sched.c 222 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define NICE_0_LOAD SCHED_LOAD_SCALE
  97. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  98. /*
  99. * These are the 'tuning knobs' of the scheduler:
  100. *
  101. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. /*
  106. * single value that denotes runtime == period, ie unlimited time.
  107. */
  108. #define RUNTIME_INF ((u64)~0ULL)
  109. #ifdef CONFIG_SMP
  110. /*
  111. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  112. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  113. */
  114. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  115. {
  116. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  117. }
  118. /*
  119. * Each time a sched group cpu_power is changed,
  120. * we must compute its reciprocal value
  121. */
  122. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  123. {
  124. sg->__cpu_power += val;
  125. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  126. }
  127. #endif
  128. static inline int rt_policy(int policy)
  129. {
  130. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  131. return 1;
  132. return 0;
  133. }
  134. static inline int task_has_rt_policy(struct task_struct *p)
  135. {
  136. return rt_policy(p->policy);
  137. }
  138. /*
  139. * This is the priority-queue data structure of the RT scheduling class:
  140. */
  141. struct rt_prio_array {
  142. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  143. struct list_head queue[MAX_RT_PRIO];
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start_expires(&rt_b->rt_period_timer,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else /* !CONFIG_USER_SCHED */
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif /* CONFIG_USER_SCHED */
  267. /*
  268. * A weight of 0 or 1 can cause arithmetics problems.
  269. * A weight of a cfs_rq is the sum of weights of which entities
  270. * are queued on this cfs_rq, so a weight of a entity should not be
  271. * too large, so as the shares value of a task group.
  272. * (The default weight is 1024 - so there's no practical
  273. * limitation from this.)
  274. */
  275. #define MIN_SHARES 2
  276. #define MAX_SHARES (1UL << 18)
  277. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  278. #endif
  279. /* Default task group.
  280. * Every task in system belong to this group at bootup.
  281. */
  282. struct task_group init_task_group;
  283. /* return group to which a task belongs */
  284. static inline struct task_group *task_group(struct task_struct *p)
  285. {
  286. struct task_group *tg;
  287. #ifdef CONFIG_USER_SCHED
  288. tg = p->user->tg;
  289. #elif defined(CONFIG_CGROUP_SCHED)
  290. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  291. struct task_group, css);
  292. #else
  293. tg = &init_task_group;
  294. #endif
  295. return tg;
  296. }
  297. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  299. {
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  302. p->se.parent = task_group(p)->se[cpu];
  303. #endif
  304. #ifdef CONFIG_RT_GROUP_SCHED
  305. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  306. p->rt.parent = task_group(p)->rt_se[cpu];
  307. #endif
  308. }
  309. #else
  310. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  311. static inline struct task_group *task_group(struct task_struct *p)
  312. {
  313. return NULL;
  314. }
  315. #endif /* CONFIG_GROUP_SCHED */
  316. /* CFS-related fields in a runqueue */
  317. struct cfs_rq {
  318. struct load_weight load;
  319. unsigned long nr_running;
  320. u64 exec_clock;
  321. u64 min_vruntime;
  322. u64 pair_start;
  323. struct rb_root tasks_timeline;
  324. struct rb_node *rb_leftmost;
  325. struct list_head tasks;
  326. struct list_head *balance_iterator;
  327. /*
  328. * 'curr' points to currently running entity on this cfs_rq.
  329. * It is set to NULL otherwise (i.e when none are currently running).
  330. */
  331. struct sched_entity *curr, *next;
  332. unsigned long nr_spread_over;
  333. #ifdef CONFIG_FAIR_GROUP_SCHED
  334. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  335. /*
  336. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  337. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  338. * (like users, containers etc.)
  339. *
  340. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  341. * list is used during load balance.
  342. */
  343. struct list_head leaf_cfs_rq_list;
  344. struct task_group *tg; /* group that "owns" this runqueue */
  345. #ifdef CONFIG_SMP
  346. /*
  347. * the part of load.weight contributed by tasks
  348. */
  349. unsigned long task_weight;
  350. /*
  351. * h_load = weight * f(tg)
  352. *
  353. * Where f(tg) is the recursive weight fraction assigned to
  354. * this group.
  355. */
  356. unsigned long h_load;
  357. /*
  358. * this cpu's part of tg->shares
  359. */
  360. unsigned long shares;
  361. /*
  362. * load.weight at the time we set shares
  363. */
  364. unsigned long rq_weight;
  365. #endif
  366. #endif
  367. };
  368. /* Real-Time classes' related field in a runqueue: */
  369. struct rt_rq {
  370. struct rt_prio_array active;
  371. unsigned long rt_nr_running;
  372. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  373. int highest_prio; /* highest queued rt task prio */
  374. #endif
  375. #ifdef CONFIG_SMP
  376. unsigned long rt_nr_migratory;
  377. int overloaded;
  378. #endif
  379. int rt_throttled;
  380. u64 rt_time;
  381. u64 rt_runtime;
  382. /* Nests inside the rq lock: */
  383. spinlock_t rt_runtime_lock;
  384. #ifdef CONFIG_RT_GROUP_SCHED
  385. unsigned long rt_nr_boosted;
  386. struct rq *rq;
  387. struct list_head leaf_rt_rq_list;
  388. struct task_group *tg;
  389. struct sched_rt_entity *rt_se;
  390. #endif
  391. };
  392. #ifdef CONFIG_SMP
  393. /*
  394. * We add the notion of a root-domain which will be used to define per-domain
  395. * variables. Each exclusive cpuset essentially defines an island domain by
  396. * fully partitioning the member cpus from any other cpuset. Whenever a new
  397. * exclusive cpuset is created, we also create and attach a new root-domain
  398. * object.
  399. *
  400. */
  401. struct root_domain {
  402. atomic_t refcount;
  403. cpumask_t span;
  404. cpumask_t online;
  405. /*
  406. * The "RT overload" flag: it gets set if a CPU has more than
  407. * one runnable RT task.
  408. */
  409. cpumask_t rto_mask;
  410. atomic_t rto_count;
  411. #ifdef CONFIG_SMP
  412. struct cpupri cpupri;
  413. #endif
  414. };
  415. /*
  416. * By default the system creates a single root-domain with all cpus as
  417. * members (mimicking the global state we have today).
  418. */
  419. static struct root_domain def_root_domain;
  420. #endif
  421. /*
  422. * This is the main, per-CPU runqueue data structure.
  423. *
  424. * Locking rule: those places that want to lock multiple runqueues
  425. * (such as the load balancing or the thread migration code), lock
  426. * acquire operations must be ordered by ascending &runqueue.
  427. */
  428. struct rq {
  429. /* runqueue lock: */
  430. spinlock_t lock;
  431. /*
  432. * nr_running and cpu_load should be in the same cacheline because
  433. * remote CPUs use both these fields when doing load calculation.
  434. */
  435. unsigned long nr_running;
  436. #define CPU_LOAD_IDX_MAX 5
  437. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  438. unsigned char idle_at_tick;
  439. #ifdef CONFIG_NO_HZ
  440. unsigned long last_tick_seen;
  441. unsigned char in_nohz_recently;
  442. #endif
  443. /* capture load from *all* tasks on this cpu: */
  444. struct load_weight load;
  445. unsigned long nr_load_updates;
  446. u64 nr_switches;
  447. struct cfs_rq cfs;
  448. struct rt_rq rt;
  449. #ifdef CONFIG_FAIR_GROUP_SCHED
  450. /* list of leaf cfs_rq on this cpu: */
  451. struct list_head leaf_cfs_rq_list;
  452. #endif
  453. #ifdef CONFIG_RT_GROUP_SCHED
  454. struct list_head leaf_rt_rq_list;
  455. #endif
  456. /*
  457. * This is part of a global counter where only the total sum
  458. * over all CPUs matters. A task can increase this counter on
  459. * one CPU and if it got migrated afterwards it may decrease
  460. * it on another CPU. Always updated under the runqueue lock:
  461. */
  462. unsigned long nr_uninterruptible;
  463. struct task_struct *curr, *idle;
  464. unsigned long next_balance;
  465. struct mm_struct *prev_mm;
  466. u64 clock;
  467. atomic_t nr_iowait;
  468. #ifdef CONFIG_SMP
  469. struct root_domain *rd;
  470. struct sched_domain *sd;
  471. /* For active balancing */
  472. int active_balance;
  473. int push_cpu;
  474. /* cpu of this runqueue: */
  475. int cpu;
  476. int online;
  477. unsigned long avg_load_per_task;
  478. struct task_struct *migration_thread;
  479. struct list_head migration_queue;
  480. #endif
  481. #ifdef CONFIG_SCHED_HRTICK
  482. #ifdef CONFIG_SMP
  483. int hrtick_csd_pending;
  484. struct call_single_data hrtick_csd;
  485. #endif
  486. struct hrtimer hrtick_timer;
  487. #endif
  488. #ifdef CONFIG_SCHEDSTATS
  489. /* latency stats */
  490. struct sched_info rq_sched_info;
  491. /* sys_sched_yield() stats */
  492. unsigned int yld_exp_empty;
  493. unsigned int yld_act_empty;
  494. unsigned int yld_both_empty;
  495. unsigned int yld_count;
  496. /* schedule() stats */
  497. unsigned int sched_switch;
  498. unsigned int sched_count;
  499. unsigned int sched_goidle;
  500. /* try_to_wake_up() stats */
  501. unsigned int ttwu_count;
  502. unsigned int ttwu_local;
  503. /* BKL stats */
  504. unsigned int bkl_count;
  505. #endif
  506. };
  507. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  508. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  509. {
  510. rq->curr->sched_class->check_preempt_curr(rq, p);
  511. }
  512. static inline int cpu_of(struct rq *rq)
  513. {
  514. #ifdef CONFIG_SMP
  515. return rq->cpu;
  516. #else
  517. return 0;
  518. #endif
  519. }
  520. /*
  521. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  522. * See detach_destroy_domains: synchronize_sched for details.
  523. *
  524. * The domain tree of any CPU may only be accessed from within
  525. * preempt-disabled sections.
  526. */
  527. #define for_each_domain(cpu, __sd) \
  528. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  529. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  530. #define this_rq() (&__get_cpu_var(runqueues))
  531. #define task_rq(p) cpu_rq(task_cpu(p))
  532. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  533. static inline void update_rq_clock(struct rq *rq)
  534. {
  535. rq->clock = sched_clock_cpu(cpu_of(rq));
  536. }
  537. /*
  538. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  539. */
  540. #ifdef CONFIG_SCHED_DEBUG
  541. # define const_debug __read_mostly
  542. #else
  543. # define const_debug static const
  544. #endif
  545. /**
  546. * runqueue_is_locked
  547. *
  548. * Returns true if the current cpu runqueue is locked.
  549. * This interface allows printk to be called with the runqueue lock
  550. * held and know whether or not it is OK to wake up the klogd.
  551. */
  552. int runqueue_is_locked(void)
  553. {
  554. int cpu = get_cpu();
  555. struct rq *rq = cpu_rq(cpu);
  556. int ret;
  557. ret = spin_is_locked(&rq->lock);
  558. put_cpu();
  559. return ret;
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_open(struct inode *inode, struct file *filp)
  585. {
  586. filp->private_data = inode->i_private;
  587. return 0;
  588. }
  589. static ssize_t
  590. sched_feat_read(struct file *filp, char __user *ubuf,
  591. size_t cnt, loff_t *ppos)
  592. {
  593. char *buf;
  594. int r = 0;
  595. int len = 0;
  596. int i;
  597. for (i = 0; sched_feat_names[i]; i++) {
  598. len += strlen(sched_feat_names[i]);
  599. len += 4;
  600. }
  601. buf = kmalloc(len + 2, GFP_KERNEL);
  602. if (!buf)
  603. return -ENOMEM;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (sysctl_sched_features & (1UL << i))
  606. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  607. else
  608. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  609. }
  610. r += sprintf(buf + r, "\n");
  611. WARN_ON(r >= len + 2);
  612. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  613. kfree(buf);
  614. return r;
  615. }
  616. static ssize_t
  617. sched_feat_write(struct file *filp, const char __user *ubuf,
  618. size_t cnt, loff_t *ppos)
  619. {
  620. char buf[64];
  621. char *cmp = buf;
  622. int neg = 0;
  623. int i;
  624. if (cnt > 63)
  625. cnt = 63;
  626. if (copy_from_user(&buf, ubuf, cnt))
  627. return -EFAULT;
  628. buf[cnt] = 0;
  629. if (strncmp(buf, "NO_", 3) == 0) {
  630. neg = 1;
  631. cmp += 3;
  632. }
  633. for (i = 0; sched_feat_names[i]; i++) {
  634. int len = strlen(sched_feat_names[i]);
  635. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  636. if (neg)
  637. sysctl_sched_features &= ~(1UL << i);
  638. else
  639. sysctl_sched_features |= (1UL << i);
  640. break;
  641. }
  642. }
  643. if (!sched_feat_names[i])
  644. return -EINVAL;
  645. filp->f_pos += cnt;
  646. return cnt;
  647. }
  648. static struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .read = sched_feat_read,
  651. .write = sched_feat_write,
  652. };
  653. static __init int sched_init_debug(void)
  654. {
  655. debugfs_create_file("sched_features", 0644, NULL, NULL,
  656. &sched_feat_fops);
  657. return 0;
  658. }
  659. late_initcall(sched_init_debug);
  660. #endif
  661. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  662. /*
  663. * Number of tasks to iterate in a single balance run.
  664. * Limited because this is done with IRQs disabled.
  665. */
  666. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  667. /*
  668. * ratelimit for updating the group shares.
  669. * default: 0.25ms
  670. */
  671. unsigned int sysctl_sched_shares_ratelimit = 250000;
  672. /*
  673. * period over which we measure -rt task cpu usage in us.
  674. * default: 1s
  675. */
  676. unsigned int sysctl_sched_rt_period = 1000000;
  677. static __read_mostly int scheduler_running;
  678. /*
  679. * part of the period that we allow rt tasks to run in us.
  680. * default: 0.95s
  681. */
  682. int sysctl_sched_rt_runtime = 950000;
  683. static inline u64 global_rt_period(void)
  684. {
  685. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  686. }
  687. static inline u64 global_rt_runtime(void)
  688. {
  689. if (sysctl_sched_rt_runtime < 0)
  690. return RUNTIME_INF;
  691. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  692. }
  693. #ifndef prepare_arch_switch
  694. # define prepare_arch_switch(next) do { } while (0)
  695. #endif
  696. #ifndef finish_arch_switch
  697. # define finish_arch_switch(prev) do { } while (0)
  698. #endif
  699. static inline int task_current(struct rq *rq, struct task_struct *p)
  700. {
  701. return rq->curr == p;
  702. }
  703. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  704. static inline int task_running(struct rq *rq, struct task_struct *p)
  705. {
  706. return task_current(rq, p);
  707. }
  708. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  709. {
  710. }
  711. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  712. {
  713. #ifdef CONFIG_DEBUG_SPINLOCK
  714. /* this is a valid case when another task releases the spinlock */
  715. rq->lock.owner = current;
  716. #endif
  717. /*
  718. * If we are tracking spinlock dependencies then we have to
  719. * fix up the runqueue lock - which gets 'carried over' from
  720. * prev into current:
  721. */
  722. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  723. spin_unlock_irq(&rq->lock);
  724. }
  725. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  726. static inline int task_running(struct rq *rq, struct task_struct *p)
  727. {
  728. #ifdef CONFIG_SMP
  729. return p->oncpu;
  730. #else
  731. return task_current(rq, p);
  732. #endif
  733. }
  734. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  735. {
  736. #ifdef CONFIG_SMP
  737. /*
  738. * We can optimise this out completely for !SMP, because the
  739. * SMP rebalancing from interrupt is the only thing that cares
  740. * here.
  741. */
  742. next->oncpu = 1;
  743. #endif
  744. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  745. spin_unlock_irq(&rq->lock);
  746. #else
  747. spin_unlock(&rq->lock);
  748. #endif
  749. }
  750. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * After ->oncpu is cleared, the task can be moved to a different CPU.
  755. * We must ensure this doesn't happen until the switch is completely
  756. * finished.
  757. */
  758. smp_wmb();
  759. prev->oncpu = 0;
  760. #endif
  761. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. local_irq_enable();
  763. #endif
  764. }
  765. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  766. /*
  767. * __task_rq_lock - lock the runqueue a given task resides on.
  768. * Must be called interrupts disabled.
  769. */
  770. static inline struct rq *__task_rq_lock(struct task_struct *p)
  771. __acquires(rq->lock)
  772. {
  773. for (;;) {
  774. struct rq *rq = task_rq(p);
  775. spin_lock(&rq->lock);
  776. if (likely(rq == task_rq(p)))
  777. return rq;
  778. spin_unlock(&rq->lock);
  779. }
  780. }
  781. /*
  782. * task_rq_lock - lock the runqueue a given task resides on and disable
  783. * interrupts. Note the ordering: we can safely lookup the task_rq without
  784. * explicitly disabling preemption.
  785. */
  786. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  787. __acquires(rq->lock)
  788. {
  789. struct rq *rq;
  790. for (;;) {
  791. local_irq_save(*flags);
  792. rq = task_rq(p);
  793. spin_lock(&rq->lock);
  794. if (likely(rq == task_rq(p)))
  795. return rq;
  796. spin_unlock_irqrestore(&rq->lock, *flags);
  797. }
  798. }
  799. static void __task_rq_unlock(struct rq *rq)
  800. __releases(rq->lock)
  801. {
  802. spin_unlock(&rq->lock);
  803. }
  804. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  805. __releases(rq->lock)
  806. {
  807. spin_unlock_irqrestore(&rq->lock, *flags);
  808. }
  809. /*
  810. * this_rq_lock - lock this runqueue and disable interrupts.
  811. */
  812. static struct rq *this_rq_lock(void)
  813. __acquires(rq->lock)
  814. {
  815. struct rq *rq;
  816. local_irq_disable();
  817. rq = this_rq();
  818. spin_lock(&rq->lock);
  819. return rq;
  820. }
  821. #ifdef CONFIG_SCHED_HRTICK
  822. /*
  823. * Use HR-timers to deliver accurate preemption points.
  824. *
  825. * Its all a bit involved since we cannot program an hrt while holding the
  826. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  827. * reschedule event.
  828. *
  829. * When we get rescheduled we reprogram the hrtick_timer outside of the
  830. * rq->lock.
  831. */
  832. /*
  833. * Use hrtick when:
  834. * - enabled by features
  835. * - hrtimer is actually high res
  836. */
  837. static inline int hrtick_enabled(struct rq *rq)
  838. {
  839. if (!sched_feat(HRTICK))
  840. return 0;
  841. if (!cpu_active(cpu_of(rq)))
  842. return 0;
  843. return hrtimer_is_hres_active(&rq->hrtick_timer);
  844. }
  845. static void hrtick_clear(struct rq *rq)
  846. {
  847. if (hrtimer_active(&rq->hrtick_timer))
  848. hrtimer_cancel(&rq->hrtick_timer);
  849. }
  850. /*
  851. * High-resolution timer tick.
  852. * Runs from hardirq context with interrupts disabled.
  853. */
  854. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  855. {
  856. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  857. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  858. spin_lock(&rq->lock);
  859. update_rq_clock(rq);
  860. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  861. spin_unlock(&rq->lock);
  862. return HRTIMER_NORESTART;
  863. }
  864. #ifdef CONFIG_SMP
  865. /*
  866. * called from hardirq (IPI) context
  867. */
  868. static void __hrtick_start(void *arg)
  869. {
  870. struct rq *rq = arg;
  871. spin_lock(&rq->lock);
  872. hrtimer_restart(&rq->hrtick_timer);
  873. rq->hrtick_csd_pending = 0;
  874. spin_unlock(&rq->lock);
  875. }
  876. /*
  877. * Called to set the hrtick timer state.
  878. *
  879. * called with rq->lock held and irqs disabled
  880. */
  881. static void hrtick_start(struct rq *rq, u64 delay)
  882. {
  883. struct hrtimer *timer = &rq->hrtick_timer;
  884. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  885. hrtimer_set_expires(timer, time);
  886. if (rq == this_rq()) {
  887. hrtimer_restart(timer);
  888. } else if (!rq->hrtick_csd_pending) {
  889. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  890. rq->hrtick_csd_pending = 1;
  891. }
  892. }
  893. static int
  894. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  895. {
  896. int cpu = (int)(long)hcpu;
  897. switch (action) {
  898. case CPU_UP_CANCELED:
  899. case CPU_UP_CANCELED_FROZEN:
  900. case CPU_DOWN_PREPARE:
  901. case CPU_DOWN_PREPARE_FROZEN:
  902. case CPU_DEAD:
  903. case CPU_DEAD_FROZEN:
  904. hrtick_clear(cpu_rq(cpu));
  905. return NOTIFY_OK;
  906. }
  907. return NOTIFY_DONE;
  908. }
  909. static void init_hrtick(void)
  910. {
  911. hotcpu_notifier(hotplug_hrtick, 0);
  912. }
  913. #else
  914. /*
  915. * Called to set the hrtick timer state.
  916. *
  917. * called with rq->lock held and irqs disabled
  918. */
  919. static void hrtick_start(struct rq *rq, u64 delay)
  920. {
  921. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  922. }
  923. static void init_hrtick(void)
  924. {
  925. }
  926. #endif /* CONFIG_SMP */
  927. static void init_rq_hrtick(struct rq *rq)
  928. {
  929. #ifdef CONFIG_SMP
  930. rq->hrtick_csd_pending = 0;
  931. rq->hrtick_csd.flags = 0;
  932. rq->hrtick_csd.func = __hrtick_start;
  933. rq->hrtick_csd.info = rq;
  934. #endif
  935. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  936. rq->hrtick_timer.function = hrtick;
  937. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  938. }
  939. #else
  940. static inline void hrtick_clear(struct rq *rq)
  941. {
  942. }
  943. static inline void init_rq_hrtick(struct rq *rq)
  944. {
  945. }
  946. static inline void init_hrtick(void)
  947. {
  948. }
  949. #endif
  950. /*
  951. * resched_task - mark a task 'to be rescheduled now'.
  952. *
  953. * On UP this means the setting of the need_resched flag, on SMP it
  954. * might also involve a cross-CPU call to trigger the scheduler on
  955. * the target CPU.
  956. */
  957. #ifdef CONFIG_SMP
  958. #ifndef tsk_is_polling
  959. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  960. #endif
  961. static void resched_task(struct task_struct *p)
  962. {
  963. int cpu;
  964. assert_spin_locked(&task_rq(p)->lock);
  965. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  966. return;
  967. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  968. cpu = task_cpu(p);
  969. if (cpu == smp_processor_id())
  970. return;
  971. /* NEED_RESCHED must be visible before we test polling */
  972. smp_mb();
  973. if (!tsk_is_polling(p))
  974. smp_send_reschedule(cpu);
  975. }
  976. static void resched_cpu(int cpu)
  977. {
  978. struct rq *rq = cpu_rq(cpu);
  979. unsigned long flags;
  980. if (!spin_trylock_irqsave(&rq->lock, flags))
  981. return;
  982. resched_task(cpu_curr(cpu));
  983. spin_unlock_irqrestore(&rq->lock, flags);
  984. }
  985. #ifdef CONFIG_NO_HZ
  986. /*
  987. * When add_timer_on() enqueues a timer into the timer wheel of an
  988. * idle CPU then this timer might expire before the next timer event
  989. * which is scheduled to wake up that CPU. In case of a completely
  990. * idle system the next event might even be infinite time into the
  991. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  992. * leaves the inner idle loop so the newly added timer is taken into
  993. * account when the CPU goes back to idle and evaluates the timer
  994. * wheel for the next timer event.
  995. */
  996. void wake_up_idle_cpu(int cpu)
  997. {
  998. struct rq *rq = cpu_rq(cpu);
  999. if (cpu == smp_processor_id())
  1000. return;
  1001. /*
  1002. * This is safe, as this function is called with the timer
  1003. * wheel base lock of (cpu) held. When the CPU is on the way
  1004. * to idle and has not yet set rq->curr to idle then it will
  1005. * be serialized on the timer wheel base lock and take the new
  1006. * timer into account automatically.
  1007. */
  1008. if (rq->curr != rq->idle)
  1009. return;
  1010. /*
  1011. * We can set TIF_RESCHED on the idle task of the other CPU
  1012. * lockless. The worst case is that the other CPU runs the
  1013. * idle task through an additional NOOP schedule()
  1014. */
  1015. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1016. /* NEED_RESCHED must be visible before we test polling */
  1017. smp_mb();
  1018. if (!tsk_is_polling(rq->idle))
  1019. smp_send_reschedule(cpu);
  1020. }
  1021. #endif /* CONFIG_NO_HZ */
  1022. #else /* !CONFIG_SMP */
  1023. static void resched_task(struct task_struct *p)
  1024. {
  1025. assert_spin_locked(&task_rq(p)->lock);
  1026. set_tsk_need_resched(p);
  1027. }
  1028. #endif /* CONFIG_SMP */
  1029. #if BITS_PER_LONG == 32
  1030. # define WMULT_CONST (~0UL)
  1031. #else
  1032. # define WMULT_CONST (1UL << 32)
  1033. #endif
  1034. #define WMULT_SHIFT 32
  1035. /*
  1036. * Shift right and round:
  1037. */
  1038. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1039. /*
  1040. * delta *= weight / lw
  1041. */
  1042. static unsigned long
  1043. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1044. struct load_weight *lw)
  1045. {
  1046. u64 tmp;
  1047. if (!lw->inv_weight) {
  1048. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1049. lw->inv_weight = 1;
  1050. else
  1051. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1052. / (lw->weight+1);
  1053. }
  1054. tmp = (u64)delta_exec * weight;
  1055. /*
  1056. * Check whether we'd overflow the 64-bit multiplication:
  1057. */
  1058. if (unlikely(tmp > WMULT_CONST))
  1059. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1060. WMULT_SHIFT/2);
  1061. else
  1062. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1063. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1064. }
  1065. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1066. {
  1067. lw->weight += inc;
  1068. lw->inv_weight = 0;
  1069. }
  1070. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1071. {
  1072. lw->weight -= dec;
  1073. lw->inv_weight = 0;
  1074. }
  1075. /*
  1076. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1077. * of tasks with abnormal "nice" values across CPUs the contribution that
  1078. * each task makes to its run queue's load is weighted according to its
  1079. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1080. * scaled version of the new time slice allocation that they receive on time
  1081. * slice expiry etc.
  1082. */
  1083. #define WEIGHT_IDLEPRIO 2
  1084. #define WMULT_IDLEPRIO (1 << 31)
  1085. /*
  1086. * Nice levels are multiplicative, with a gentle 10% change for every
  1087. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1088. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1089. * that remained on nice 0.
  1090. *
  1091. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1092. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1093. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1094. * If a task goes up by ~10% and another task goes down by ~10% then
  1095. * the relative distance between them is ~25%.)
  1096. */
  1097. static const int prio_to_weight[40] = {
  1098. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1099. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1100. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1101. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1102. /* 0 */ 1024, 820, 655, 526, 423,
  1103. /* 5 */ 335, 272, 215, 172, 137,
  1104. /* 10 */ 110, 87, 70, 56, 45,
  1105. /* 15 */ 36, 29, 23, 18, 15,
  1106. };
  1107. /*
  1108. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1109. *
  1110. * In cases where the weight does not change often, we can use the
  1111. * precalculated inverse to speed up arithmetics by turning divisions
  1112. * into multiplications:
  1113. */
  1114. static const u32 prio_to_wmult[40] = {
  1115. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1116. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1117. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1118. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1119. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1120. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1121. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1122. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1123. };
  1124. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1125. /*
  1126. * runqueue iterator, to support SMP load-balancing between different
  1127. * scheduling classes, without having to expose their internal data
  1128. * structures to the load-balancing proper:
  1129. */
  1130. struct rq_iterator {
  1131. void *arg;
  1132. struct task_struct *(*start)(void *);
  1133. struct task_struct *(*next)(void *);
  1134. };
  1135. #ifdef CONFIG_SMP
  1136. static unsigned long
  1137. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1138. unsigned long max_load_move, struct sched_domain *sd,
  1139. enum cpu_idle_type idle, int *all_pinned,
  1140. int *this_best_prio, struct rq_iterator *iterator);
  1141. static int
  1142. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1143. struct sched_domain *sd, enum cpu_idle_type idle,
  1144. struct rq_iterator *iterator);
  1145. #endif
  1146. #ifdef CONFIG_CGROUP_CPUACCT
  1147. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1148. #else
  1149. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1150. #endif
  1151. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1152. {
  1153. update_load_add(&rq->load, load);
  1154. }
  1155. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1156. {
  1157. update_load_sub(&rq->load, load);
  1158. }
  1159. #ifdef CONFIG_SMP
  1160. static unsigned long source_load(int cpu, int type);
  1161. static unsigned long target_load(int cpu, int type);
  1162. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1163. static unsigned long cpu_avg_load_per_task(int cpu)
  1164. {
  1165. struct rq *rq = cpu_rq(cpu);
  1166. if (rq->nr_running)
  1167. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1168. return rq->avg_load_per_task;
  1169. }
  1170. #ifdef CONFIG_FAIR_GROUP_SCHED
  1171. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1172. /*
  1173. * Iterate the full tree, calling @down when first entering a node and @up when
  1174. * leaving it for the final time.
  1175. */
  1176. static void
  1177. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1178. {
  1179. struct task_group *parent, *child;
  1180. rcu_read_lock();
  1181. parent = &root_task_group;
  1182. down:
  1183. (*down)(parent, cpu, sd);
  1184. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1185. parent = child;
  1186. goto down;
  1187. up:
  1188. continue;
  1189. }
  1190. (*up)(parent, cpu, sd);
  1191. child = parent;
  1192. parent = parent->parent;
  1193. if (parent)
  1194. goto up;
  1195. rcu_read_unlock();
  1196. }
  1197. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1198. /*
  1199. * Calculate and set the cpu's group shares.
  1200. */
  1201. static void
  1202. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1203. unsigned long sd_shares, unsigned long sd_rq_weight)
  1204. {
  1205. int boost = 0;
  1206. unsigned long shares;
  1207. unsigned long rq_weight;
  1208. if (!tg->se[cpu])
  1209. return;
  1210. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1211. /*
  1212. * If there are currently no tasks on the cpu pretend there is one of
  1213. * average load so that when a new task gets to run here it will not
  1214. * get delayed by group starvation.
  1215. */
  1216. if (!rq_weight) {
  1217. boost = 1;
  1218. rq_weight = NICE_0_LOAD;
  1219. }
  1220. if (unlikely(rq_weight > sd_rq_weight))
  1221. rq_weight = sd_rq_weight;
  1222. /*
  1223. * \Sum shares * rq_weight
  1224. * shares = -----------------------
  1225. * \Sum rq_weight
  1226. *
  1227. */
  1228. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1229. /*
  1230. * record the actual number of shares, not the boosted amount.
  1231. */
  1232. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1233. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1234. if (shares < MIN_SHARES)
  1235. shares = MIN_SHARES;
  1236. else if (shares > MAX_SHARES)
  1237. shares = MAX_SHARES;
  1238. __set_se_shares(tg->se[cpu], shares);
  1239. }
  1240. /*
  1241. * Re-compute the task group their per cpu shares over the given domain.
  1242. * This needs to be done in a bottom-up fashion because the rq weight of a
  1243. * parent group depends on the shares of its child groups.
  1244. */
  1245. static void
  1246. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1247. {
  1248. unsigned long rq_weight = 0;
  1249. unsigned long shares = 0;
  1250. int i;
  1251. for_each_cpu_mask(i, sd->span) {
  1252. rq_weight += tg->cfs_rq[i]->load.weight;
  1253. shares += tg->cfs_rq[i]->shares;
  1254. }
  1255. if ((!shares && rq_weight) || shares > tg->shares)
  1256. shares = tg->shares;
  1257. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1258. shares = tg->shares;
  1259. if (!rq_weight)
  1260. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1261. for_each_cpu_mask(i, sd->span) {
  1262. struct rq *rq = cpu_rq(i);
  1263. unsigned long flags;
  1264. spin_lock_irqsave(&rq->lock, flags);
  1265. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1266. spin_unlock_irqrestore(&rq->lock, flags);
  1267. }
  1268. }
  1269. /*
  1270. * Compute the cpu's hierarchical load factor for each task group.
  1271. * This needs to be done in a top-down fashion because the load of a child
  1272. * group is a fraction of its parents load.
  1273. */
  1274. static void
  1275. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1276. {
  1277. unsigned long load;
  1278. if (!tg->parent) {
  1279. load = cpu_rq(cpu)->load.weight;
  1280. } else {
  1281. load = tg->parent->cfs_rq[cpu]->h_load;
  1282. load *= tg->cfs_rq[cpu]->shares;
  1283. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1284. }
  1285. tg->cfs_rq[cpu]->h_load = load;
  1286. }
  1287. static void
  1288. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1289. {
  1290. }
  1291. static void update_shares(struct sched_domain *sd)
  1292. {
  1293. u64 now = cpu_clock(raw_smp_processor_id());
  1294. s64 elapsed = now - sd->last_update;
  1295. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1296. sd->last_update = now;
  1297. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1298. }
  1299. }
  1300. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1301. {
  1302. spin_unlock(&rq->lock);
  1303. update_shares(sd);
  1304. spin_lock(&rq->lock);
  1305. }
  1306. static void update_h_load(int cpu)
  1307. {
  1308. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1309. }
  1310. #else
  1311. static inline void update_shares(struct sched_domain *sd)
  1312. {
  1313. }
  1314. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1315. {
  1316. }
  1317. #endif
  1318. #endif
  1319. #ifdef CONFIG_FAIR_GROUP_SCHED
  1320. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1321. {
  1322. #ifdef CONFIG_SMP
  1323. cfs_rq->shares = shares;
  1324. #endif
  1325. }
  1326. #endif
  1327. #include "sched_stats.h"
  1328. #include "sched_idletask.c"
  1329. #include "sched_fair.c"
  1330. #include "sched_rt.c"
  1331. #ifdef CONFIG_SCHED_DEBUG
  1332. # include "sched_debug.c"
  1333. #endif
  1334. #define sched_class_highest (&rt_sched_class)
  1335. #define for_each_class(class) \
  1336. for (class = sched_class_highest; class; class = class->next)
  1337. static void inc_nr_running(struct rq *rq)
  1338. {
  1339. rq->nr_running++;
  1340. }
  1341. static void dec_nr_running(struct rq *rq)
  1342. {
  1343. rq->nr_running--;
  1344. }
  1345. static void set_load_weight(struct task_struct *p)
  1346. {
  1347. if (task_has_rt_policy(p)) {
  1348. p->se.load.weight = prio_to_weight[0] * 2;
  1349. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1350. return;
  1351. }
  1352. /*
  1353. * SCHED_IDLE tasks get minimal weight:
  1354. */
  1355. if (p->policy == SCHED_IDLE) {
  1356. p->se.load.weight = WEIGHT_IDLEPRIO;
  1357. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1358. return;
  1359. }
  1360. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1361. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1362. }
  1363. static void update_avg(u64 *avg, u64 sample)
  1364. {
  1365. s64 diff = sample - *avg;
  1366. *avg += diff >> 3;
  1367. }
  1368. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1369. {
  1370. sched_info_queued(p);
  1371. p->sched_class->enqueue_task(rq, p, wakeup);
  1372. p->se.on_rq = 1;
  1373. }
  1374. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1375. {
  1376. if (sleep && p->se.last_wakeup) {
  1377. update_avg(&p->se.avg_overlap,
  1378. p->se.sum_exec_runtime - p->se.last_wakeup);
  1379. p->se.last_wakeup = 0;
  1380. }
  1381. sched_info_dequeued(p);
  1382. p->sched_class->dequeue_task(rq, p, sleep);
  1383. p->se.on_rq = 0;
  1384. }
  1385. /*
  1386. * __normal_prio - return the priority that is based on the static prio
  1387. */
  1388. static inline int __normal_prio(struct task_struct *p)
  1389. {
  1390. return p->static_prio;
  1391. }
  1392. /*
  1393. * Calculate the expected normal priority: i.e. priority
  1394. * without taking RT-inheritance into account. Might be
  1395. * boosted by interactivity modifiers. Changes upon fork,
  1396. * setprio syscalls, and whenever the interactivity
  1397. * estimator recalculates.
  1398. */
  1399. static inline int normal_prio(struct task_struct *p)
  1400. {
  1401. int prio;
  1402. if (task_has_rt_policy(p))
  1403. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1404. else
  1405. prio = __normal_prio(p);
  1406. return prio;
  1407. }
  1408. /*
  1409. * Calculate the current priority, i.e. the priority
  1410. * taken into account by the scheduler. This value might
  1411. * be boosted by RT tasks, or might be boosted by
  1412. * interactivity modifiers. Will be RT if the task got
  1413. * RT-boosted. If not then it returns p->normal_prio.
  1414. */
  1415. static int effective_prio(struct task_struct *p)
  1416. {
  1417. p->normal_prio = normal_prio(p);
  1418. /*
  1419. * If we are RT tasks or we were boosted to RT priority,
  1420. * keep the priority unchanged. Otherwise, update priority
  1421. * to the normal priority:
  1422. */
  1423. if (!rt_prio(p->prio))
  1424. return p->normal_prio;
  1425. return p->prio;
  1426. }
  1427. /*
  1428. * activate_task - move a task to the runqueue.
  1429. */
  1430. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1431. {
  1432. if (task_contributes_to_load(p))
  1433. rq->nr_uninterruptible--;
  1434. enqueue_task(rq, p, wakeup);
  1435. inc_nr_running(rq);
  1436. }
  1437. /*
  1438. * deactivate_task - remove a task from the runqueue.
  1439. */
  1440. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1441. {
  1442. if (task_contributes_to_load(p))
  1443. rq->nr_uninterruptible++;
  1444. dequeue_task(rq, p, sleep);
  1445. dec_nr_running(rq);
  1446. }
  1447. /**
  1448. * task_curr - is this task currently executing on a CPU?
  1449. * @p: the task in question.
  1450. */
  1451. inline int task_curr(const struct task_struct *p)
  1452. {
  1453. return cpu_curr(task_cpu(p)) == p;
  1454. }
  1455. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1456. {
  1457. set_task_rq(p, cpu);
  1458. #ifdef CONFIG_SMP
  1459. /*
  1460. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1461. * successfuly executed on another CPU. We must ensure that updates of
  1462. * per-task data have been completed by this moment.
  1463. */
  1464. smp_wmb();
  1465. task_thread_info(p)->cpu = cpu;
  1466. #endif
  1467. }
  1468. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1469. const struct sched_class *prev_class,
  1470. int oldprio, int running)
  1471. {
  1472. if (prev_class != p->sched_class) {
  1473. if (prev_class->switched_from)
  1474. prev_class->switched_from(rq, p, running);
  1475. p->sched_class->switched_to(rq, p, running);
  1476. } else
  1477. p->sched_class->prio_changed(rq, p, oldprio, running);
  1478. }
  1479. #ifdef CONFIG_SMP
  1480. /* Used instead of source_load when we know the type == 0 */
  1481. static unsigned long weighted_cpuload(const int cpu)
  1482. {
  1483. return cpu_rq(cpu)->load.weight;
  1484. }
  1485. /*
  1486. * Is this task likely cache-hot:
  1487. */
  1488. static int
  1489. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1490. {
  1491. s64 delta;
  1492. /*
  1493. * Buddy candidates are cache hot:
  1494. */
  1495. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1496. return 1;
  1497. if (p->sched_class != &fair_sched_class)
  1498. return 0;
  1499. if (sysctl_sched_migration_cost == -1)
  1500. return 1;
  1501. if (sysctl_sched_migration_cost == 0)
  1502. return 0;
  1503. delta = now - p->se.exec_start;
  1504. return delta < (s64)sysctl_sched_migration_cost;
  1505. }
  1506. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1507. {
  1508. int old_cpu = task_cpu(p);
  1509. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1510. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1511. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1512. u64 clock_offset;
  1513. clock_offset = old_rq->clock - new_rq->clock;
  1514. #ifdef CONFIG_SCHEDSTATS
  1515. if (p->se.wait_start)
  1516. p->se.wait_start -= clock_offset;
  1517. if (p->se.sleep_start)
  1518. p->se.sleep_start -= clock_offset;
  1519. if (p->se.block_start)
  1520. p->se.block_start -= clock_offset;
  1521. if (old_cpu != new_cpu) {
  1522. schedstat_inc(p, se.nr_migrations);
  1523. if (task_hot(p, old_rq->clock, NULL))
  1524. schedstat_inc(p, se.nr_forced2_migrations);
  1525. }
  1526. #endif
  1527. p->se.vruntime -= old_cfsrq->min_vruntime -
  1528. new_cfsrq->min_vruntime;
  1529. __set_task_cpu(p, new_cpu);
  1530. }
  1531. struct migration_req {
  1532. struct list_head list;
  1533. struct task_struct *task;
  1534. int dest_cpu;
  1535. struct completion done;
  1536. };
  1537. /*
  1538. * The task's runqueue lock must be held.
  1539. * Returns true if you have to wait for migration thread.
  1540. */
  1541. static int
  1542. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1543. {
  1544. struct rq *rq = task_rq(p);
  1545. /*
  1546. * If the task is not on a runqueue (and not running), then
  1547. * it is sufficient to simply update the task's cpu field.
  1548. */
  1549. if (!p->se.on_rq && !task_running(rq, p)) {
  1550. set_task_cpu(p, dest_cpu);
  1551. return 0;
  1552. }
  1553. init_completion(&req->done);
  1554. req->task = p;
  1555. req->dest_cpu = dest_cpu;
  1556. list_add(&req->list, &rq->migration_queue);
  1557. return 1;
  1558. }
  1559. /*
  1560. * wait_task_inactive - wait for a thread to unschedule.
  1561. *
  1562. * If @match_state is nonzero, it's the @p->state value just checked and
  1563. * not expected to change. If it changes, i.e. @p might have woken up,
  1564. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1565. * we return a positive number (its total switch count). If a second call
  1566. * a short while later returns the same number, the caller can be sure that
  1567. * @p has remained unscheduled the whole time.
  1568. *
  1569. * The caller must ensure that the task *will* unschedule sometime soon,
  1570. * else this function might spin for a *long* time. This function can't
  1571. * be called with interrupts off, or it may introduce deadlock with
  1572. * smp_call_function() if an IPI is sent by the same process we are
  1573. * waiting to become inactive.
  1574. */
  1575. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1576. {
  1577. unsigned long flags;
  1578. int running, on_rq;
  1579. unsigned long ncsw;
  1580. struct rq *rq;
  1581. for (;;) {
  1582. /*
  1583. * We do the initial early heuristics without holding
  1584. * any task-queue locks at all. We'll only try to get
  1585. * the runqueue lock when things look like they will
  1586. * work out!
  1587. */
  1588. rq = task_rq(p);
  1589. /*
  1590. * If the task is actively running on another CPU
  1591. * still, just relax and busy-wait without holding
  1592. * any locks.
  1593. *
  1594. * NOTE! Since we don't hold any locks, it's not
  1595. * even sure that "rq" stays as the right runqueue!
  1596. * But we don't care, since "task_running()" will
  1597. * return false if the runqueue has changed and p
  1598. * is actually now running somewhere else!
  1599. */
  1600. while (task_running(rq, p)) {
  1601. if (match_state && unlikely(p->state != match_state))
  1602. return 0;
  1603. cpu_relax();
  1604. }
  1605. /*
  1606. * Ok, time to look more closely! We need the rq
  1607. * lock now, to be *sure*. If we're wrong, we'll
  1608. * just go back and repeat.
  1609. */
  1610. rq = task_rq_lock(p, &flags);
  1611. running = task_running(rq, p);
  1612. on_rq = p->se.on_rq;
  1613. ncsw = 0;
  1614. if (!match_state || p->state == match_state) {
  1615. ncsw = p->nivcsw + p->nvcsw;
  1616. if (unlikely(!ncsw))
  1617. ncsw = 1;
  1618. }
  1619. task_rq_unlock(rq, &flags);
  1620. /*
  1621. * If it changed from the expected state, bail out now.
  1622. */
  1623. if (unlikely(!ncsw))
  1624. break;
  1625. /*
  1626. * Was it really running after all now that we
  1627. * checked with the proper locks actually held?
  1628. *
  1629. * Oops. Go back and try again..
  1630. */
  1631. if (unlikely(running)) {
  1632. cpu_relax();
  1633. continue;
  1634. }
  1635. /*
  1636. * It's not enough that it's not actively running,
  1637. * it must be off the runqueue _entirely_, and not
  1638. * preempted!
  1639. *
  1640. * So if it wa still runnable (but just not actively
  1641. * running right now), it's preempted, and we should
  1642. * yield - it could be a while.
  1643. */
  1644. if (unlikely(on_rq)) {
  1645. schedule_timeout_uninterruptible(1);
  1646. continue;
  1647. }
  1648. /*
  1649. * Ahh, all good. It wasn't running, and it wasn't
  1650. * runnable, which means that it will never become
  1651. * running in the future either. We're all done!
  1652. */
  1653. break;
  1654. }
  1655. return ncsw;
  1656. }
  1657. /***
  1658. * kick_process - kick a running thread to enter/exit the kernel
  1659. * @p: the to-be-kicked thread
  1660. *
  1661. * Cause a process which is running on another CPU to enter
  1662. * kernel-mode, without any delay. (to get signals handled.)
  1663. *
  1664. * NOTE: this function doesnt have to take the runqueue lock,
  1665. * because all it wants to ensure is that the remote task enters
  1666. * the kernel. If the IPI races and the task has been migrated
  1667. * to another CPU then no harm is done and the purpose has been
  1668. * achieved as well.
  1669. */
  1670. void kick_process(struct task_struct *p)
  1671. {
  1672. int cpu;
  1673. preempt_disable();
  1674. cpu = task_cpu(p);
  1675. if ((cpu != smp_processor_id()) && task_curr(p))
  1676. smp_send_reschedule(cpu);
  1677. preempt_enable();
  1678. }
  1679. /*
  1680. * Return a low guess at the load of a migration-source cpu weighted
  1681. * according to the scheduling class and "nice" value.
  1682. *
  1683. * We want to under-estimate the load of migration sources, to
  1684. * balance conservatively.
  1685. */
  1686. static unsigned long source_load(int cpu, int type)
  1687. {
  1688. struct rq *rq = cpu_rq(cpu);
  1689. unsigned long total = weighted_cpuload(cpu);
  1690. if (type == 0 || !sched_feat(LB_BIAS))
  1691. return total;
  1692. return min(rq->cpu_load[type-1], total);
  1693. }
  1694. /*
  1695. * Return a high guess at the load of a migration-target cpu weighted
  1696. * according to the scheduling class and "nice" value.
  1697. */
  1698. static unsigned long target_load(int cpu, int type)
  1699. {
  1700. struct rq *rq = cpu_rq(cpu);
  1701. unsigned long total = weighted_cpuload(cpu);
  1702. if (type == 0 || !sched_feat(LB_BIAS))
  1703. return total;
  1704. return max(rq->cpu_load[type-1], total);
  1705. }
  1706. /*
  1707. * find_idlest_group finds and returns the least busy CPU group within the
  1708. * domain.
  1709. */
  1710. static struct sched_group *
  1711. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1712. {
  1713. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1714. unsigned long min_load = ULONG_MAX, this_load = 0;
  1715. int load_idx = sd->forkexec_idx;
  1716. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1717. do {
  1718. unsigned long load, avg_load;
  1719. int local_group;
  1720. int i;
  1721. /* Skip over this group if it has no CPUs allowed */
  1722. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1723. continue;
  1724. local_group = cpu_isset(this_cpu, group->cpumask);
  1725. /* Tally up the load of all CPUs in the group */
  1726. avg_load = 0;
  1727. for_each_cpu_mask_nr(i, group->cpumask) {
  1728. /* Bias balancing toward cpus of our domain */
  1729. if (local_group)
  1730. load = source_load(i, load_idx);
  1731. else
  1732. load = target_load(i, load_idx);
  1733. avg_load += load;
  1734. }
  1735. /* Adjust by relative CPU power of the group */
  1736. avg_load = sg_div_cpu_power(group,
  1737. avg_load * SCHED_LOAD_SCALE);
  1738. if (local_group) {
  1739. this_load = avg_load;
  1740. this = group;
  1741. } else if (avg_load < min_load) {
  1742. min_load = avg_load;
  1743. idlest = group;
  1744. }
  1745. } while (group = group->next, group != sd->groups);
  1746. if (!idlest || 100*this_load < imbalance*min_load)
  1747. return NULL;
  1748. return idlest;
  1749. }
  1750. /*
  1751. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1752. */
  1753. static int
  1754. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1755. cpumask_t *tmp)
  1756. {
  1757. unsigned long load, min_load = ULONG_MAX;
  1758. int idlest = -1;
  1759. int i;
  1760. /* Traverse only the allowed CPUs */
  1761. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1762. for_each_cpu_mask_nr(i, *tmp) {
  1763. load = weighted_cpuload(i);
  1764. if (load < min_load || (load == min_load && i == this_cpu)) {
  1765. min_load = load;
  1766. idlest = i;
  1767. }
  1768. }
  1769. return idlest;
  1770. }
  1771. /*
  1772. * sched_balance_self: balance the current task (running on cpu) in domains
  1773. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1774. * SD_BALANCE_EXEC.
  1775. *
  1776. * Balance, ie. select the least loaded group.
  1777. *
  1778. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1779. *
  1780. * preempt must be disabled.
  1781. */
  1782. static int sched_balance_self(int cpu, int flag)
  1783. {
  1784. struct task_struct *t = current;
  1785. struct sched_domain *tmp, *sd = NULL;
  1786. for_each_domain(cpu, tmp) {
  1787. /*
  1788. * If power savings logic is enabled for a domain, stop there.
  1789. */
  1790. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1791. break;
  1792. if (tmp->flags & flag)
  1793. sd = tmp;
  1794. }
  1795. if (sd)
  1796. update_shares(sd);
  1797. while (sd) {
  1798. cpumask_t span, tmpmask;
  1799. struct sched_group *group;
  1800. int new_cpu, weight;
  1801. if (!(sd->flags & flag)) {
  1802. sd = sd->child;
  1803. continue;
  1804. }
  1805. span = sd->span;
  1806. group = find_idlest_group(sd, t, cpu);
  1807. if (!group) {
  1808. sd = sd->child;
  1809. continue;
  1810. }
  1811. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1812. if (new_cpu == -1 || new_cpu == cpu) {
  1813. /* Now try balancing at a lower domain level of cpu */
  1814. sd = sd->child;
  1815. continue;
  1816. }
  1817. /* Now try balancing at a lower domain level of new_cpu */
  1818. cpu = new_cpu;
  1819. sd = NULL;
  1820. weight = cpus_weight(span);
  1821. for_each_domain(cpu, tmp) {
  1822. if (weight <= cpus_weight(tmp->span))
  1823. break;
  1824. if (tmp->flags & flag)
  1825. sd = tmp;
  1826. }
  1827. /* while loop will break here if sd == NULL */
  1828. }
  1829. return cpu;
  1830. }
  1831. #endif /* CONFIG_SMP */
  1832. /***
  1833. * try_to_wake_up - wake up a thread
  1834. * @p: the to-be-woken-up thread
  1835. * @state: the mask of task states that can be woken
  1836. * @sync: do a synchronous wakeup?
  1837. *
  1838. * Put it on the run-queue if it's not already there. The "current"
  1839. * thread is always on the run-queue (except when the actual
  1840. * re-schedule is in progress), and as such you're allowed to do
  1841. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1842. * runnable without the overhead of this.
  1843. *
  1844. * returns failure only if the task is already active.
  1845. */
  1846. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1847. {
  1848. int cpu, orig_cpu, this_cpu, success = 0;
  1849. unsigned long flags;
  1850. long old_state;
  1851. struct rq *rq;
  1852. if (!sched_feat(SYNC_WAKEUPS))
  1853. sync = 0;
  1854. #ifdef CONFIG_SMP
  1855. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1856. struct sched_domain *sd;
  1857. this_cpu = raw_smp_processor_id();
  1858. cpu = task_cpu(p);
  1859. for_each_domain(this_cpu, sd) {
  1860. if (cpu_isset(cpu, sd->span)) {
  1861. update_shares(sd);
  1862. break;
  1863. }
  1864. }
  1865. }
  1866. #endif
  1867. smp_wmb();
  1868. rq = task_rq_lock(p, &flags);
  1869. old_state = p->state;
  1870. if (!(old_state & state))
  1871. goto out;
  1872. if (p->se.on_rq)
  1873. goto out_running;
  1874. cpu = task_cpu(p);
  1875. orig_cpu = cpu;
  1876. this_cpu = smp_processor_id();
  1877. #ifdef CONFIG_SMP
  1878. if (unlikely(task_running(rq, p)))
  1879. goto out_activate;
  1880. cpu = p->sched_class->select_task_rq(p, sync);
  1881. if (cpu != orig_cpu) {
  1882. set_task_cpu(p, cpu);
  1883. task_rq_unlock(rq, &flags);
  1884. /* might preempt at this point */
  1885. rq = task_rq_lock(p, &flags);
  1886. old_state = p->state;
  1887. if (!(old_state & state))
  1888. goto out;
  1889. if (p->se.on_rq)
  1890. goto out_running;
  1891. this_cpu = smp_processor_id();
  1892. cpu = task_cpu(p);
  1893. }
  1894. #ifdef CONFIG_SCHEDSTATS
  1895. schedstat_inc(rq, ttwu_count);
  1896. if (cpu == this_cpu)
  1897. schedstat_inc(rq, ttwu_local);
  1898. else {
  1899. struct sched_domain *sd;
  1900. for_each_domain(this_cpu, sd) {
  1901. if (cpu_isset(cpu, sd->span)) {
  1902. schedstat_inc(sd, ttwu_wake_remote);
  1903. break;
  1904. }
  1905. }
  1906. }
  1907. #endif /* CONFIG_SCHEDSTATS */
  1908. out_activate:
  1909. #endif /* CONFIG_SMP */
  1910. schedstat_inc(p, se.nr_wakeups);
  1911. if (sync)
  1912. schedstat_inc(p, se.nr_wakeups_sync);
  1913. if (orig_cpu != cpu)
  1914. schedstat_inc(p, se.nr_wakeups_migrate);
  1915. if (cpu == this_cpu)
  1916. schedstat_inc(p, se.nr_wakeups_local);
  1917. else
  1918. schedstat_inc(p, se.nr_wakeups_remote);
  1919. update_rq_clock(rq);
  1920. activate_task(rq, p, 1);
  1921. success = 1;
  1922. out_running:
  1923. trace_mark(kernel_sched_wakeup,
  1924. "pid %d state %ld ## rq %p task %p rq->curr %p",
  1925. p->pid, p->state, rq, p, rq->curr);
  1926. check_preempt_curr(rq, p);
  1927. p->state = TASK_RUNNING;
  1928. #ifdef CONFIG_SMP
  1929. if (p->sched_class->task_wake_up)
  1930. p->sched_class->task_wake_up(rq, p);
  1931. #endif
  1932. out:
  1933. current->se.last_wakeup = current->se.sum_exec_runtime;
  1934. task_rq_unlock(rq, &flags);
  1935. return success;
  1936. }
  1937. int wake_up_process(struct task_struct *p)
  1938. {
  1939. return try_to_wake_up(p, TASK_ALL, 0);
  1940. }
  1941. EXPORT_SYMBOL(wake_up_process);
  1942. int wake_up_state(struct task_struct *p, unsigned int state)
  1943. {
  1944. return try_to_wake_up(p, state, 0);
  1945. }
  1946. /*
  1947. * Perform scheduler related setup for a newly forked process p.
  1948. * p is forked by current.
  1949. *
  1950. * __sched_fork() is basic setup used by init_idle() too:
  1951. */
  1952. static void __sched_fork(struct task_struct *p)
  1953. {
  1954. p->se.exec_start = 0;
  1955. p->se.sum_exec_runtime = 0;
  1956. p->se.prev_sum_exec_runtime = 0;
  1957. p->se.last_wakeup = 0;
  1958. p->se.avg_overlap = 0;
  1959. #ifdef CONFIG_SCHEDSTATS
  1960. p->se.wait_start = 0;
  1961. p->se.sum_sleep_runtime = 0;
  1962. p->se.sleep_start = 0;
  1963. p->se.block_start = 0;
  1964. p->se.sleep_max = 0;
  1965. p->se.block_max = 0;
  1966. p->se.exec_max = 0;
  1967. p->se.slice_max = 0;
  1968. p->se.wait_max = 0;
  1969. #endif
  1970. INIT_LIST_HEAD(&p->rt.run_list);
  1971. p->se.on_rq = 0;
  1972. INIT_LIST_HEAD(&p->se.group_node);
  1973. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1974. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1975. #endif
  1976. /*
  1977. * We mark the process as running here, but have not actually
  1978. * inserted it onto the runqueue yet. This guarantees that
  1979. * nobody will actually run it, and a signal or other external
  1980. * event cannot wake it up and insert it on the runqueue either.
  1981. */
  1982. p->state = TASK_RUNNING;
  1983. }
  1984. /*
  1985. * fork()/clone()-time setup:
  1986. */
  1987. void sched_fork(struct task_struct *p, int clone_flags)
  1988. {
  1989. int cpu = get_cpu();
  1990. __sched_fork(p);
  1991. #ifdef CONFIG_SMP
  1992. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1993. #endif
  1994. set_task_cpu(p, cpu);
  1995. /*
  1996. * Make sure we do not leak PI boosting priority to the child:
  1997. */
  1998. p->prio = current->normal_prio;
  1999. if (!rt_prio(p->prio))
  2000. p->sched_class = &fair_sched_class;
  2001. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2002. if (likely(sched_info_on()))
  2003. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2004. #endif
  2005. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2006. p->oncpu = 0;
  2007. #endif
  2008. #ifdef CONFIG_PREEMPT
  2009. /* Want to start with kernel preemption disabled. */
  2010. task_thread_info(p)->preempt_count = 1;
  2011. #endif
  2012. put_cpu();
  2013. }
  2014. /*
  2015. * wake_up_new_task - wake up a newly created task for the first time.
  2016. *
  2017. * This function will do some initial scheduler statistics housekeeping
  2018. * that must be done for every newly created context, then puts the task
  2019. * on the runqueue and wakes it.
  2020. */
  2021. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2022. {
  2023. unsigned long flags;
  2024. struct rq *rq;
  2025. rq = task_rq_lock(p, &flags);
  2026. BUG_ON(p->state != TASK_RUNNING);
  2027. update_rq_clock(rq);
  2028. p->prio = effective_prio(p);
  2029. if (!p->sched_class->task_new || !current->se.on_rq) {
  2030. activate_task(rq, p, 0);
  2031. } else {
  2032. /*
  2033. * Let the scheduling class do new task startup
  2034. * management (if any):
  2035. */
  2036. p->sched_class->task_new(rq, p);
  2037. inc_nr_running(rq);
  2038. }
  2039. trace_mark(kernel_sched_wakeup_new,
  2040. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2041. p->pid, p->state, rq, p, rq->curr);
  2042. check_preempt_curr(rq, p);
  2043. #ifdef CONFIG_SMP
  2044. if (p->sched_class->task_wake_up)
  2045. p->sched_class->task_wake_up(rq, p);
  2046. #endif
  2047. task_rq_unlock(rq, &flags);
  2048. }
  2049. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2050. /**
  2051. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2052. * @notifier: notifier struct to register
  2053. */
  2054. void preempt_notifier_register(struct preempt_notifier *notifier)
  2055. {
  2056. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2057. }
  2058. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2059. /**
  2060. * preempt_notifier_unregister - no longer interested in preemption notifications
  2061. * @notifier: notifier struct to unregister
  2062. *
  2063. * This is safe to call from within a preemption notifier.
  2064. */
  2065. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2066. {
  2067. hlist_del(&notifier->link);
  2068. }
  2069. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2070. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2071. {
  2072. struct preempt_notifier *notifier;
  2073. struct hlist_node *node;
  2074. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2075. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2076. }
  2077. static void
  2078. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2079. struct task_struct *next)
  2080. {
  2081. struct preempt_notifier *notifier;
  2082. struct hlist_node *node;
  2083. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2084. notifier->ops->sched_out(notifier, next);
  2085. }
  2086. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2087. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2088. {
  2089. }
  2090. static void
  2091. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2092. struct task_struct *next)
  2093. {
  2094. }
  2095. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2096. /**
  2097. * prepare_task_switch - prepare to switch tasks
  2098. * @rq: the runqueue preparing to switch
  2099. * @prev: the current task that is being switched out
  2100. * @next: the task we are going to switch to.
  2101. *
  2102. * This is called with the rq lock held and interrupts off. It must
  2103. * be paired with a subsequent finish_task_switch after the context
  2104. * switch.
  2105. *
  2106. * prepare_task_switch sets up locking and calls architecture specific
  2107. * hooks.
  2108. */
  2109. static inline void
  2110. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2111. struct task_struct *next)
  2112. {
  2113. fire_sched_out_preempt_notifiers(prev, next);
  2114. prepare_lock_switch(rq, next);
  2115. prepare_arch_switch(next);
  2116. }
  2117. /**
  2118. * finish_task_switch - clean up after a task-switch
  2119. * @rq: runqueue associated with task-switch
  2120. * @prev: the thread we just switched away from.
  2121. *
  2122. * finish_task_switch must be called after the context switch, paired
  2123. * with a prepare_task_switch call before the context switch.
  2124. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2125. * and do any other architecture-specific cleanup actions.
  2126. *
  2127. * Note that we may have delayed dropping an mm in context_switch(). If
  2128. * so, we finish that here outside of the runqueue lock. (Doing it
  2129. * with the lock held can cause deadlocks; see schedule() for
  2130. * details.)
  2131. */
  2132. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2133. __releases(rq->lock)
  2134. {
  2135. struct mm_struct *mm = rq->prev_mm;
  2136. long prev_state;
  2137. rq->prev_mm = NULL;
  2138. /*
  2139. * A task struct has one reference for the use as "current".
  2140. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2141. * schedule one last time. The schedule call will never return, and
  2142. * the scheduled task must drop that reference.
  2143. * The test for TASK_DEAD must occur while the runqueue locks are
  2144. * still held, otherwise prev could be scheduled on another cpu, die
  2145. * there before we look at prev->state, and then the reference would
  2146. * be dropped twice.
  2147. * Manfred Spraul <manfred@colorfullife.com>
  2148. */
  2149. prev_state = prev->state;
  2150. finish_arch_switch(prev);
  2151. finish_lock_switch(rq, prev);
  2152. #ifdef CONFIG_SMP
  2153. if (current->sched_class->post_schedule)
  2154. current->sched_class->post_schedule(rq);
  2155. #endif
  2156. fire_sched_in_preempt_notifiers(current);
  2157. if (mm)
  2158. mmdrop(mm);
  2159. if (unlikely(prev_state == TASK_DEAD)) {
  2160. /*
  2161. * Remove function-return probe instances associated with this
  2162. * task and put them back on the free list.
  2163. */
  2164. kprobe_flush_task(prev);
  2165. put_task_struct(prev);
  2166. }
  2167. }
  2168. /**
  2169. * schedule_tail - first thing a freshly forked thread must call.
  2170. * @prev: the thread we just switched away from.
  2171. */
  2172. asmlinkage void schedule_tail(struct task_struct *prev)
  2173. __releases(rq->lock)
  2174. {
  2175. struct rq *rq = this_rq();
  2176. finish_task_switch(rq, prev);
  2177. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2178. /* In this case, finish_task_switch does not reenable preemption */
  2179. preempt_enable();
  2180. #endif
  2181. if (current->set_child_tid)
  2182. put_user(task_pid_vnr(current), current->set_child_tid);
  2183. }
  2184. /*
  2185. * context_switch - switch to the new MM and the new
  2186. * thread's register state.
  2187. */
  2188. static inline void
  2189. context_switch(struct rq *rq, struct task_struct *prev,
  2190. struct task_struct *next)
  2191. {
  2192. struct mm_struct *mm, *oldmm;
  2193. prepare_task_switch(rq, prev, next);
  2194. trace_mark(kernel_sched_schedule,
  2195. "prev_pid %d next_pid %d prev_state %ld "
  2196. "## rq %p prev %p next %p",
  2197. prev->pid, next->pid, prev->state,
  2198. rq, prev, next);
  2199. mm = next->mm;
  2200. oldmm = prev->active_mm;
  2201. /*
  2202. * For paravirt, this is coupled with an exit in switch_to to
  2203. * combine the page table reload and the switch backend into
  2204. * one hypercall.
  2205. */
  2206. arch_enter_lazy_cpu_mode();
  2207. if (unlikely(!mm)) {
  2208. next->active_mm = oldmm;
  2209. atomic_inc(&oldmm->mm_count);
  2210. enter_lazy_tlb(oldmm, next);
  2211. } else
  2212. switch_mm(oldmm, mm, next);
  2213. if (unlikely(!prev->mm)) {
  2214. prev->active_mm = NULL;
  2215. rq->prev_mm = oldmm;
  2216. }
  2217. /*
  2218. * Since the runqueue lock will be released by the next
  2219. * task (which is an invalid locking op but in the case
  2220. * of the scheduler it's an obvious special-case), so we
  2221. * do an early lockdep release here:
  2222. */
  2223. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2224. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2225. #endif
  2226. /* Here we just switch the register state and the stack. */
  2227. switch_to(prev, next, prev);
  2228. barrier();
  2229. /*
  2230. * this_rq must be evaluated again because prev may have moved
  2231. * CPUs since it called schedule(), thus the 'rq' on its stack
  2232. * frame will be invalid.
  2233. */
  2234. finish_task_switch(this_rq(), prev);
  2235. }
  2236. /*
  2237. * nr_running, nr_uninterruptible and nr_context_switches:
  2238. *
  2239. * externally visible scheduler statistics: current number of runnable
  2240. * threads, current number of uninterruptible-sleeping threads, total
  2241. * number of context switches performed since bootup.
  2242. */
  2243. unsigned long nr_running(void)
  2244. {
  2245. unsigned long i, sum = 0;
  2246. for_each_online_cpu(i)
  2247. sum += cpu_rq(i)->nr_running;
  2248. return sum;
  2249. }
  2250. unsigned long nr_uninterruptible(void)
  2251. {
  2252. unsigned long i, sum = 0;
  2253. for_each_possible_cpu(i)
  2254. sum += cpu_rq(i)->nr_uninterruptible;
  2255. /*
  2256. * Since we read the counters lockless, it might be slightly
  2257. * inaccurate. Do not allow it to go below zero though:
  2258. */
  2259. if (unlikely((long)sum < 0))
  2260. sum = 0;
  2261. return sum;
  2262. }
  2263. unsigned long long nr_context_switches(void)
  2264. {
  2265. int i;
  2266. unsigned long long sum = 0;
  2267. for_each_possible_cpu(i)
  2268. sum += cpu_rq(i)->nr_switches;
  2269. return sum;
  2270. }
  2271. unsigned long nr_iowait(void)
  2272. {
  2273. unsigned long i, sum = 0;
  2274. for_each_possible_cpu(i)
  2275. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2276. return sum;
  2277. }
  2278. unsigned long nr_active(void)
  2279. {
  2280. unsigned long i, running = 0, uninterruptible = 0;
  2281. for_each_online_cpu(i) {
  2282. running += cpu_rq(i)->nr_running;
  2283. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2284. }
  2285. if (unlikely((long)uninterruptible < 0))
  2286. uninterruptible = 0;
  2287. return running + uninterruptible;
  2288. }
  2289. /*
  2290. * Update rq->cpu_load[] statistics. This function is usually called every
  2291. * scheduler tick (TICK_NSEC).
  2292. */
  2293. static void update_cpu_load(struct rq *this_rq)
  2294. {
  2295. unsigned long this_load = this_rq->load.weight;
  2296. int i, scale;
  2297. this_rq->nr_load_updates++;
  2298. /* Update our load: */
  2299. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2300. unsigned long old_load, new_load;
  2301. /* scale is effectively 1 << i now, and >> i divides by scale */
  2302. old_load = this_rq->cpu_load[i];
  2303. new_load = this_load;
  2304. /*
  2305. * Round up the averaging division if load is increasing. This
  2306. * prevents us from getting stuck on 9 if the load is 10, for
  2307. * example.
  2308. */
  2309. if (new_load > old_load)
  2310. new_load += scale-1;
  2311. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2312. }
  2313. }
  2314. #ifdef CONFIG_SMP
  2315. /*
  2316. * double_rq_lock - safely lock two runqueues
  2317. *
  2318. * Note this does not disable interrupts like task_rq_lock,
  2319. * you need to do so manually before calling.
  2320. */
  2321. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2322. __acquires(rq1->lock)
  2323. __acquires(rq2->lock)
  2324. {
  2325. BUG_ON(!irqs_disabled());
  2326. if (rq1 == rq2) {
  2327. spin_lock(&rq1->lock);
  2328. __acquire(rq2->lock); /* Fake it out ;) */
  2329. } else {
  2330. if (rq1 < rq2) {
  2331. spin_lock(&rq1->lock);
  2332. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2333. } else {
  2334. spin_lock(&rq2->lock);
  2335. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2336. }
  2337. }
  2338. update_rq_clock(rq1);
  2339. update_rq_clock(rq2);
  2340. }
  2341. /*
  2342. * double_rq_unlock - safely unlock two runqueues
  2343. *
  2344. * Note this does not restore interrupts like task_rq_unlock,
  2345. * you need to do so manually after calling.
  2346. */
  2347. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2348. __releases(rq1->lock)
  2349. __releases(rq2->lock)
  2350. {
  2351. spin_unlock(&rq1->lock);
  2352. if (rq1 != rq2)
  2353. spin_unlock(&rq2->lock);
  2354. else
  2355. __release(rq2->lock);
  2356. }
  2357. /*
  2358. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2359. */
  2360. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2361. __releases(this_rq->lock)
  2362. __acquires(busiest->lock)
  2363. __acquires(this_rq->lock)
  2364. {
  2365. int ret = 0;
  2366. if (unlikely(!irqs_disabled())) {
  2367. /* printk() doesn't work good under rq->lock */
  2368. spin_unlock(&this_rq->lock);
  2369. BUG_ON(1);
  2370. }
  2371. if (unlikely(!spin_trylock(&busiest->lock))) {
  2372. if (busiest < this_rq) {
  2373. spin_unlock(&this_rq->lock);
  2374. spin_lock(&busiest->lock);
  2375. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2376. ret = 1;
  2377. } else
  2378. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2379. }
  2380. return ret;
  2381. }
  2382. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2383. __releases(busiest->lock)
  2384. {
  2385. spin_unlock(&busiest->lock);
  2386. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2387. }
  2388. /*
  2389. * If dest_cpu is allowed for this process, migrate the task to it.
  2390. * This is accomplished by forcing the cpu_allowed mask to only
  2391. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2392. * the cpu_allowed mask is restored.
  2393. */
  2394. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2395. {
  2396. struct migration_req req;
  2397. unsigned long flags;
  2398. struct rq *rq;
  2399. rq = task_rq_lock(p, &flags);
  2400. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2401. || unlikely(!cpu_active(dest_cpu)))
  2402. goto out;
  2403. /* force the process onto the specified CPU */
  2404. if (migrate_task(p, dest_cpu, &req)) {
  2405. /* Need to wait for migration thread (might exit: take ref). */
  2406. struct task_struct *mt = rq->migration_thread;
  2407. get_task_struct(mt);
  2408. task_rq_unlock(rq, &flags);
  2409. wake_up_process(mt);
  2410. put_task_struct(mt);
  2411. wait_for_completion(&req.done);
  2412. return;
  2413. }
  2414. out:
  2415. task_rq_unlock(rq, &flags);
  2416. }
  2417. /*
  2418. * sched_exec - execve() is a valuable balancing opportunity, because at
  2419. * this point the task has the smallest effective memory and cache footprint.
  2420. */
  2421. void sched_exec(void)
  2422. {
  2423. int new_cpu, this_cpu = get_cpu();
  2424. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2425. put_cpu();
  2426. if (new_cpu != this_cpu)
  2427. sched_migrate_task(current, new_cpu);
  2428. }
  2429. /*
  2430. * pull_task - move a task from a remote runqueue to the local runqueue.
  2431. * Both runqueues must be locked.
  2432. */
  2433. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2434. struct rq *this_rq, int this_cpu)
  2435. {
  2436. deactivate_task(src_rq, p, 0);
  2437. set_task_cpu(p, this_cpu);
  2438. activate_task(this_rq, p, 0);
  2439. /*
  2440. * Note that idle threads have a prio of MAX_PRIO, for this test
  2441. * to be always true for them.
  2442. */
  2443. check_preempt_curr(this_rq, p);
  2444. }
  2445. /*
  2446. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2447. */
  2448. static
  2449. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2450. struct sched_domain *sd, enum cpu_idle_type idle,
  2451. int *all_pinned)
  2452. {
  2453. /*
  2454. * We do not migrate tasks that are:
  2455. * 1) running (obviously), or
  2456. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2457. * 3) are cache-hot on their current CPU.
  2458. */
  2459. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2460. schedstat_inc(p, se.nr_failed_migrations_affine);
  2461. return 0;
  2462. }
  2463. *all_pinned = 0;
  2464. if (task_running(rq, p)) {
  2465. schedstat_inc(p, se.nr_failed_migrations_running);
  2466. return 0;
  2467. }
  2468. /*
  2469. * Aggressive migration if:
  2470. * 1) task is cache cold, or
  2471. * 2) too many balance attempts have failed.
  2472. */
  2473. if (!task_hot(p, rq->clock, sd) ||
  2474. sd->nr_balance_failed > sd->cache_nice_tries) {
  2475. #ifdef CONFIG_SCHEDSTATS
  2476. if (task_hot(p, rq->clock, sd)) {
  2477. schedstat_inc(sd, lb_hot_gained[idle]);
  2478. schedstat_inc(p, se.nr_forced_migrations);
  2479. }
  2480. #endif
  2481. return 1;
  2482. }
  2483. if (task_hot(p, rq->clock, sd)) {
  2484. schedstat_inc(p, se.nr_failed_migrations_hot);
  2485. return 0;
  2486. }
  2487. return 1;
  2488. }
  2489. static unsigned long
  2490. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2491. unsigned long max_load_move, struct sched_domain *sd,
  2492. enum cpu_idle_type idle, int *all_pinned,
  2493. int *this_best_prio, struct rq_iterator *iterator)
  2494. {
  2495. int loops = 0, pulled = 0, pinned = 0;
  2496. struct task_struct *p;
  2497. long rem_load_move = max_load_move;
  2498. if (max_load_move == 0)
  2499. goto out;
  2500. pinned = 1;
  2501. /*
  2502. * Start the load-balancing iterator:
  2503. */
  2504. p = iterator->start(iterator->arg);
  2505. next:
  2506. if (!p || loops++ > sysctl_sched_nr_migrate)
  2507. goto out;
  2508. if ((p->se.load.weight >> 1) > rem_load_move ||
  2509. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2510. p = iterator->next(iterator->arg);
  2511. goto next;
  2512. }
  2513. pull_task(busiest, p, this_rq, this_cpu);
  2514. pulled++;
  2515. rem_load_move -= p->se.load.weight;
  2516. /*
  2517. * We only want to steal up to the prescribed amount of weighted load.
  2518. */
  2519. if (rem_load_move > 0) {
  2520. if (p->prio < *this_best_prio)
  2521. *this_best_prio = p->prio;
  2522. p = iterator->next(iterator->arg);
  2523. goto next;
  2524. }
  2525. out:
  2526. /*
  2527. * Right now, this is one of only two places pull_task() is called,
  2528. * so we can safely collect pull_task() stats here rather than
  2529. * inside pull_task().
  2530. */
  2531. schedstat_add(sd, lb_gained[idle], pulled);
  2532. if (all_pinned)
  2533. *all_pinned = pinned;
  2534. return max_load_move - rem_load_move;
  2535. }
  2536. /*
  2537. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2538. * this_rq, as part of a balancing operation within domain "sd".
  2539. * Returns 1 if successful and 0 otherwise.
  2540. *
  2541. * Called with both runqueues locked.
  2542. */
  2543. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2544. unsigned long max_load_move,
  2545. struct sched_domain *sd, enum cpu_idle_type idle,
  2546. int *all_pinned)
  2547. {
  2548. const struct sched_class *class = sched_class_highest;
  2549. unsigned long total_load_moved = 0;
  2550. int this_best_prio = this_rq->curr->prio;
  2551. do {
  2552. total_load_moved +=
  2553. class->load_balance(this_rq, this_cpu, busiest,
  2554. max_load_move - total_load_moved,
  2555. sd, idle, all_pinned, &this_best_prio);
  2556. class = class->next;
  2557. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2558. break;
  2559. } while (class && max_load_move > total_load_moved);
  2560. return total_load_moved > 0;
  2561. }
  2562. static int
  2563. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2564. struct sched_domain *sd, enum cpu_idle_type idle,
  2565. struct rq_iterator *iterator)
  2566. {
  2567. struct task_struct *p = iterator->start(iterator->arg);
  2568. int pinned = 0;
  2569. while (p) {
  2570. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2571. pull_task(busiest, p, this_rq, this_cpu);
  2572. /*
  2573. * Right now, this is only the second place pull_task()
  2574. * is called, so we can safely collect pull_task()
  2575. * stats here rather than inside pull_task().
  2576. */
  2577. schedstat_inc(sd, lb_gained[idle]);
  2578. return 1;
  2579. }
  2580. p = iterator->next(iterator->arg);
  2581. }
  2582. return 0;
  2583. }
  2584. /*
  2585. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2586. * part of active balancing operations within "domain".
  2587. * Returns 1 if successful and 0 otherwise.
  2588. *
  2589. * Called with both runqueues locked.
  2590. */
  2591. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2592. struct sched_domain *sd, enum cpu_idle_type idle)
  2593. {
  2594. const struct sched_class *class;
  2595. for (class = sched_class_highest; class; class = class->next)
  2596. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2597. return 1;
  2598. return 0;
  2599. }
  2600. /*
  2601. * find_busiest_group finds and returns the busiest CPU group within the
  2602. * domain. It calculates and returns the amount of weighted load which
  2603. * should be moved to restore balance via the imbalance parameter.
  2604. */
  2605. static struct sched_group *
  2606. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2607. unsigned long *imbalance, enum cpu_idle_type idle,
  2608. int *sd_idle, const cpumask_t *cpus, int *balance)
  2609. {
  2610. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2611. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2612. unsigned long max_pull;
  2613. unsigned long busiest_load_per_task, busiest_nr_running;
  2614. unsigned long this_load_per_task, this_nr_running;
  2615. int load_idx, group_imb = 0;
  2616. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2617. int power_savings_balance = 1;
  2618. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2619. unsigned long min_nr_running = ULONG_MAX;
  2620. struct sched_group *group_min = NULL, *group_leader = NULL;
  2621. #endif
  2622. max_load = this_load = total_load = total_pwr = 0;
  2623. busiest_load_per_task = busiest_nr_running = 0;
  2624. this_load_per_task = this_nr_running = 0;
  2625. if (idle == CPU_NOT_IDLE)
  2626. load_idx = sd->busy_idx;
  2627. else if (idle == CPU_NEWLY_IDLE)
  2628. load_idx = sd->newidle_idx;
  2629. else
  2630. load_idx = sd->idle_idx;
  2631. do {
  2632. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2633. int local_group;
  2634. int i;
  2635. int __group_imb = 0;
  2636. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2637. unsigned long sum_nr_running, sum_weighted_load;
  2638. unsigned long sum_avg_load_per_task;
  2639. unsigned long avg_load_per_task;
  2640. local_group = cpu_isset(this_cpu, group->cpumask);
  2641. if (local_group)
  2642. balance_cpu = first_cpu(group->cpumask);
  2643. /* Tally up the load of all CPUs in the group */
  2644. sum_weighted_load = sum_nr_running = avg_load = 0;
  2645. sum_avg_load_per_task = avg_load_per_task = 0;
  2646. max_cpu_load = 0;
  2647. min_cpu_load = ~0UL;
  2648. for_each_cpu_mask_nr(i, group->cpumask) {
  2649. struct rq *rq;
  2650. if (!cpu_isset(i, *cpus))
  2651. continue;
  2652. rq = cpu_rq(i);
  2653. if (*sd_idle && rq->nr_running)
  2654. *sd_idle = 0;
  2655. /* Bias balancing toward cpus of our domain */
  2656. if (local_group) {
  2657. if (idle_cpu(i) && !first_idle_cpu) {
  2658. first_idle_cpu = 1;
  2659. balance_cpu = i;
  2660. }
  2661. load = target_load(i, load_idx);
  2662. } else {
  2663. load = source_load(i, load_idx);
  2664. if (load > max_cpu_load)
  2665. max_cpu_load = load;
  2666. if (min_cpu_load > load)
  2667. min_cpu_load = load;
  2668. }
  2669. avg_load += load;
  2670. sum_nr_running += rq->nr_running;
  2671. sum_weighted_load += weighted_cpuload(i);
  2672. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2673. }
  2674. /*
  2675. * First idle cpu or the first cpu(busiest) in this sched group
  2676. * is eligible for doing load balancing at this and above
  2677. * domains. In the newly idle case, we will allow all the cpu's
  2678. * to do the newly idle load balance.
  2679. */
  2680. if (idle != CPU_NEWLY_IDLE && local_group &&
  2681. balance_cpu != this_cpu && balance) {
  2682. *balance = 0;
  2683. goto ret;
  2684. }
  2685. total_load += avg_load;
  2686. total_pwr += group->__cpu_power;
  2687. /* Adjust by relative CPU power of the group */
  2688. avg_load = sg_div_cpu_power(group,
  2689. avg_load * SCHED_LOAD_SCALE);
  2690. /*
  2691. * Consider the group unbalanced when the imbalance is larger
  2692. * than the average weight of two tasks.
  2693. *
  2694. * APZ: with cgroup the avg task weight can vary wildly and
  2695. * might not be a suitable number - should we keep a
  2696. * normalized nr_running number somewhere that negates
  2697. * the hierarchy?
  2698. */
  2699. avg_load_per_task = sg_div_cpu_power(group,
  2700. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2701. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2702. __group_imb = 1;
  2703. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2704. if (local_group) {
  2705. this_load = avg_load;
  2706. this = group;
  2707. this_nr_running = sum_nr_running;
  2708. this_load_per_task = sum_weighted_load;
  2709. } else if (avg_load > max_load &&
  2710. (sum_nr_running > group_capacity || __group_imb)) {
  2711. max_load = avg_load;
  2712. busiest = group;
  2713. busiest_nr_running = sum_nr_running;
  2714. busiest_load_per_task = sum_weighted_load;
  2715. group_imb = __group_imb;
  2716. }
  2717. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2718. /*
  2719. * Busy processors will not participate in power savings
  2720. * balance.
  2721. */
  2722. if (idle == CPU_NOT_IDLE ||
  2723. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2724. goto group_next;
  2725. /*
  2726. * If the local group is idle or completely loaded
  2727. * no need to do power savings balance at this domain
  2728. */
  2729. if (local_group && (this_nr_running >= group_capacity ||
  2730. !this_nr_running))
  2731. power_savings_balance = 0;
  2732. /*
  2733. * If a group is already running at full capacity or idle,
  2734. * don't include that group in power savings calculations
  2735. */
  2736. if (!power_savings_balance || sum_nr_running >= group_capacity
  2737. || !sum_nr_running)
  2738. goto group_next;
  2739. /*
  2740. * Calculate the group which has the least non-idle load.
  2741. * This is the group from where we need to pick up the load
  2742. * for saving power
  2743. */
  2744. if ((sum_nr_running < min_nr_running) ||
  2745. (sum_nr_running == min_nr_running &&
  2746. first_cpu(group->cpumask) <
  2747. first_cpu(group_min->cpumask))) {
  2748. group_min = group;
  2749. min_nr_running = sum_nr_running;
  2750. min_load_per_task = sum_weighted_load /
  2751. sum_nr_running;
  2752. }
  2753. /*
  2754. * Calculate the group which is almost near its
  2755. * capacity but still has some space to pick up some load
  2756. * from other group and save more power
  2757. */
  2758. if (sum_nr_running <= group_capacity - 1) {
  2759. if (sum_nr_running > leader_nr_running ||
  2760. (sum_nr_running == leader_nr_running &&
  2761. first_cpu(group->cpumask) >
  2762. first_cpu(group_leader->cpumask))) {
  2763. group_leader = group;
  2764. leader_nr_running = sum_nr_running;
  2765. }
  2766. }
  2767. group_next:
  2768. #endif
  2769. group = group->next;
  2770. } while (group != sd->groups);
  2771. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2772. goto out_balanced;
  2773. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2774. if (this_load >= avg_load ||
  2775. 100*max_load <= sd->imbalance_pct*this_load)
  2776. goto out_balanced;
  2777. busiest_load_per_task /= busiest_nr_running;
  2778. if (group_imb)
  2779. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2780. /*
  2781. * We're trying to get all the cpus to the average_load, so we don't
  2782. * want to push ourselves above the average load, nor do we wish to
  2783. * reduce the max loaded cpu below the average load, as either of these
  2784. * actions would just result in more rebalancing later, and ping-pong
  2785. * tasks around. Thus we look for the minimum possible imbalance.
  2786. * Negative imbalances (*we* are more loaded than anyone else) will
  2787. * be counted as no imbalance for these purposes -- we can't fix that
  2788. * by pulling tasks to us. Be careful of negative numbers as they'll
  2789. * appear as very large values with unsigned longs.
  2790. */
  2791. if (max_load <= busiest_load_per_task)
  2792. goto out_balanced;
  2793. /*
  2794. * In the presence of smp nice balancing, certain scenarios can have
  2795. * max load less than avg load(as we skip the groups at or below
  2796. * its cpu_power, while calculating max_load..)
  2797. */
  2798. if (max_load < avg_load) {
  2799. *imbalance = 0;
  2800. goto small_imbalance;
  2801. }
  2802. /* Don't want to pull so many tasks that a group would go idle */
  2803. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2804. /* How much load to actually move to equalise the imbalance */
  2805. *imbalance = min(max_pull * busiest->__cpu_power,
  2806. (avg_load - this_load) * this->__cpu_power)
  2807. / SCHED_LOAD_SCALE;
  2808. /*
  2809. * if *imbalance is less than the average load per runnable task
  2810. * there is no gaurantee that any tasks will be moved so we'll have
  2811. * a think about bumping its value to force at least one task to be
  2812. * moved
  2813. */
  2814. if (*imbalance < busiest_load_per_task) {
  2815. unsigned long tmp, pwr_now, pwr_move;
  2816. unsigned int imbn;
  2817. small_imbalance:
  2818. pwr_move = pwr_now = 0;
  2819. imbn = 2;
  2820. if (this_nr_running) {
  2821. this_load_per_task /= this_nr_running;
  2822. if (busiest_load_per_task > this_load_per_task)
  2823. imbn = 1;
  2824. } else
  2825. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2826. if (max_load - this_load + 2*busiest_load_per_task >=
  2827. busiest_load_per_task * imbn) {
  2828. *imbalance = busiest_load_per_task;
  2829. return busiest;
  2830. }
  2831. /*
  2832. * OK, we don't have enough imbalance to justify moving tasks,
  2833. * however we may be able to increase total CPU power used by
  2834. * moving them.
  2835. */
  2836. pwr_now += busiest->__cpu_power *
  2837. min(busiest_load_per_task, max_load);
  2838. pwr_now += this->__cpu_power *
  2839. min(this_load_per_task, this_load);
  2840. pwr_now /= SCHED_LOAD_SCALE;
  2841. /* Amount of load we'd subtract */
  2842. tmp = sg_div_cpu_power(busiest,
  2843. busiest_load_per_task * SCHED_LOAD_SCALE);
  2844. if (max_load > tmp)
  2845. pwr_move += busiest->__cpu_power *
  2846. min(busiest_load_per_task, max_load - tmp);
  2847. /* Amount of load we'd add */
  2848. if (max_load * busiest->__cpu_power <
  2849. busiest_load_per_task * SCHED_LOAD_SCALE)
  2850. tmp = sg_div_cpu_power(this,
  2851. max_load * busiest->__cpu_power);
  2852. else
  2853. tmp = sg_div_cpu_power(this,
  2854. busiest_load_per_task * SCHED_LOAD_SCALE);
  2855. pwr_move += this->__cpu_power *
  2856. min(this_load_per_task, this_load + tmp);
  2857. pwr_move /= SCHED_LOAD_SCALE;
  2858. /* Move if we gain throughput */
  2859. if (pwr_move > pwr_now)
  2860. *imbalance = busiest_load_per_task;
  2861. }
  2862. return busiest;
  2863. out_balanced:
  2864. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2865. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2866. goto ret;
  2867. if (this == group_leader && group_leader != group_min) {
  2868. *imbalance = min_load_per_task;
  2869. return group_min;
  2870. }
  2871. #endif
  2872. ret:
  2873. *imbalance = 0;
  2874. return NULL;
  2875. }
  2876. /*
  2877. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2878. */
  2879. static struct rq *
  2880. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2881. unsigned long imbalance, const cpumask_t *cpus)
  2882. {
  2883. struct rq *busiest = NULL, *rq;
  2884. unsigned long max_load = 0;
  2885. int i;
  2886. for_each_cpu_mask_nr(i, group->cpumask) {
  2887. unsigned long wl;
  2888. if (!cpu_isset(i, *cpus))
  2889. continue;
  2890. rq = cpu_rq(i);
  2891. wl = weighted_cpuload(i);
  2892. if (rq->nr_running == 1 && wl > imbalance)
  2893. continue;
  2894. if (wl > max_load) {
  2895. max_load = wl;
  2896. busiest = rq;
  2897. }
  2898. }
  2899. return busiest;
  2900. }
  2901. /*
  2902. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2903. * so long as it is large enough.
  2904. */
  2905. #define MAX_PINNED_INTERVAL 512
  2906. /*
  2907. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2908. * tasks if there is an imbalance.
  2909. */
  2910. static int load_balance(int this_cpu, struct rq *this_rq,
  2911. struct sched_domain *sd, enum cpu_idle_type idle,
  2912. int *balance, cpumask_t *cpus)
  2913. {
  2914. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2915. struct sched_group *group;
  2916. unsigned long imbalance;
  2917. struct rq *busiest;
  2918. unsigned long flags;
  2919. cpus_setall(*cpus);
  2920. /*
  2921. * When power savings policy is enabled for the parent domain, idle
  2922. * sibling can pick up load irrespective of busy siblings. In this case,
  2923. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2924. * portraying it as CPU_NOT_IDLE.
  2925. */
  2926. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2927. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2928. sd_idle = 1;
  2929. schedstat_inc(sd, lb_count[idle]);
  2930. redo:
  2931. update_shares(sd);
  2932. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2933. cpus, balance);
  2934. if (*balance == 0)
  2935. goto out_balanced;
  2936. if (!group) {
  2937. schedstat_inc(sd, lb_nobusyg[idle]);
  2938. goto out_balanced;
  2939. }
  2940. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2941. if (!busiest) {
  2942. schedstat_inc(sd, lb_nobusyq[idle]);
  2943. goto out_balanced;
  2944. }
  2945. BUG_ON(busiest == this_rq);
  2946. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2947. ld_moved = 0;
  2948. if (busiest->nr_running > 1) {
  2949. /*
  2950. * Attempt to move tasks. If find_busiest_group has found
  2951. * an imbalance but busiest->nr_running <= 1, the group is
  2952. * still unbalanced. ld_moved simply stays zero, so it is
  2953. * correctly treated as an imbalance.
  2954. */
  2955. local_irq_save(flags);
  2956. double_rq_lock(this_rq, busiest);
  2957. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2958. imbalance, sd, idle, &all_pinned);
  2959. double_rq_unlock(this_rq, busiest);
  2960. local_irq_restore(flags);
  2961. /*
  2962. * some other cpu did the load balance for us.
  2963. */
  2964. if (ld_moved && this_cpu != smp_processor_id())
  2965. resched_cpu(this_cpu);
  2966. /* All tasks on this runqueue were pinned by CPU affinity */
  2967. if (unlikely(all_pinned)) {
  2968. cpu_clear(cpu_of(busiest), *cpus);
  2969. if (!cpus_empty(*cpus))
  2970. goto redo;
  2971. goto out_balanced;
  2972. }
  2973. }
  2974. if (!ld_moved) {
  2975. schedstat_inc(sd, lb_failed[idle]);
  2976. sd->nr_balance_failed++;
  2977. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2978. spin_lock_irqsave(&busiest->lock, flags);
  2979. /* don't kick the migration_thread, if the curr
  2980. * task on busiest cpu can't be moved to this_cpu
  2981. */
  2982. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2983. spin_unlock_irqrestore(&busiest->lock, flags);
  2984. all_pinned = 1;
  2985. goto out_one_pinned;
  2986. }
  2987. if (!busiest->active_balance) {
  2988. busiest->active_balance = 1;
  2989. busiest->push_cpu = this_cpu;
  2990. active_balance = 1;
  2991. }
  2992. spin_unlock_irqrestore(&busiest->lock, flags);
  2993. if (active_balance)
  2994. wake_up_process(busiest->migration_thread);
  2995. /*
  2996. * We've kicked active balancing, reset the failure
  2997. * counter.
  2998. */
  2999. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3000. }
  3001. } else
  3002. sd->nr_balance_failed = 0;
  3003. if (likely(!active_balance)) {
  3004. /* We were unbalanced, so reset the balancing interval */
  3005. sd->balance_interval = sd->min_interval;
  3006. } else {
  3007. /*
  3008. * If we've begun active balancing, start to back off. This
  3009. * case may not be covered by the all_pinned logic if there
  3010. * is only 1 task on the busy runqueue (because we don't call
  3011. * move_tasks).
  3012. */
  3013. if (sd->balance_interval < sd->max_interval)
  3014. sd->balance_interval *= 2;
  3015. }
  3016. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3017. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3018. ld_moved = -1;
  3019. goto out;
  3020. out_balanced:
  3021. schedstat_inc(sd, lb_balanced[idle]);
  3022. sd->nr_balance_failed = 0;
  3023. out_one_pinned:
  3024. /* tune up the balancing interval */
  3025. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3026. (sd->balance_interval < sd->max_interval))
  3027. sd->balance_interval *= 2;
  3028. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3029. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3030. ld_moved = -1;
  3031. else
  3032. ld_moved = 0;
  3033. out:
  3034. if (ld_moved)
  3035. update_shares(sd);
  3036. return ld_moved;
  3037. }
  3038. /*
  3039. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3040. * tasks if there is an imbalance.
  3041. *
  3042. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3043. * this_rq is locked.
  3044. */
  3045. static int
  3046. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3047. cpumask_t *cpus)
  3048. {
  3049. struct sched_group *group;
  3050. struct rq *busiest = NULL;
  3051. unsigned long imbalance;
  3052. int ld_moved = 0;
  3053. int sd_idle = 0;
  3054. int all_pinned = 0;
  3055. cpus_setall(*cpus);
  3056. /*
  3057. * When power savings policy is enabled for the parent domain, idle
  3058. * sibling can pick up load irrespective of busy siblings. In this case,
  3059. * let the state of idle sibling percolate up as IDLE, instead of
  3060. * portraying it as CPU_NOT_IDLE.
  3061. */
  3062. if (sd->flags & SD_SHARE_CPUPOWER &&
  3063. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3064. sd_idle = 1;
  3065. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3066. redo:
  3067. update_shares_locked(this_rq, sd);
  3068. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3069. &sd_idle, cpus, NULL);
  3070. if (!group) {
  3071. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3072. goto out_balanced;
  3073. }
  3074. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3075. if (!busiest) {
  3076. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3077. goto out_balanced;
  3078. }
  3079. BUG_ON(busiest == this_rq);
  3080. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3081. ld_moved = 0;
  3082. if (busiest->nr_running > 1) {
  3083. /* Attempt to move tasks */
  3084. double_lock_balance(this_rq, busiest);
  3085. /* this_rq->clock is already updated */
  3086. update_rq_clock(busiest);
  3087. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3088. imbalance, sd, CPU_NEWLY_IDLE,
  3089. &all_pinned);
  3090. double_unlock_balance(this_rq, busiest);
  3091. if (unlikely(all_pinned)) {
  3092. cpu_clear(cpu_of(busiest), *cpus);
  3093. if (!cpus_empty(*cpus))
  3094. goto redo;
  3095. }
  3096. }
  3097. if (!ld_moved) {
  3098. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3099. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3100. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3101. return -1;
  3102. } else
  3103. sd->nr_balance_failed = 0;
  3104. update_shares_locked(this_rq, sd);
  3105. return ld_moved;
  3106. out_balanced:
  3107. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3108. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3109. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3110. return -1;
  3111. sd->nr_balance_failed = 0;
  3112. return 0;
  3113. }
  3114. /*
  3115. * idle_balance is called by schedule() if this_cpu is about to become
  3116. * idle. Attempts to pull tasks from other CPUs.
  3117. */
  3118. static void idle_balance(int this_cpu, struct rq *this_rq)
  3119. {
  3120. struct sched_domain *sd;
  3121. int pulled_task = -1;
  3122. unsigned long next_balance = jiffies + HZ;
  3123. cpumask_t tmpmask;
  3124. for_each_domain(this_cpu, sd) {
  3125. unsigned long interval;
  3126. if (!(sd->flags & SD_LOAD_BALANCE))
  3127. continue;
  3128. if (sd->flags & SD_BALANCE_NEWIDLE)
  3129. /* If we've pulled tasks over stop searching: */
  3130. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3131. sd, &tmpmask);
  3132. interval = msecs_to_jiffies(sd->balance_interval);
  3133. if (time_after(next_balance, sd->last_balance + interval))
  3134. next_balance = sd->last_balance + interval;
  3135. if (pulled_task)
  3136. break;
  3137. }
  3138. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3139. /*
  3140. * We are going idle. next_balance may be set based on
  3141. * a busy processor. So reset next_balance.
  3142. */
  3143. this_rq->next_balance = next_balance;
  3144. }
  3145. }
  3146. /*
  3147. * active_load_balance is run by migration threads. It pushes running tasks
  3148. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3149. * running on each physical CPU where possible, and avoids physical /
  3150. * logical imbalances.
  3151. *
  3152. * Called with busiest_rq locked.
  3153. */
  3154. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3155. {
  3156. int target_cpu = busiest_rq->push_cpu;
  3157. struct sched_domain *sd;
  3158. struct rq *target_rq;
  3159. /* Is there any task to move? */
  3160. if (busiest_rq->nr_running <= 1)
  3161. return;
  3162. target_rq = cpu_rq(target_cpu);
  3163. /*
  3164. * This condition is "impossible", if it occurs
  3165. * we need to fix it. Originally reported by
  3166. * Bjorn Helgaas on a 128-cpu setup.
  3167. */
  3168. BUG_ON(busiest_rq == target_rq);
  3169. /* move a task from busiest_rq to target_rq */
  3170. double_lock_balance(busiest_rq, target_rq);
  3171. update_rq_clock(busiest_rq);
  3172. update_rq_clock(target_rq);
  3173. /* Search for an sd spanning us and the target CPU. */
  3174. for_each_domain(target_cpu, sd) {
  3175. if ((sd->flags & SD_LOAD_BALANCE) &&
  3176. cpu_isset(busiest_cpu, sd->span))
  3177. break;
  3178. }
  3179. if (likely(sd)) {
  3180. schedstat_inc(sd, alb_count);
  3181. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3182. sd, CPU_IDLE))
  3183. schedstat_inc(sd, alb_pushed);
  3184. else
  3185. schedstat_inc(sd, alb_failed);
  3186. }
  3187. double_unlock_balance(busiest_rq, target_rq);
  3188. }
  3189. #ifdef CONFIG_NO_HZ
  3190. static struct {
  3191. atomic_t load_balancer;
  3192. cpumask_t cpu_mask;
  3193. } nohz ____cacheline_aligned = {
  3194. .load_balancer = ATOMIC_INIT(-1),
  3195. .cpu_mask = CPU_MASK_NONE,
  3196. };
  3197. /*
  3198. * This routine will try to nominate the ilb (idle load balancing)
  3199. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3200. * load balancing on behalf of all those cpus. If all the cpus in the system
  3201. * go into this tickless mode, then there will be no ilb owner (as there is
  3202. * no need for one) and all the cpus will sleep till the next wakeup event
  3203. * arrives...
  3204. *
  3205. * For the ilb owner, tick is not stopped. And this tick will be used
  3206. * for idle load balancing. ilb owner will still be part of
  3207. * nohz.cpu_mask..
  3208. *
  3209. * While stopping the tick, this cpu will become the ilb owner if there
  3210. * is no other owner. And will be the owner till that cpu becomes busy
  3211. * or if all cpus in the system stop their ticks at which point
  3212. * there is no need for ilb owner.
  3213. *
  3214. * When the ilb owner becomes busy, it nominates another owner, during the
  3215. * next busy scheduler_tick()
  3216. */
  3217. int select_nohz_load_balancer(int stop_tick)
  3218. {
  3219. int cpu = smp_processor_id();
  3220. if (stop_tick) {
  3221. cpu_set(cpu, nohz.cpu_mask);
  3222. cpu_rq(cpu)->in_nohz_recently = 1;
  3223. /*
  3224. * If we are going offline and still the leader, give up!
  3225. */
  3226. if (!cpu_active(cpu) &&
  3227. atomic_read(&nohz.load_balancer) == cpu) {
  3228. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3229. BUG();
  3230. return 0;
  3231. }
  3232. /* time for ilb owner also to sleep */
  3233. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3234. if (atomic_read(&nohz.load_balancer) == cpu)
  3235. atomic_set(&nohz.load_balancer, -1);
  3236. return 0;
  3237. }
  3238. if (atomic_read(&nohz.load_balancer) == -1) {
  3239. /* make me the ilb owner */
  3240. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3241. return 1;
  3242. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3243. return 1;
  3244. } else {
  3245. if (!cpu_isset(cpu, nohz.cpu_mask))
  3246. return 0;
  3247. cpu_clear(cpu, nohz.cpu_mask);
  3248. if (atomic_read(&nohz.load_balancer) == cpu)
  3249. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3250. BUG();
  3251. }
  3252. return 0;
  3253. }
  3254. #endif
  3255. static DEFINE_SPINLOCK(balancing);
  3256. /*
  3257. * It checks each scheduling domain to see if it is due to be balanced,
  3258. * and initiates a balancing operation if so.
  3259. *
  3260. * Balancing parameters are set up in arch_init_sched_domains.
  3261. */
  3262. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3263. {
  3264. int balance = 1;
  3265. struct rq *rq = cpu_rq(cpu);
  3266. unsigned long interval;
  3267. struct sched_domain *sd;
  3268. /* Earliest time when we have to do rebalance again */
  3269. unsigned long next_balance = jiffies + 60*HZ;
  3270. int update_next_balance = 0;
  3271. int need_serialize;
  3272. cpumask_t tmp;
  3273. for_each_domain(cpu, sd) {
  3274. if (!(sd->flags & SD_LOAD_BALANCE))
  3275. continue;
  3276. interval = sd->balance_interval;
  3277. if (idle != CPU_IDLE)
  3278. interval *= sd->busy_factor;
  3279. /* scale ms to jiffies */
  3280. interval = msecs_to_jiffies(interval);
  3281. if (unlikely(!interval))
  3282. interval = 1;
  3283. if (interval > HZ*NR_CPUS/10)
  3284. interval = HZ*NR_CPUS/10;
  3285. need_serialize = sd->flags & SD_SERIALIZE;
  3286. if (need_serialize) {
  3287. if (!spin_trylock(&balancing))
  3288. goto out;
  3289. }
  3290. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3291. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3292. /*
  3293. * We've pulled tasks over so either we're no
  3294. * longer idle, or one of our SMT siblings is
  3295. * not idle.
  3296. */
  3297. idle = CPU_NOT_IDLE;
  3298. }
  3299. sd->last_balance = jiffies;
  3300. }
  3301. if (need_serialize)
  3302. spin_unlock(&balancing);
  3303. out:
  3304. if (time_after(next_balance, sd->last_balance + interval)) {
  3305. next_balance = sd->last_balance + interval;
  3306. update_next_balance = 1;
  3307. }
  3308. /*
  3309. * Stop the load balance at this level. There is another
  3310. * CPU in our sched group which is doing load balancing more
  3311. * actively.
  3312. */
  3313. if (!balance)
  3314. break;
  3315. }
  3316. /*
  3317. * next_balance will be updated only when there is a need.
  3318. * When the cpu is attached to null domain for ex, it will not be
  3319. * updated.
  3320. */
  3321. if (likely(update_next_balance))
  3322. rq->next_balance = next_balance;
  3323. }
  3324. /*
  3325. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3326. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3327. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3328. */
  3329. static void run_rebalance_domains(struct softirq_action *h)
  3330. {
  3331. int this_cpu = smp_processor_id();
  3332. struct rq *this_rq = cpu_rq(this_cpu);
  3333. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3334. CPU_IDLE : CPU_NOT_IDLE;
  3335. rebalance_domains(this_cpu, idle);
  3336. #ifdef CONFIG_NO_HZ
  3337. /*
  3338. * If this cpu is the owner for idle load balancing, then do the
  3339. * balancing on behalf of the other idle cpus whose ticks are
  3340. * stopped.
  3341. */
  3342. if (this_rq->idle_at_tick &&
  3343. atomic_read(&nohz.load_balancer) == this_cpu) {
  3344. cpumask_t cpus = nohz.cpu_mask;
  3345. struct rq *rq;
  3346. int balance_cpu;
  3347. cpu_clear(this_cpu, cpus);
  3348. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3349. /*
  3350. * If this cpu gets work to do, stop the load balancing
  3351. * work being done for other cpus. Next load
  3352. * balancing owner will pick it up.
  3353. */
  3354. if (need_resched())
  3355. break;
  3356. rebalance_domains(balance_cpu, CPU_IDLE);
  3357. rq = cpu_rq(balance_cpu);
  3358. if (time_after(this_rq->next_balance, rq->next_balance))
  3359. this_rq->next_balance = rq->next_balance;
  3360. }
  3361. }
  3362. #endif
  3363. }
  3364. /*
  3365. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3366. *
  3367. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3368. * idle load balancing owner or decide to stop the periodic load balancing,
  3369. * if the whole system is idle.
  3370. */
  3371. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3372. {
  3373. #ifdef CONFIG_NO_HZ
  3374. /*
  3375. * If we were in the nohz mode recently and busy at the current
  3376. * scheduler tick, then check if we need to nominate new idle
  3377. * load balancer.
  3378. */
  3379. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3380. rq->in_nohz_recently = 0;
  3381. if (atomic_read(&nohz.load_balancer) == cpu) {
  3382. cpu_clear(cpu, nohz.cpu_mask);
  3383. atomic_set(&nohz.load_balancer, -1);
  3384. }
  3385. if (atomic_read(&nohz.load_balancer) == -1) {
  3386. /*
  3387. * simple selection for now: Nominate the
  3388. * first cpu in the nohz list to be the next
  3389. * ilb owner.
  3390. *
  3391. * TBD: Traverse the sched domains and nominate
  3392. * the nearest cpu in the nohz.cpu_mask.
  3393. */
  3394. int ilb = first_cpu(nohz.cpu_mask);
  3395. if (ilb < nr_cpu_ids)
  3396. resched_cpu(ilb);
  3397. }
  3398. }
  3399. /*
  3400. * If this cpu is idle and doing idle load balancing for all the
  3401. * cpus with ticks stopped, is it time for that to stop?
  3402. */
  3403. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3404. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3405. resched_cpu(cpu);
  3406. return;
  3407. }
  3408. /*
  3409. * If this cpu is idle and the idle load balancing is done by
  3410. * someone else, then no need raise the SCHED_SOFTIRQ
  3411. */
  3412. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3413. cpu_isset(cpu, nohz.cpu_mask))
  3414. return;
  3415. #endif
  3416. if (time_after_eq(jiffies, rq->next_balance))
  3417. raise_softirq(SCHED_SOFTIRQ);
  3418. }
  3419. #else /* CONFIG_SMP */
  3420. /*
  3421. * on UP we do not need to balance between CPUs:
  3422. */
  3423. static inline void idle_balance(int cpu, struct rq *rq)
  3424. {
  3425. }
  3426. #endif
  3427. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3428. EXPORT_PER_CPU_SYMBOL(kstat);
  3429. /*
  3430. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3431. * that have not yet been banked in case the task is currently running.
  3432. */
  3433. unsigned long long task_sched_runtime(struct task_struct *p)
  3434. {
  3435. unsigned long flags;
  3436. u64 ns, delta_exec;
  3437. struct rq *rq;
  3438. rq = task_rq_lock(p, &flags);
  3439. ns = p->se.sum_exec_runtime;
  3440. if (task_current(rq, p)) {
  3441. update_rq_clock(rq);
  3442. delta_exec = rq->clock - p->se.exec_start;
  3443. if ((s64)delta_exec > 0)
  3444. ns += delta_exec;
  3445. }
  3446. task_rq_unlock(rq, &flags);
  3447. return ns;
  3448. }
  3449. /*
  3450. * Account user cpu time to a process.
  3451. * @p: the process that the cpu time gets accounted to
  3452. * @cputime: the cpu time spent in user space since the last update
  3453. */
  3454. void account_user_time(struct task_struct *p, cputime_t cputime)
  3455. {
  3456. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3457. cputime64_t tmp;
  3458. p->utime = cputime_add(p->utime, cputime);
  3459. /* Add user time to cpustat. */
  3460. tmp = cputime_to_cputime64(cputime);
  3461. if (TASK_NICE(p) > 0)
  3462. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3463. else
  3464. cpustat->user = cputime64_add(cpustat->user, tmp);
  3465. /* Account for user time used */
  3466. acct_update_integrals(p);
  3467. }
  3468. /*
  3469. * Account guest cpu time to a process.
  3470. * @p: the process that the cpu time gets accounted to
  3471. * @cputime: the cpu time spent in virtual machine since the last update
  3472. */
  3473. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3474. {
  3475. cputime64_t tmp;
  3476. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3477. tmp = cputime_to_cputime64(cputime);
  3478. p->utime = cputime_add(p->utime, cputime);
  3479. p->gtime = cputime_add(p->gtime, cputime);
  3480. cpustat->user = cputime64_add(cpustat->user, tmp);
  3481. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3482. }
  3483. /*
  3484. * Account scaled user cpu time to a process.
  3485. * @p: the process that the cpu time gets accounted to
  3486. * @cputime: the cpu time spent in user space since the last update
  3487. */
  3488. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3489. {
  3490. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3491. }
  3492. /*
  3493. * Account system cpu time to a process.
  3494. * @p: the process that the cpu time gets accounted to
  3495. * @hardirq_offset: the offset to subtract from hardirq_count()
  3496. * @cputime: the cpu time spent in kernel space since the last update
  3497. */
  3498. void account_system_time(struct task_struct *p, int hardirq_offset,
  3499. cputime_t cputime)
  3500. {
  3501. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3502. struct rq *rq = this_rq();
  3503. cputime64_t tmp;
  3504. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3505. account_guest_time(p, cputime);
  3506. return;
  3507. }
  3508. p->stime = cputime_add(p->stime, cputime);
  3509. /* Add system time to cpustat. */
  3510. tmp = cputime_to_cputime64(cputime);
  3511. if (hardirq_count() - hardirq_offset)
  3512. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3513. else if (softirq_count())
  3514. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3515. else if (p != rq->idle)
  3516. cpustat->system = cputime64_add(cpustat->system, tmp);
  3517. else if (atomic_read(&rq->nr_iowait) > 0)
  3518. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3519. else
  3520. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3521. /* Account for system time used */
  3522. acct_update_integrals(p);
  3523. }
  3524. /*
  3525. * Account scaled system cpu time to a process.
  3526. * @p: the process that the cpu time gets accounted to
  3527. * @hardirq_offset: the offset to subtract from hardirq_count()
  3528. * @cputime: the cpu time spent in kernel space since the last update
  3529. */
  3530. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3531. {
  3532. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3533. }
  3534. /*
  3535. * Account for involuntary wait time.
  3536. * @p: the process from which the cpu time has been stolen
  3537. * @steal: the cpu time spent in involuntary wait
  3538. */
  3539. void account_steal_time(struct task_struct *p, cputime_t steal)
  3540. {
  3541. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3542. cputime64_t tmp = cputime_to_cputime64(steal);
  3543. struct rq *rq = this_rq();
  3544. if (p == rq->idle) {
  3545. p->stime = cputime_add(p->stime, steal);
  3546. if (atomic_read(&rq->nr_iowait) > 0)
  3547. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3548. else
  3549. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3550. } else
  3551. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3552. }
  3553. /*
  3554. * Use precise platform statistics if available:
  3555. */
  3556. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3557. cputime_t task_utime(struct task_struct *p)
  3558. {
  3559. return p->utime;
  3560. }
  3561. cputime_t task_stime(struct task_struct *p)
  3562. {
  3563. return p->stime;
  3564. }
  3565. #else
  3566. cputime_t task_utime(struct task_struct *p)
  3567. {
  3568. clock_t utime = cputime_to_clock_t(p->utime),
  3569. total = utime + cputime_to_clock_t(p->stime);
  3570. u64 temp;
  3571. /*
  3572. * Use CFS's precise accounting:
  3573. */
  3574. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3575. if (total) {
  3576. temp *= utime;
  3577. do_div(temp, total);
  3578. }
  3579. utime = (clock_t)temp;
  3580. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3581. return p->prev_utime;
  3582. }
  3583. cputime_t task_stime(struct task_struct *p)
  3584. {
  3585. clock_t stime;
  3586. /*
  3587. * Use CFS's precise accounting. (we subtract utime from
  3588. * the total, to make sure the total observed by userspace
  3589. * grows monotonically - apps rely on that):
  3590. */
  3591. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3592. cputime_to_clock_t(task_utime(p));
  3593. if (stime >= 0)
  3594. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3595. return p->prev_stime;
  3596. }
  3597. #endif
  3598. inline cputime_t task_gtime(struct task_struct *p)
  3599. {
  3600. return p->gtime;
  3601. }
  3602. /*
  3603. * This function gets called by the timer code, with HZ frequency.
  3604. * We call it with interrupts disabled.
  3605. *
  3606. * It also gets called by the fork code, when changing the parent's
  3607. * timeslices.
  3608. */
  3609. void scheduler_tick(void)
  3610. {
  3611. int cpu = smp_processor_id();
  3612. struct rq *rq = cpu_rq(cpu);
  3613. struct task_struct *curr = rq->curr;
  3614. sched_clock_tick();
  3615. spin_lock(&rq->lock);
  3616. update_rq_clock(rq);
  3617. update_cpu_load(rq);
  3618. curr->sched_class->task_tick(rq, curr, 0);
  3619. spin_unlock(&rq->lock);
  3620. #ifdef CONFIG_SMP
  3621. rq->idle_at_tick = idle_cpu(cpu);
  3622. trigger_load_balance(rq, cpu);
  3623. #endif
  3624. }
  3625. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3626. defined(CONFIG_PREEMPT_TRACER))
  3627. static inline unsigned long get_parent_ip(unsigned long addr)
  3628. {
  3629. if (in_lock_functions(addr)) {
  3630. addr = CALLER_ADDR2;
  3631. if (in_lock_functions(addr))
  3632. addr = CALLER_ADDR3;
  3633. }
  3634. return addr;
  3635. }
  3636. void __kprobes add_preempt_count(int val)
  3637. {
  3638. #ifdef CONFIG_DEBUG_PREEMPT
  3639. /*
  3640. * Underflow?
  3641. */
  3642. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3643. return;
  3644. #endif
  3645. preempt_count() += val;
  3646. #ifdef CONFIG_DEBUG_PREEMPT
  3647. /*
  3648. * Spinlock count overflowing soon?
  3649. */
  3650. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3651. PREEMPT_MASK - 10);
  3652. #endif
  3653. if (preempt_count() == val)
  3654. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3655. }
  3656. EXPORT_SYMBOL(add_preempt_count);
  3657. void __kprobes sub_preempt_count(int val)
  3658. {
  3659. #ifdef CONFIG_DEBUG_PREEMPT
  3660. /*
  3661. * Underflow?
  3662. */
  3663. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3664. return;
  3665. /*
  3666. * Is the spinlock portion underflowing?
  3667. */
  3668. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3669. !(preempt_count() & PREEMPT_MASK)))
  3670. return;
  3671. #endif
  3672. if (preempt_count() == val)
  3673. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3674. preempt_count() -= val;
  3675. }
  3676. EXPORT_SYMBOL(sub_preempt_count);
  3677. #endif
  3678. /*
  3679. * Print scheduling while atomic bug:
  3680. */
  3681. static noinline void __schedule_bug(struct task_struct *prev)
  3682. {
  3683. struct pt_regs *regs = get_irq_regs();
  3684. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3685. prev->comm, prev->pid, preempt_count());
  3686. debug_show_held_locks(prev);
  3687. print_modules();
  3688. if (irqs_disabled())
  3689. print_irqtrace_events(prev);
  3690. if (regs)
  3691. show_regs(regs);
  3692. else
  3693. dump_stack();
  3694. }
  3695. /*
  3696. * Various schedule()-time debugging checks and statistics:
  3697. */
  3698. static inline void schedule_debug(struct task_struct *prev)
  3699. {
  3700. /*
  3701. * Test if we are atomic. Since do_exit() needs to call into
  3702. * schedule() atomically, we ignore that path for now.
  3703. * Otherwise, whine if we are scheduling when we should not be.
  3704. */
  3705. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3706. __schedule_bug(prev);
  3707. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3708. schedstat_inc(this_rq(), sched_count);
  3709. #ifdef CONFIG_SCHEDSTATS
  3710. if (unlikely(prev->lock_depth >= 0)) {
  3711. schedstat_inc(this_rq(), bkl_count);
  3712. schedstat_inc(prev, sched_info.bkl_count);
  3713. }
  3714. #endif
  3715. }
  3716. /*
  3717. * Pick up the highest-prio task:
  3718. */
  3719. static inline struct task_struct *
  3720. pick_next_task(struct rq *rq, struct task_struct *prev)
  3721. {
  3722. const struct sched_class *class;
  3723. struct task_struct *p;
  3724. /*
  3725. * Optimization: we know that if all tasks are in
  3726. * the fair class we can call that function directly:
  3727. */
  3728. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3729. p = fair_sched_class.pick_next_task(rq);
  3730. if (likely(p))
  3731. return p;
  3732. }
  3733. class = sched_class_highest;
  3734. for ( ; ; ) {
  3735. p = class->pick_next_task(rq);
  3736. if (p)
  3737. return p;
  3738. /*
  3739. * Will never be NULL as the idle class always
  3740. * returns a non-NULL p:
  3741. */
  3742. class = class->next;
  3743. }
  3744. }
  3745. /*
  3746. * schedule() is the main scheduler function.
  3747. */
  3748. asmlinkage void __sched schedule(void)
  3749. {
  3750. struct task_struct *prev, *next;
  3751. unsigned long *switch_count;
  3752. struct rq *rq;
  3753. int cpu;
  3754. need_resched:
  3755. preempt_disable();
  3756. cpu = smp_processor_id();
  3757. rq = cpu_rq(cpu);
  3758. rcu_qsctr_inc(cpu);
  3759. prev = rq->curr;
  3760. switch_count = &prev->nivcsw;
  3761. release_kernel_lock(prev);
  3762. need_resched_nonpreemptible:
  3763. schedule_debug(prev);
  3764. if (sched_feat(HRTICK))
  3765. hrtick_clear(rq);
  3766. /*
  3767. * Do the rq-clock update outside the rq lock:
  3768. */
  3769. local_irq_disable();
  3770. update_rq_clock(rq);
  3771. spin_lock(&rq->lock);
  3772. clear_tsk_need_resched(prev);
  3773. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3774. if (unlikely(signal_pending_state(prev->state, prev)))
  3775. prev->state = TASK_RUNNING;
  3776. else
  3777. deactivate_task(rq, prev, 1);
  3778. switch_count = &prev->nvcsw;
  3779. }
  3780. #ifdef CONFIG_SMP
  3781. if (prev->sched_class->pre_schedule)
  3782. prev->sched_class->pre_schedule(rq, prev);
  3783. #endif
  3784. if (unlikely(!rq->nr_running))
  3785. idle_balance(cpu, rq);
  3786. prev->sched_class->put_prev_task(rq, prev);
  3787. next = pick_next_task(rq, prev);
  3788. if (likely(prev != next)) {
  3789. sched_info_switch(prev, next);
  3790. rq->nr_switches++;
  3791. rq->curr = next;
  3792. ++*switch_count;
  3793. context_switch(rq, prev, next); /* unlocks the rq */
  3794. /*
  3795. * the context switch might have flipped the stack from under
  3796. * us, hence refresh the local variables.
  3797. */
  3798. cpu = smp_processor_id();
  3799. rq = cpu_rq(cpu);
  3800. } else
  3801. spin_unlock_irq(&rq->lock);
  3802. if (unlikely(reacquire_kernel_lock(current) < 0))
  3803. goto need_resched_nonpreemptible;
  3804. preempt_enable_no_resched();
  3805. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3806. goto need_resched;
  3807. }
  3808. EXPORT_SYMBOL(schedule);
  3809. #ifdef CONFIG_PREEMPT
  3810. /*
  3811. * this is the entry point to schedule() from in-kernel preemption
  3812. * off of preempt_enable. Kernel preemptions off return from interrupt
  3813. * occur there and call schedule directly.
  3814. */
  3815. asmlinkage void __sched preempt_schedule(void)
  3816. {
  3817. struct thread_info *ti = current_thread_info();
  3818. /*
  3819. * If there is a non-zero preempt_count or interrupts are disabled,
  3820. * we do not want to preempt the current task. Just return..
  3821. */
  3822. if (likely(ti->preempt_count || irqs_disabled()))
  3823. return;
  3824. do {
  3825. add_preempt_count(PREEMPT_ACTIVE);
  3826. schedule();
  3827. sub_preempt_count(PREEMPT_ACTIVE);
  3828. /*
  3829. * Check again in case we missed a preemption opportunity
  3830. * between schedule and now.
  3831. */
  3832. barrier();
  3833. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3834. }
  3835. EXPORT_SYMBOL(preempt_schedule);
  3836. /*
  3837. * this is the entry point to schedule() from kernel preemption
  3838. * off of irq context.
  3839. * Note, that this is called and return with irqs disabled. This will
  3840. * protect us against recursive calling from irq.
  3841. */
  3842. asmlinkage void __sched preempt_schedule_irq(void)
  3843. {
  3844. struct thread_info *ti = current_thread_info();
  3845. /* Catch callers which need to be fixed */
  3846. BUG_ON(ti->preempt_count || !irqs_disabled());
  3847. do {
  3848. add_preempt_count(PREEMPT_ACTIVE);
  3849. local_irq_enable();
  3850. schedule();
  3851. local_irq_disable();
  3852. sub_preempt_count(PREEMPT_ACTIVE);
  3853. /*
  3854. * Check again in case we missed a preemption opportunity
  3855. * between schedule and now.
  3856. */
  3857. barrier();
  3858. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3859. }
  3860. #endif /* CONFIG_PREEMPT */
  3861. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3862. void *key)
  3863. {
  3864. return try_to_wake_up(curr->private, mode, sync);
  3865. }
  3866. EXPORT_SYMBOL(default_wake_function);
  3867. /*
  3868. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3869. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3870. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3871. *
  3872. * There are circumstances in which we can try to wake a task which has already
  3873. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3874. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3875. */
  3876. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3877. int nr_exclusive, int sync, void *key)
  3878. {
  3879. wait_queue_t *curr, *next;
  3880. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3881. unsigned flags = curr->flags;
  3882. if (curr->func(curr, mode, sync, key) &&
  3883. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3884. break;
  3885. }
  3886. }
  3887. /**
  3888. * __wake_up - wake up threads blocked on a waitqueue.
  3889. * @q: the waitqueue
  3890. * @mode: which threads
  3891. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3892. * @key: is directly passed to the wakeup function
  3893. */
  3894. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3895. int nr_exclusive, void *key)
  3896. {
  3897. unsigned long flags;
  3898. spin_lock_irqsave(&q->lock, flags);
  3899. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3900. spin_unlock_irqrestore(&q->lock, flags);
  3901. }
  3902. EXPORT_SYMBOL(__wake_up);
  3903. /*
  3904. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3905. */
  3906. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3907. {
  3908. __wake_up_common(q, mode, 1, 0, NULL);
  3909. }
  3910. /**
  3911. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3912. * @q: the waitqueue
  3913. * @mode: which threads
  3914. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3915. *
  3916. * The sync wakeup differs that the waker knows that it will schedule
  3917. * away soon, so while the target thread will be woken up, it will not
  3918. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3919. * with each other. This can prevent needless bouncing between CPUs.
  3920. *
  3921. * On UP it can prevent extra preemption.
  3922. */
  3923. void
  3924. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3925. {
  3926. unsigned long flags;
  3927. int sync = 1;
  3928. if (unlikely(!q))
  3929. return;
  3930. if (unlikely(!nr_exclusive))
  3931. sync = 0;
  3932. spin_lock_irqsave(&q->lock, flags);
  3933. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3934. spin_unlock_irqrestore(&q->lock, flags);
  3935. }
  3936. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3937. void complete(struct completion *x)
  3938. {
  3939. unsigned long flags;
  3940. spin_lock_irqsave(&x->wait.lock, flags);
  3941. x->done++;
  3942. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3943. spin_unlock_irqrestore(&x->wait.lock, flags);
  3944. }
  3945. EXPORT_SYMBOL(complete);
  3946. void complete_all(struct completion *x)
  3947. {
  3948. unsigned long flags;
  3949. spin_lock_irqsave(&x->wait.lock, flags);
  3950. x->done += UINT_MAX/2;
  3951. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3952. spin_unlock_irqrestore(&x->wait.lock, flags);
  3953. }
  3954. EXPORT_SYMBOL(complete_all);
  3955. static inline long __sched
  3956. do_wait_for_common(struct completion *x, long timeout, int state)
  3957. {
  3958. if (!x->done) {
  3959. DECLARE_WAITQUEUE(wait, current);
  3960. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3961. __add_wait_queue_tail(&x->wait, &wait);
  3962. do {
  3963. if ((state == TASK_INTERRUPTIBLE &&
  3964. signal_pending(current)) ||
  3965. (state == TASK_KILLABLE &&
  3966. fatal_signal_pending(current))) {
  3967. timeout = -ERESTARTSYS;
  3968. break;
  3969. }
  3970. __set_current_state(state);
  3971. spin_unlock_irq(&x->wait.lock);
  3972. timeout = schedule_timeout(timeout);
  3973. spin_lock_irq(&x->wait.lock);
  3974. } while (!x->done && timeout);
  3975. __remove_wait_queue(&x->wait, &wait);
  3976. if (!x->done)
  3977. return timeout;
  3978. }
  3979. x->done--;
  3980. return timeout ?: 1;
  3981. }
  3982. static long __sched
  3983. wait_for_common(struct completion *x, long timeout, int state)
  3984. {
  3985. might_sleep();
  3986. spin_lock_irq(&x->wait.lock);
  3987. timeout = do_wait_for_common(x, timeout, state);
  3988. spin_unlock_irq(&x->wait.lock);
  3989. return timeout;
  3990. }
  3991. void __sched wait_for_completion(struct completion *x)
  3992. {
  3993. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3994. }
  3995. EXPORT_SYMBOL(wait_for_completion);
  3996. unsigned long __sched
  3997. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3998. {
  3999. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4000. }
  4001. EXPORT_SYMBOL(wait_for_completion_timeout);
  4002. int __sched wait_for_completion_interruptible(struct completion *x)
  4003. {
  4004. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4005. if (t == -ERESTARTSYS)
  4006. return t;
  4007. return 0;
  4008. }
  4009. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4010. unsigned long __sched
  4011. wait_for_completion_interruptible_timeout(struct completion *x,
  4012. unsigned long timeout)
  4013. {
  4014. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4015. }
  4016. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4017. int __sched wait_for_completion_killable(struct completion *x)
  4018. {
  4019. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4020. if (t == -ERESTARTSYS)
  4021. return t;
  4022. return 0;
  4023. }
  4024. EXPORT_SYMBOL(wait_for_completion_killable);
  4025. /**
  4026. * try_wait_for_completion - try to decrement a completion without blocking
  4027. * @x: completion structure
  4028. *
  4029. * Returns: 0 if a decrement cannot be done without blocking
  4030. * 1 if a decrement succeeded.
  4031. *
  4032. * If a completion is being used as a counting completion,
  4033. * attempt to decrement the counter without blocking. This
  4034. * enables us to avoid waiting if the resource the completion
  4035. * is protecting is not available.
  4036. */
  4037. bool try_wait_for_completion(struct completion *x)
  4038. {
  4039. int ret = 1;
  4040. spin_lock_irq(&x->wait.lock);
  4041. if (!x->done)
  4042. ret = 0;
  4043. else
  4044. x->done--;
  4045. spin_unlock_irq(&x->wait.lock);
  4046. return ret;
  4047. }
  4048. EXPORT_SYMBOL(try_wait_for_completion);
  4049. /**
  4050. * completion_done - Test to see if a completion has any waiters
  4051. * @x: completion structure
  4052. *
  4053. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4054. * 1 if there are no waiters.
  4055. *
  4056. */
  4057. bool completion_done(struct completion *x)
  4058. {
  4059. int ret = 1;
  4060. spin_lock_irq(&x->wait.lock);
  4061. if (!x->done)
  4062. ret = 0;
  4063. spin_unlock_irq(&x->wait.lock);
  4064. return ret;
  4065. }
  4066. EXPORT_SYMBOL(completion_done);
  4067. static long __sched
  4068. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4069. {
  4070. unsigned long flags;
  4071. wait_queue_t wait;
  4072. init_waitqueue_entry(&wait, current);
  4073. __set_current_state(state);
  4074. spin_lock_irqsave(&q->lock, flags);
  4075. __add_wait_queue(q, &wait);
  4076. spin_unlock(&q->lock);
  4077. timeout = schedule_timeout(timeout);
  4078. spin_lock_irq(&q->lock);
  4079. __remove_wait_queue(q, &wait);
  4080. spin_unlock_irqrestore(&q->lock, flags);
  4081. return timeout;
  4082. }
  4083. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4084. {
  4085. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4086. }
  4087. EXPORT_SYMBOL(interruptible_sleep_on);
  4088. long __sched
  4089. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4090. {
  4091. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4092. }
  4093. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4094. void __sched sleep_on(wait_queue_head_t *q)
  4095. {
  4096. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4097. }
  4098. EXPORT_SYMBOL(sleep_on);
  4099. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4100. {
  4101. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4102. }
  4103. EXPORT_SYMBOL(sleep_on_timeout);
  4104. #ifdef CONFIG_RT_MUTEXES
  4105. /*
  4106. * rt_mutex_setprio - set the current priority of a task
  4107. * @p: task
  4108. * @prio: prio value (kernel-internal form)
  4109. *
  4110. * This function changes the 'effective' priority of a task. It does
  4111. * not touch ->normal_prio like __setscheduler().
  4112. *
  4113. * Used by the rt_mutex code to implement priority inheritance logic.
  4114. */
  4115. void rt_mutex_setprio(struct task_struct *p, int prio)
  4116. {
  4117. unsigned long flags;
  4118. int oldprio, on_rq, running;
  4119. struct rq *rq;
  4120. const struct sched_class *prev_class = p->sched_class;
  4121. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4122. rq = task_rq_lock(p, &flags);
  4123. update_rq_clock(rq);
  4124. oldprio = p->prio;
  4125. on_rq = p->se.on_rq;
  4126. running = task_current(rq, p);
  4127. if (on_rq)
  4128. dequeue_task(rq, p, 0);
  4129. if (running)
  4130. p->sched_class->put_prev_task(rq, p);
  4131. if (rt_prio(prio))
  4132. p->sched_class = &rt_sched_class;
  4133. else
  4134. p->sched_class = &fair_sched_class;
  4135. p->prio = prio;
  4136. if (running)
  4137. p->sched_class->set_curr_task(rq);
  4138. if (on_rq) {
  4139. enqueue_task(rq, p, 0);
  4140. check_class_changed(rq, p, prev_class, oldprio, running);
  4141. }
  4142. task_rq_unlock(rq, &flags);
  4143. }
  4144. #endif
  4145. void set_user_nice(struct task_struct *p, long nice)
  4146. {
  4147. int old_prio, delta, on_rq;
  4148. unsigned long flags;
  4149. struct rq *rq;
  4150. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4151. return;
  4152. /*
  4153. * We have to be careful, if called from sys_setpriority(),
  4154. * the task might be in the middle of scheduling on another CPU.
  4155. */
  4156. rq = task_rq_lock(p, &flags);
  4157. update_rq_clock(rq);
  4158. /*
  4159. * The RT priorities are set via sched_setscheduler(), but we still
  4160. * allow the 'normal' nice value to be set - but as expected
  4161. * it wont have any effect on scheduling until the task is
  4162. * SCHED_FIFO/SCHED_RR:
  4163. */
  4164. if (task_has_rt_policy(p)) {
  4165. p->static_prio = NICE_TO_PRIO(nice);
  4166. goto out_unlock;
  4167. }
  4168. on_rq = p->se.on_rq;
  4169. if (on_rq)
  4170. dequeue_task(rq, p, 0);
  4171. p->static_prio = NICE_TO_PRIO(nice);
  4172. set_load_weight(p);
  4173. old_prio = p->prio;
  4174. p->prio = effective_prio(p);
  4175. delta = p->prio - old_prio;
  4176. if (on_rq) {
  4177. enqueue_task(rq, p, 0);
  4178. /*
  4179. * If the task increased its priority or is running and
  4180. * lowered its priority, then reschedule its CPU:
  4181. */
  4182. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4183. resched_task(rq->curr);
  4184. }
  4185. out_unlock:
  4186. task_rq_unlock(rq, &flags);
  4187. }
  4188. EXPORT_SYMBOL(set_user_nice);
  4189. /*
  4190. * can_nice - check if a task can reduce its nice value
  4191. * @p: task
  4192. * @nice: nice value
  4193. */
  4194. int can_nice(const struct task_struct *p, const int nice)
  4195. {
  4196. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4197. int nice_rlim = 20 - nice;
  4198. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4199. capable(CAP_SYS_NICE));
  4200. }
  4201. #ifdef __ARCH_WANT_SYS_NICE
  4202. /*
  4203. * sys_nice - change the priority of the current process.
  4204. * @increment: priority increment
  4205. *
  4206. * sys_setpriority is a more generic, but much slower function that
  4207. * does similar things.
  4208. */
  4209. asmlinkage long sys_nice(int increment)
  4210. {
  4211. long nice, retval;
  4212. /*
  4213. * Setpriority might change our priority at the same moment.
  4214. * We don't have to worry. Conceptually one call occurs first
  4215. * and we have a single winner.
  4216. */
  4217. if (increment < -40)
  4218. increment = -40;
  4219. if (increment > 40)
  4220. increment = 40;
  4221. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4222. if (nice < -20)
  4223. nice = -20;
  4224. if (nice > 19)
  4225. nice = 19;
  4226. if (increment < 0 && !can_nice(current, nice))
  4227. return -EPERM;
  4228. retval = security_task_setnice(current, nice);
  4229. if (retval)
  4230. return retval;
  4231. set_user_nice(current, nice);
  4232. return 0;
  4233. }
  4234. #endif
  4235. /**
  4236. * task_prio - return the priority value of a given task.
  4237. * @p: the task in question.
  4238. *
  4239. * This is the priority value as seen by users in /proc.
  4240. * RT tasks are offset by -200. Normal tasks are centered
  4241. * around 0, value goes from -16 to +15.
  4242. */
  4243. int task_prio(const struct task_struct *p)
  4244. {
  4245. return p->prio - MAX_RT_PRIO;
  4246. }
  4247. /**
  4248. * task_nice - return the nice value of a given task.
  4249. * @p: the task in question.
  4250. */
  4251. int task_nice(const struct task_struct *p)
  4252. {
  4253. return TASK_NICE(p);
  4254. }
  4255. EXPORT_SYMBOL(task_nice);
  4256. /**
  4257. * idle_cpu - is a given cpu idle currently?
  4258. * @cpu: the processor in question.
  4259. */
  4260. int idle_cpu(int cpu)
  4261. {
  4262. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4263. }
  4264. /**
  4265. * idle_task - return the idle task for a given cpu.
  4266. * @cpu: the processor in question.
  4267. */
  4268. struct task_struct *idle_task(int cpu)
  4269. {
  4270. return cpu_rq(cpu)->idle;
  4271. }
  4272. /**
  4273. * find_process_by_pid - find a process with a matching PID value.
  4274. * @pid: the pid in question.
  4275. */
  4276. static struct task_struct *find_process_by_pid(pid_t pid)
  4277. {
  4278. return pid ? find_task_by_vpid(pid) : current;
  4279. }
  4280. /* Actually do priority change: must hold rq lock. */
  4281. static void
  4282. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4283. {
  4284. BUG_ON(p->se.on_rq);
  4285. p->policy = policy;
  4286. switch (p->policy) {
  4287. case SCHED_NORMAL:
  4288. case SCHED_BATCH:
  4289. case SCHED_IDLE:
  4290. p->sched_class = &fair_sched_class;
  4291. break;
  4292. case SCHED_FIFO:
  4293. case SCHED_RR:
  4294. p->sched_class = &rt_sched_class;
  4295. break;
  4296. }
  4297. p->rt_priority = prio;
  4298. p->normal_prio = normal_prio(p);
  4299. /* we are holding p->pi_lock already */
  4300. p->prio = rt_mutex_getprio(p);
  4301. set_load_weight(p);
  4302. }
  4303. static int __sched_setscheduler(struct task_struct *p, int policy,
  4304. struct sched_param *param, bool user)
  4305. {
  4306. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4307. unsigned long flags;
  4308. const struct sched_class *prev_class = p->sched_class;
  4309. struct rq *rq;
  4310. /* may grab non-irq protected spin_locks */
  4311. BUG_ON(in_interrupt());
  4312. recheck:
  4313. /* double check policy once rq lock held */
  4314. if (policy < 0)
  4315. policy = oldpolicy = p->policy;
  4316. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4317. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4318. policy != SCHED_IDLE)
  4319. return -EINVAL;
  4320. /*
  4321. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4322. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4323. * SCHED_BATCH and SCHED_IDLE is 0.
  4324. */
  4325. if (param->sched_priority < 0 ||
  4326. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4327. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4328. return -EINVAL;
  4329. if (rt_policy(policy) != (param->sched_priority != 0))
  4330. return -EINVAL;
  4331. /*
  4332. * Allow unprivileged RT tasks to decrease priority:
  4333. */
  4334. if (user && !capable(CAP_SYS_NICE)) {
  4335. if (rt_policy(policy)) {
  4336. unsigned long rlim_rtprio;
  4337. if (!lock_task_sighand(p, &flags))
  4338. return -ESRCH;
  4339. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4340. unlock_task_sighand(p, &flags);
  4341. /* can't set/change the rt policy */
  4342. if (policy != p->policy && !rlim_rtprio)
  4343. return -EPERM;
  4344. /* can't increase priority */
  4345. if (param->sched_priority > p->rt_priority &&
  4346. param->sched_priority > rlim_rtprio)
  4347. return -EPERM;
  4348. }
  4349. /*
  4350. * Like positive nice levels, dont allow tasks to
  4351. * move out of SCHED_IDLE either:
  4352. */
  4353. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4354. return -EPERM;
  4355. /* can't change other user's priorities */
  4356. if ((current->euid != p->euid) &&
  4357. (current->euid != p->uid))
  4358. return -EPERM;
  4359. }
  4360. if (user) {
  4361. #ifdef CONFIG_RT_GROUP_SCHED
  4362. /*
  4363. * Do not allow realtime tasks into groups that have no runtime
  4364. * assigned.
  4365. */
  4366. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4367. return -EPERM;
  4368. #endif
  4369. retval = security_task_setscheduler(p, policy, param);
  4370. if (retval)
  4371. return retval;
  4372. }
  4373. /*
  4374. * make sure no PI-waiters arrive (or leave) while we are
  4375. * changing the priority of the task:
  4376. */
  4377. spin_lock_irqsave(&p->pi_lock, flags);
  4378. /*
  4379. * To be able to change p->policy safely, the apropriate
  4380. * runqueue lock must be held.
  4381. */
  4382. rq = __task_rq_lock(p);
  4383. /* recheck policy now with rq lock held */
  4384. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4385. policy = oldpolicy = -1;
  4386. __task_rq_unlock(rq);
  4387. spin_unlock_irqrestore(&p->pi_lock, flags);
  4388. goto recheck;
  4389. }
  4390. update_rq_clock(rq);
  4391. on_rq = p->se.on_rq;
  4392. running = task_current(rq, p);
  4393. if (on_rq)
  4394. deactivate_task(rq, p, 0);
  4395. if (running)
  4396. p->sched_class->put_prev_task(rq, p);
  4397. oldprio = p->prio;
  4398. __setscheduler(rq, p, policy, param->sched_priority);
  4399. if (running)
  4400. p->sched_class->set_curr_task(rq);
  4401. if (on_rq) {
  4402. activate_task(rq, p, 0);
  4403. check_class_changed(rq, p, prev_class, oldprio, running);
  4404. }
  4405. __task_rq_unlock(rq);
  4406. spin_unlock_irqrestore(&p->pi_lock, flags);
  4407. rt_mutex_adjust_pi(p);
  4408. return 0;
  4409. }
  4410. /**
  4411. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4412. * @p: the task in question.
  4413. * @policy: new policy.
  4414. * @param: structure containing the new RT priority.
  4415. *
  4416. * NOTE that the task may be already dead.
  4417. */
  4418. int sched_setscheduler(struct task_struct *p, int policy,
  4419. struct sched_param *param)
  4420. {
  4421. return __sched_setscheduler(p, policy, param, true);
  4422. }
  4423. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4424. /**
  4425. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4426. * @p: the task in question.
  4427. * @policy: new policy.
  4428. * @param: structure containing the new RT priority.
  4429. *
  4430. * Just like sched_setscheduler, only don't bother checking if the
  4431. * current context has permission. For example, this is needed in
  4432. * stop_machine(): we create temporary high priority worker threads,
  4433. * but our caller might not have that capability.
  4434. */
  4435. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4436. struct sched_param *param)
  4437. {
  4438. return __sched_setscheduler(p, policy, param, false);
  4439. }
  4440. static int
  4441. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4442. {
  4443. struct sched_param lparam;
  4444. struct task_struct *p;
  4445. int retval;
  4446. if (!param || pid < 0)
  4447. return -EINVAL;
  4448. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4449. return -EFAULT;
  4450. rcu_read_lock();
  4451. retval = -ESRCH;
  4452. p = find_process_by_pid(pid);
  4453. if (p != NULL)
  4454. retval = sched_setscheduler(p, policy, &lparam);
  4455. rcu_read_unlock();
  4456. return retval;
  4457. }
  4458. /**
  4459. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4460. * @pid: the pid in question.
  4461. * @policy: new policy.
  4462. * @param: structure containing the new RT priority.
  4463. */
  4464. asmlinkage long
  4465. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4466. {
  4467. /* negative values for policy are not valid */
  4468. if (policy < 0)
  4469. return -EINVAL;
  4470. return do_sched_setscheduler(pid, policy, param);
  4471. }
  4472. /**
  4473. * sys_sched_setparam - set/change the RT priority of a thread
  4474. * @pid: the pid in question.
  4475. * @param: structure containing the new RT priority.
  4476. */
  4477. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4478. {
  4479. return do_sched_setscheduler(pid, -1, param);
  4480. }
  4481. /**
  4482. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4483. * @pid: the pid in question.
  4484. */
  4485. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4486. {
  4487. struct task_struct *p;
  4488. int retval;
  4489. if (pid < 0)
  4490. return -EINVAL;
  4491. retval = -ESRCH;
  4492. read_lock(&tasklist_lock);
  4493. p = find_process_by_pid(pid);
  4494. if (p) {
  4495. retval = security_task_getscheduler(p);
  4496. if (!retval)
  4497. retval = p->policy;
  4498. }
  4499. read_unlock(&tasklist_lock);
  4500. return retval;
  4501. }
  4502. /**
  4503. * sys_sched_getscheduler - get the RT priority of a thread
  4504. * @pid: the pid in question.
  4505. * @param: structure containing the RT priority.
  4506. */
  4507. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4508. {
  4509. struct sched_param lp;
  4510. struct task_struct *p;
  4511. int retval;
  4512. if (!param || pid < 0)
  4513. return -EINVAL;
  4514. read_lock(&tasklist_lock);
  4515. p = find_process_by_pid(pid);
  4516. retval = -ESRCH;
  4517. if (!p)
  4518. goto out_unlock;
  4519. retval = security_task_getscheduler(p);
  4520. if (retval)
  4521. goto out_unlock;
  4522. lp.sched_priority = p->rt_priority;
  4523. read_unlock(&tasklist_lock);
  4524. /*
  4525. * This one might sleep, we cannot do it with a spinlock held ...
  4526. */
  4527. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4528. return retval;
  4529. out_unlock:
  4530. read_unlock(&tasklist_lock);
  4531. return retval;
  4532. }
  4533. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4534. {
  4535. cpumask_t cpus_allowed;
  4536. cpumask_t new_mask = *in_mask;
  4537. struct task_struct *p;
  4538. int retval;
  4539. get_online_cpus();
  4540. read_lock(&tasklist_lock);
  4541. p = find_process_by_pid(pid);
  4542. if (!p) {
  4543. read_unlock(&tasklist_lock);
  4544. put_online_cpus();
  4545. return -ESRCH;
  4546. }
  4547. /*
  4548. * It is not safe to call set_cpus_allowed with the
  4549. * tasklist_lock held. We will bump the task_struct's
  4550. * usage count and then drop tasklist_lock.
  4551. */
  4552. get_task_struct(p);
  4553. read_unlock(&tasklist_lock);
  4554. retval = -EPERM;
  4555. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4556. !capable(CAP_SYS_NICE))
  4557. goto out_unlock;
  4558. retval = security_task_setscheduler(p, 0, NULL);
  4559. if (retval)
  4560. goto out_unlock;
  4561. cpuset_cpus_allowed(p, &cpus_allowed);
  4562. cpus_and(new_mask, new_mask, cpus_allowed);
  4563. again:
  4564. retval = set_cpus_allowed_ptr(p, &new_mask);
  4565. if (!retval) {
  4566. cpuset_cpus_allowed(p, &cpus_allowed);
  4567. if (!cpus_subset(new_mask, cpus_allowed)) {
  4568. /*
  4569. * We must have raced with a concurrent cpuset
  4570. * update. Just reset the cpus_allowed to the
  4571. * cpuset's cpus_allowed
  4572. */
  4573. new_mask = cpus_allowed;
  4574. goto again;
  4575. }
  4576. }
  4577. out_unlock:
  4578. put_task_struct(p);
  4579. put_online_cpus();
  4580. return retval;
  4581. }
  4582. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4583. cpumask_t *new_mask)
  4584. {
  4585. if (len < sizeof(cpumask_t)) {
  4586. memset(new_mask, 0, sizeof(cpumask_t));
  4587. } else if (len > sizeof(cpumask_t)) {
  4588. len = sizeof(cpumask_t);
  4589. }
  4590. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4591. }
  4592. /**
  4593. * sys_sched_setaffinity - set the cpu affinity of a process
  4594. * @pid: pid of the process
  4595. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4596. * @user_mask_ptr: user-space pointer to the new cpu mask
  4597. */
  4598. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4599. unsigned long __user *user_mask_ptr)
  4600. {
  4601. cpumask_t new_mask;
  4602. int retval;
  4603. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4604. if (retval)
  4605. return retval;
  4606. return sched_setaffinity(pid, &new_mask);
  4607. }
  4608. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4609. {
  4610. struct task_struct *p;
  4611. int retval;
  4612. get_online_cpus();
  4613. read_lock(&tasklist_lock);
  4614. retval = -ESRCH;
  4615. p = find_process_by_pid(pid);
  4616. if (!p)
  4617. goto out_unlock;
  4618. retval = security_task_getscheduler(p);
  4619. if (retval)
  4620. goto out_unlock;
  4621. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4622. out_unlock:
  4623. read_unlock(&tasklist_lock);
  4624. put_online_cpus();
  4625. return retval;
  4626. }
  4627. /**
  4628. * sys_sched_getaffinity - get the cpu affinity of a process
  4629. * @pid: pid of the process
  4630. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4631. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4632. */
  4633. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4634. unsigned long __user *user_mask_ptr)
  4635. {
  4636. int ret;
  4637. cpumask_t mask;
  4638. if (len < sizeof(cpumask_t))
  4639. return -EINVAL;
  4640. ret = sched_getaffinity(pid, &mask);
  4641. if (ret < 0)
  4642. return ret;
  4643. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4644. return -EFAULT;
  4645. return sizeof(cpumask_t);
  4646. }
  4647. /**
  4648. * sys_sched_yield - yield the current processor to other threads.
  4649. *
  4650. * This function yields the current CPU to other tasks. If there are no
  4651. * other threads running on this CPU then this function will return.
  4652. */
  4653. asmlinkage long sys_sched_yield(void)
  4654. {
  4655. struct rq *rq = this_rq_lock();
  4656. schedstat_inc(rq, yld_count);
  4657. current->sched_class->yield_task(rq);
  4658. /*
  4659. * Since we are going to call schedule() anyway, there's
  4660. * no need to preempt or enable interrupts:
  4661. */
  4662. __release(rq->lock);
  4663. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4664. _raw_spin_unlock(&rq->lock);
  4665. preempt_enable_no_resched();
  4666. schedule();
  4667. return 0;
  4668. }
  4669. static void __cond_resched(void)
  4670. {
  4671. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4672. __might_sleep(__FILE__, __LINE__);
  4673. #endif
  4674. /*
  4675. * The BKS might be reacquired before we have dropped
  4676. * PREEMPT_ACTIVE, which could trigger a second
  4677. * cond_resched() call.
  4678. */
  4679. do {
  4680. add_preempt_count(PREEMPT_ACTIVE);
  4681. schedule();
  4682. sub_preempt_count(PREEMPT_ACTIVE);
  4683. } while (need_resched());
  4684. }
  4685. int __sched _cond_resched(void)
  4686. {
  4687. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4688. system_state == SYSTEM_RUNNING) {
  4689. __cond_resched();
  4690. return 1;
  4691. }
  4692. return 0;
  4693. }
  4694. EXPORT_SYMBOL(_cond_resched);
  4695. /*
  4696. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4697. * call schedule, and on return reacquire the lock.
  4698. *
  4699. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4700. * operations here to prevent schedule() from being called twice (once via
  4701. * spin_unlock(), once by hand).
  4702. */
  4703. int cond_resched_lock(spinlock_t *lock)
  4704. {
  4705. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4706. int ret = 0;
  4707. if (spin_needbreak(lock) || resched) {
  4708. spin_unlock(lock);
  4709. if (resched && need_resched())
  4710. __cond_resched();
  4711. else
  4712. cpu_relax();
  4713. ret = 1;
  4714. spin_lock(lock);
  4715. }
  4716. return ret;
  4717. }
  4718. EXPORT_SYMBOL(cond_resched_lock);
  4719. int __sched cond_resched_softirq(void)
  4720. {
  4721. BUG_ON(!in_softirq());
  4722. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4723. local_bh_enable();
  4724. __cond_resched();
  4725. local_bh_disable();
  4726. return 1;
  4727. }
  4728. return 0;
  4729. }
  4730. EXPORT_SYMBOL(cond_resched_softirq);
  4731. /**
  4732. * yield - yield the current processor to other threads.
  4733. *
  4734. * This is a shortcut for kernel-space yielding - it marks the
  4735. * thread runnable and calls sys_sched_yield().
  4736. */
  4737. void __sched yield(void)
  4738. {
  4739. set_current_state(TASK_RUNNING);
  4740. sys_sched_yield();
  4741. }
  4742. EXPORT_SYMBOL(yield);
  4743. /*
  4744. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4745. * that process accounting knows that this is a task in IO wait state.
  4746. *
  4747. * But don't do that if it is a deliberate, throttling IO wait (this task
  4748. * has set its backing_dev_info: the queue against which it should throttle)
  4749. */
  4750. void __sched io_schedule(void)
  4751. {
  4752. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4753. delayacct_blkio_start();
  4754. atomic_inc(&rq->nr_iowait);
  4755. schedule();
  4756. atomic_dec(&rq->nr_iowait);
  4757. delayacct_blkio_end();
  4758. }
  4759. EXPORT_SYMBOL(io_schedule);
  4760. long __sched io_schedule_timeout(long timeout)
  4761. {
  4762. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4763. long ret;
  4764. delayacct_blkio_start();
  4765. atomic_inc(&rq->nr_iowait);
  4766. ret = schedule_timeout(timeout);
  4767. atomic_dec(&rq->nr_iowait);
  4768. delayacct_blkio_end();
  4769. return ret;
  4770. }
  4771. /**
  4772. * sys_sched_get_priority_max - return maximum RT priority.
  4773. * @policy: scheduling class.
  4774. *
  4775. * this syscall returns the maximum rt_priority that can be used
  4776. * by a given scheduling class.
  4777. */
  4778. asmlinkage long sys_sched_get_priority_max(int policy)
  4779. {
  4780. int ret = -EINVAL;
  4781. switch (policy) {
  4782. case SCHED_FIFO:
  4783. case SCHED_RR:
  4784. ret = MAX_USER_RT_PRIO-1;
  4785. break;
  4786. case SCHED_NORMAL:
  4787. case SCHED_BATCH:
  4788. case SCHED_IDLE:
  4789. ret = 0;
  4790. break;
  4791. }
  4792. return ret;
  4793. }
  4794. /**
  4795. * sys_sched_get_priority_min - return minimum RT priority.
  4796. * @policy: scheduling class.
  4797. *
  4798. * this syscall returns the minimum rt_priority that can be used
  4799. * by a given scheduling class.
  4800. */
  4801. asmlinkage long sys_sched_get_priority_min(int policy)
  4802. {
  4803. int ret = -EINVAL;
  4804. switch (policy) {
  4805. case SCHED_FIFO:
  4806. case SCHED_RR:
  4807. ret = 1;
  4808. break;
  4809. case SCHED_NORMAL:
  4810. case SCHED_BATCH:
  4811. case SCHED_IDLE:
  4812. ret = 0;
  4813. }
  4814. return ret;
  4815. }
  4816. /**
  4817. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4818. * @pid: pid of the process.
  4819. * @interval: userspace pointer to the timeslice value.
  4820. *
  4821. * this syscall writes the default timeslice value of a given process
  4822. * into the user-space timespec buffer. A value of '0' means infinity.
  4823. */
  4824. asmlinkage
  4825. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4826. {
  4827. struct task_struct *p;
  4828. unsigned int time_slice;
  4829. int retval;
  4830. struct timespec t;
  4831. if (pid < 0)
  4832. return -EINVAL;
  4833. retval = -ESRCH;
  4834. read_lock(&tasklist_lock);
  4835. p = find_process_by_pid(pid);
  4836. if (!p)
  4837. goto out_unlock;
  4838. retval = security_task_getscheduler(p);
  4839. if (retval)
  4840. goto out_unlock;
  4841. /*
  4842. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4843. * tasks that are on an otherwise idle runqueue:
  4844. */
  4845. time_slice = 0;
  4846. if (p->policy == SCHED_RR) {
  4847. time_slice = DEF_TIMESLICE;
  4848. } else if (p->policy != SCHED_FIFO) {
  4849. struct sched_entity *se = &p->se;
  4850. unsigned long flags;
  4851. struct rq *rq;
  4852. rq = task_rq_lock(p, &flags);
  4853. if (rq->cfs.load.weight)
  4854. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4855. task_rq_unlock(rq, &flags);
  4856. }
  4857. read_unlock(&tasklist_lock);
  4858. jiffies_to_timespec(time_slice, &t);
  4859. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4860. return retval;
  4861. out_unlock:
  4862. read_unlock(&tasklist_lock);
  4863. return retval;
  4864. }
  4865. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4866. void sched_show_task(struct task_struct *p)
  4867. {
  4868. unsigned long free = 0;
  4869. unsigned state;
  4870. state = p->state ? __ffs(p->state) + 1 : 0;
  4871. printk(KERN_INFO "%-13.13s %c", p->comm,
  4872. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4873. #if BITS_PER_LONG == 32
  4874. if (state == TASK_RUNNING)
  4875. printk(KERN_CONT " running ");
  4876. else
  4877. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4878. #else
  4879. if (state == TASK_RUNNING)
  4880. printk(KERN_CONT " running task ");
  4881. else
  4882. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4883. #endif
  4884. #ifdef CONFIG_DEBUG_STACK_USAGE
  4885. {
  4886. unsigned long *n = end_of_stack(p);
  4887. while (!*n)
  4888. n++;
  4889. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4890. }
  4891. #endif
  4892. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4893. task_pid_nr(p), task_pid_nr(p->real_parent));
  4894. show_stack(p, NULL);
  4895. }
  4896. void show_state_filter(unsigned long state_filter)
  4897. {
  4898. struct task_struct *g, *p;
  4899. #if BITS_PER_LONG == 32
  4900. printk(KERN_INFO
  4901. " task PC stack pid father\n");
  4902. #else
  4903. printk(KERN_INFO
  4904. " task PC stack pid father\n");
  4905. #endif
  4906. read_lock(&tasklist_lock);
  4907. do_each_thread(g, p) {
  4908. /*
  4909. * reset the NMI-timeout, listing all files on a slow
  4910. * console might take alot of time:
  4911. */
  4912. touch_nmi_watchdog();
  4913. if (!state_filter || (p->state & state_filter))
  4914. sched_show_task(p);
  4915. } while_each_thread(g, p);
  4916. touch_all_softlockup_watchdogs();
  4917. #ifdef CONFIG_SCHED_DEBUG
  4918. sysrq_sched_debug_show();
  4919. #endif
  4920. read_unlock(&tasklist_lock);
  4921. /*
  4922. * Only show locks if all tasks are dumped:
  4923. */
  4924. if (state_filter == -1)
  4925. debug_show_all_locks();
  4926. }
  4927. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4928. {
  4929. idle->sched_class = &idle_sched_class;
  4930. }
  4931. /**
  4932. * init_idle - set up an idle thread for a given CPU
  4933. * @idle: task in question
  4934. * @cpu: cpu the idle task belongs to
  4935. *
  4936. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4937. * flag, to make booting more robust.
  4938. */
  4939. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4940. {
  4941. struct rq *rq = cpu_rq(cpu);
  4942. unsigned long flags;
  4943. __sched_fork(idle);
  4944. idle->se.exec_start = sched_clock();
  4945. idle->prio = idle->normal_prio = MAX_PRIO;
  4946. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4947. __set_task_cpu(idle, cpu);
  4948. spin_lock_irqsave(&rq->lock, flags);
  4949. rq->curr = rq->idle = idle;
  4950. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4951. idle->oncpu = 1;
  4952. #endif
  4953. spin_unlock_irqrestore(&rq->lock, flags);
  4954. /* Set the preempt count _outside_ the spinlocks! */
  4955. #if defined(CONFIG_PREEMPT)
  4956. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4957. #else
  4958. task_thread_info(idle)->preempt_count = 0;
  4959. #endif
  4960. /*
  4961. * The idle tasks have their own, simple scheduling class:
  4962. */
  4963. idle->sched_class = &idle_sched_class;
  4964. }
  4965. /*
  4966. * In a system that switches off the HZ timer nohz_cpu_mask
  4967. * indicates which cpus entered this state. This is used
  4968. * in the rcu update to wait only for active cpus. For system
  4969. * which do not switch off the HZ timer nohz_cpu_mask should
  4970. * always be CPU_MASK_NONE.
  4971. */
  4972. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4973. /*
  4974. * Increase the granularity value when there are more CPUs,
  4975. * because with more CPUs the 'effective latency' as visible
  4976. * to users decreases. But the relationship is not linear,
  4977. * so pick a second-best guess by going with the log2 of the
  4978. * number of CPUs.
  4979. *
  4980. * This idea comes from the SD scheduler of Con Kolivas:
  4981. */
  4982. static inline void sched_init_granularity(void)
  4983. {
  4984. unsigned int factor = 1 + ilog2(num_online_cpus());
  4985. const unsigned long limit = 200000000;
  4986. sysctl_sched_min_granularity *= factor;
  4987. if (sysctl_sched_min_granularity > limit)
  4988. sysctl_sched_min_granularity = limit;
  4989. sysctl_sched_latency *= factor;
  4990. if (sysctl_sched_latency > limit)
  4991. sysctl_sched_latency = limit;
  4992. sysctl_sched_wakeup_granularity *= factor;
  4993. sysctl_sched_shares_ratelimit *= factor;
  4994. }
  4995. #ifdef CONFIG_SMP
  4996. /*
  4997. * This is how migration works:
  4998. *
  4999. * 1) we queue a struct migration_req structure in the source CPU's
  5000. * runqueue and wake up that CPU's migration thread.
  5001. * 2) we down() the locked semaphore => thread blocks.
  5002. * 3) migration thread wakes up (implicitly it forces the migrated
  5003. * thread off the CPU)
  5004. * 4) it gets the migration request and checks whether the migrated
  5005. * task is still in the wrong runqueue.
  5006. * 5) if it's in the wrong runqueue then the migration thread removes
  5007. * it and puts it into the right queue.
  5008. * 6) migration thread up()s the semaphore.
  5009. * 7) we wake up and the migration is done.
  5010. */
  5011. /*
  5012. * Change a given task's CPU affinity. Migrate the thread to a
  5013. * proper CPU and schedule it away if the CPU it's executing on
  5014. * is removed from the allowed bitmask.
  5015. *
  5016. * NOTE: the caller must have a valid reference to the task, the
  5017. * task must not exit() & deallocate itself prematurely. The
  5018. * call is not atomic; no spinlocks may be held.
  5019. */
  5020. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5021. {
  5022. struct migration_req req;
  5023. unsigned long flags;
  5024. struct rq *rq;
  5025. int ret = 0;
  5026. rq = task_rq_lock(p, &flags);
  5027. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5028. ret = -EINVAL;
  5029. goto out;
  5030. }
  5031. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5032. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5033. ret = -EINVAL;
  5034. goto out;
  5035. }
  5036. if (p->sched_class->set_cpus_allowed)
  5037. p->sched_class->set_cpus_allowed(p, new_mask);
  5038. else {
  5039. p->cpus_allowed = *new_mask;
  5040. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5041. }
  5042. /* Can the task run on the task's current CPU? If so, we're done */
  5043. if (cpu_isset(task_cpu(p), *new_mask))
  5044. goto out;
  5045. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5046. /* Need help from migration thread: drop lock and wait. */
  5047. task_rq_unlock(rq, &flags);
  5048. wake_up_process(rq->migration_thread);
  5049. wait_for_completion(&req.done);
  5050. tlb_migrate_finish(p->mm);
  5051. return 0;
  5052. }
  5053. out:
  5054. task_rq_unlock(rq, &flags);
  5055. return ret;
  5056. }
  5057. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5058. /*
  5059. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5060. * this because either it can't run here any more (set_cpus_allowed()
  5061. * away from this CPU, or CPU going down), or because we're
  5062. * attempting to rebalance this task on exec (sched_exec).
  5063. *
  5064. * So we race with normal scheduler movements, but that's OK, as long
  5065. * as the task is no longer on this CPU.
  5066. *
  5067. * Returns non-zero if task was successfully migrated.
  5068. */
  5069. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5070. {
  5071. struct rq *rq_dest, *rq_src;
  5072. int ret = 0, on_rq;
  5073. if (unlikely(!cpu_active(dest_cpu)))
  5074. return ret;
  5075. rq_src = cpu_rq(src_cpu);
  5076. rq_dest = cpu_rq(dest_cpu);
  5077. double_rq_lock(rq_src, rq_dest);
  5078. /* Already moved. */
  5079. if (task_cpu(p) != src_cpu)
  5080. goto done;
  5081. /* Affinity changed (again). */
  5082. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5083. goto fail;
  5084. on_rq = p->se.on_rq;
  5085. if (on_rq)
  5086. deactivate_task(rq_src, p, 0);
  5087. set_task_cpu(p, dest_cpu);
  5088. if (on_rq) {
  5089. activate_task(rq_dest, p, 0);
  5090. check_preempt_curr(rq_dest, p);
  5091. }
  5092. done:
  5093. ret = 1;
  5094. fail:
  5095. double_rq_unlock(rq_src, rq_dest);
  5096. return ret;
  5097. }
  5098. /*
  5099. * migration_thread - this is a highprio system thread that performs
  5100. * thread migration by bumping thread off CPU then 'pushing' onto
  5101. * another runqueue.
  5102. */
  5103. static int migration_thread(void *data)
  5104. {
  5105. int cpu = (long)data;
  5106. struct rq *rq;
  5107. rq = cpu_rq(cpu);
  5108. BUG_ON(rq->migration_thread != current);
  5109. set_current_state(TASK_INTERRUPTIBLE);
  5110. while (!kthread_should_stop()) {
  5111. struct migration_req *req;
  5112. struct list_head *head;
  5113. spin_lock_irq(&rq->lock);
  5114. if (cpu_is_offline(cpu)) {
  5115. spin_unlock_irq(&rq->lock);
  5116. goto wait_to_die;
  5117. }
  5118. if (rq->active_balance) {
  5119. active_load_balance(rq, cpu);
  5120. rq->active_balance = 0;
  5121. }
  5122. head = &rq->migration_queue;
  5123. if (list_empty(head)) {
  5124. spin_unlock_irq(&rq->lock);
  5125. schedule();
  5126. set_current_state(TASK_INTERRUPTIBLE);
  5127. continue;
  5128. }
  5129. req = list_entry(head->next, struct migration_req, list);
  5130. list_del_init(head->next);
  5131. spin_unlock(&rq->lock);
  5132. __migrate_task(req->task, cpu, req->dest_cpu);
  5133. local_irq_enable();
  5134. complete(&req->done);
  5135. }
  5136. __set_current_state(TASK_RUNNING);
  5137. return 0;
  5138. wait_to_die:
  5139. /* Wait for kthread_stop */
  5140. set_current_state(TASK_INTERRUPTIBLE);
  5141. while (!kthread_should_stop()) {
  5142. schedule();
  5143. set_current_state(TASK_INTERRUPTIBLE);
  5144. }
  5145. __set_current_state(TASK_RUNNING);
  5146. return 0;
  5147. }
  5148. #ifdef CONFIG_HOTPLUG_CPU
  5149. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5150. {
  5151. int ret;
  5152. local_irq_disable();
  5153. ret = __migrate_task(p, src_cpu, dest_cpu);
  5154. local_irq_enable();
  5155. return ret;
  5156. }
  5157. /*
  5158. * Figure out where task on dead CPU should go, use force if necessary.
  5159. * NOTE: interrupts should be disabled by the caller
  5160. */
  5161. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5162. {
  5163. unsigned long flags;
  5164. cpumask_t mask;
  5165. struct rq *rq;
  5166. int dest_cpu;
  5167. do {
  5168. /* On same node? */
  5169. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5170. cpus_and(mask, mask, p->cpus_allowed);
  5171. dest_cpu = any_online_cpu(mask);
  5172. /* On any allowed CPU? */
  5173. if (dest_cpu >= nr_cpu_ids)
  5174. dest_cpu = any_online_cpu(p->cpus_allowed);
  5175. /* No more Mr. Nice Guy. */
  5176. if (dest_cpu >= nr_cpu_ids) {
  5177. cpumask_t cpus_allowed;
  5178. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5179. /*
  5180. * Try to stay on the same cpuset, where the
  5181. * current cpuset may be a subset of all cpus.
  5182. * The cpuset_cpus_allowed_locked() variant of
  5183. * cpuset_cpus_allowed() will not block. It must be
  5184. * called within calls to cpuset_lock/cpuset_unlock.
  5185. */
  5186. rq = task_rq_lock(p, &flags);
  5187. p->cpus_allowed = cpus_allowed;
  5188. dest_cpu = any_online_cpu(p->cpus_allowed);
  5189. task_rq_unlock(rq, &flags);
  5190. /*
  5191. * Don't tell them about moving exiting tasks or
  5192. * kernel threads (both mm NULL), since they never
  5193. * leave kernel.
  5194. */
  5195. if (p->mm && printk_ratelimit()) {
  5196. printk(KERN_INFO "process %d (%s) no "
  5197. "longer affine to cpu%d\n",
  5198. task_pid_nr(p), p->comm, dead_cpu);
  5199. }
  5200. }
  5201. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5202. }
  5203. /*
  5204. * While a dead CPU has no uninterruptible tasks queued at this point,
  5205. * it might still have a nonzero ->nr_uninterruptible counter, because
  5206. * for performance reasons the counter is not stricly tracking tasks to
  5207. * their home CPUs. So we just add the counter to another CPU's counter,
  5208. * to keep the global sum constant after CPU-down:
  5209. */
  5210. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5211. {
  5212. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5213. unsigned long flags;
  5214. local_irq_save(flags);
  5215. double_rq_lock(rq_src, rq_dest);
  5216. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5217. rq_src->nr_uninterruptible = 0;
  5218. double_rq_unlock(rq_src, rq_dest);
  5219. local_irq_restore(flags);
  5220. }
  5221. /* Run through task list and migrate tasks from the dead cpu. */
  5222. static void migrate_live_tasks(int src_cpu)
  5223. {
  5224. struct task_struct *p, *t;
  5225. read_lock(&tasklist_lock);
  5226. do_each_thread(t, p) {
  5227. if (p == current)
  5228. continue;
  5229. if (task_cpu(p) == src_cpu)
  5230. move_task_off_dead_cpu(src_cpu, p);
  5231. } while_each_thread(t, p);
  5232. read_unlock(&tasklist_lock);
  5233. }
  5234. /*
  5235. * Schedules idle task to be the next runnable task on current CPU.
  5236. * It does so by boosting its priority to highest possible.
  5237. * Used by CPU offline code.
  5238. */
  5239. void sched_idle_next(void)
  5240. {
  5241. int this_cpu = smp_processor_id();
  5242. struct rq *rq = cpu_rq(this_cpu);
  5243. struct task_struct *p = rq->idle;
  5244. unsigned long flags;
  5245. /* cpu has to be offline */
  5246. BUG_ON(cpu_online(this_cpu));
  5247. /*
  5248. * Strictly not necessary since rest of the CPUs are stopped by now
  5249. * and interrupts disabled on the current cpu.
  5250. */
  5251. spin_lock_irqsave(&rq->lock, flags);
  5252. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5253. update_rq_clock(rq);
  5254. activate_task(rq, p, 0);
  5255. spin_unlock_irqrestore(&rq->lock, flags);
  5256. }
  5257. /*
  5258. * Ensures that the idle task is using init_mm right before its cpu goes
  5259. * offline.
  5260. */
  5261. void idle_task_exit(void)
  5262. {
  5263. struct mm_struct *mm = current->active_mm;
  5264. BUG_ON(cpu_online(smp_processor_id()));
  5265. if (mm != &init_mm)
  5266. switch_mm(mm, &init_mm, current);
  5267. mmdrop(mm);
  5268. }
  5269. /* called under rq->lock with disabled interrupts */
  5270. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5271. {
  5272. struct rq *rq = cpu_rq(dead_cpu);
  5273. /* Must be exiting, otherwise would be on tasklist. */
  5274. BUG_ON(!p->exit_state);
  5275. /* Cannot have done final schedule yet: would have vanished. */
  5276. BUG_ON(p->state == TASK_DEAD);
  5277. get_task_struct(p);
  5278. /*
  5279. * Drop lock around migration; if someone else moves it,
  5280. * that's OK. No task can be added to this CPU, so iteration is
  5281. * fine.
  5282. */
  5283. spin_unlock_irq(&rq->lock);
  5284. move_task_off_dead_cpu(dead_cpu, p);
  5285. spin_lock_irq(&rq->lock);
  5286. put_task_struct(p);
  5287. }
  5288. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5289. static void migrate_dead_tasks(unsigned int dead_cpu)
  5290. {
  5291. struct rq *rq = cpu_rq(dead_cpu);
  5292. struct task_struct *next;
  5293. for ( ; ; ) {
  5294. if (!rq->nr_running)
  5295. break;
  5296. update_rq_clock(rq);
  5297. next = pick_next_task(rq, rq->curr);
  5298. if (!next)
  5299. break;
  5300. next->sched_class->put_prev_task(rq, next);
  5301. migrate_dead(dead_cpu, next);
  5302. }
  5303. }
  5304. #endif /* CONFIG_HOTPLUG_CPU */
  5305. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5306. static struct ctl_table sd_ctl_dir[] = {
  5307. {
  5308. .procname = "sched_domain",
  5309. .mode = 0555,
  5310. },
  5311. {0, },
  5312. };
  5313. static struct ctl_table sd_ctl_root[] = {
  5314. {
  5315. .ctl_name = CTL_KERN,
  5316. .procname = "kernel",
  5317. .mode = 0555,
  5318. .child = sd_ctl_dir,
  5319. },
  5320. {0, },
  5321. };
  5322. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5323. {
  5324. struct ctl_table *entry =
  5325. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5326. return entry;
  5327. }
  5328. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5329. {
  5330. struct ctl_table *entry;
  5331. /*
  5332. * In the intermediate directories, both the child directory and
  5333. * procname are dynamically allocated and could fail but the mode
  5334. * will always be set. In the lowest directory the names are
  5335. * static strings and all have proc handlers.
  5336. */
  5337. for (entry = *tablep; entry->mode; entry++) {
  5338. if (entry->child)
  5339. sd_free_ctl_entry(&entry->child);
  5340. if (entry->proc_handler == NULL)
  5341. kfree(entry->procname);
  5342. }
  5343. kfree(*tablep);
  5344. *tablep = NULL;
  5345. }
  5346. static void
  5347. set_table_entry(struct ctl_table *entry,
  5348. const char *procname, void *data, int maxlen,
  5349. mode_t mode, proc_handler *proc_handler)
  5350. {
  5351. entry->procname = procname;
  5352. entry->data = data;
  5353. entry->maxlen = maxlen;
  5354. entry->mode = mode;
  5355. entry->proc_handler = proc_handler;
  5356. }
  5357. static struct ctl_table *
  5358. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5359. {
  5360. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5361. if (table == NULL)
  5362. return NULL;
  5363. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5364. sizeof(long), 0644, proc_doulongvec_minmax);
  5365. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5366. sizeof(long), 0644, proc_doulongvec_minmax);
  5367. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5368. sizeof(int), 0644, proc_dointvec_minmax);
  5369. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5370. sizeof(int), 0644, proc_dointvec_minmax);
  5371. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5372. sizeof(int), 0644, proc_dointvec_minmax);
  5373. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5374. sizeof(int), 0644, proc_dointvec_minmax);
  5375. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5376. sizeof(int), 0644, proc_dointvec_minmax);
  5377. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5378. sizeof(int), 0644, proc_dointvec_minmax);
  5379. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5380. sizeof(int), 0644, proc_dointvec_minmax);
  5381. set_table_entry(&table[9], "cache_nice_tries",
  5382. &sd->cache_nice_tries,
  5383. sizeof(int), 0644, proc_dointvec_minmax);
  5384. set_table_entry(&table[10], "flags", &sd->flags,
  5385. sizeof(int), 0644, proc_dointvec_minmax);
  5386. /* &table[11] is terminator */
  5387. return table;
  5388. }
  5389. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5390. {
  5391. struct ctl_table *entry, *table;
  5392. struct sched_domain *sd;
  5393. int domain_num = 0, i;
  5394. char buf[32];
  5395. for_each_domain(cpu, sd)
  5396. domain_num++;
  5397. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5398. if (table == NULL)
  5399. return NULL;
  5400. i = 0;
  5401. for_each_domain(cpu, sd) {
  5402. snprintf(buf, 32, "domain%d", i);
  5403. entry->procname = kstrdup(buf, GFP_KERNEL);
  5404. entry->mode = 0555;
  5405. entry->child = sd_alloc_ctl_domain_table(sd);
  5406. entry++;
  5407. i++;
  5408. }
  5409. return table;
  5410. }
  5411. static struct ctl_table_header *sd_sysctl_header;
  5412. static void register_sched_domain_sysctl(void)
  5413. {
  5414. int i, cpu_num = num_online_cpus();
  5415. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5416. char buf[32];
  5417. WARN_ON(sd_ctl_dir[0].child);
  5418. sd_ctl_dir[0].child = entry;
  5419. if (entry == NULL)
  5420. return;
  5421. for_each_online_cpu(i) {
  5422. snprintf(buf, 32, "cpu%d", i);
  5423. entry->procname = kstrdup(buf, GFP_KERNEL);
  5424. entry->mode = 0555;
  5425. entry->child = sd_alloc_ctl_cpu_table(i);
  5426. entry++;
  5427. }
  5428. WARN_ON(sd_sysctl_header);
  5429. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5430. }
  5431. /* may be called multiple times per register */
  5432. static void unregister_sched_domain_sysctl(void)
  5433. {
  5434. if (sd_sysctl_header)
  5435. unregister_sysctl_table(sd_sysctl_header);
  5436. sd_sysctl_header = NULL;
  5437. if (sd_ctl_dir[0].child)
  5438. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5439. }
  5440. #else
  5441. static void register_sched_domain_sysctl(void)
  5442. {
  5443. }
  5444. static void unregister_sched_domain_sysctl(void)
  5445. {
  5446. }
  5447. #endif
  5448. static void set_rq_online(struct rq *rq)
  5449. {
  5450. if (!rq->online) {
  5451. const struct sched_class *class;
  5452. cpu_set(rq->cpu, rq->rd->online);
  5453. rq->online = 1;
  5454. for_each_class(class) {
  5455. if (class->rq_online)
  5456. class->rq_online(rq);
  5457. }
  5458. }
  5459. }
  5460. static void set_rq_offline(struct rq *rq)
  5461. {
  5462. if (rq->online) {
  5463. const struct sched_class *class;
  5464. for_each_class(class) {
  5465. if (class->rq_offline)
  5466. class->rq_offline(rq);
  5467. }
  5468. cpu_clear(rq->cpu, rq->rd->online);
  5469. rq->online = 0;
  5470. }
  5471. }
  5472. /*
  5473. * migration_call - callback that gets triggered when a CPU is added.
  5474. * Here we can start up the necessary migration thread for the new CPU.
  5475. */
  5476. static int __cpuinit
  5477. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5478. {
  5479. struct task_struct *p;
  5480. int cpu = (long)hcpu;
  5481. unsigned long flags;
  5482. struct rq *rq;
  5483. switch (action) {
  5484. case CPU_UP_PREPARE:
  5485. case CPU_UP_PREPARE_FROZEN:
  5486. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5487. if (IS_ERR(p))
  5488. return NOTIFY_BAD;
  5489. kthread_bind(p, cpu);
  5490. /* Must be high prio: stop_machine expects to yield to it. */
  5491. rq = task_rq_lock(p, &flags);
  5492. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5493. task_rq_unlock(rq, &flags);
  5494. cpu_rq(cpu)->migration_thread = p;
  5495. break;
  5496. case CPU_ONLINE:
  5497. case CPU_ONLINE_FROZEN:
  5498. /* Strictly unnecessary, as first user will wake it. */
  5499. wake_up_process(cpu_rq(cpu)->migration_thread);
  5500. /* Update our root-domain */
  5501. rq = cpu_rq(cpu);
  5502. spin_lock_irqsave(&rq->lock, flags);
  5503. if (rq->rd) {
  5504. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5505. set_rq_online(rq);
  5506. }
  5507. spin_unlock_irqrestore(&rq->lock, flags);
  5508. break;
  5509. #ifdef CONFIG_HOTPLUG_CPU
  5510. case CPU_UP_CANCELED:
  5511. case CPU_UP_CANCELED_FROZEN:
  5512. if (!cpu_rq(cpu)->migration_thread)
  5513. break;
  5514. /* Unbind it from offline cpu so it can run. Fall thru. */
  5515. kthread_bind(cpu_rq(cpu)->migration_thread,
  5516. any_online_cpu(cpu_online_map));
  5517. kthread_stop(cpu_rq(cpu)->migration_thread);
  5518. cpu_rq(cpu)->migration_thread = NULL;
  5519. break;
  5520. case CPU_DEAD:
  5521. case CPU_DEAD_FROZEN:
  5522. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5523. migrate_live_tasks(cpu);
  5524. rq = cpu_rq(cpu);
  5525. kthread_stop(rq->migration_thread);
  5526. rq->migration_thread = NULL;
  5527. /* Idle task back to normal (off runqueue, low prio) */
  5528. spin_lock_irq(&rq->lock);
  5529. update_rq_clock(rq);
  5530. deactivate_task(rq, rq->idle, 0);
  5531. rq->idle->static_prio = MAX_PRIO;
  5532. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5533. rq->idle->sched_class = &idle_sched_class;
  5534. migrate_dead_tasks(cpu);
  5535. spin_unlock_irq(&rq->lock);
  5536. cpuset_unlock();
  5537. migrate_nr_uninterruptible(rq);
  5538. BUG_ON(rq->nr_running != 0);
  5539. /*
  5540. * No need to migrate the tasks: it was best-effort if
  5541. * they didn't take sched_hotcpu_mutex. Just wake up
  5542. * the requestors.
  5543. */
  5544. spin_lock_irq(&rq->lock);
  5545. while (!list_empty(&rq->migration_queue)) {
  5546. struct migration_req *req;
  5547. req = list_entry(rq->migration_queue.next,
  5548. struct migration_req, list);
  5549. list_del_init(&req->list);
  5550. complete(&req->done);
  5551. }
  5552. spin_unlock_irq(&rq->lock);
  5553. break;
  5554. case CPU_DYING:
  5555. case CPU_DYING_FROZEN:
  5556. /* Update our root-domain */
  5557. rq = cpu_rq(cpu);
  5558. spin_lock_irqsave(&rq->lock, flags);
  5559. if (rq->rd) {
  5560. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5561. set_rq_offline(rq);
  5562. }
  5563. spin_unlock_irqrestore(&rq->lock, flags);
  5564. break;
  5565. #endif
  5566. }
  5567. return NOTIFY_OK;
  5568. }
  5569. /* Register at highest priority so that task migration (migrate_all_tasks)
  5570. * happens before everything else.
  5571. */
  5572. static struct notifier_block __cpuinitdata migration_notifier = {
  5573. .notifier_call = migration_call,
  5574. .priority = 10
  5575. };
  5576. static int __init migration_init(void)
  5577. {
  5578. void *cpu = (void *)(long)smp_processor_id();
  5579. int err;
  5580. /* Start one for the boot CPU: */
  5581. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5582. BUG_ON(err == NOTIFY_BAD);
  5583. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5584. register_cpu_notifier(&migration_notifier);
  5585. return err;
  5586. }
  5587. early_initcall(migration_init);
  5588. #endif
  5589. #ifdef CONFIG_SMP
  5590. #ifdef CONFIG_SCHED_DEBUG
  5591. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5592. {
  5593. switch (lvl) {
  5594. case SD_LV_NONE:
  5595. return "NONE";
  5596. case SD_LV_SIBLING:
  5597. return "SIBLING";
  5598. case SD_LV_MC:
  5599. return "MC";
  5600. case SD_LV_CPU:
  5601. return "CPU";
  5602. case SD_LV_NODE:
  5603. return "NODE";
  5604. case SD_LV_ALLNODES:
  5605. return "ALLNODES";
  5606. case SD_LV_MAX:
  5607. return "MAX";
  5608. }
  5609. return "MAX";
  5610. }
  5611. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5612. cpumask_t *groupmask)
  5613. {
  5614. struct sched_group *group = sd->groups;
  5615. char str[256];
  5616. cpulist_scnprintf(str, sizeof(str), sd->span);
  5617. cpus_clear(*groupmask);
  5618. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5619. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5620. printk("does not load-balance\n");
  5621. if (sd->parent)
  5622. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5623. " has parent");
  5624. return -1;
  5625. }
  5626. printk(KERN_CONT "span %s level %s\n",
  5627. str, sd_level_to_string(sd->level));
  5628. if (!cpu_isset(cpu, sd->span)) {
  5629. printk(KERN_ERR "ERROR: domain->span does not contain "
  5630. "CPU%d\n", cpu);
  5631. }
  5632. if (!cpu_isset(cpu, group->cpumask)) {
  5633. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5634. " CPU%d\n", cpu);
  5635. }
  5636. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5637. do {
  5638. if (!group) {
  5639. printk("\n");
  5640. printk(KERN_ERR "ERROR: group is NULL\n");
  5641. break;
  5642. }
  5643. if (!group->__cpu_power) {
  5644. printk(KERN_CONT "\n");
  5645. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5646. "set\n");
  5647. break;
  5648. }
  5649. if (!cpus_weight(group->cpumask)) {
  5650. printk(KERN_CONT "\n");
  5651. printk(KERN_ERR "ERROR: empty group\n");
  5652. break;
  5653. }
  5654. if (cpus_intersects(*groupmask, group->cpumask)) {
  5655. printk(KERN_CONT "\n");
  5656. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5657. break;
  5658. }
  5659. cpus_or(*groupmask, *groupmask, group->cpumask);
  5660. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5661. printk(KERN_CONT " %s", str);
  5662. group = group->next;
  5663. } while (group != sd->groups);
  5664. printk(KERN_CONT "\n");
  5665. if (!cpus_equal(sd->span, *groupmask))
  5666. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5667. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5668. printk(KERN_ERR "ERROR: parent span is not a superset "
  5669. "of domain->span\n");
  5670. return 0;
  5671. }
  5672. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5673. {
  5674. cpumask_t *groupmask;
  5675. int level = 0;
  5676. if (!sd) {
  5677. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5678. return;
  5679. }
  5680. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5681. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5682. if (!groupmask) {
  5683. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5684. return;
  5685. }
  5686. for (;;) {
  5687. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5688. break;
  5689. level++;
  5690. sd = sd->parent;
  5691. if (!sd)
  5692. break;
  5693. }
  5694. kfree(groupmask);
  5695. }
  5696. #else /* !CONFIG_SCHED_DEBUG */
  5697. # define sched_domain_debug(sd, cpu) do { } while (0)
  5698. #endif /* CONFIG_SCHED_DEBUG */
  5699. static int sd_degenerate(struct sched_domain *sd)
  5700. {
  5701. if (cpus_weight(sd->span) == 1)
  5702. return 1;
  5703. /* Following flags need at least 2 groups */
  5704. if (sd->flags & (SD_LOAD_BALANCE |
  5705. SD_BALANCE_NEWIDLE |
  5706. SD_BALANCE_FORK |
  5707. SD_BALANCE_EXEC |
  5708. SD_SHARE_CPUPOWER |
  5709. SD_SHARE_PKG_RESOURCES)) {
  5710. if (sd->groups != sd->groups->next)
  5711. return 0;
  5712. }
  5713. /* Following flags don't use groups */
  5714. if (sd->flags & (SD_WAKE_IDLE |
  5715. SD_WAKE_AFFINE |
  5716. SD_WAKE_BALANCE))
  5717. return 0;
  5718. return 1;
  5719. }
  5720. static int
  5721. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5722. {
  5723. unsigned long cflags = sd->flags, pflags = parent->flags;
  5724. if (sd_degenerate(parent))
  5725. return 1;
  5726. if (!cpus_equal(sd->span, parent->span))
  5727. return 0;
  5728. /* Does parent contain flags not in child? */
  5729. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5730. if (cflags & SD_WAKE_AFFINE)
  5731. pflags &= ~SD_WAKE_BALANCE;
  5732. /* Flags needing groups don't count if only 1 group in parent */
  5733. if (parent->groups == parent->groups->next) {
  5734. pflags &= ~(SD_LOAD_BALANCE |
  5735. SD_BALANCE_NEWIDLE |
  5736. SD_BALANCE_FORK |
  5737. SD_BALANCE_EXEC |
  5738. SD_SHARE_CPUPOWER |
  5739. SD_SHARE_PKG_RESOURCES);
  5740. }
  5741. if (~cflags & pflags)
  5742. return 0;
  5743. return 1;
  5744. }
  5745. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5746. {
  5747. unsigned long flags;
  5748. spin_lock_irqsave(&rq->lock, flags);
  5749. if (rq->rd) {
  5750. struct root_domain *old_rd = rq->rd;
  5751. if (cpu_isset(rq->cpu, old_rd->online))
  5752. set_rq_offline(rq);
  5753. cpu_clear(rq->cpu, old_rd->span);
  5754. if (atomic_dec_and_test(&old_rd->refcount))
  5755. kfree(old_rd);
  5756. }
  5757. atomic_inc(&rd->refcount);
  5758. rq->rd = rd;
  5759. cpu_set(rq->cpu, rd->span);
  5760. if (cpu_isset(rq->cpu, cpu_online_map))
  5761. set_rq_online(rq);
  5762. spin_unlock_irqrestore(&rq->lock, flags);
  5763. }
  5764. static void init_rootdomain(struct root_domain *rd)
  5765. {
  5766. memset(rd, 0, sizeof(*rd));
  5767. cpus_clear(rd->span);
  5768. cpus_clear(rd->online);
  5769. cpupri_init(&rd->cpupri);
  5770. }
  5771. static void init_defrootdomain(void)
  5772. {
  5773. init_rootdomain(&def_root_domain);
  5774. atomic_set(&def_root_domain.refcount, 1);
  5775. }
  5776. static struct root_domain *alloc_rootdomain(void)
  5777. {
  5778. struct root_domain *rd;
  5779. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5780. if (!rd)
  5781. return NULL;
  5782. init_rootdomain(rd);
  5783. return rd;
  5784. }
  5785. /*
  5786. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5787. * hold the hotplug lock.
  5788. */
  5789. static void
  5790. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5791. {
  5792. struct rq *rq = cpu_rq(cpu);
  5793. struct sched_domain *tmp;
  5794. /* Remove the sched domains which do not contribute to scheduling. */
  5795. for (tmp = sd; tmp; tmp = tmp->parent) {
  5796. struct sched_domain *parent = tmp->parent;
  5797. if (!parent)
  5798. break;
  5799. if (sd_parent_degenerate(tmp, parent)) {
  5800. tmp->parent = parent->parent;
  5801. if (parent->parent)
  5802. parent->parent->child = tmp;
  5803. }
  5804. }
  5805. if (sd && sd_degenerate(sd)) {
  5806. sd = sd->parent;
  5807. if (sd)
  5808. sd->child = NULL;
  5809. }
  5810. sched_domain_debug(sd, cpu);
  5811. rq_attach_root(rq, rd);
  5812. rcu_assign_pointer(rq->sd, sd);
  5813. }
  5814. /* cpus with isolated domains */
  5815. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5816. /* Setup the mask of cpus configured for isolated domains */
  5817. static int __init isolated_cpu_setup(char *str)
  5818. {
  5819. static int __initdata ints[NR_CPUS];
  5820. int i;
  5821. str = get_options(str, ARRAY_SIZE(ints), ints);
  5822. cpus_clear(cpu_isolated_map);
  5823. for (i = 1; i <= ints[0]; i++)
  5824. if (ints[i] < NR_CPUS)
  5825. cpu_set(ints[i], cpu_isolated_map);
  5826. return 1;
  5827. }
  5828. __setup("isolcpus=", isolated_cpu_setup);
  5829. /*
  5830. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5831. * to a function which identifies what group(along with sched group) a CPU
  5832. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5833. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5834. *
  5835. * init_sched_build_groups will build a circular linked list of the groups
  5836. * covered by the given span, and will set each group's ->cpumask correctly,
  5837. * and ->cpu_power to 0.
  5838. */
  5839. static void
  5840. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5841. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5842. struct sched_group **sg,
  5843. cpumask_t *tmpmask),
  5844. cpumask_t *covered, cpumask_t *tmpmask)
  5845. {
  5846. struct sched_group *first = NULL, *last = NULL;
  5847. int i;
  5848. cpus_clear(*covered);
  5849. for_each_cpu_mask_nr(i, *span) {
  5850. struct sched_group *sg;
  5851. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5852. int j;
  5853. if (cpu_isset(i, *covered))
  5854. continue;
  5855. cpus_clear(sg->cpumask);
  5856. sg->__cpu_power = 0;
  5857. for_each_cpu_mask_nr(j, *span) {
  5858. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5859. continue;
  5860. cpu_set(j, *covered);
  5861. cpu_set(j, sg->cpumask);
  5862. }
  5863. if (!first)
  5864. first = sg;
  5865. if (last)
  5866. last->next = sg;
  5867. last = sg;
  5868. }
  5869. last->next = first;
  5870. }
  5871. #define SD_NODES_PER_DOMAIN 16
  5872. #ifdef CONFIG_NUMA
  5873. /**
  5874. * find_next_best_node - find the next node to include in a sched_domain
  5875. * @node: node whose sched_domain we're building
  5876. * @used_nodes: nodes already in the sched_domain
  5877. *
  5878. * Find the next node to include in a given scheduling domain. Simply
  5879. * finds the closest node not already in the @used_nodes map.
  5880. *
  5881. * Should use nodemask_t.
  5882. */
  5883. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5884. {
  5885. int i, n, val, min_val, best_node = 0;
  5886. min_val = INT_MAX;
  5887. for (i = 0; i < nr_node_ids; i++) {
  5888. /* Start at @node */
  5889. n = (node + i) % nr_node_ids;
  5890. if (!nr_cpus_node(n))
  5891. continue;
  5892. /* Skip already used nodes */
  5893. if (node_isset(n, *used_nodes))
  5894. continue;
  5895. /* Simple min distance search */
  5896. val = node_distance(node, n);
  5897. if (val < min_val) {
  5898. min_val = val;
  5899. best_node = n;
  5900. }
  5901. }
  5902. node_set(best_node, *used_nodes);
  5903. return best_node;
  5904. }
  5905. /**
  5906. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5907. * @node: node whose cpumask we're constructing
  5908. * @span: resulting cpumask
  5909. *
  5910. * Given a node, construct a good cpumask for its sched_domain to span. It
  5911. * should be one that prevents unnecessary balancing, but also spreads tasks
  5912. * out optimally.
  5913. */
  5914. static void sched_domain_node_span(int node, cpumask_t *span)
  5915. {
  5916. nodemask_t used_nodes;
  5917. node_to_cpumask_ptr(nodemask, node);
  5918. int i;
  5919. cpus_clear(*span);
  5920. nodes_clear(used_nodes);
  5921. cpus_or(*span, *span, *nodemask);
  5922. node_set(node, used_nodes);
  5923. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5924. int next_node = find_next_best_node(node, &used_nodes);
  5925. node_to_cpumask_ptr_next(nodemask, next_node);
  5926. cpus_or(*span, *span, *nodemask);
  5927. }
  5928. }
  5929. #endif /* CONFIG_NUMA */
  5930. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5931. /*
  5932. * SMT sched-domains:
  5933. */
  5934. #ifdef CONFIG_SCHED_SMT
  5935. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5936. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5937. static int
  5938. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5939. cpumask_t *unused)
  5940. {
  5941. if (sg)
  5942. *sg = &per_cpu(sched_group_cpus, cpu);
  5943. return cpu;
  5944. }
  5945. #endif /* CONFIG_SCHED_SMT */
  5946. /*
  5947. * multi-core sched-domains:
  5948. */
  5949. #ifdef CONFIG_SCHED_MC
  5950. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5951. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5952. #endif /* CONFIG_SCHED_MC */
  5953. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5954. static int
  5955. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5956. cpumask_t *mask)
  5957. {
  5958. int group;
  5959. *mask = per_cpu(cpu_sibling_map, cpu);
  5960. cpus_and(*mask, *mask, *cpu_map);
  5961. group = first_cpu(*mask);
  5962. if (sg)
  5963. *sg = &per_cpu(sched_group_core, group);
  5964. return group;
  5965. }
  5966. #elif defined(CONFIG_SCHED_MC)
  5967. static int
  5968. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5969. cpumask_t *unused)
  5970. {
  5971. if (sg)
  5972. *sg = &per_cpu(sched_group_core, cpu);
  5973. return cpu;
  5974. }
  5975. #endif
  5976. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5977. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5978. static int
  5979. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5980. cpumask_t *mask)
  5981. {
  5982. int group;
  5983. #ifdef CONFIG_SCHED_MC
  5984. *mask = cpu_coregroup_map(cpu);
  5985. cpus_and(*mask, *mask, *cpu_map);
  5986. group = first_cpu(*mask);
  5987. #elif defined(CONFIG_SCHED_SMT)
  5988. *mask = per_cpu(cpu_sibling_map, cpu);
  5989. cpus_and(*mask, *mask, *cpu_map);
  5990. group = first_cpu(*mask);
  5991. #else
  5992. group = cpu;
  5993. #endif
  5994. if (sg)
  5995. *sg = &per_cpu(sched_group_phys, group);
  5996. return group;
  5997. }
  5998. #ifdef CONFIG_NUMA
  5999. /*
  6000. * The init_sched_build_groups can't handle what we want to do with node
  6001. * groups, so roll our own. Now each node has its own list of groups which
  6002. * gets dynamically allocated.
  6003. */
  6004. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6005. static struct sched_group ***sched_group_nodes_bycpu;
  6006. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6007. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6008. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6009. struct sched_group **sg, cpumask_t *nodemask)
  6010. {
  6011. int group;
  6012. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6013. cpus_and(*nodemask, *nodemask, *cpu_map);
  6014. group = first_cpu(*nodemask);
  6015. if (sg)
  6016. *sg = &per_cpu(sched_group_allnodes, group);
  6017. return group;
  6018. }
  6019. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6020. {
  6021. struct sched_group *sg = group_head;
  6022. int j;
  6023. if (!sg)
  6024. return;
  6025. do {
  6026. for_each_cpu_mask_nr(j, sg->cpumask) {
  6027. struct sched_domain *sd;
  6028. sd = &per_cpu(phys_domains, j);
  6029. if (j != first_cpu(sd->groups->cpumask)) {
  6030. /*
  6031. * Only add "power" once for each
  6032. * physical package.
  6033. */
  6034. continue;
  6035. }
  6036. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6037. }
  6038. sg = sg->next;
  6039. } while (sg != group_head);
  6040. }
  6041. #endif /* CONFIG_NUMA */
  6042. #ifdef CONFIG_NUMA
  6043. /* Free memory allocated for various sched_group structures */
  6044. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6045. {
  6046. int cpu, i;
  6047. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6048. struct sched_group **sched_group_nodes
  6049. = sched_group_nodes_bycpu[cpu];
  6050. if (!sched_group_nodes)
  6051. continue;
  6052. for (i = 0; i < nr_node_ids; i++) {
  6053. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6054. *nodemask = node_to_cpumask(i);
  6055. cpus_and(*nodemask, *nodemask, *cpu_map);
  6056. if (cpus_empty(*nodemask))
  6057. continue;
  6058. if (sg == NULL)
  6059. continue;
  6060. sg = sg->next;
  6061. next_sg:
  6062. oldsg = sg;
  6063. sg = sg->next;
  6064. kfree(oldsg);
  6065. if (oldsg != sched_group_nodes[i])
  6066. goto next_sg;
  6067. }
  6068. kfree(sched_group_nodes);
  6069. sched_group_nodes_bycpu[cpu] = NULL;
  6070. }
  6071. }
  6072. #else /* !CONFIG_NUMA */
  6073. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6074. {
  6075. }
  6076. #endif /* CONFIG_NUMA */
  6077. /*
  6078. * Initialize sched groups cpu_power.
  6079. *
  6080. * cpu_power indicates the capacity of sched group, which is used while
  6081. * distributing the load between different sched groups in a sched domain.
  6082. * Typically cpu_power for all the groups in a sched domain will be same unless
  6083. * there are asymmetries in the topology. If there are asymmetries, group
  6084. * having more cpu_power will pickup more load compared to the group having
  6085. * less cpu_power.
  6086. *
  6087. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6088. * the maximum number of tasks a group can handle in the presence of other idle
  6089. * or lightly loaded groups in the same sched domain.
  6090. */
  6091. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6092. {
  6093. struct sched_domain *child;
  6094. struct sched_group *group;
  6095. WARN_ON(!sd || !sd->groups);
  6096. if (cpu != first_cpu(sd->groups->cpumask))
  6097. return;
  6098. child = sd->child;
  6099. sd->groups->__cpu_power = 0;
  6100. /*
  6101. * For perf policy, if the groups in child domain share resources
  6102. * (for example cores sharing some portions of the cache hierarchy
  6103. * or SMT), then set this domain groups cpu_power such that each group
  6104. * can handle only one task, when there are other idle groups in the
  6105. * same sched domain.
  6106. */
  6107. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6108. (child->flags &
  6109. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6110. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6111. return;
  6112. }
  6113. /*
  6114. * add cpu_power of each child group to this groups cpu_power
  6115. */
  6116. group = child->groups;
  6117. do {
  6118. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6119. group = group->next;
  6120. } while (group != child->groups);
  6121. }
  6122. /*
  6123. * Initializers for schedule domains
  6124. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6125. */
  6126. #define SD_INIT(sd, type) sd_init_##type(sd)
  6127. #define SD_INIT_FUNC(type) \
  6128. static noinline void sd_init_##type(struct sched_domain *sd) \
  6129. { \
  6130. memset(sd, 0, sizeof(*sd)); \
  6131. *sd = SD_##type##_INIT; \
  6132. sd->level = SD_LV_##type; \
  6133. }
  6134. SD_INIT_FUNC(CPU)
  6135. #ifdef CONFIG_NUMA
  6136. SD_INIT_FUNC(ALLNODES)
  6137. SD_INIT_FUNC(NODE)
  6138. #endif
  6139. #ifdef CONFIG_SCHED_SMT
  6140. SD_INIT_FUNC(SIBLING)
  6141. #endif
  6142. #ifdef CONFIG_SCHED_MC
  6143. SD_INIT_FUNC(MC)
  6144. #endif
  6145. /*
  6146. * To minimize stack usage kmalloc room for cpumasks and share the
  6147. * space as the usage in build_sched_domains() dictates. Used only
  6148. * if the amount of space is significant.
  6149. */
  6150. struct allmasks {
  6151. cpumask_t tmpmask; /* make this one first */
  6152. union {
  6153. cpumask_t nodemask;
  6154. cpumask_t this_sibling_map;
  6155. cpumask_t this_core_map;
  6156. };
  6157. cpumask_t send_covered;
  6158. #ifdef CONFIG_NUMA
  6159. cpumask_t domainspan;
  6160. cpumask_t covered;
  6161. cpumask_t notcovered;
  6162. #endif
  6163. };
  6164. #if NR_CPUS > 128
  6165. #define SCHED_CPUMASK_ALLOC 1
  6166. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6167. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6168. #else
  6169. #define SCHED_CPUMASK_ALLOC 0
  6170. #define SCHED_CPUMASK_FREE(v)
  6171. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6172. #endif
  6173. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6174. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6175. static int default_relax_domain_level = -1;
  6176. static int __init setup_relax_domain_level(char *str)
  6177. {
  6178. unsigned long val;
  6179. val = simple_strtoul(str, NULL, 0);
  6180. if (val < SD_LV_MAX)
  6181. default_relax_domain_level = val;
  6182. return 1;
  6183. }
  6184. __setup("relax_domain_level=", setup_relax_domain_level);
  6185. static void set_domain_attribute(struct sched_domain *sd,
  6186. struct sched_domain_attr *attr)
  6187. {
  6188. int request;
  6189. if (!attr || attr->relax_domain_level < 0) {
  6190. if (default_relax_domain_level < 0)
  6191. return;
  6192. else
  6193. request = default_relax_domain_level;
  6194. } else
  6195. request = attr->relax_domain_level;
  6196. if (request < sd->level) {
  6197. /* turn off idle balance on this domain */
  6198. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6199. } else {
  6200. /* turn on idle balance on this domain */
  6201. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6202. }
  6203. }
  6204. /*
  6205. * Build sched domains for a given set of cpus and attach the sched domains
  6206. * to the individual cpus
  6207. */
  6208. static int __build_sched_domains(const cpumask_t *cpu_map,
  6209. struct sched_domain_attr *attr)
  6210. {
  6211. int i;
  6212. struct root_domain *rd;
  6213. SCHED_CPUMASK_DECLARE(allmasks);
  6214. cpumask_t *tmpmask;
  6215. #ifdef CONFIG_NUMA
  6216. struct sched_group **sched_group_nodes = NULL;
  6217. int sd_allnodes = 0;
  6218. /*
  6219. * Allocate the per-node list of sched groups
  6220. */
  6221. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6222. GFP_KERNEL);
  6223. if (!sched_group_nodes) {
  6224. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6225. return -ENOMEM;
  6226. }
  6227. #endif
  6228. rd = alloc_rootdomain();
  6229. if (!rd) {
  6230. printk(KERN_WARNING "Cannot alloc root domain\n");
  6231. #ifdef CONFIG_NUMA
  6232. kfree(sched_group_nodes);
  6233. #endif
  6234. return -ENOMEM;
  6235. }
  6236. #if SCHED_CPUMASK_ALLOC
  6237. /* get space for all scratch cpumask variables */
  6238. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6239. if (!allmasks) {
  6240. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6241. kfree(rd);
  6242. #ifdef CONFIG_NUMA
  6243. kfree(sched_group_nodes);
  6244. #endif
  6245. return -ENOMEM;
  6246. }
  6247. #endif
  6248. tmpmask = (cpumask_t *)allmasks;
  6249. #ifdef CONFIG_NUMA
  6250. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6251. #endif
  6252. /*
  6253. * Set up domains for cpus specified by the cpu_map.
  6254. */
  6255. for_each_cpu_mask_nr(i, *cpu_map) {
  6256. struct sched_domain *sd = NULL, *p;
  6257. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6258. *nodemask = node_to_cpumask(cpu_to_node(i));
  6259. cpus_and(*nodemask, *nodemask, *cpu_map);
  6260. #ifdef CONFIG_NUMA
  6261. if (cpus_weight(*cpu_map) >
  6262. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6263. sd = &per_cpu(allnodes_domains, i);
  6264. SD_INIT(sd, ALLNODES);
  6265. set_domain_attribute(sd, attr);
  6266. sd->span = *cpu_map;
  6267. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6268. p = sd;
  6269. sd_allnodes = 1;
  6270. } else
  6271. p = NULL;
  6272. sd = &per_cpu(node_domains, i);
  6273. SD_INIT(sd, NODE);
  6274. set_domain_attribute(sd, attr);
  6275. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6276. sd->parent = p;
  6277. if (p)
  6278. p->child = sd;
  6279. cpus_and(sd->span, sd->span, *cpu_map);
  6280. #endif
  6281. p = sd;
  6282. sd = &per_cpu(phys_domains, i);
  6283. SD_INIT(sd, CPU);
  6284. set_domain_attribute(sd, attr);
  6285. sd->span = *nodemask;
  6286. sd->parent = p;
  6287. if (p)
  6288. p->child = sd;
  6289. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6290. #ifdef CONFIG_SCHED_MC
  6291. p = sd;
  6292. sd = &per_cpu(core_domains, i);
  6293. SD_INIT(sd, MC);
  6294. set_domain_attribute(sd, attr);
  6295. sd->span = cpu_coregroup_map(i);
  6296. cpus_and(sd->span, sd->span, *cpu_map);
  6297. sd->parent = p;
  6298. p->child = sd;
  6299. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6300. #endif
  6301. #ifdef CONFIG_SCHED_SMT
  6302. p = sd;
  6303. sd = &per_cpu(cpu_domains, i);
  6304. SD_INIT(sd, SIBLING);
  6305. set_domain_attribute(sd, attr);
  6306. sd->span = per_cpu(cpu_sibling_map, i);
  6307. cpus_and(sd->span, sd->span, *cpu_map);
  6308. sd->parent = p;
  6309. p->child = sd;
  6310. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6311. #endif
  6312. }
  6313. #ifdef CONFIG_SCHED_SMT
  6314. /* Set up CPU (sibling) groups */
  6315. for_each_cpu_mask_nr(i, *cpu_map) {
  6316. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6317. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6318. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6319. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6320. if (i != first_cpu(*this_sibling_map))
  6321. continue;
  6322. init_sched_build_groups(this_sibling_map, cpu_map,
  6323. &cpu_to_cpu_group,
  6324. send_covered, tmpmask);
  6325. }
  6326. #endif
  6327. #ifdef CONFIG_SCHED_MC
  6328. /* Set up multi-core groups */
  6329. for_each_cpu_mask_nr(i, *cpu_map) {
  6330. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6331. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6332. *this_core_map = cpu_coregroup_map(i);
  6333. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6334. if (i != first_cpu(*this_core_map))
  6335. continue;
  6336. init_sched_build_groups(this_core_map, cpu_map,
  6337. &cpu_to_core_group,
  6338. send_covered, tmpmask);
  6339. }
  6340. #endif
  6341. /* Set up physical groups */
  6342. for (i = 0; i < nr_node_ids; i++) {
  6343. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6344. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6345. *nodemask = node_to_cpumask(i);
  6346. cpus_and(*nodemask, *nodemask, *cpu_map);
  6347. if (cpus_empty(*nodemask))
  6348. continue;
  6349. init_sched_build_groups(nodemask, cpu_map,
  6350. &cpu_to_phys_group,
  6351. send_covered, tmpmask);
  6352. }
  6353. #ifdef CONFIG_NUMA
  6354. /* Set up node groups */
  6355. if (sd_allnodes) {
  6356. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6357. init_sched_build_groups(cpu_map, cpu_map,
  6358. &cpu_to_allnodes_group,
  6359. send_covered, tmpmask);
  6360. }
  6361. for (i = 0; i < nr_node_ids; i++) {
  6362. /* Set up node groups */
  6363. struct sched_group *sg, *prev;
  6364. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6365. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6366. SCHED_CPUMASK_VAR(covered, allmasks);
  6367. int j;
  6368. *nodemask = node_to_cpumask(i);
  6369. cpus_clear(*covered);
  6370. cpus_and(*nodemask, *nodemask, *cpu_map);
  6371. if (cpus_empty(*nodemask)) {
  6372. sched_group_nodes[i] = NULL;
  6373. continue;
  6374. }
  6375. sched_domain_node_span(i, domainspan);
  6376. cpus_and(*domainspan, *domainspan, *cpu_map);
  6377. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6378. if (!sg) {
  6379. printk(KERN_WARNING "Can not alloc domain group for "
  6380. "node %d\n", i);
  6381. goto error;
  6382. }
  6383. sched_group_nodes[i] = sg;
  6384. for_each_cpu_mask_nr(j, *nodemask) {
  6385. struct sched_domain *sd;
  6386. sd = &per_cpu(node_domains, j);
  6387. sd->groups = sg;
  6388. }
  6389. sg->__cpu_power = 0;
  6390. sg->cpumask = *nodemask;
  6391. sg->next = sg;
  6392. cpus_or(*covered, *covered, *nodemask);
  6393. prev = sg;
  6394. for (j = 0; j < nr_node_ids; j++) {
  6395. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6396. int n = (i + j) % nr_node_ids;
  6397. node_to_cpumask_ptr(pnodemask, n);
  6398. cpus_complement(*notcovered, *covered);
  6399. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6400. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6401. if (cpus_empty(*tmpmask))
  6402. break;
  6403. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6404. if (cpus_empty(*tmpmask))
  6405. continue;
  6406. sg = kmalloc_node(sizeof(struct sched_group),
  6407. GFP_KERNEL, i);
  6408. if (!sg) {
  6409. printk(KERN_WARNING
  6410. "Can not alloc domain group for node %d\n", j);
  6411. goto error;
  6412. }
  6413. sg->__cpu_power = 0;
  6414. sg->cpumask = *tmpmask;
  6415. sg->next = prev->next;
  6416. cpus_or(*covered, *covered, *tmpmask);
  6417. prev->next = sg;
  6418. prev = sg;
  6419. }
  6420. }
  6421. #endif
  6422. /* Calculate CPU power for physical packages and nodes */
  6423. #ifdef CONFIG_SCHED_SMT
  6424. for_each_cpu_mask_nr(i, *cpu_map) {
  6425. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6426. init_sched_groups_power(i, sd);
  6427. }
  6428. #endif
  6429. #ifdef CONFIG_SCHED_MC
  6430. for_each_cpu_mask_nr(i, *cpu_map) {
  6431. struct sched_domain *sd = &per_cpu(core_domains, i);
  6432. init_sched_groups_power(i, sd);
  6433. }
  6434. #endif
  6435. for_each_cpu_mask_nr(i, *cpu_map) {
  6436. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6437. init_sched_groups_power(i, sd);
  6438. }
  6439. #ifdef CONFIG_NUMA
  6440. for (i = 0; i < nr_node_ids; i++)
  6441. init_numa_sched_groups_power(sched_group_nodes[i]);
  6442. if (sd_allnodes) {
  6443. struct sched_group *sg;
  6444. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6445. tmpmask);
  6446. init_numa_sched_groups_power(sg);
  6447. }
  6448. #endif
  6449. /* Attach the domains */
  6450. for_each_cpu_mask_nr(i, *cpu_map) {
  6451. struct sched_domain *sd;
  6452. #ifdef CONFIG_SCHED_SMT
  6453. sd = &per_cpu(cpu_domains, i);
  6454. #elif defined(CONFIG_SCHED_MC)
  6455. sd = &per_cpu(core_domains, i);
  6456. #else
  6457. sd = &per_cpu(phys_domains, i);
  6458. #endif
  6459. cpu_attach_domain(sd, rd, i);
  6460. }
  6461. SCHED_CPUMASK_FREE((void *)allmasks);
  6462. return 0;
  6463. #ifdef CONFIG_NUMA
  6464. error:
  6465. free_sched_groups(cpu_map, tmpmask);
  6466. SCHED_CPUMASK_FREE((void *)allmasks);
  6467. return -ENOMEM;
  6468. #endif
  6469. }
  6470. static int build_sched_domains(const cpumask_t *cpu_map)
  6471. {
  6472. return __build_sched_domains(cpu_map, NULL);
  6473. }
  6474. static cpumask_t *doms_cur; /* current sched domains */
  6475. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6476. static struct sched_domain_attr *dattr_cur;
  6477. /* attribues of custom domains in 'doms_cur' */
  6478. /*
  6479. * Special case: If a kmalloc of a doms_cur partition (array of
  6480. * cpumask_t) fails, then fallback to a single sched domain,
  6481. * as determined by the single cpumask_t fallback_doms.
  6482. */
  6483. static cpumask_t fallback_doms;
  6484. void __attribute__((weak)) arch_update_cpu_topology(void)
  6485. {
  6486. }
  6487. /*
  6488. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6489. * For now this just excludes isolated cpus, but could be used to
  6490. * exclude other special cases in the future.
  6491. */
  6492. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6493. {
  6494. int err;
  6495. arch_update_cpu_topology();
  6496. ndoms_cur = 1;
  6497. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6498. if (!doms_cur)
  6499. doms_cur = &fallback_doms;
  6500. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6501. dattr_cur = NULL;
  6502. err = build_sched_domains(doms_cur);
  6503. register_sched_domain_sysctl();
  6504. return err;
  6505. }
  6506. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6507. cpumask_t *tmpmask)
  6508. {
  6509. free_sched_groups(cpu_map, tmpmask);
  6510. }
  6511. /*
  6512. * Detach sched domains from a group of cpus specified in cpu_map
  6513. * These cpus will now be attached to the NULL domain
  6514. */
  6515. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6516. {
  6517. cpumask_t tmpmask;
  6518. int i;
  6519. unregister_sched_domain_sysctl();
  6520. for_each_cpu_mask_nr(i, *cpu_map)
  6521. cpu_attach_domain(NULL, &def_root_domain, i);
  6522. synchronize_sched();
  6523. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6524. }
  6525. /* handle null as "default" */
  6526. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6527. struct sched_domain_attr *new, int idx_new)
  6528. {
  6529. struct sched_domain_attr tmp;
  6530. /* fast path */
  6531. if (!new && !cur)
  6532. return 1;
  6533. tmp = SD_ATTR_INIT;
  6534. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6535. new ? (new + idx_new) : &tmp,
  6536. sizeof(struct sched_domain_attr));
  6537. }
  6538. /*
  6539. * Partition sched domains as specified by the 'ndoms_new'
  6540. * cpumasks in the array doms_new[] of cpumasks. This compares
  6541. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6542. * It destroys each deleted domain and builds each new domain.
  6543. *
  6544. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6545. * The masks don't intersect (don't overlap.) We should setup one
  6546. * sched domain for each mask. CPUs not in any of the cpumasks will
  6547. * not be load balanced. If the same cpumask appears both in the
  6548. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6549. * it as it is.
  6550. *
  6551. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6552. * ownership of it and will kfree it when done with it. If the caller
  6553. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6554. * and partition_sched_domains() will fallback to the single partition
  6555. * 'fallback_doms', it also forces the domains to be rebuilt.
  6556. *
  6557. * Call with hotplug lock held
  6558. */
  6559. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6560. struct sched_domain_attr *dattr_new)
  6561. {
  6562. int i, j;
  6563. mutex_lock(&sched_domains_mutex);
  6564. /* always unregister in case we don't destroy any domains */
  6565. unregister_sched_domain_sysctl();
  6566. if (doms_new == NULL)
  6567. ndoms_new = 0;
  6568. /* Destroy deleted domains */
  6569. for (i = 0; i < ndoms_cur; i++) {
  6570. for (j = 0; j < ndoms_new; j++) {
  6571. if (cpus_equal(doms_cur[i], doms_new[j])
  6572. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6573. goto match1;
  6574. }
  6575. /* no match - a current sched domain not in new doms_new[] */
  6576. detach_destroy_domains(doms_cur + i);
  6577. match1:
  6578. ;
  6579. }
  6580. if (doms_new == NULL) {
  6581. ndoms_cur = 0;
  6582. ndoms_new = 1;
  6583. doms_new = &fallback_doms;
  6584. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6585. dattr_new = NULL;
  6586. }
  6587. /* Build new domains */
  6588. for (i = 0; i < ndoms_new; i++) {
  6589. for (j = 0; j < ndoms_cur; j++) {
  6590. if (cpus_equal(doms_new[i], doms_cur[j])
  6591. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6592. goto match2;
  6593. }
  6594. /* no match - add a new doms_new */
  6595. __build_sched_domains(doms_new + i,
  6596. dattr_new ? dattr_new + i : NULL);
  6597. match2:
  6598. ;
  6599. }
  6600. /* Remember the new sched domains */
  6601. if (doms_cur != &fallback_doms)
  6602. kfree(doms_cur);
  6603. kfree(dattr_cur); /* kfree(NULL) is safe */
  6604. doms_cur = doms_new;
  6605. dattr_cur = dattr_new;
  6606. ndoms_cur = ndoms_new;
  6607. register_sched_domain_sysctl();
  6608. mutex_unlock(&sched_domains_mutex);
  6609. }
  6610. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6611. int arch_reinit_sched_domains(void)
  6612. {
  6613. get_online_cpus();
  6614. rebuild_sched_domains();
  6615. put_online_cpus();
  6616. return 0;
  6617. }
  6618. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6619. {
  6620. int ret;
  6621. if (buf[0] != '0' && buf[0] != '1')
  6622. return -EINVAL;
  6623. if (smt)
  6624. sched_smt_power_savings = (buf[0] == '1');
  6625. else
  6626. sched_mc_power_savings = (buf[0] == '1');
  6627. ret = arch_reinit_sched_domains();
  6628. return ret ? ret : count;
  6629. }
  6630. #ifdef CONFIG_SCHED_MC
  6631. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6632. char *page)
  6633. {
  6634. return sprintf(page, "%u\n", sched_mc_power_savings);
  6635. }
  6636. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6637. const char *buf, size_t count)
  6638. {
  6639. return sched_power_savings_store(buf, count, 0);
  6640. }
  6641. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6642. sched_mc_power_savings_show,
  6643. sched_mc_power_savings_store);
  6644. #endif
  6645. #ifdef CONFIG_SCHED_SMT
  6646. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6647. char *page)
  6648. {
  6649. return sprintf(page, "%u\n", sched_smt_power_savings);
  6650. }
  6651. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6652. const char *buf, size_t count)
  6653. {
  6654. return sched_power_savings_store(buf, count, 1);
  6655. }
  6656. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6657. sched_smt_power_savings_show,
  6658. sched_smt_power_savings_store);
  6659. #endif
  6660. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6661. {
  6662. int err = 0;
  6663. #ifdef CONFIG_SCHED_SMT
  6664. if (smt_capable())
  6665. err = sysfs_create_file(&cls->kset.kobj,
  6666. &attr_sched_smt_power_savings.attr);
  6667. #endif
  6668. #ifdef CONFIG_SCHED_MC
  6669. if (!err && mc_capable())
  6670. err = sysfs_create_file(&cls->kset.kobj,
  6671. &attr_sched_mc_power_savings.attr);
  6672. #endif
  6673. return err;
  6674. }
  6675. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6676. #ifndef CONFIG_CPUSETS
  6677. /*
  6678. * Add online and remove offline CPUs from the scheduler domains.
  6679. * When cpusets are enabled they take over this function.
  6680. */
  6681. static int update_sched_domains(struct notifier_block *nfb,
  6682. unsigned long action, void *hcpu)
  6683. {
  6684. switch (action) {
  6685. case CPU_ONLINE:
  6686. case CPU_ONLINE_FROZEN:
  6687. case CPU_DEAD:
  6688. case CPU_DEAD_FROZEN:
  6689. partition_sched_domains(0, NULL, NULL);
  6690. return NOTIFY_OK;
  6691. default:
  6692. return NOTIFY_DONE;
  6693. }
  6694. }
  6695. #endif
  6696. static int update_runtime(struct notifier_block *nfb,
  6697. unsigned long action, void *hcpu)
  6698. {
  6699. int cpu = (int)(long)hcpu;
  6700. switch (action) {
  6701. case CPU_DOWN_PREPARE:
  6702. case CPU_DOWN_PREPARE_FROZEN:
  6703. disable_runtime(cpu_rq(cpu));
  6704. return NOTIFY_OK;
  6705. case CPU_DOWN_FAILED:
  6706. case CPU_DOWN_FAILED_FROZEN:
  6707. case CPU_ONLINE:
  6708. case CPU_ONLINE_FROZEN:
  6709. enable_runtime(cpu_rq(cpu));
  6710. return NOTIFY_OK;
  6711. default:
  6712. return NOTIFY_DONE;
  6713. }
  6714. }
  6715. void __init sched_init_smp(void)
  6716. {
  6717. cpumask_t non_isolated_cpus;
  6718. #if defined(CONFIG_NUMA)
  6719. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6720. GFP_KERNEL);
  6721. BUG_ON(sched_group_nodes_bycpu == NULL);
  6722. #endif
  6723. get_online_cpus();
  6724. mutex_lock(&sched_domains_mutex);
  6725. arch_init_sched_domains(&cpu_online_map);
  6726. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6727. if (cpus_empty(non_isolated_cpus))
  6728. cpu_set(smp_processor_id(), non_isolated_cpus);
  6729. mutex_unlock(&sched_domains_mutex);
  6730. put_online_cpus();
  6731. #ifndef CONFIG_CPUSETS
  6732. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6733. hotcpu_notifier(update_sched_domains, 0);
  6734. #endif
  6735. /* RT runtime code needs to handle some hotplug events */
  6736. hotcpu_notifier(update_runtime, 0);
  6737. init_hrtick();
  6738. /* Move init over to a non-isolated CPU */
  6739. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6740. BUG();
  6741. sched_init_granularity();
  6742. }
  6743. #else
  6744. void __init sched_init_smp(void)
  6745. {
  6746. sched_init_granularity();
  6747. }
  6748. #endif /* CONFIG_SMP */
  6749. int in_sched_functions(unsigned long addr)
  6750. {
  6751. return in_lock_functions(addr) ||
  6752. (addr >= (unsigned long)__sched_text_start
  6753. && addr < (unsigned long)__sched_text_end);
  6754. }
  6755. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6756. {
  6757. cfs_rq->tasks_timeline = RB_ROOT;
  6758. INIT_LIST_HEAD(&cfs_rq->tasks);
  6759. #ifdef CONFIG_FAIR_GROUP_SCHED
  6760. cfs_rq->rq = rq;
  6761. #endif
  6762. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6763. }
  6764. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6765. {
  6766. struct rt_prio_array *array;
  6767. int i;
  6768. array = &rt_rq->active;
  6769. for (i = 0; i < MAX_RT_PRIO; i++) {
  6770. INIT_LIST_HEAD(array->queue + i);
  6771. __clear_bit(i, array->bitmap);
  6772. }
  6773. /* delimiter for bitsearch: */
  6774. __set_bit(MAX_RT_PRIO, array->bitmap);
  6775. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6776. rt_rq->highest_prio = MAX_RT_PRIO;
  6777. #endif
  6778. #ifdef CONFIG_SMP
  6779. rt_rq->rt_nr_migratory = 0;
  6780. rt_rq->overloaded = 0;
  6781. #endif
  6782. rt_rq->rt_time = 0;
  6783. rt_rq->rt_throttled = 0;
  6784. rt_rq->rt_runtime = 0;
  6785. spin_lock_init(&rt_rq->rt_runtime_lock);
  6786. #ifdef CONFIG_RT_GROUP_SCHED
  6787. rt_rq->rt_nr_boosted = 0;
  6788. rt_rq->rq = rq;
  6789. #endif
  6790. }
  6791. #ifdef CONFIG_FAIR_GROUP_SCHED
  6792. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6793. struct sched_entity *se, int cpu, int add,
  6794. struct sched_entity *parent)
  6795. {
  6796. struct rq *rq = cpu_rq(cpu);
  6797. tg->cfs_rq[cpu] = cfs_rq;
  6798. init_cfs_rq(cfs_rq, rq);
  6799. cfs_rq->tg = tg;
  6800. if (add)
  6801. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6802. tg->se[cpu] = se;
  6803. /* se could be NULL for init_task_group */
  6804. if (!se)
  6805. return;
  6806. if (!parent)
  6807. se->cfs_rq = &rq->cfs;
  6808. else
  6809. se->cfs_rq = parent->my_q;
  6810. se->my_q = cfs_rq;
  6811. se->load.weight = tg->shares;
  6812. se->load.inv_weight = 0;
  6813. se->parent = parent;
  6814. }
  6815. #endif
  6816. #ifdef CONFIG_RT_GROUP_SCHED
  6817. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6818. struct sched_rt_entity *rt_se, int cpu, int add,
  6819. struct sched_rt_entity *parent)
  6820. {
  6821. struct rq *rq = cpu_rq(cpu);
  6822. tg->rt_rq[cpu] = rt_rq;
  6823. init_rt_rq(rt_rq, rq);
  6824. rt_rq->tg = tg;
  6825. rt_rq->rt_se = rt_se;
  6826. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6827. if (add)
  6828. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6829. tg->rt_se[cpu] = rt_se;
  6830. if (!rt_se)
  6831. return;
  6832. if (!parent)
  6833. rt_se->rt_rq = &rq->rt;
  6834. else
  6835. rt_se->rt_rq = parent->my_q;
  6836. rt_se->my_q = rt_rq;
  6837. rt_se->parent = parent;
  6838. INIT_LIST_HEAD(&rt_se->run_list);
  6839. }
  6840. #endif
  6841. void __init sched_init(void)
  6842. {
  6843. int i, j;
  6844. unsigned long alloc_size = 0, ptr;
  6845. #ifdef CONFIG_FAIR_GROUP_SCHED
  6846. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6847. #endif
  6848. #ifdef CONFIG_RT_GROUP_SCHED
  6849. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6850. #endif
  6851. #ifdef CONFIG_USER_SCHED
  6852. alloc_size *= 2;
  6853. #endif
  6854. /*
  6855. * As sched_init() is called before page_alloc is setup,
  6856. * we use alloc_bootmem().
  6857. */
  6858. if (alloc_size) {
  6859. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6860. #ifdef CONFIG_FAIR_GROUP_SCHED
  6861. init_task_group.se = (struct sched_entity **)ptr;
  6862. ptr += nr_cpu_ids * sizeof(void **);
  6863. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6864. ptr += nr_cpu_ids * sizeof(void **);
  6865. #ifdef CONFIG_USER_SCHED
  6866. root_task_group.se = (struct sched_entity **)ptr;
  6867. ptr += nr_cpu_ids * sizeof(void **);
  6868. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6869. ptr += nr_cpu_ids * sizeof(void **);
  6870. #endif /* CONFIG_USER_SCHED */
  6871. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6872. #ifdef CONFIG_RT_GROUP_SCHED
  6873. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6874. ptr += nr_cpu_ids * sizeof(void **);
  6875. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6876. ptr += nr_cpu_ids * sizeof(void **);
  6877. #ifdef CONFIG_USER_SCHED
  6878. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6879. ptr += nr_cpu_ids * sizeof(void **);
  6880. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6881. ptr += nr_cpu_ids * sizeof(void **);
  6882. #endif /* CONFIG_USER_SCHED */
  6883. #endif /* CONFIG_RT_GROUP_SCHED */
  6884. }
  6885. #ifdef CONFIG_SMP
  6886. init_defrootdomain();
  6887. #endif
  6888. init_rt_bandwidth(&def_rt_bandwidth,
  6889. global_rt_period(), global_rt_runtime());
  6890. #ifdef CONFIG_RT_GROUP_SCHED
  6891. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6892. global_rt_period(), global_rt_runtime());
  6893. #ifdef CONFIG_USER_SCHED
  6894. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6895. global_rt_period(), RUNTIME_INF);
  6896. #endif /* CONFIG_USER_SCHED */
  6897. #endif /* CONFIG_RT_GROUP_SCHED */
  6898. #ifdef CONFIG_GROUP_SCHED
  6899. list_add(&init_task_group.list, &task_groups);
  6900. INIT_LIST_HEAD(&init_task_group.children);
  6901. #ifdef CONFIG_USER_SCHED
  6902. INIT_LIST_HEAD(&root_task_group.children);
  6903. init_task_group.parent = &root_task_group;
  6904. list_add(&init_task_group.siblings, &root_task_group.children);
  6905. #endif /* CONFIG_USER_SCHED */
  6906. #endif /* CONFIG_GROUP_SCHED */
  6907. for_each_possible_cpu(i) {
  6908. struct rq *rq;
  6909. rq = cpu_rq(i);
  6910. spin_lock_init(&rq->lock);
  6911. rq->nr_running = 0;
  6912. init_cfs_rq(&rq->cfs, rq);
  6913. init_rt_rq(&rq->rt, rq);
  6914. #ifdef CONFIG_FAIR_GROUP_SCHED
  6915. init_task_group.shares = init_task_group_load;
  6916. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6917. #ifdef CONFIG_CGROUP_SCHED
  6918. /*
  6919. * How much cpu bandwidth does init_task_group get?
  6920. *
  6921. * In case of task-groups formed thr' the cgroup filesystem, it
  6922. * gets 100% of the cpu resources in the system. This overall
  6923. * system cpu resource is divided among the tasks of
  6924. * init_task_group and its child task-groups in a fair manner,
  6925. * based on each entity's (task or task-group's) weight
  6926. * (se->load.weight).
  6927. *
  6928. * In other words, if init_task_group has 10 tasks of weight
  6929. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6930. * then A0's share of the cpu resource is:
  6931. *
  6932. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6933. *
  6934. * We achieve this by letting init_task_group's tasks sit
  6935. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6936. */
  6937. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6938. #elif defined CONFIG_USER_SCHED
  6939. root_task_group.shares = NICE_0_LOAD;
  6940. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6941. /*
  6942. * In case of task-groups formed thr' the user id of tasks,
  6943. * init_task_group represents tasks belonging to root user.
  6944. * Hence it forms a sibling of all subsequent groups formed.
  6945. * In this case, init_task_group gets only a fraction of overall
  6946. * system cpu resource, based on the weight assigned to root
  6947. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6948. * by letting tasks of init_task_group sit in a separate cfs_rq
  6949. * (init_cfs_rq) and having one entity represent this group of
  6950. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6951. */
  6952. init_tg_cfs_entry(&init_task_group,
  6953. &per_cpu(init_cfs_rq, i),
  6954. &per_cpu(init_sched_entity, i), i, 1,
  6955. root_task_group.se[i]);
  6956. #endif
  6957. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6958. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6959. #ifdef CONFIG_RT_GROUP_SCHED
  6960. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6961. #ifdef CONFIG_CGROUP_SCHED
  6962. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6963. #elif defined CONFIG_USER_SCHED
  6964. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6965. init_tg_rt_entry(&init_task_group,
  6966. &per_cpu(init_rt_rq, i),
  6967. &per_cpu(init_sched_rt_entity, i), i, 1,
  6968. root_task_group.rt_se[i]);
  6969. #endif
  6970. #endif
  6971. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6972. rq->cpu_load[j] = 0;
  6973. #ifdef CONFIG_SMP
  6974. rq->sd = NULL;
  6975. rq->rd = NULL;
  6976. rq->active_balance = 0;
  6977. rq->next_balance = jiffies;
  6978. rq->push_cpu = 0;
  6979. rq->cpu = i;
  6980. rq->online = 0;
  6981. rq->migration_thread = NULL;
  6982. INIT_LIST_HEAD(&rq->migration_queue);
  6983. rq_attach_root(rq, &def_root_domain);
  6984. #endif
  6985. init_rq_hrtick(rq);
  6986. atomic_set(&rq->nr_iowait, 0);
  6987. }
  6988. set_load_weight(&init_task);
  6989. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6990. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6991. #endif
  6992. #ifdef CONFIG_SMP
  6993. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6994. #endif
  6995. #ifdef CONFIG_RT_MUTEXES
  6996. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6997. #endif
  6998. /*
  6999. * The boot idle thread does lazy MMU switching as well:
  7000. */
  7001. atomic_inc(&init_mm.mm_count);
  7002. enter_lazy_tlb(&init_mm, current);
  7003. /*
  7004. * Make us the idle thread. Technically, schedule() should not be
  7005. * called from this thread, however somewhere below it might be,
  7006. * but because we are the idle thread, we just pick up running again
  7007. * when this runqueue becomes "idle".
  7008. */
  7009. init_idle(current, smp_processor_id());
  7010. /*
  7011. * During early bootup we pretend to be a normal task:
  7012. */
  7013. current->sched_class = &fair_sched_class;
  7014. scheduler_running = 1;
  7015. }
  7016. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7017. void __might_sleep(char *file, int line)
  7018. {
  7019. #ifdef in_atomic
  7020. static unsigned long prev_jiffy; /* ratelimiting */
  7021. if ((in_atomic() || irqs_disabled()) &&
  7022. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  7023. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7024. return;
  7025. prev_jiffy = jiffies;
  7026. printk(KERN_ERR "BUG: sleeping function called from invalid"
  7027. " context at %s:%d\n", file, line);
  7028. printk("in_atomic():%d, irqs_disabled():%d\n",
  7029. in_atomic(), irqs_disabled());
  7030. debug_show_held_locks(current);
  7031. if (irqs_disabled())
  7032. print_irqtrace_events(current);
  7033. dump_stack();
  7034. }
  7035. #endif
  7036. }
  7037. EXPORT_SYMBOL(__might_sleep);
  7038. #endif
  7039. #ifdef CONFIG_MAGIC_SYSRQ
  7040. static void normalize_task(struct rq *rq, struct task_struct *p)
  7041. {
  7042. int on_rq;
  7043. update_rq_clock(rq);
  7044. on_rq = p->se.on_rq;
  7045. if (on_rq)
  7046. deactivate_task(rq, p, 0);
  7047. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7048. if (on_rq) {
  7049. activate_task(rq, p, 0);
  7050. resched_task(rq->curr);
  7051. }
  7052. }
  7053. void normalize_rt_tasks(void)
  7054. {
  7055. struct task_struct *g, *p;
  7056. unsigned long flags;
  7057. struct rq *rq;
  7058. read_lock_irqsave(&tasklist_lock, flags);
  7059. do_each_thread(g, p) {
  7060. /*
  7061. * Only normalize user tasks:
  7062. */
  7063. if (!p->mm)
  7064. continue;
  7065. p->se.exec_start = 0;
  7066. #ifdef CONFIG_SCHEDSTATS
  7067. p->se.wait_start = 0;
  7068. p->se.sleep_start = 0;
  7069. p->se.block_start = 0;
  7070. #endif
  7071. if (!rt_task(p)) {
  7072. /*
  7073. * Renice negative nice level userspace
  7074. * tasks back to 0:
  7075. */
  7076. if (TASK_NICE(p) < 0 && p->mm)
  7077. set_user_nice(p, 0);
  7078. continue;
  7079. }
  7080. spin_lock(&p->pi_lock);
  7081. rq = __task_rq_lock(p);
  7082. normalize_task(rq, p);
  7083. __task_rq_unlock(rq);
  7084. spin_unlock(&p->pi_lock);
  7085. } while_each_thread(g, p);
  7086. read_unlock_irqrestore(&tasklist_lock, flags);
  7087. }
  7088. #endif /* CONFIG_MAGIC_SYSRQ */
  7089. #ifdef CONFIG_IA64
  7090. /*
  7091. * These functions are only useful for the IA64 MCA handling.
  7092. *
  7093. * They can only be called when the whole system has been
  7094. * stopped - every CPU needs to be quiescent, and no scheduling
  7095. * activity can take place. Using them for anything else would
  7096. * be a serious bug, and as a result, they aren't even visible
  7097. * under any other configuration.
  7098. */
  7099. /**
  7100. * curr_task - return the current task for a given cpu.
  7101. * @cpu: the processor in question.
  7102. *
  7103. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7104. */
  7105. struct task_struct *curr_task(int cpu)
  7106. {
  7107. return cpu_curr(cpu);
  7108. }
  7109. /**
  7110. * set_curr_task - set the current task for a given cpu.
  7111. * @cpu: the processor in question.
  7112. * @p: the task pointer to set.
  7113. *
  7114. * Description: This function must only be used when non-maskable interrupts
  7115. * are serviced on a separate stack. It allows the architecture to switch the
  7116. * notion of the current task on a cpu in a non-blocking manner. This function
  7117. * must be called with all CPU's synchronized, and interrupts disabled, the
  7118. * and caller must save the original value of the current task (see
  7119. * curr_task() above) and restore that value before reenabling interrupts and
  7120. * re-starting the system.
  7121. *
  7122. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7123. */
  7124. void set_curr_task(int cpu, struct task_struct *p)
  7125. {
  7126. cpu_curr(cpu) = p;
  7127. }
  7128. #endif
  7129. #ifdef CONFIG_FAIR_GROUP_SCHED
  7130. static void free_fair_sched_group(struct task_group *tg)
  7131. {
  7132. int i;
  7133. for_each_possible_cpu(i) {
  7134. if (tg->cfs_rq)
  7135. kfree(tg->cfs_rq[i]);
  7136. if (tg->se)
  7137. kfree(tg->se[i]);
  7138. }
  7139. kfree(tg->cfs_rq);
  7140. kfree(tg->se);
  7141. }
  7142. static
  7143. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7144. {
  7145. struct cfs_rq *cfs_rq;
  7146. struct sched_entity *se, *parent_se;
  7147. struct rq *rq;
  7148. int i;
  7149. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7150. if (!tg->cfs_rq)
  7151. goto err;
  7152. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7153. if (!tg->se)
  7154. goto err;
  7155. tg->shares = NICE_0_LOAD;
  7156. for_each_possible_cpu(i) {
  7157. rq = cpu_rq(i);
  7158. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7159. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7160. if (!cfs_rq)
  7161. goto err;
  7162. se = kmalloc_node(sizeof(struct sched_entity),
  7163. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7164. if (!se)
  7165. goto err;
  7166. parent_se = parent ? parent->se[i] : NULL;
  7167. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7168. }
  7169. return 1;
  7170. err:
  7171. return 0;
  7172. }
  7173. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7174. {
  7175. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7176. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7177. }
  7178. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7179. {
  7180. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7181. }
  7182. #else /* !CONFG_FAIR_GROUP_SCHED */
  7183. static inline void free_fair_sched_group(struct task_group *tg)
  7184. {
  7185. }
  7186. static inline
  7187. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7188. {
  7189. return 1;
  7190. }
  7191. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7192. {
  7193. }
  7194. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7195. {
  7196. }
  7197. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7198. #ifdef CONFIG_RT_GROUP_SCHED
  7199. static void free_rt_sched_group(struct task_group *tg)
  7200. {
  7201. int i;
  7202. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7203. for_each_possible_cpu(i) {
  7204. if (tg->rt_rq)
  7205. kfree(tg->rt_rq[i]);
  7206. if (tg->rt_se)
  7207. kfree(tg->rt_se[i]);
  7208. }
  7209. kfree(tg->rt_rq);
  7210. kfree(tg->rt_se);
  7211. }
  7212. static
  7213. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7214. {
  7215. struct rt_rq *rt_rq;
  7216. struct sched_rt_entity *rt_se, *parent_se;
  7217. struct rq *rq;
  7218. int i;
  7219. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7220. if (!tg->rt_rq)
  7221. goto err;
  7222. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7223. if (!tg->rt_se)
  7224. goto err;
  7225. init_rt_bandwidth(&tg->rt_bandwidth,
  7226. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7227. for_each_possible_cpu(i) {
  7228. rq = cpu_rq(i);
  7229. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7230. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7231. if (!rt_rq)
  7232. goto err;
  7233. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7234. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7235. if (!rt_se)
  7236. goto err;
  7237. parent_se = parent ? parent->rt_se[i] : NULL;
  7238. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7239. }
  7240. return 1;
  7241. err:
  7242. return 0;
  7243. }
  7244. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7245. {
  7246. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7247. &cpu_rq(cpu)->leaf_rt_rq_list);
  7248. }
  7249. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7250. {
  7251. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7252. }
  7253. #else /* !CONFIG_RT_GROUP_SCHED */
  7254. static inline void free_rt_sched_group(struct task_group *tg)
  7255. {
  7256. }
  7257. static inline
  7258. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7259. {
  7260. return 1;
  7261. }
  7262. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7263. {
  7264. }
  7265. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7266. {
  7267. }
  7268. #endif /* CONFIG_RT_GROUP_SCHED */
  7269. #ifdef CONFIG_GROUP_SCHED
  7270. static void free_sched_group(struct task_group *tg)
  7271. {
  7272. free_fair_sched_group(tg);
  7273. free_rt_sched_group(tg);
  7274. kfree(tg);
  7275. }
  7276. /* allocate runqueue etc for a new task group */
  7277. struct task_group *sched_create_group(struct task_group *parent)
  7278. {
  7279. struct task_group *tg;
  7280. unsigned long flags;
  7281. int i;
  7282. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7283. if (!tg)
  7284. return ERR_PTR(-ENOMEM);
  7285. if (!alloc_fair_sched_group(tg, parent))
  7286. goto err;
  7287. if (!alloc_rt_sched_group(tg, parent))
  7288. goto err;
  7289. spin_lock_irqsave(&task_group_lock, flags);
  7290. for_each_possible_cpu(i) {
  7291. register_fair_sched_group(tg, i);
  7292. register_rt_sched_group(tg, i);
  7293. }
  7294. list_add_rcu(&tg->list, &task_groups);
  7295. WARN_ON(!parent); /* root should already exist */
  7296. tg->parent = parent;
  7297. INIT_LIST_HEAD(&tg->children);
  7298. list_add_rcu(&tg->siblings, &parent->children);
  7299. spin_unlock_irqrestore(&task_group_lock, flags);
  7300. return tg;
  7301. err:
  7302. free_sched_group(tg);
  7303. return ERR_PTR(-ENOMEM);
  7304. }
  7305. /* rcu callback to free various structures associated with a task group */
  7306. static void free_sched_group_rcu(struct rcu_head *rhp)
  7307. {
  7308. /* now it should be safe to free those cfs_rqs */
  7309. free_sched_group(container_of(rhp, struct task_group, rcu));
  7310. }
  7311. /* Destroy runqueue etc associated with a task group */
  7312. void sched_destroy_group(struct task_group *tg)
  7313. {
  7314. unsigned long flags;
  7315. int i;
  7316. spin_lock_irqsave(&task_group_lock, flags);
  7317. for_each_possible_cpu(i) {
  7318. unregister_fair_sched_group(tg, i);
  7319. unregister_rt_sched_group(tg, i);
  7320. }
  7321. list_del_rcu(&tg->list);
  7322. list_del_rcu(&tg->siblings);
  7323. spin_unlock_irqrestore(&task_group_lock, flags);
  7324. /* wait for possible concurrent references to cfs_rqs complete */
  7325. call_rcu(&tg->rcu, free_sched_group_rcu);
  7326. }
  7327. /* change task's runqueue when it moves between groups.
  7328. * The caller of this function should have put the task in its new group
  7329. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7330. * reflect its new group.
  7331. */
  7332. void sched_move_task(struct task_struct *tsk)
  7333. {
  7334. int on_rq, running;
  7335. unsigned long flags;
  7336. struct rq *rq;
  7337. rq = task_rq_lock(tsk, &flags);
  7338. update_rq_clock(rq);
  7339. running = task_current(rq, tsk);
  7340. on_rq = tsk->se.on_rq;
  7341. if (on_rq)
  7342. dequeue_task(rq, tsk, 0);
  7343. if (unlikely(running))
  7344. tsk->sched_class->put_prev_task(rq, tsk);
  7345. set_task_rq(tsk, task_cpu(tsk));
  7346. #ifdef CONFIG_FAIR_GROUP_SCHED
  7347. if (tsk->sched_class->moved_group)
  7348. tsk->sched_class->moved_group(tsk);
  7349. #endif
  7350. if (unlikely(running))
  7351. tsk->sched_class->set_curr_task(rq);
  7352. if (on_rq)
  7353. enqueue_task(rq, tsk, 0);
  7354. task_rq_unlock(rq, &flags);
  7355. }
  7356. #endif /* CONFIG_GROUP_SCHED */
  7357. #ifdef CONFIG_FAIR_GROUP_SCHED
  7358. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7359. {
  7360. struct cfs_rq *cfs_rq = se->cfs_rq;
  7361. int on_rq;
  7362. on_rq = se->on_rq;
  7363. if (on_rq)
  7364. dequeue_entity(cfs_rq, se, 0);
  7365. se->load.weight = shares;
  7366. se->load.inv_weight = 0;
  7367. if (on_rq)
  7368. enqueue_entity(cfs_rq, se, 0);
  7369. }
  7370. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7371. {
  7372. struct cfs_rq *cfs_rq = se->cfs_rq;
  7373. struct rq *rq = cfs_rq->rq;
  7374. unsigned long flags;
  7375. spin_lock_irqsave(&rq->lock, flags);
  7376. __set_se_shares(se, shares);
  7377. spin_unlock_irqrestore(&rq->lock, flags);
  7378. }
  7379. static DEFINE_MUTEX(shares_mutex);
  7380. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7381. {
  7382. int i;
  7383. unsigned long flags;
  7384. /*
  7385. * We can't change the weight of the root cgroup.
  7386. */
  7387. if (!tg->se[0])
  7388. return -EINVAL;
  7389. if (shares < MIN_SHARES)
  7390. shares = MIN_SHARES;
  7391. else if (shares > MAX_SHARES)
  7392. shares = MAX_SHARES;
  7393. mutex_lock(&shares_mutex);
  7394. if (tg->shares == shares)
  7395. goto done;
  7396. spin_lock_irqsave(&task_group_lock, flags);
  7397. for_each_possible_cpu(i)
  7398. unregister_fair_sched_group(tg, i);
  7399. list_del_rcu(&tg->siblings);
  7400. spin_unlock_irqrestore(&task_group_lock, flags);
  7401. /* wait for any ongoing reference to this group to finish */
  7402. synchronize_sched();
  7403. /*
  7404. * Now we are free to modify the group's share on each cpu
  7405. * w/o tripping rebalance_share or load_balance_fair.
  7406. */
  7407. tg->shares = shares;
  7408. for_each_possible_cpu(i) {
  7409. /*
  7410. * force a rebalance
  7411. */
  7412. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7413. set_se_shares(tg->se[i], shares);
  7414. }
  7415. /*
  7416. * Enable load balance activity on this group, by inserting it back on
  7417. * each cpu's rq->leaf_cfs_rq_list.
  7418. */
  7419. spin_lock_irqsave(&task_group_lock, flags);
  7420. for_each_possible_cpu(i)
  7421. register_fair_sched_group(tg, i);
  7422. list_add_rcu(&tg->siblings, &tg->parent->children);
  7423. spin_unlock_irqrestore(&task_group_lock, flags);
  7424. done:
  7425. mutex_unlock(&shares_mutex);
  7426. return 0;
  7427. }
  7428. unsigned long sched_group_shares(struct task_group *tg)
  7429. {
  7430. return tg->shares;
  7431. }
  7432. #endif
  7433. #ifdef CONFIG_RT_GROUP_SCHED
  7434. /*
  7435. * Ensure that the real time constraints are schedulable.
  7436. */
  7437. static DEFINE_MUTEX(rt_constraints_mutex);
  7438. static unsigned long to_ratio(u64 period, u64 runtime)
  7439. {
  7440. if (runtime == RUNTIME_INF)
  7441. return 1ULL << 16;
  7442. return div64_u64(runtime << 16, period);
  7443. }
  7444. #ifdef CONFIG_CGROUP_SCHED
  7445. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7446. {
  7447. struct task_group *tgi, *parent = tg->parent;
  7448. unsigned long total = 0;
  7449. if (!parent) {
  7450. if (global_rt_period() < period)
  7451. return 0;
  7452. return to_ratio(period, runtime) <
  7453. to_ratio(global_rt_period(), global_rt_runtime());
  7454. }
  7455. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7456. return 0;
  7457. rcu_read_lock();
  7458. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7459. if (tgi == tg)
  7460. continue;
  7461. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7462. tgi->rt_bandwidth.rt_runtime);
  7463. }
  7464. rcu_read_unlock();
  7465. return total + to_ratio(period, runtime) <=
  7466. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7467. parent->rt_bandwidth.rt_runtime);
  7468. }
  7469. #elif defined CONFIG_USER_SCHED
  7470. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7471. {
  7472. struct task_group *tgi;
  7473. unsigned long total = 0;
  7474. unsigned long global_ratio =
  7475. to_ratio(global_rt_period(), global_rt_runtime());
  7476. rcu_read_lock();
  7477. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7478. if (tgi == tg)
  7479. continue;
  7480. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7481. tgi->rt_bandwidth.rt_runtime);
  7482. }
  7483. rcu_read_unlock();
  7484. return total + to_ratio(period, runtime) < global_ratio;
  7485. }
  7486. #endif
  7487. /* Must be called with tasklist_lock held */
  7488. static inline int tg_has_rt_tasks(struct task_group *tg)
  7489. {
  7490. struct task_struct *g, *p;
  7491. do_each_thread(g, p) {
  7492. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7493. return 1;
  7494. } while_each_thread(g, p);
  7495. return 0;
  7496. }
  7497. static int tg_set_bandwidth(struct task_group *tg,
  7498. u64 rt_period, u64 rt_runtime)
  7499. {
  7500. int i, err = 0;
  7501. mutex_lock(&rt_constraints_mutex);
  7502. read_lock(&tasklist_lock);
  7503. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7504. err = -EBUSY;
  7505. goto unlock;
  7506. }
  7507. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7508. err = -EINVAL;
  7509. goto unlock;
  7510. }
  7511. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7512. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7513. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7514. for_each_possible_cpu(i) {
  7515. struct rt_rq *rt_rq = tg->rt_rq[i];
  7516. spin_lock(&rt_rq->rt_runtime_lock);
  7517. rt_rq->rt_runtime = rt_runtime;
  7518. spin_unlock(&rt_rq->rt_runtime_lock);
  7519. }
  7520. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7521. unlock:
  7522. read_unlock(&tasklist_lock);
  7523. mutex_unlock(&rt_constraints_mutex);
  7524. return err;
  7525. }
  7526. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7527. {
  7528. u64 rt_runtime, rt_period;
  7529. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7530. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7531. if (rt_runtime_us < 0)
  7532. rt_runtime = RUNTIME_INF;
  7533. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7534. }
  7535. long sched_group_rt_runtime(struct task_group *tg)
  7536. {
  7537. u64 rt_runtime_us;
  7538. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7539. return -1;
  7540. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7541. do_div(rt_runtime_us, NSEC_PER_USEC);
  7542. return rt_runtime_us;
  7543. }
  7544. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7545. {
  7546. u64 rt_runtime, rt_period;
  7547. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7548. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7549. if (rt_period == 0)
  7550. return -EINVAL;
  7551. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7552. }
  7553. long sched_group_rt_period(struct task_group *tg)
  7554. {
  7555. u64 rt_period_us;
  7556. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7557. do_div(rt_period_us, NSEC_PER_USEC);
  7558. return rt_period_us;
  7559. }
  7560. static int sched_rt_global_constraints(void)
  7561. {
  7562. struct task_group *tg = &root_task_group;
  7563. u64 rt_runtime, rt_period;
  7564. int ret = 0;
  7565. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7566. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7567. mutex_lock(&rt_constraints_mutex);
  7568. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7569. ret = -EINVAL;
  7570. mutex_unlock(&rt_constraints_mutex);
  7571. return ret;
  7572. }
  7573. #else /* !CONFIG_RT_GROUP_SCHED */
  7574. static int sched_rt_global_constraints(void)
  7575. {
  7576. unsigned long flags;
  7577. int i;
  7578. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7579. for_each_possible_cpu(i) {
  7580. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7581. spin_lock(&rt_rq->rt_runtime_lock);
  7582. rt_rq->rt_runtime = global_rt_runtime();
  7583. spin_unlock(&rt_rq->rt_runtime_lock);
  7584. }
  7585. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7586. return 0;
  7587. }
  7588. #endif /* CONFIG_RT_GROUP_SCHED */
  7589. int sched_rt_handler(struct ctl_table *table, int write,
  7590. struct file *filp, void __user *buffer, size_t *lenp,
  7591. loff_t *ppos)
  7592. {
  7593. int ret;
  7594. int old_period, old_runtime;
  7595. static DEFINE_MUTEX(mutex);
  7596. mutex_lock(&mutex);
  7597. old_period = sysctl_sched_rt_period;
  7598. old_runtime = sysctl_sched_rt_runtime;
  7599. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7600. if (!ret && write) {
  7601. ret = sched_rt_global_constraints();
  7602. if (ret) {
  7603. sysctl_sched_rt_period = old_period;
  7604. sysctl_sched_rt_runtime = old_runtime;
  7605. } else {
  7606. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7607. def_rt_bandwidth.rt_period =
  7608. ns_to_ktime(global_rt_period());
  7609. }
  7610. }
  7611. mutex_unlock(&mutex);
  7612. return ret;
  7613. }
  7614. #ifdef CONFIG_CGROUP_SCHED
  7615. /* return corresponding task_group object of a cgroup */
  7616. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7617. {
  7618. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7619. struct task_group, css);
  7620. }
  7621. static struct cgroup_subsys_state *
  7622. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7623. {
  7624. struct task_group *tg, *parent;
  7625. if (!cgrp->parent) {
  7626. /* This is early initialization for the top cgroup */
  7627. init_task_group.css.cgroup = cgrp;
  7628. return &init_task_group.css;
  7629. }
  7630. parent = cgroup_tg(cgrp->parent);
  7631. tg = sched_create_group(parent);
  7632. if (IS_ERR(tg))
  7633. return ERR_PTR(-ENOMEM);
  7634. /* Bind the cgroup to task_group object we just created */
  7635. tg->css.cgroup = cgrp;
  7636. return &tg->css;
  7637. }
  7638. static void
  7639. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7640. {
  7641. struct task_group *tg = cgroup_tg(cgrp);
  7642. sched_destroy_group(tg);
  7643. }
  7644. static int
  7645. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7646. struct task_struct *tsk)
  7647. {
  7648. #ifdef CONFIG_RT_GROUP_SCHED
  7649. /* Don't accept realtime tasks when there is no way for them to run */
  7650. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7651. return -EINVAL;
  7652. #else
  7653. /* We don't support RT-tasks being in separate groups */
  7654. if (tsk->sched_class != &fair_sched_class)
  7655. return -EINVAL;
  7656. #endif
  7657. return 0;
  7658. }
  7659. static void
  7660. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7661. struct cgroup *old_cont, struct task_struct *tsk)
  7662. {
  7663. sched_move_task(tsk);
  7664. }
  7665. #ifdef CONFIG_FAIR_GROUP_SCHED
  7666. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7667. u64 shareval)
  7668. {
  7669. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7670. }
  7671. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7672. {
  7673. struct task_group *tg = cgroup_tg(cgrp);
  7674. return (u64) tg->shares;
  7675. }
  7676. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7677. #ifdef CONFIG_RT_GROUP_SCHED
  7678. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7679. s64 val)
  7680. {
  7681. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7682. }
  7683. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7684. {
  7685. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7686. }
  7687. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7688. u64 rt_period_us)
  7689. {
  7690. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7691. }
  7692. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7693. {
  7694. return sched_group_rt_period(cgroup_tg(cgrp));
  7695. }
  7696. #endif /* CONFIG_RT_GROUP_SCHED */
  7697. static struct cftype cpu_files[] = {
  7698. #ifdef CONFIG_FAIR_GROUP_SCHED
  7699. {
  7700. .name = "shares",
  7701. .read_u64 = cpu_shares_read_u64,
  7702. .write_u64 = cpu_shares_write_u64,
  7703. },
  7704. #endif
  7705. #ifdef CONFIG_RT_GROUP_SCHED
  7706. {
  7707. .name = "rt_runtime_us",
  7708. .read_s64 = cpu_rt_runtime_read,
  7709. .write_s64 = cpu_rt_runtime_write,
  7710. },
  7711. {
  7712. .name = "rt_period_us",
  7713. .read_u64 = cpu_rt_period_read_uint,
  7714. .write_u64 = cpu_rt_period_write_uint,
  7715. },
  7716. #endif
  7717. };
  7718. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7719. {
  7720. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7721. }
  7722. struct cgroup_subsys cpu_cgroup_subsys = {
  7723. .name = "cpu",
  7724. .create = cpu_cgroup_create,
  7725. .destroy = cpu_cgroup_destroy,
  7726. .can_attach = cpu_cgroup_can_attach,
  7727. .attach = cpu_cgroup_attach,
  7728. .populate = cpu_cgroup_populate,
  7729. .subsys_id = cpu_cgroup_subsys_id,
  7730. .early_init = 1,
  7731. };
  7732. #endif /* CONFIG_CGROUP_SCHED */
  7733. #ifdef CONFIG_CGROUP_CPUACCT
  7734. /*
  7735. * CPU accounting code for task groups.
  7736. *
  7737. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7738. * (balbir@in.ibm.com).
  7739. */
  7740. /* track cpu usage of a group of tasks */
  7741. struct cpuacct {
  7742. struct cgroup_subsys_state css;
  7743. /* cpuusage holds pointer to a u64-type object on every cpu */
  7744. u64 *cpuusage;
  7745. };
  7746. struct cgroup_subsys cpuacct_subsys;
  7747. /* return cpu accounting group corresponding to this container */
  7748. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7749. {
  7750. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7751. struct cpuacct, css);
  7752. }
  7753. /* return cpu accounting group to which this task belongs */
  7754. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7755. {
  7756. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7757. struct cpuacct, css);
  7758. }
  7759. /* create a new cpu accounting group */
  7760. static struct cgroup_subsys_state *cpuacct_create(
  7761. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7762. {
  7763. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7764. if (!ca)
  7765. return ERR_PTR(-ENOMEM);
  7766. ca->cpuusage = alloc_percpu(u64);
  7767. if (!ca->cpuusage) {
  7768. kfree(ca);
  7769. return ERR_PTR(-ENOMEM);
  7770. }
  7771. return &ca->css;
  7772. }
  7773. /* destroy an existing cpu accounting group */
  7774. static void
  7775. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7776. {
  7777. struct cpuacct *ca = cgroup_ca(cgrp);
  7778. free_percpu(ca->cpuusage);
  7779. kfree(ca);
  7780. }
  7781. /* return total cpu usage (in nanoseconds) of a group */
  7782. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7783. {
  7784. struct cpuacct *ca = cgroup_ca(cgrp);
  7785. u64 totalcpuusage = 0;
  7786. int i;
  7787. for_each_possible_cpu(i) {
  7788. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7789. /*
  7790. * Take rq->lock to make 64-bit addition safe on 32-bit
  7791. * platforms.
  7792. */
  7793. spin_lock_irq(&cpu_rq(i)->lock);
  7794. totalcpuusage += *cpuusage;
  7795. spin_unlock_irq(&cpu_rq(i)->lock);
  7796. }
  7797. return totalcpuusage;
  7798. }
  7799. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7800. u64 reset)
  7801. {
  7802. struct cpuacct *ca = cgroup_ca(cgrp);
  7803. int err = 0;
  7804. int i;
  7805. if (reset) {
  7806. err = -EINVAL;
  7807. goto out;
  7808. }
  7809. for_each_possible_cpu(i) {
  7810. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7811. spin_lock_irq(&cpu_rq(i)->lock);
  7812. *cpuusage = 0;
  7813. spin_unlock_irq(&cpu_rq(i)->lock);
  7814. }
  7815. out:
  7816. return err;
  7817. }
  7818. static struct cftype files[] = {
  7819. {
  7820. .name = "usage",
  7821. .read_u64 = cpuusage_read,
  7822. .write_u64 = cpuusage_write,
  7823. },
  7824. };
  7825. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7826. {
  7827. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7828. }
  7829. /*
  7830. * charge this task's execution time to its accounting group.
  7831. *
  7832. * called with rq->lock held.
  7833. */
  7834. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7835. {
  7836. struct cpuacct *ca;
  7837. if (!cpuacct_subsys.active)
  7838. return;
  7839. ca = task_ca(tsk);
  7840. if (ca) {
  7841. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7842. *cpuusage += cputime;
  7843. }
  7844. }
  7845. struct cgroup_subsys cpuacct_subsys = {
  7846. .name = "cpuacct",
  7847. .create = cpuacct_create,
  7848. .destroy = cpuacct_destroy,
  7849. .populate = cpuacct_populate,
  7850. .subsys_id = cpuacct_subsys_id,
  7851. };
  7852. #endif /* CONFIG_CGROUP_CPUACCT */