fsi.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/init.h>
  15. #include <linux/module.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/delay.h>
  18. #include <linux/list.h>
  19. #include <linux/pm_runtime.h>
  20. #include <linux/io.h>
  21. #include <sound/core.h>
  22. #include <sound/pcm.h>
  23. #include <sound/initval.h>
  24. #include <sound/soc.h>
  25. #include <sound/pcm_params.h>
  26. #include <sound/sh_fsi.h>
  27. #include <asm/atomic.h>
  28. #define DO_FMT 0x0000
  29. #define DOFF_CTL 0x0004
  30. #define DOFF_ST 0x0008
  31. #define DI_FMT 0x000C
  32. #define DIFF_CTL 0x0010
  33. #define DIFF_ST 0x0014
  34. #define CKG1 0x0018
  35. #define CKG2 0x001C
  36. #define DIDT 0x0020
  37. #define DODT 0x0024
  38. #define MUTE_ST 0x0028
  39. #define REG_END MUTE_ST
  40. #define CPU_INT_ST 0x01F4
  41. #define CPU_IEMSK 0x01F8
  42. #define CPU_IMSK 0x01FC
  43. #define INT_ST 0x0200
  44. #define IEMSK 0x0204
  45. #define IMSK 0x0208
  46. #define MUTE 0x020C
  47. #define CLK_RST 0x0210
  48. #define SOFT_RST 0x0214
  49. #define FIFO_SZ 0x0218
  50. #define MREG_START CPU_INT_ST
  51. #define MREG_END FIFO_SZ
  52. /* DO_FMT */
  53. /* DI_FMT */
  54. #define CR_FMT(param) ((param) << 4)
  55. # define CR_MONO 0x0
  56. # define CR_MONO_D 0x1
  57. # define CR_PCM 0x2
  58. # define CR_I2S 0x3
  59. # define CR_TDM 0x4
  60. # define CR_TDM_D 0x5
  61. /* DOFF_CTL */
  62. /* DIFF_CTL */
  63. #define IRQ_HALF 0x00100000
  64. #define FIFO_CLR 0x00000001
  65. /* DOFF_ST */
  66. #define ERR_OVER 0x00000010
  67. #define ERR_UNDER 0x00000001
  68. #define ST_ERR (ERR_OVER | ERR_UNDER)
  69. /* CLK_RST */
  70. #define B_CLK 0x00000010
  71. #define A_CLK 0x00000001
  72. /* INT_ST */
  73. #define INT_B_IN (1 << 12)
  74. #define INT_B_OUT (1 << 8)
  75. #define INT_A_IN (1 << 4)
  76. #define INT_A_OUT (1 << 0)
  77. /* SOFT_RST */
  78. #define PBSR (1 << 12) /* Port B Software Reset */
  79. #define PASR (1 << 8) /* Port A Software Reset */
  80. #define IR (1 << 4) /* Interrupt Reset */
  81. #define FSISR (1 << 0) /* Software Reset */
  82. /* FIFO_SZ */
  83. #define OUT_SZ_MASK 0x7
  84. #define BO_SZ_SHIFT 8
  85. #define AO_SZ_SHIFT 0
  86. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  87. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  88. /************************************************************************
  89. struct
  90. ************************************************************************/
  91. struct fsi_priv {
  92. void __iomem *base;
  93. struct snd_pcm_substream *substream;
  94. struct fsi_master *master;
  95. int fifo_max;
  96. int chan;
  97. int byte_offset;
  98. int period_len;
  99. int buffer_len;
  100. int periods;
  101. };
  102. struct fsi_regs {
  103. u32 int_st;
  104. u32 iemsk;
  105. u32 imsk;
  106. };
  107. struct fsi_master {
  108. void __iomem *base;
  109. int irq;
  110. struct fsi_priv fsia;
  111. struct fsi_priv fsib;
  112. struct fsi_regs *regs;
  113. struct sh_fsi_platform_info *info;
  114. spinlock_t lock;
  115. };
  116. /************************************************************************
  117. basic read write function
  118. ************************************************************************/
  119. static void __fsi_reg_write(u32 reg, u32 data)
  120. {
  121. /* valid data area is 24bit */
  122. data &= 0x00ffffff;
  123. __raw_writel(data, reg);
  124. }
  125. static u32 __fsi_reg_read(u32 reg)
  126. {
  127. return __raw_readl(reg);
  128. }
  129. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  130. {
  131. u32 val = __fsi_reg_read(reg);
  132. val &= ~mask;
  133. val |= data & mask;
  134. __fsi_reg_write(reg, val);
  135. }
  136. static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
  137. {
  138. if (reg > REG_END)
  139. return;
  140. __fsi_reg_write((u32)(fsi->base + reg), data);
  141. }
  142. static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
  143. {
  144. if (reg > REG_END)
  145. return 0;
  146. return __fsi_reg_read((u32)(fsi->base + reg));
  147. }
  148. static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
  149. {
  150. if (reg > REG_END)
  151. return;
  152. __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
  153. }
  154. static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
  155. {
  156. unsigned long flags;
  157. if ((reg < MREG_START) ||
  158. (reg > MREG_END))
  159. return;
  160. spin_lock_irqsave(&master->lock, flags);
  161. __fsi_reg_write((u32)(master->base + reg), data);
  162. spin_unlock_irqrestore(&master->lock, flags);
  163. }
  164. static u32 fsi_master_read(struct fsi_master *master, u32 reg)
  165. {
  166. u32 ret;
  167. unsigned long flags;
  168. if ((reg < MREG_START) ||
  169. (reg > MREG_END))
  170. return 0;
  171. spin_lock_irqsave(&master->lock, flags);
  172. ret = __fsi_reg_read((u32)(master->base + reg));
  173. spin_unlock_irqrestore(&master->lock, flags);
  174. return ret;
  175. }
  176. static void fsi_master_mask_set(struct fsi_master *master,
  177. u32 reg, u32 mask, u32 data)
  178. {
  179. unsigned long flags;
  180. if ((reg < MREG_START) ||
  181. (reg > MREG_END))
  182. return;
  183. spin_lock_irqsave(&master->lock, flags);
  184. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  185. spin_unlock_irqrestore(&master->lock, flags);
  186. }
  187. /************************************************************************
  188. basic function
  189. ************************************************************************/
  190. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  191. {
  192. return fsi->master;
  193. }
  194. static int fsi_is_port_a(struct fsi_priv *fsi)
  195. {
  196. return fsi->master->base == fsi->base;
  197. }
  198. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  199. {
  200. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  201. struct snd_soc_dai_link *machine = rtd->dai;
  202. return machine->cpu_dai;
  203. }
  204. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  205. {
  206. struct snd_soc_dai *dai = fsi_get_dai(substream);
  207. return dai->private_data;
  208. }
  209. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  210. {
  211. int is_porta = fsi_is_port_a(fsi);
  212. struct fsi_master *master = fsi_get_master(fsi);
  213. return is_porta ? master->info->porta_flags :
  214. master->info->portb_flags;
  215. }
  216. static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
  217. {
  218. u32 mode;
  219. u32 flags = fsi_get_info_flags(fsi);
  220. mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;
  221. /* return
  222. * 1 : master mode
  223. * 0 : slave mode
  224. */
  225. return (mode & flags) != mode;
  226. }
  227. static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
  228. {
  229. int is_porta = fsi_is_port_a(fsi);
  230. u32 data;
  231. if (is_porta)
  232. data = is_play ? (1 << 0) : (1 << 4);
  233. else
  234. data = is_play ? (1 << 8) : (1 << 12);
  235. return data;
  236. }
  237. static void fsi_stream_push(struct fsi_priv *fsi,
  238. struct snd_pcm_substream *substream,
  239. u32 buffer_len,
  240. u32 period_len)
  241. {
  242. fsi->substream = substream;
  243. fsi->buffer_len = buffer_len;
  244. fsi->period_len = period_len;
  245. fsi->byte_offset = 0;
  246. fsi->periods = 0;
  247. }
  248. static void fsi_stream_pop(struct fsi_priv *fsi)
  249. {
  250. fsi->substream = NULL;
  251. fsi->buffer_len = 0;
  252. fsi->period_len = 0;
  253. fsi->byte_offset = 0;
  254. fsi->periods = 0;
  255. }
  256. static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
  257. {
  258. u32 status;
  259. u32 reg = is_play ? DOFF_ST : DIFF_ST;
  260. int residue;
  261. status = fsi_reg_read(fsi, reg);
  262. residue = 0x1ff & (status >> 8);
  263. residue *= fsi->chan;
  264. return residue;
  265. }
  266. /************************************************************************
  267. irq function
  268. ************************************************************************/
  269. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  270. {
  271. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  272. struct fsi_master *master = fsi_get_master(fsi);
  273. fsi_master_mask_set(master, master->regs->imsk, data, data);
  274. fsi_master_mask_set(master, master->regs->iemsk, data, data);
  275. }
  276. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  277. {
  278. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  279. struct fsi_master *master = fsi_get_master(fsi);
  280. fsi_master_mask_set(master, master->regs->imsk, data, 0);
  281. fsi_master_mask_set(master, master->regs->iemsk, data, 0);
  282. }
  283. static u32 fsi_irq_get_status(struct fsi_master *master)
  284. {
  285. return fsi_master_read(master, master->regs->int_st);
  286. }
  287. static void fsi_irq_clear_all_status(struct fsi_master *master)
  288. {
  289. fsi_master_write(master, master->regs->int_st, 0x0000000);
  290. }
  291. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  292. {
  293. u32 data = 0;
  294. struct fsi_master *master = fsi_get_master(fsi);
  295. data |= fsi_port_ab_io_bit(fsi, 0);
  296. data |= fsi_port_ab_io_bit(fsi, 1);
  297. /* clear interrupt factor */
  298. fsi_master_mask_set(master, master->regs->int_st, data, 0);
  299. }
  300. /************************************************************************
  301. ctrl function
  302. ************************************************************************/
  303. static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
  304. {
  305. u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
  306. struct fsi_master *master = fsi_get_master(fsi);
  307. if (enable)
  308. fsi_master_mask_set(master, CLK_RST, val, val);
  309. else
  310. fsi_master_mask_set(master, CLK_RST, val, 0);
  311. }
  312. static void fsi_fifo_init(struct fsi_priv *fsi,
  313. int is_play,
  314. struct snd_soc_dai *dai)
  315. {
  316. struct fsi_master *master = fsi_get_master(fsi);
  317. u32 ctrl, shift, i;
  318. /* get on-chip RAM capacity */
  319. shift = fsi_master_read(master, FIFO_SZ);
  320. shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
  321. shift &= OUT_SZ_MASK;
  322. fsi->fifo_max = 256 << shift;
  323. dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
  324. /*
  325. * The maximum number of sample data varies depending
  326. * on the number of channels selected for the format.
  327. *
  328. * FIFOs are used in 4-channel units in 3-channel mode
  329. * and in 8-channel units in 5- to 7-channel mode
  330. * meaning that more FIFOs than the required size of DPRAM
  331. * are used.
  332. *
  333. * ex) if 256 words of DP-RAM is connected
  334. * 1 channel: 256 (256 x 1 = 256)
  335. * 2 channels: 128 (128 x 2 = 256)
  336. * 3 channels: 64 ( 64 x 3 = 192)
  337. * 4 channels: 64 ( 64 x 4 = 256)
  338. * 5 channels: 32 ( 32 x 5 = 160)
  339. * 6 channels: 32 ( 32 x 6 = 192)
  340. * 7 channels: 32 ( 32 x 7 = 224)
  341. * 8 channels: 32 ( 32 x 8 = 256)
  342. */
  343. for (i = 1; i < fsi->chan; i <<= 1)
  344. fsi->fifo_max >>= 1;
  345. dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
  346. ctrl = is_play ? DOFF_CTL : DIFF_CTL;
  347. /* set interrupt generation factor */
  348. fsi_reg_write(fsi, ctrl, IRQ_HALF);
  349. /* clear FIFO */
  350. fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
  351. }
  352. static void fsi_soft_all_reset(struct fsi_master *master)
  353. {
  354. /* port AB reset */
  355. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  356. mdelay(10);
  357. /* soft reset */
  358. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  359. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  360. mdelay(10);
  361. }
  362. /* playback interrupt */
  363. static int fsi_data_push(struct fsi_priv *fsi, int startup)
  364. {
  365. struct snd_pcm_runtime *runtime;
  366. struct snd_pcm_substream *substream = NULL;
  367. u32 status;
  368. int send;
  369. int fifo_free;
  370. int width;
  371. u8 *start;
  372. int i, over_period;
  373. if (!fsi ||
  374. !fsi->substream ||
  375. !fsi->substream->runtime)
  376. return -EINVAL;
  377. over_period = 0;
  378. substream = fsi->substream;
  379. runtime = substream->runtime;
  380. /* FSI FIFO has limit.
  381. * So, this driver can not send periods data at a time
  382. */
  383. if (fsi->byte_offset >=
  384. fsi->period_len * (fsi->periods + 1)) {
  385. over_period = 1;
  386. fsi->periods = (fsi->periods + 1) % runtime->periods;
  387. if (0 == fsi->periods)
  388. fsi->byte_offset = 0;
  389. }
  390. /* get 1 channel data width */
  391. width = frames_to_bytes(runtime, 1) / fsi->chan;
  392. /* get send size for alsa */
  393. send = (fsi->buffer_len - fsi->byte_offset) / width;
  394. /* get FIFO free size */
  395. fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);
  396. /* size check */
  397. if (fifo_free < send)
  398. send = fifo_free;
  399. start = runtime->dma_area;
  400. start += fsi->byte_offset;
  401. switch (width) {
  402. case 2:
  403. for (i = 0; i < send; i++)
  404. fsi_reg_write(fsi, DODT,
  405. ((u32)*((u16 *)start + i) << 8));
  406. break;
  407. case 4:
  408. for (i = 0; i < send; i++)
  409. fsi_reg_write(fsi, DODT, *((u32 *)start + i));
  410. break;
  411. default:
  412. return -EINVAL;
  413. }
  414. fsi->byte_offset += send * width;
  415. status = fsi_reg_read(fsi, DOFF_ST);
  416. if (!startup) {
  417. struct snd_soc_dai *dai = fsi_get_dai(substream);
  418. if (status & ERR_OVER)
  419. dev_err(dai->dev, "over run\n");
  420. if (status & ERR_UNDER)
  421. dev_err(dai->dev, "under run\n");
  422. }
  423. fsi_reg_write(fsi, DOFF_ST, 0);
  424. fsi_irq_enable(fsi, 1);
  425. if (over_period)
  426. snd_pcm_period_elapsed(substream);
  427. return 0;
  428. }
  429. static int fsi_data_pop(struct fsi_priv *fsi, int startup)
  430. {
  431. struct snd_pcm_runtime *runtime;
  432. struct snd_pcm_substream *substream = NULL;
  433. u32 status;
  434. int free;
  435. int fifo_fill;
  436. int width;
  437. u8 *start;
  438. int i, over_period;
  439. if (!fsi ||
  440. !fsi->substream ||
  441. !fsi->substream->runtime)
  442. return -EINVAL;
  443. over_period = 0;
  444. substream = fsi->substream;
  445. runtime = substream->runtime;
  446. /* FSI FIFO has limit.
  447. * So, this driver can not send periods data at a time
  448. */
  449. if (fsi->byte_offset >=
  450. fsi->period_len * (fsi->periods + 1)) {
  451. over_period = 1;
  452. fsi->periods = (fsi->periods + 1) % runtime->periods;
  453. if (0 == fsi->periods)
  454. fsi->byte_offset = 0;
  455. }
  456. /* get 1 channel data width */
  457. width = frames_to_bytes(runtime, 1) / fsi->chan;
  458. /* get free space for alsa */
  459. free = (fsi->buffer_len - fsi->byte_offset) / width;
  460. /* get recv size */
  461. fifo_fill = fsi_get_fifo_residue(fsi, 0);
  462. if (free < fifo_fill)
  463. fifo_fill = free;
  464. start = runtime->dma_area;
  465. start += fsi->byte_offset;
  466. switch (width) {
  467. case 2:
  468. for (i = 0; i < fifo_fill; i++)
  469. *((u16 *)start + i) =
  470. (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  471. break;
  472. case 4:
  473. for (i = 0; i < fifo_fill; i++)
  474. *((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
  475. break;
  476. default:
  477. return -EINVAL;
  478. }
  479. fsi->byte_offset += fifo_fill * width;
  480. status = fsi_reg_read(fsi, DIFF_ST);
  481. if (!startup) {
  482. struct snd_soc_dai *dai = fsi_get_dai(substream);
  483. if (status & ERR_OVER)
  484. dev_err(dai->dev, "over run\n");
  485. if (status & ERR_UNDER)
  486. dev_err(dai->dev, "under run\n");
  487. }
  488. fsi_reg_write(fsi, DIFF_ST, 0);
  489. fsi_irq_enable(fsi, 0);
  490. if (over_period)
  491. snd_pcm_period_elapsed(substream);
  492. return 0;
  493. }
  494. static irqreturn_t fsi_interrupt(int irq, void *data)
  495. {
  496. struct fsi_master *master = data;
  497. u32 int_st = fsi_irq_get_status(master);
  498. /* clear irq status */
  499. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  500. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  501. if (int_st & INT_A_OUT)
  502. fsi_data_push(&master->fsia, 0);
  503. if (int_st & INT_B_OUT)
  504. fsi_data_push(&master->fsib, 0);
  505. if (int_st & INT_A_IN)
  506. fsi_data_pop(&master->fsia, 0);
  507. if (int_st & INT_B_IN)
  508. fsi_data_pop(&master->fsib, 0);
  509. fsi_irq_clear_all_status(master);
  510. return IRQ_HANDLED;
  511. }
  512. /************************************************************************
  513. dai ops
  514. ************************************************************************/
  515. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  516. struct snd_soc_dai *dai)
  517. {
  518. struct fsi_priv *fsi = fsi_get_priv(substream);
  519. const char *msg;
  520. u32 flags = fsi_get_info_flags(fsi);
  521. u32 fmt;
  522. u32 reg;
  523. u32 data;
  524. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  525. int is_master;
  526. int ret = 0;
  527. pm_runtime_get_sync(dai->dev);
  528. /* CKG1 */
  529. data = is_play ? (1 << 0) : (1 << 4);
  530. is_master = fsi_is_master_mode(fsi, is_play);
  531. if (is_master)
  532. fsi_reg_mask_set(fsi, CKG1, data, data);
  533. else
  534. fsi_reg_mask_set(fsi, CKG1, data, 0);
  535. /* clock inversion (CKG2) */
  536. data = 0;
  537. switch (SH_FSI_INVERSION_MASK & flags) {
  538. case SH_FSI_LRM_INV:
  539. data = 1 << 12;
  540. break;
  541. case SH_FSI_BRM_INV:
  542. data = 1 << 8;
  543. break;
  544. case SH_FSI_LRS_INV:
  545. data = 1 << 4;
  546. break;
  547. case SH_FSI_BRS_INV:
  548. data = 1 << 0;
  549. break;
  550. }
  551. fsi_reg_write(fsi, CKG2, data);
  552. /* do fmt, di fmt */
  553. data = 0;
  554. reg = is_play ? DO_FMT : DI_FMT;
  555. fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
  556. switch (fmt) {
  557. case SH_FSI_FMT_MONO:
  558. msg = "MONO";
  559. data = CR_FMT(CR_MONO);
  560. fsi->chan = 1;
  561. break;
  562. case SH_FSI_FMT_MONO_DELAY:
  563. msg = "MONO Delay";
  564. data = CR_FMT(CR_MONO_D);
  565. fsi->chan = 1;
  566. break;
  567. case SH_FSI_FMT_PCM:
  568. msg = "PCM";
  569. data = CR_FMT(CR_PCM);
  570. fsi->chan = 2;
  571. break;
  572. case SH_FSI_FMT_I2S:
  573. msg = "I2S";
  574. data = CR_FMT(CR_I2S);
  575. fsi->chan = 2;
  576. break;
  577. case SH_FSI_FMT_TDM:
  578. msg = "TDM";
  579. data = CR_FMT(CR_TDM) | (fsi->chan - 1);
  580. fsi->chan = is_play ?
  581. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  582. break;
  583. case SH_FSI_FMT_TDM_DELAY:
  584. msg = "TDM Delay";
  585. data = CR_FMT(CR_TDM_D) | (fsi->chan - 1);
  586. fsi->chan = is_play ?
  587. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  588. break;
  589. default:
  590. dev_err(dai->dev, "unknown format.\n");
  591. return -EINVAL;
  592. }
  593. fsi_reg_write(fsi, reg, data);
  594. /*
  595. * clear clk reset if master mode
  596. */
  597. if (is_master)
  598. fsi_clk_ctrl(fsi, 1);
  599. /* irq clear */
  600. fsi_irq_disable(fsi, is_play);
  601. fsi_irq_clear_status(fsi);
  602. /* fifo init */
  603. fsi_fifo_init(fsi, is_play, dai);
  604. return ret;
  605. }
  606. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  607. struct snd_soc_dai *dai)
  608. {
  609. struct fsi_priv *fsi = fsi_get_priv(substream);
  610. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  611. fsi_irq_disable(fsi, is_play);
  612. fsi_clk_ctrl(fsi, 0);
  613. pm_runtime_put_sync(dai->dev);
  614. }
  615. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  616. struct snd_soc_dai *dai)
  617. {
  618. struct fsi_priv *fsi = fsi_get_priv(substream);
  619. struct snd_pcm_runtime *runtime = substream->runtime;
  620. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  621. int ret = 0;
  622. switch (cmd) {
  623. case SNDRV_PCM_TRIGGER_START:
  624. fsi_stream_push(fsi, substream,
  625. frames_to_bytes(runtime, runtime->buffer_size),
  626. frames_to_bytes(runtime, runtime->period_size));
  627. ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
  628. break;
  629. case SNDRV_PCM_TRIGGER_STOP:
  630. fsi_irq_disable(fsi, is_play);
  631. fsi_stream_pop(fsi);
  632. break;
  633. }
  634. return ret;
  635. }
  636. static struct snd_soc_dai_ops fsi_dai_ops = {
  637. .startup = fsi_dai_startup,
  638. .shutdown = fsi_dai_shutdown,
  639. .trigger = fsi_dai_trigger,
  640. };
  641. /************************************************************************
  642. pcm ops
  643. ************************************************************************/
  644. static struct snd_pcm_hardware fsi_pcm_hardware = {
  645. .info = SNDRV_PCM_INFO_INTERLEAVED |
  646. SNDRV_PCM_INFO_MMAP |
  647. SNDRV_PCM_INFO_MMAP_VALID |
  648. SNDRV_PCM_INFO_PAUSE,
  649. .formats = FSI_FMTS,
  650. .rates = FSI_RATES,
  651. .rate_min = 8000,
  652. .rate_max = 192000,
  653. .channels_min = 1,
  654. .channels_max = 2,
  655. .buffer_bytes_max = 64 * 1024,
  656. .period_bytes_min = 32,
  657. .period_bytes_max = 8192,
  658. .periods_min = 1,
  659. .periods_max = 32,
  660. .fifo_size = 256,
  661. };
  662. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  663. {
  664. struct snd_pcm_runtime *runtime = substream->runtime;
  665. int ret = 0;
  666. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  667. ret = snd_pcm_hw_constraint_integer(runtime,
  668. SNDRV_PCM_HW_PARAM_PERIODS);
  669. return ret;
  670. }
  671. static int fsi_hw_params(struct snd_pcm_substream *substream,
  672. struct snd_pcm_hw_params *hw_params)
  673. {
  674. return snd_pcm_lib_malloc_pages(substream,
  675. params_buffer_bytes(hw_params));
  676. }
  677. static int fsi_hw_free(struct snd_pcm_substream *substream)
  678. {
  679. return snd_pcm_lib_free_pages(substream);
  680. }
  681. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  682. {
  683. struct snd_pcm_runtime *runtime = substream->runtime;
  684. struct fsi_priv *fsi = fsi_get_priv(substream);
  685. long location;
  686. location = (fsi->byte_offset - 1);
  687. if (location < 0)
  688. location = 0;
  689. return bytes_to_frames(runtime, location);
  690. }
  691. static struct snd_pcm_ops fsi_pcm_ops = {
  692. .open = fsi_pcm_open,
  693. .ioctl = snd_pcm_lib_ioctl,
  694. .hw_params = fsi_hw_params,
  695. .hw_free = fsi_hw_free,
  696. .pointer = fsi_pointer,
  697. };
  698. /************************************************************************
  699. snd_soc_platform
  700. ************************************************************************/
  701. #define PREALLOC_BUFFER (32 * 1024)
  702. #define PREALLOC_BUFFER_MAX (32 * 1024)
  703. static void fsi_pcm_free(struct snd_pcm *pcm)
  704. {
  705. snd_pcm_lib_preallocate_free_for_all(pcm);
  706. }
  707. static int fsi_pcm_new(struct snd_card *card,
  708. struct snd_soc_dai *dai,
  709. struct snd_pcm *pcm)
  710. {
  711. /*
  712. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  713. * in MMAP mode (i.e. aplay -M)
  714. */
  715. return snd_pcm_lib_preallocate_pages_for_all(
  716. pcm,
  717. SNDRV_DMA_TYPE_CONTINUOUS,
  718. snd_dma_continuous_data(GFP_KERNEL),
  719. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  720. }
  721. /************************************************************************
  722. alsa struct
  723. ************************************************************************/
  724. struct snd_soc_dai fsi_soc_dai[] = {
  725. {
  726. .name = "FSIA",
  727. .id = 0,
  728. .playback = {
  729. .rates = FSI_RATES,
  730. .formats = FSI_FMTS,
  731. .channels_min = 1,
  732. .channels_max = 8,
  733. },
  734. .capture = {
  735. .rates = FSI_RATES,
  736. .formats = FSI_FMTS,
  737. .channels_min = 1,
  738. .channels_max = 8,
  739. },
  740. .ops = &fsi_dai_ops,
  741. },
  742. {
  743. .name = "FSIB",
  744. .id = 1,
  745. .playback = {
  746. .rates = FSI_RATES,
  747. .formats = FSI_FMTS,
  748. .channels_min = 1,
  749. .channels_max = 8,
  750. },
  751. .capture = {
  752. .rates = FSI_RATES,
  753. .formats = FSI_FMTS,
  754. .channels_min = 1,
  755. .channels_max = 8,
  756. },
  757. .ops = &fsi_dai_ops,
  758. },
  759. };
  760. EXPORT_SYMBOL_GPL(fsi_soc_dai);
  761. struct snd_soc_platform fsi_soc_platform = {
  762. .name = "fsi-pcm",
  763. .pcm_ops = &fsi_pcm_ops,
  764. .pcm_new = fsi_pcm_new,
  765. .pcm_free = fsi_pcm_free,
  766. };
  767. EXPORT_SYMBOL_GPL(fsi_soc_platform);
  768. /************************************************************************
  769. platform function
  770. ************************************************************************/
  771. static int fsi_probe(struct platform_device *pdev)
  772. {
  773. struct fsi_master *master;
  774. const struct platform_device_id *id_entry;
  775. struct resource *res;
  776. unsigned int irq;
  777. int ret;
  778. if (0 != pdev->id) {
  779. dev_err(&pdev->dev, "current fsi support id 0 only now\n");
  780. return -ENODEV;
  781. }
  782. id_entry = pdev->id_entry;
  783. if (!id_entry) {
  784. dev_err(&pdev->dev, "unknown fsi device\n");
  785. return -ENODEV;
  786. }
  787. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  788. irq = platform_get_irq(pdev, 0);
  789. if (!res || (int)irq <= 0) {
  790. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  791. ret = -ENODEV;
  792. goto exit;
  793. }
  794. master = kzalloc(sizeof(*master), GFP_KERNEL);
  795. if (!master) {
  796. dev_err(&pdev->dev, "Could not allocate master\n");
  797. ret = -ENOMEM;
  798. goto exit;
  799. }
  800. master->base = ioremap_nocache(res->start, resource_size(res));
  801. if (!master->base) {
  802. ret = -ENXIO;
  803. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  804. goto exit_kfree;
  805. }
  806. master->irq = irq;
  807. master->info = pdev->dev.platform_data;
  808. master->fsia.base = master->base;
  809. master->fsia.master = master;
  810. master->fsib.base = master->base + 0x40;
  811. master->fsib.master = master;
  812. master->regs = (struct fsi_regs *)id_entry->driver_data;
  813. spin_lock_init(&master->lock);
  814. pm_runtime_enable(&pdev->dev);
  815. pm_runtime_resume(&pdev->dev);
  816. fsi_soc_dai[0].dev = &pdev->dev;
  817. fsi_soc_dai[0].private_data = &master->fsia;
  818. fsi_soc_dai[1].dev = &pdev->dev;
  819. fsi_soc_dai[1].private_data = &master->fsib;
  820. fsi_soft_all_reset(master);
  821. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  822. id_entry->name, master);
  823. if (ret) {
  824. dev_err(&pdev->dev, "irq request err\n");
  825. goto exit_iounmap;
  826. }
  827. ret = snd_soc_register_platform(&fsi_soc_platform);
  828. if (ret < 0) {
  829. dev_err(&pdev->dev, "cannot snd soc register\n");
  830. goto exit_free_irq;
  831. }
  832. return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  833. exit_free_irq:
  834. free_irq(irq, master);
  835. exit_iounmap:
  836. iounmap(master->base);
  837. pm_runtime_disable(&pdev->dev);
  838. exit_kfree:
  839. kfree(master);
  840. master = NULL;
  841. exit:
  842. return ret;
  843. }
  844. static int fsi_remove(struct platform_device *pdev)
  845. {
  846. struct fsi_master *master;
  847. master = fsi_get_master(fsi_soc_dai[0].private_data);
  848. snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  849. snd_soc_unregister_platform(&fsi_soc_platform);
  850. pm_runtime_disable(&pdev->dev);
  851. free_irq(master->irq, master);
  852. iounmap(master->base);
  853. kfree(master);
  854. fsi_soc_dai[0].dev = NULL;
  855. fsi_soc_dai[0].private_data = NULL;
  856. fsi_soc_dai[1].dev = NULL;
  857. fsi_soc_dai[1].private_data = NULL;
  858. return 0;
  859. }
  860. static int fsi_runtime_nop(struct device *dev)
  861. {
  862. /* Runtime PM callback shared between ->runtime_suspend()
  863. * and ->runtime_resume(). Simply returns success.
  864. *
  865. * This driver re-initializes all registers after
  866. * pm_runtime_get_sync() anyway so there is no need
  867. * to save and restore registers here.
  868. */
  869. return 0;
  870. }
  871. static struct dev_pm_ops fsi_pm_ops = {
  872. .runtime_suspend = fsi_runtime_nop,
  873. .runtime_resume = fsi_runtime_nop,
  874. };
  875. static struct fsi_regs fsi_regs = {
  876. .int_st = INT_ST,
  877. .iemsk = IEMSK,
  878. .imsk = IMSK,
  879. };
  880. static struct fsi_regs fsi2_regs = {
  881. .int_st = CPU_INT_ST,
  882. .iemsk = CPU_IEMSK,
  883. .imsk = CPU_IMSK,
  884. };
  885. static struct platform_device_id fsi_id_table[] = {
  886. { "sh_fsi", (kernel_ulong_t)&fsi_regs },
  887. { "sh_fsi2", (kernel_ulong_t)&fsi2_regs },
  888. };
  889. static struct platform_driver fsi_driver = {
  890. .driver = {
  891. .name = "sh_fsi",
  892. .pm = &fsi_pm_ops,
  893. },
  894. .probe = fsi_probe,
  895. .remove = fsi_remove,
  896. .id_table = fsi_id_table,
  897. };
  898. static int __init fsi_mobile_init(void)
  899. {
  900. return platform_driver_register(&fsi_driver);
  901. }
  902. static void __exit fsi_mobile_exit(void)
  903. {
  904. platform_driver_unregister(&fsi_driver);
  905. }
  906. module_init(fsi_mobile_init);
  907. module_exit(fsi_mobile_exit);
  908. MODULE_LICENSE("GPL");
  909. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  910. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");