  882. const struct timespec __user *, rqtp,
  883. struct timespec __user *, rmtp)
  884. {
  885. struct timespec t;
  886. if (invalid_clockid(which_clock))
  887. return -EINVAL;
  888. if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
  889. return -EFAULT;
  890. if (!timespec_valid(&t))
  891. return -EINVAL;
  892. return CLOCK_DISPATCH(which_clock, nsleep,
  893. (which_clock, flags, &t, rmtp));
  894. }
  895. /*
  896. * nanosleep_restart for monotonic and realtime clocks
  897. */
  898. static int common_nsleep_restart(struct restart_block *restart_block)
  899. {
  900. return hrtimer_nanosleep_restart(restart_block);
  901. }
  902. /*
  903. * This will restart clock_nanosleep. This is required only by
  904. * compat_clock_nanosleep_restart for now.
  905. */
  906. long
  907. clock_nanosleep_restart(struct restart_block *restart_block)
  908. {
  909. clockid_t which_clock = restart_block->arg0;
  910. return CLOCK_DISPATCH(which_clock, nsleep_restart,
  911. (restart_block));
  912. }